
 39

Chapter 3. Data Freshness

This chapter describes our proposal for data freshness evaluation and enforcement.

We propose freshness evaluation algorithms

 that take into account the properties of the data integration system that have

more impact in data freshness. This approach allows the specialization of

evaluation algorithms according to different application scenarios.

We also present an approach for data freshness enforcement when freshness

requirements cannot be achieved.

1. Introduction

The needs of having precise measures of data freshness become increasingly critical in several fields. Examples

are numerous:

− Information Retrieval: Given a user query, there may be a great number of web sources providing data to
answer the query but having different data quality, in particular, having varied freshness. A big amount of

retrieved data is not relevant for users because of its lacks of freshness (e.g. web pages announcing train

ticket reductions for expired promotions). The analysis of data freshness is useful for making a pre-

filtering of data (or entire data sources), according to freshness requirements. In addition, retrieved data

may be sorted according to their freshness, allowing the user to first see the freshest data.

− Decision making: When decision making is based on data extracted from autonomous data sources,
external to the organization, a fine knowledge of data quality is necessary in order to associate relative

importance to data. For example, old euro currencies should not impact decisions in the same way than

more recent currencies. In this context, data freshness should be informed to end-users, as an additional

attribute qualifying data. Further strategies, as filtering old data may also be carried out.

− E-commerce: Many web portals, such as Kelkoo® or Ebay® bring a uniform access to products of
several vendors, allowing the comparison of product features and prices. Offerings are so numerous and

disparate that users are overloaded with great amounts of data. Frequently, many of the proposed products

are out of stock or have changed the offering conditions (e.g. the price); for example, when searching last

minute flights, most of the offers are timeout and user loses considerable time. Incorporating data

freshness conditions to the query interfaces offers a good possibility for reducing interaction times and

providing relevant data.

− Scientific experiments: Research experiments, especially in the field of life sciences, produce great
amounts of data, which are published in databanks and journals. Searches of related experiments (e.g.

about a gene sub-sequence) are frequently carried out in order to cross results and abstract similar

behaviors. Comparison is not trivial and requires executing expensive routines, which is worsen by the

great amount of data and its wide overlapping. Furthermore, the existence of relatively old data introduces

noise to the task. In this context, the analysis of data freshness may help reducing the search space in

order to retrieve the most recent experiments.

− Web-services integration: Consider a company that uses web service S and wants to find a compatible
service provider. The selection among the offered services may be done according to several criteria, for

example, response time or service availability. When the service also provides data, data freshness may

play an important role, because users may prefer obtaining the most recent data. For example, in an

application querying yellow pages providers, data freshness may be critical.

− Customer relationship management: Managing obsolete data may become very expensive. A well-known
example is the return of mail because customers have changed their addresses while the system continues

managing the old ones. Generally, many data qualifying customers are obtained from external sources

(e.g. address catalogs, yellow pages, census data). Knowing data freshness is crucial for taking accurate

decisions. Furthermore, data freshness may be an important factor when choosing among data providers.

Data Quality Evaluation in Data Integration Systems

40

All these scenarios motivate the need of data freshness evaluation methods capable of adapting to different user

expectations and different perceptions of data freshness. As argued in previous chapter, data freshness represents

a family of quality factors. We recall the two freshness factors that have been proposed in the literature (see Sub-

section 2.1 of Chapter 2 for further details):

� Currency describes how stale is data with respect to the sources. It captures the gap between the

extraction of data from the sources and its delivery to the users. It is often measured as the time elapsed

since data was extracted from the source.

� Timeliness describes how old is data (since its creation/update at the sources). It captures the gap between

data creation/update and data delivery no matter when data was extracted from sources. It is often

estimated as the time elapsed from the last update to a source.

We consider both freshness factors. We use the term data freshness when the discussion concerns both factors

and we refer to data currency and data timelines only when specific discussion is necessary. We consider set

granularity for measures, i.e. a freshness value is associated to each source relation (or equivalent structures

when sources are not relational).

In this chapter we deal with data freshness evaluation in data integration systems (DISs). We address the

problem of evaluating the freshness of the data returned to users in response to their queries and deciding if

users’ freshness expectations can be achieved. Initially, we treat the topic of data freshness evaluation, and then,

we discuss how freshness measures can be used for improving the DIS and enforcing data freshness.

In order to evaluate the freshness of the data returned to users, we should consider the freshness of source data

and also take into account the processes that extract, integrate and convey data to users. In previous chapter we

analyzed the various dimensions that influence data freshness, namely, nature of data, architectural techniques

and synchronization policies. We now focus on modeling such features and using them in the freshness

evaluation process. To this end, we propose a framework which attempts to formalize the different elements

involved in data freshness evaluation. Among these elements there are data sources, user queries, processes that

extract, integrate and convey data, metadata describing DISs features, quality measures and quality evaluation

algorithms.

In our framework, DISs are modeled as workflow processes in which the workflow activities perform the

different tasks that extract, integrate and convey data to end-users. For example, in data warehouse refreshment

processes, typical workflow activities are the routines that perform the extraction, cleaning, integration,

aggregation and customization of data [Bouzeghoub+1999]. Workflow models enable the representation of

complex data manipulation operations. Quality evaluation algorithms are based on the workflow’s graph

representation and consequently, the freshness evaluation problem turns into value aggregation and propagation

through this graph.

The idea behind the framework is to define a flexible context which allows specializing evaluation algorithms in

order to take into account the characteristics of specific application scenarios. For example, in a DIS that

materializes data, the data freshness evaluation method should take into account the delays introduced by data

refreshment, while in a virtual DIS such delays are not applicable. We propose a freshness evaluation approach

that is general enough to be used in different types of DISs but is flexible enough to adapt to the characteristics

of concrete application scenarios.

In addition to allowing the evaluation of data freshness, our framework proposes many facilities for data

freshness enforcement. A DIS should provide the data freshness expected by the users. In order to know if user

freshness expectations can be achieved by the DIS, we can evaluate the freshness values of conveyed data and

compare them with those expected by users. If freshness expectations are not achieved, we may improve DIS

design in order to enforce freshness or negotiate with source data providers or users in order to relax constraints.

We propose a freshness enforcement approach that supports the analysis of the DIS at different abstraction levels

in order to identify its critical points and to target the study of improvement actions for these critical points.

The following sections describe our approach for data freshness evaluation and enforcement: Section 2 describes

the framework and presents an overview of the evaluation approach. Section 3 uses the framework for data

freshness evaluation, specifically, we model the DISs processes and properties that have impact in data freshness

and we implement evaluation algorithms that take into account the processes and properties. Section 4 deals with

data freshness enforcement, presenting improvement actions for enforcing data freshness when freshness

expectations cannot be achieved by a DIS. Section 5 illustrates the development of a specific improvement

action. We conclude, in Section 6, by drawing the lessons learned from our experiments.

 Verónika Peralta

 41

2. Data quality evaluation framework

In this section we present a framework for data freshness evaluation in the context of DISs. The framework

models data sources, data targets and the DIS processes (which build target data from source data). DIS

processes include the tasks for extracting, transforming and integrating data and conveying it to users. We can

model a unique DIS or several DISs (e.g. various data marts for different departments of an enterprise).

The goal of the framework is twofold, firstly, helping in the identification of the DIS properties that should be

taken into account for freshness evaluation, and secondly, allowing the easy development of evaluation

algorithms that consider such properties.

This section describes the quality evaluation framework, specifying the representation of its components and

presenting an overview of its usage for data quality evaluation. The rest of the chapter provides detailed

description on data freshness evaluation and enforcement, based on this framework.

2.1. Definition of the framework

The quality evaluation framework attempts to formalize the different elements involved in data freshness

evaluation. Among these elements there are data sources, data targets, DIS processes, DIS features, quality

measures and quality evaluation algorithms. We start defining the framework and along the section we define the

framework components.

The proposed framework is defined as follows:

Definition 3.1 (quality evaluation framework). The quality evaluation framework is a 5-uple:

 <Sources, Targets, QualityGraphs, Properties, Algorithms>

where Sources is a set of available data sources, Targets is a set of data targets, QualityGraphs is a set of

graphs representing several DISs processes, Properties is a set of properties describing DISs features and

quality measures and Algorithms is a set of quality evaluation algorithms. □

Example 3.1. Consider a DIS that retrieves meteorological information from three sources: S1 (real time

meteorological data of satellites), S2 (meteorological dissemination database) and S3 (climatic sensors). The

DIS provides information to three query interfaces: T1 (historical information about climate alerts), T2

(aggregated data about climate measurements) and T3 (detailed data about predictions). The DIS includes

processes for extracting, filtering, integrating and aggregating data. Among the DIS features that are

relevant for studying data freshness there are, for example, the processing cost of DIS processes and the

refreshment frequencies of materialized data. As quality measure, users are interested in data timeliness.

Consequently, there is a quality evaluation algorithm for measuring data timeliness in such DIS. The

quality evaluation framework allows modeling all these components. □

The framework includes a set of data targets for which the user requires data quality evaluation and a set of data

sources providing data for feeding those data targets. Data sources can be relations in data repositories, web

pages, user input interfaces or other types of applications producing data. Analogously, data targets can be

relations in data repositories, views, user display interfaces or other types of applications consuming data.

Sources and targets are defined as follows:

Definition 3.2 (data source). A data source is represented by a pair <Name, Description> where

Name is a String that uniquely identifies the source and Description is a free-form text providing

additional information useful for end-users to identify the source (e.g. URL, provider, high-level content

description). □

Definition 3.3 (data target). A data target is represented by a pair <Name, Description> where Name

is a String that uniquely identifies the data target and Description is a free-form text providing additional

information useful for end-users to identify the target (e.g. application/process name, interfaces, servers

running the application). □

Data Quality Evaluation in Data Integration Systems

42

Each DIS extracts data from some data sources and provides some data targets with data. Those sources and

targets are included in the sets of sources and targets of the framework. Next sub-section describes a model for

DISs processes.

2.1.1. Graph model of the data integration system workflow

A DIS is modeled as a workflow process in which the workflow activities perform the different tasks that

extract, integrate and convey data to end-users. Each workflow activity takes data from sources or other

activities and produces result data that can be used as input for other activities. Then, data traverses a path from

sources to users where it is transformed and processed according to the system logics. We choose workflow

models in order to enable the representation of complex data manipulation operations, as in [Bouzeghoub+1999]

[Grigori+2005] [Ballou+1998]. In order to perform data quality evaluation, we define the concept of quality

graph, which is a graph that has the same workflow structure as the DIS and is adorned with additional DIS

information that is useful for quality evaluation. Many of existing proposals for workflow specification are graph

based [van der Aalst+2002] [Mendling+2006] [Ziemann+2005] [Grigori+2005] and many works have

represented DIS as graphs [Theodoratos+1997] [Naumann+1999]. For this reason, we choose to base our quality

evaluation approach on graphs*. Using graphs as representation formalism, the quality evaluation problem turns

into a graph traversal problem.

A quality graph is a directed acyclic graph. The nodes are of three types: (i) activity nodes representing the major

tasks of a DIS, (ii) source nodes representing data sources accessed by the DIS, and (iii) target nodes

representing data targets fed by the DIS. Nodes have a name that identifies them; for source and target nodes,

their name coincide with those of sources and targets of the framework. Activities can be atomic or composed.

They consume input data elements and produce output data elements which may persist in repositories. There are

two types of edges: (i) control edges expressing the control flow dependencies between activities (e.g. execution

precedence), and (ii) data edges representing data flow from sources to activities, from activities to targets and

between activities (i.e. the output data of an activity is taken as input by a successor activity). In most DISs,

control flow is induced by data flow, i.e. there is a control flow edge between two activities if and only if there is

a data flow edge between them. Both, nodes and edges can have labels, which are discussed in next sub-section.

In summary, a quality graph is defined as follows:

Definition 3.4 (quality graph). A quality graph is a quadruple G=(V, E, ρV, ρE) where:

− V is the set of nodes. Vs, Vt and Va are the sets of source, target and activity nodes respectively; with

V = V
s
 ∪ V

t
 ∪ V

a
. Each source or target node corresponds to a source or target of the framework.

− E ⊂ V × V × T is the set of edges. T ={c, d} distinguishes between control edges (c) and data edges

(d). The edge (u, v)
t
 originates at node u, terminates at node v and has type t; with u,v ∈ V, t ∈ T.

− ρV : V → LV is a function assigning labels to the nodes. LV denotes the set of node labels.

− ρE : E → LE is a function assigning labels to the edges. Analogously, LE denotes the set of edge
labels. □

We consider, without loss of generality, that target nodes have a unique incoming data edge. If we need to model

multiple data edges incoming a target node, we can add a virtual activity node that concentrates the incoming

edges and has a unique outgoing edge to the target node. This pattern is commonly used in workflow design [van

der Aalst+2003]. Analogously, we consider that source nodes have a unique outgoing data edge.

Figure 3.1 sketches the quality graph representation. Activity nodes are represented as circles, while source

nodes (with no input edges) and target nodes (with no output edges) are represented as rectangles. Data edges are

continuous arrows and control edges are dotted arrows. Labels are written next to nodes and edges. In some

figures, when we only want to study the data flow, control edges may be omitted. Analogously, some properties

may be omitted.

*
 We use graphs for representing workflows although the approach can easily be adapted to other formal models such as Petri nets or state-

chart diagrams, provided that it is a uniform model.

 Verónika Peralta

 43

sourceFreshness=0

A1 A2

A4

A6

A5

A7

syncDelay=0

cost=30 cost=20

cost=60 cost=10

cost=30

cost=5

sourceFreshness=5sourceFreshness=60

syncDelay=0

syncDelay=60syncDelay=0

syncDelay=0

S1 S2

T1

S3

T2

Source nodesSource nodes

Activity nodesActivity nodes

Target nodesTarget nodes

A3cost=1

syncDelay=0

Figure 3.1 – Quality graph

2.1.2. Quality features as graph adornments

Data quality depends on the structure of the quality graph (i.e. how data traverses the graph) but also on data and

process properties (e.g. process synchronization policies, data volatility). The idea behind this approach is to

adorn quality graphs with property labels that allow estimating the quality of the data that can be produced by

the DIS, for example, the time an activity needs for executing or a descriptor stating if an activity materializes

data or not.

Properties can be of two types: (i) features, indicating some characteristic of the DIS (costs, delays, policies,

strategies, constraints, etc.), or (ii) measures, indicating a quality value corresponding to a quality factor.

Features can represent precise process metadata (as execution cost of activities), estimations (e.g. based on

designer experience on similar applications, cost models or upper bounds) or beliefs (e.g. source reputation).

Quality measures can be actual values acquired from sources (e.g. source data freshness, measured from data last

update) or expected values indicating user high level expectations (as the desired data freshness). Property values

(for both, features and measures) can be directly given by system administrators, users or source providers (e.g.

source availability windows, DIS refreshment policies, user expected freshness), can be systematically obtained

using measurement processes (e.g. response time), can be aggregated from user passed behavior or statistics (e.g.

user preferred sources, activity execution time), can be derived from other property values (e.g. activity global

cost) or can be calculated in some ad-hoc way. Quality evaluation algorithms calculate further property values

(quality measures) as will be discussed in next sub-section.

We define a property as follows:

Definition 3.5 (property). A property is a 3-uple <name, metric, domain> where name is a String

that identifies the property, metric is a description of the measurement semantics and units, and domain

describes the domain of the property values. □

Nodes and edges of quality graphs are adorned with property labels of the form: property = value, where

property is a property name and value is an element of the property domain. In Figure 3.1, property labels (cost,

synchronization delay and source freshness) are written next to nodes and edges.

In the following sub-section we illustrate how we utilize property labels for evaluating data quality.

Data Quality Evaluation in Data Integration Systems

44

2.2. The approach for data quality evaluation in data integration systems

Quality evaluation is performed by evaluation algorithms that take as input a quality graph and calculate the

quality values (corresponding to data freshness) for the graph. In order to illustrate our quality evaluation

approach, consider the following example:

Example 3.2. Figure 3.2 sketches a quality graph representing a simple DIS,

which extracts traffic statistics of a unique data source (S1). A wrapper (activity

A1) extracts data, which is cleaned and prepared by activity A2 and finally

aggregated (activity A3) and delivered to a user application (T1).

We aim to estimate data timeliness. Consider that S1 is a dissemination server

that publishes traffic statistics once an hour, so published statistics correspond

to traffic events of the passed hour. A1 extracts data immediately after its

publication. Source data timeliness (at extraction time) is an hour (60 minutes)

because the oldest source data may be produced at most an hour before. Also

consider that the execution costs of activities A1, A2 and A3 are 5, 60 and 15

minutes respectively, as shown in Figure 3.2. These costs should be taken into

account in the estimation of the freshness (timeliness) of the data returned to

users (through user application T1). Intuitively, timeliness of resulting data is

estimated as 140 minutes, which results from adding the execution cost of

activities to the source data freshness (60 + 5 + 60 + 15). □

sourceFreshness=60

A1

A2

A3

cost=5

cost=60

cost=15

S1

T1

Figure 3.2 – Quality

evaluation example

Evaluation algorithms may traverse the graph, node by node, operating with property values. For example, a

simple evaluation algorithm may start at source nodes, read the value of the source freshness property and move

along the data flow adding the value of the cost property of each activity, as intuitively explained in previous

example. Such algorithm can easily be implemented using default graph traversal methods. This mechanism for

calculating data quality applying operations along the graphs is what we call propagation of quality measures

within the graph (quality propagation for short).

As a quality graph describes the DIS integration process and its properties, it contains the input information

needed by evaluation algorithms. Evaluation algorithms take as input a quality graph, calculate the quality values

corresponding to a quality factor and return a quality graph with an additional property (corresponding to the

evaluated quality factor). The quality graph must be labeled with certain property values in order to execute a

certain algorithm. For example, the activity nodes of a quality graph must be labeled with their execution cost in

order to execute the evaluation algorithm informally described in Example 3.1.

Formally, evaluation algorithms are defined as follows:

Definition 3.6 (quality evaluation algorithm). A quality evaluation algorithm is a 7-uple:

 <Name, Description, QualityFactor, Input, Output, Preconditions, Postconditions>

where:

− Name is a String that identifies the algorithm.

− Description is a free-form text describing algorithm evaluation strategy and optional details.

− QualityFactor is the quality factor that the algorithm calculates.

− The Input is a quality graph.

− The Output is a quality graph that results of adding new property values (corresponding to the
algorithm quality factor) to the input quality graph.

− Preconditions is a set of pairs <group, property> indicating that a group of nodes/edges (e.g. activity
nodes) must be labeled with values of such property (e.g. execution cost). The algorithm can be

executed only if preconditions are satisfied.

− Postconditions is a set of groups of nodes/edges that will be labeled with new property values
(corresponding to the algorithm quality factor) after algorithm execution. □

 Verónika Peralta

 45

Concerning code, evaluation algorithms have the following signature:

 FUNCTION AlgorithmName (G: QualityGraph) RETURNS QualityGraph

The implementation of evaluation algorithms may vary according to the quality factor and the concrete

application scenario. The framework does not constrain the way the algorithms can be implemented. For

example, the simple evaluation algorithm of Example 3.1 propagates freshness values adding property values,

but another evaluation algorithm may use sophisticated calculation strategies and even user-defined functions.

The proposed graph representation facilitates the implementation because it enables to use graph primitives (e.g.

getPredecessors, getSuccessors, getProperties) and traversal methods (e.g. findShortestPath, depthFirstSearch).

There are two kinds of quality propagations: (i) propagation of actual values, and (ii) propagation of expected

values. In the former (as illustrated in previous example), quality values of source data are propagated along the

graph, in the sense of the data flow (from source to target nodes) and combined with property values of nodes

and edges. In the latter, quality values expected by users are propagated along the graph but in the opposite sense

(from target to source nodes) and combined with property values.

Example 3.3. Consider that users expect freshness values of at most 2 hours (120 minutes) for data

produced by the DIS of Figure 3.2. Subtracting activity execution costs from the freshness expected value,

we obtain a value of 40 minutes (120 – 15 – 60 – 5). This value means that the source should provide data

that is fresher than 40 minutes in order to satisfy user freshness expectations. □

Propagation of actual values serves to inform users of the quality of result data; a comparison with user

expectations at target nodes (expected values versus propagated actual values) determines if user quality

expectations can be achieved or not. Conversely, propagation of expected values serves to constraint source

providers on the quality of source data (or to choose among alternative sources providing the same type of data);

a comparison with source actual quality at source nodes (actual values versus propagated expected values)

determines if sources provide data with enough quality.

An important remark is that quality propagation can be performed during the execution of DIS processes using

precise property values (e.g. exact execution cost obtained during execution), or conversely, it can be performed

without executing DIS processes and using estimations of property values (e.g. statistics of costs of previous

executions). In the former, quality evaluation is used to inform users of results quality. In the latter, quality

estimations can be used to decide whether query results will be adequate for user needs or not (if no adequate,

alternative actions may be taken, for example, accessing to sources with higher quality even if source accesses

are more expensive). We focus on this latter propagation context, even if our mechanism can be easily applied

for calculating data quality during DIS execution.

Finally, note that although the framework was conceived for the evaluation of data freshness, their components

were defined in a general way allowing its use for the evaluation of other quality factors. For example, the

response time quality factor may be measured in a similar way, and the direct use of the framework for its

evaluation seems to be possible. In order to evaluate other quality factors, the framework may need to be

extended, adding for example, new propagation operations; Chapter 4 illustrates this fact for the data accuracy

quality factor.

In the next section we use the framework for data freshness evaluation.

3. Data freshness evaluation

In this section we describe our data freshness evaluation approach. We firstly give an intuitive idea of the

freshness calculation strategy and we describe some general properties that support the calculation of data

freshness. Then, we present a basic data freshness propagation algorithm based on those properties. Finally, we

describe an instantiation approach for adapting the basic algorithm to particular application scenarios.

We firstly explain the propagation of freshness actual values (Sub-sections 3.1 to 3.5); the propagation of

freshness expected values is similar and is discussed in Sub-section 3.6. We conclude this section motivating

some direct applications of both types of data freshness propagations.

Data Quality Evaluation in Data Integration Systems

46

3.1. Basic evaluation algorithm

In this sub-section we propose a basic algorithm for evaluating data freshness. In order to propagate freshness

actual values, the algorithm needs input information describing DIS properties.

The freshness of the data delivered to users depends on the freshness of source data but also on the amount of

time needed for executing all the activities as well as on the delays that may exist among their executions. We

briefly describe such properties, as well as users’ freshness expectations:

− Processing cost: It is the amount of time that an activity needs for reading input data, executing and
building result data (cost is used for short in some figures).

− Inter-process delay: It is the amount of time passed between the executions of two activities, i.e. between
the end of the former and the start of the latter (delay for short).

− Source data actual freshness: It is the freshness of data in a source, i.e. at the moment of data extraction
(sourceAfreshness for short). As data currency measures the gap with source data (the time passed since

data extraction) data currency of source data is always zero, however, data timeliness of source data can

take positive values.

− Target data expected freshness: It is the users’ desired freshness for result data (targetEfreshness for
short).

The evaluation algorithm calculates the following property:

− Actual freshness: It is an estimation of the actual freshness of data outgoing a node (Afreshness for short).

The relevance of these properties depends on the application scenario. For example, the materialization of data

and the use of different policies to refresh such data may imply important inter-process delays while in virtual

systems these delays may be negligible. The calculation (or estimation) of such property values is discussed in

Sub-section 3.4, taking into account the particularities of concrete scenarios.

We propose an evaluation algorithm that estimates the freshness of result data based on previous properties. The

algorithm propagates freshness actual values traversing the quality graph (following the data flow) and

calculating the freshness of the data outgoing each node. The principle is the following:

− For a source node A, the freshness of data outgoing A is calculated as the source data actual freshness.

− For an activity node A with one predecessor P, the freshness of data outgoing A is calculated adding the
freshness of data produced by P, the inter-process delay between P and A and the processing cost of A.

− In the general case, if activity A has several predecessors, the freshness of data coming from each prede-
cessor (plus the corresponding inter-process delay) should be combined (synthesizing a unique value) and

added to the processing cost of activity A. The typical combination function computes the maximum of

the input values, but other user-specific functions may be considered (Sub-section 3.4.2 discusses other

combination functions).

The calculation can be sketched as shown in Figure 3.3: First, for each predecessor (P1… Pn) of activity A, we

add the freshness of incoming data and the inter-process delay. Then, we combine such values

(combineActualFreshness function) and add the processing cost to the result. The resulting value is associated to

the data edges going from A to its successors (C1… Cm).

1. v1 = Freshness(P1,A) + InterProcessDelay(P1,A) …

vn = Freshness(Pn,A) + InterProcessDelay(Pn,A)

2. F = combineActualFreshness({v1,…vn}) + ProcessingCost(A)

3. Freshness(A, C1) = F…

Freshness(A, Cm) = F

Figure 3.3 – Freshness evaluation strategy

We associate freshness values to the data edges outgoing nodes because we want to emphasize that freshness is a

property of data not of processes. However, the strategy can be very easily adapted for associating freshness

 Verónika Peralta

 47

values to nodes. For practical reasons, sometimes we refer to the freshness of a node, meaning the freshness of

data produced by the node, i.e. freshness values associated to outgoing data edges.

Note that in previous formulas (Figure 3.3) we need inter-process delay values to be associated to data edges.

However, inter-process delays may be influenced by properties of control flow (e.g. the type of synchronization

among activities), which should be taken into account in their calculation. The calculation (or estimation) of

property values is discussed in Sub-section 3.4. By the moment, we can consider that property values are labels

of the quality graph as in Figure 3.4a. Processing costs are associated to activity nodes and inter-process delays

are associated to data edges among activities, however, in order to facilitate the expression of some formulas

(e.g. those of Figure 3.3) we often consider that processing costs are associated to all nodes (with zero value for

source and target nodes) and that inter-process delays are associated to all data edges (with zero values for edges

outgoing source nodes or incoming target nodes).

Example 3.4. Consider the quality graph of Figure 3.4a as input for the propagation of freshness actual

values. The freshness of (S1,A1) is calculated as the source data actual freshness of S1, i.e. 10 units of time.

As A1 has a unique predecessor S1, the freshness of (A1,A3) is calculated adding actual freshness of (S1,A1)

plus the inter-process delay of (S1,A1) plus the processing cost of A1, obtaining a value of 13 (10+0+3)

units of time. As A3 has two predecessors (A1 and A2), two input values are combined: 18 (13+5) and 12

(10+2), keeping the maximum, which is added to the processing cost of A3. Then, freshness of (A3, T1) is

22 (18+4) units of time. Figure 3.4b shows the output quality graph. □

S1 S2

A1 A2

T1

A3

sourceAfreshness=10

delay=0

cost=3

sourceAfreshness=5

delay=0

delay=5 delay=2

cost=5

cost=4

delay=0

Afreshness=5Afreshness=10

Afreshness=10Afreshness=13

Afreshness=22

S1 S2

A1 A2

T1

A3

sourceAfreshness=10

delay=0

cost=3

sourceAfreshness=5

delay=0

delay=5 delay=2

cost=5

cost=4

delay=0

(a) (b)

Figure 3.4 – Propagation of freshness actual values: (a) input quality graph, and (b) output quality graph

The previous strategy is implemented in a basic algorithm for freshness propagation:

ActualFreshnessPropagation (see Algorithm 3.1). It takes as input a quality graph and returns as output the

quality graph with additional labels corresponding to data freshness. The QualityGraph class has methods for

manipulating the classical graph operations (as getPredecessors) and for manipulating the property values

associated to the nodes and edges (as addProperty and getPropertyValue). The algorithm first spans source

nodes, obtaining source data actual freshness and storing the freshness of data outgoing source nodes. Then, the

algorithm traverses activity nodes, obtaining data freshness and inter-process delays of incoming edges and

storing such values in a list (valList). The values of the list are combined, added to the processing cost of the

activity, and finally stored for all outgoing edges. A pseudocode of the algorithm is sketched in Algorithm 3.1.

We defined the getSourceActualFreshness, getInterProcessDelay and getProcessingCost functions, as abstract

functions, which should be instantiated for specific scenarios. The functions calculate the values of the source

data actual freshness, inter-process delay and processing cost properties. Their signatures are:

 FUNCTION getSourceActualFreshness (G: QualityGraph, A: Node) RETURNS INTEGER

 FUNCTION getProcessingCost (G: QualityGraph, A: Node) RETURNS INTEGER

 FUNCTION getInterProcessDelay (G: QualityGraph, e: Edge) RETURNS INTEGER

Data Quality Evaluation in Data Integration Systems

48

FUNCTION ActualFreshnessPropagation (G: QualityGraph) RETURNS QualityGraph

 INTEGER value;

 FOR EACH source node S of G DO

 value= getSourceActualFreshness(G,S);

 Edge e = data edge outgoing S in G
 G.addProperty(e,“ActualFreshness”,value);

 ENDFOR;

 FOR EACH activity node A in topological order of G DO

 HASHTABLE valList;

 FOR EACH data edge e incoming A in G DO

 value= G.getPropertyValue(e,“ActualFreshness”) + getInterProcessDelay(G,e);

 valList.add(e,value);

 ENDFOR;

 value= combineActualFreshness(G,valList) + getProcessingCost(G,A);

 FOR EACH data edge e outgoing A in G DO

 G.addProperty(e,“ActualFreshness”,value);

 ENDFOR;

 ENDFOR;

 RETURN G;

END

Algorithm 3.1 – Basic algorithm for propagating freshness actual values

The combineActualFreshness function is also an abstract function that combines the freshness values of

predecessor nodes (stored in the valList array, including the delays) and synthesize a unique freshness value. For

example, if users are interested in an upper bound of freshness the combineActualFreshness function may return

the maximum of predecessors freshness. Its signature is:

 FUNCTION combineActualFreshness (G: QualityGraph, valList: HashTable) RETURNS INTEGER

The previous abstract functions can be overloaded for different scenarios taking into account the characteristics

of the scenarios. Next sub-sections discuss these ideas.

3.2. Overview of the instantiation approach

In order to characterize different types of scenarios we consider the freshness factor that users are interested in

and the three dimensions that influence data freshness (introduced in Chapter 2 - Sub-section 2.3), namely,

nature of data, architectural techniques and synchronization policies. Our goal is to develop data freshness

evaluation algorithms specialized for the different scenarios.

The basic evaluation algorithm can be specialized for considering the particularities of the scenarios. Firstly,

different DIS properties should be considered in the evaluation. These properties are the ones that allow the

estimation of source data actual freshness, processing costs and inter-process delays for a given scenario. For

example, when materializing data, the time passed between two consecutive refreshments (refreshment period)

may be an important component of the inter-process delay while in virtual systems this property has no sense. In

addition, the evaluation algorithm should be instantiated to take into account the considered properties. The

instantiation consists in overloading the abstract functions according to the scenario properties.

Then, the instantiation method consists of three steps:

1. Modeling the scenario according to the freshness factors and the dimensions that influence data freshness.

2. Identifying the appropriate properties for the scenario.

3. Instantiating the evaluation algorithm.

 Verónika Peralta

 49

In order to illustrate the instantiation approach, we introduce the following motivating example:

Example 3.5. Consider three different DIS scenarios that deal with information about cinemas and films,

illustrated in Figure 3.5:

� DIS1: A DIS that retrieves information about films and the cinemas where these films are in billboard,

in response to user queries as “Where can I see a given film?” or “Which films are in billboard now?”.

It extracts film information (titles, genre, actors, directors, timetables, etc.) from the AlloCiné site and

cinema information (cinema, capacity, category, etc.) from the UGC and CinéCité sites. The process

model consists of three activities for extracting data from the mentioned sites (A1, A2 and A3), an

activity for merging (union) the data extracted from both cinema sites (A4) and an activity for joining

film and cinema information (A5). Users expect data freshness of at least a week.

� DIS2: A DIS (part of a reservation system) that accesses to information about cinemas and the

availability of places for their performances (of the UGC and CinéCité sites) and present the

information to the user allowing him to choose a cinema. The process model consists of two activities

for extracting data from both sites (B1 and B2) and an activity (B3) that merges the extracted data,

formats it and conveys it to the user interface. When activity B3 receives data from an extractor, it

waits for data from the other extractor for at most one minute, conveying the available data to the user.

User freshness expectations are of at least 5 minutes.

� DIS3: A DIS that manages statistics information about films, the number of persons that watched each

film and their opinions. Typical user questions are “Which films have the best ranking this week?” or

“Which film should I watch?”. The DIS extracts film information and audience statistics from the

AlloCiné site and critic information (films, opinions, recommendations, etc.) from the CineCritics and

FilmCritiquer sites. Such sources are queried at different times (film data is extracted weekly and

critic data daily) because of negotiations with source providers, so the extracted information is locally

materialized in order to answer user questions. The process model consists of extraction activities (C1,

C2 and C3), an activity for reconciling data from two extractors (C4), an activity for joining critic and

film data (C6), and two activities for performing aggregations and calculating statistics (C5 and C7).

Users expect data freshness of at least a week.

Although all of them integrate data provided by several cinema sites, their characteristics (e.g. nature of

data, system implementation) are very different. Furthermore, freshness factors and metrics as well as user

freshness requirements are also different. Consequently, the way data freshness is estimated should be

adapted to each application scenario. □

AlloCiné UGC CinéCité

A1 A2 A3

A5

Films Billboard

A4

UGC CinéCité

B1 B2

Places

B3

AlloCiné CineCritic FilmCritiquer

C1 C2 C3

C6

Films Opinions

C4

C5

Spectators

C7

Figure 3.5 – Quality graphs representing the example DISs (omitting property labels)

Next sub-sections describe and apply each instantiation step. We explain the whole method, characterizing the

scenarios, determining the properties of each scenario and implementing the overloaded functions. We illustrate

the instantiation of the framework to the concrete scenarios introduced in previous example.

Data Quality Evaluation in Data Integration Systems

50

3.3. Modeling of scenarios

In this step, DISs processes are classified according to the freshness factor and the four dimensions that influence

data freshness. We remind those dimensions (see Sub-section 2.3 of Chapter 2 for details):

− Nature of data. This dimension classifies source data according to its change frequency in three
categories: stable, long-term-changing and frequently-changing data. When working with frequently

changing data, it is interesting to measure how long data can remain unchanged and minimize the delivery

of expired data (i.e. evaluate currency). However, when working with data that does not change very

often, it is more interesting to measure how old is the data (i.e. evaluate timeliness).

− Architectural techniques. This dimension classifies DISs architectural techniques in three categories:
virtual, caching and materialization techniques. DISs architectural techniques are very relevant in

freshness evaluation because they may introduce significant delays. Specifically, when caching or

materializing data, the refreshment frequency causes important delays that should be considered.

− Synchronization policies. This dimension classifies DISs synchronization policies according to the
interaction between the sources, the DIS and the users (combinations of pull and push policies, in

synchronous and asynchronous modes) in 6 categories*: pull-pull, pull/pull, pull/push, push/push,

push/pull and push-push policies. Asynchronous modes, with data materialization, may introduce

important delays.

This classification is useful in the measurement of processing costs, inter-process delays and source data actual

freshness because it summarizes the dimensions that may impact in these properties. A first remark is that the

magnitude of source data actual freshness, processing costs and inter-process delays should not be considered in

the absolute but compared to freshness expectations. For example, if users may tolerate data freshness of “some

days”, the processing costs of activities (“some minutes”) are negligible; however, if users require data

“extremely fresh”, the processing costs of activities could be relevant. In order to decide which properties are

relevant and which are negligible for a given DIS, the classification according to the taxonomy brings a first idea

of magnitudes, which will be taken into account in the calculation of property values. For example, the

architectural techniques dimension gives a first idea of the magnitude of inter-process delays.

A scenario is characterized by the freshness factor users are interested in and its classification according to the

dimensions of the taxonomy. So, a scenario is described giving four components: (i) freshness factor, (ii) nature

of data, (iii) architectural techniques, and (iv) synchronization policies.

Example 3.6. Let’s classify the DISs of Example 3.5 according to the freshness factor and the three

dimensions of the taxonomy and model the respective scenarios.

Users of DIS2 want to obtain the same data that is stored at the sources, no matter when the information

was updated (when was sold the last ticket), so they are interested in currency. However, users of DIS1 and

DIS3 are mainly interested in seeing information about “recent” films, so they are interested in timeliness.

The nature of data is different in the various sources. Cinema descriptive information (UGC and CinéCité

sites, accessed by DIS1) is quite stable, film information (AlloCiné site, accessed by DIS1 and DIS3) has a

relatively long-term change frequency and place availability (UGC and CinéCité sites, accessed by DIS2)

and critic information (CineCritic and FilmCritiquer sites, accessed by DIS3) frequently changes.

Concerning DIS implementation, DIS1 is an interactive process, with virtual techniques and pull

synchronous policies; activities are simple JSP queries. DIS2 is an interactive process, with virtual

techniques, that synchronizes the extraction of data from two data sources (pull synchronous with timeout

policies); activities are simple copies of data. DIS3 materializes the data produced by some activities (C1,

C5, C6 and C7), so user queries are answered from materialized data. Data is refreshed periodically: film

data is refreshed weekly and critic data daily. Activities are complex cleaning, reconciliation and

aggregation processes.

The scenarios for the three previous DISs can be characterized as follows:

*
 Each configuration is named with the user-DIS policy followed by the DIS-source policy. Asynchronism is represented by a slash (/),

synchronism by a dash (-)

 Verónika Peralta

 51

� Scenario Sc1 for DIS1:

− Freshness factor: timeliness

− Nature of data: stable and long-term-changing data

− Architectural techniques: virtual techniques

− Synchronization policies: synchronous pull policies (pull-pull)

� Scenario Sc2 for DIS2:

− Freshness factor: currency

− Nature of data: frequently-changing data

− Architectural techniques: virtual techniques

− Synchronization policies: synchronous pull policies (with timeout) (pull-pull)

� Scenario Sc3 for DIS3:

− Freshness factor: timeliness

− Nature of data: long-term-changing and frequently-changing

− Architectural techniques: materialization techniques

− Synchronization policies: asynchronous (periodic) pull policies (pull/pull) □

Next step analyzes the relevant properties of each scenario.

3.4. Identification of appropriate properties

Data freshness is evaluated based on the source data actual freshness, processing cost and inter-process delay

properties, but the way of calculating these properties depends on the particular scenario considered. The

calculation may be based on DIS properties (e.g. wrapper extraction frequencies, synchronization policies),

which may be set as labels of the quality graph or may be measured by used-defined functions. Analogously, the

way of combining several freshness values (when an activity has several incoming edges) depends on the

scenario and may be based on DIS properties (e.g. data volatility, source reputation). In this sub-section we deal

with the identification of the DIS properties involved in such calculations and we discuss their estimation.

3.4.1. Estimation of property values

The calculation of source data actual freshness, processing cost and inter-process delay properties depends on the

application scenario. Specifically, we discuss two aspects: (i) the DIS properties that influence their calculation

and (ii) the estimation type. The combination of these two aspects should lead to a calculation method.

The first aspect is how to calculate the source data actual freshness, processing costs and inter-process delay

properties. Depending on the scenario, different DIS properties may influence their calculation. For example,

several delays may compose processing costs of extraction activities in certain DISs [Hull+1996]: the

communication delay between a source and the activity, the source query processing delay and the activity query

processing delay. Similarly, many delays may influence the inter-process delay, for example when combining

data from two sources, activities may hold data from a source while waiting for data from another source. When

materializing data, the time passed from last materialization may be an important delay, bounded by the

refreshment frequency [Theodoratos+1999]. Properties associated to control flow may be also taken into

account, for example, if two activities are synchronized in a way that the latter executes one hour after the

former, such synchronization delay should be taken into account. Scheduling methods like Critical Path Method

(CPM) and Program Evaluation and Review Technique (PERT) [Hiller+1991] can be used for setting delays

among activities. When control flow is not driven by data flow, the inter-process delay between two activities

might be calculated using properties associated to other activities, as illustrated in the following example.

Example 3.7. Consider the portion of a quality graph shown in Figure 3.6. Activity A5 is synchronized to

execute one unit of time after activity A3 but it takes as input the data materialized by activity A2. Activity

A3 is a control routine that does not produce any data. The inter-process delay associated to data edge

(A2,A5) is calculated as the sum of synchronization delays of control edges (A2,A3) and (A3,A5) and the

processing cost of A3, i.e. 2 (0+1+1) units of time. □

Data Quality Evaluation in Data Integration Systems

52

A2

A5

cost=20

cost=10

syncDelay=0

A3cost=1

syncDelay=1

delay=2

Figure 3.6 – Calculating inter-process delay from control flow properties

Various works propose different estimations for the source data actual freshness (timeliness*), for example: using

data timestamps [Braumandl 2003] or the update frequency of a source [Naumann+1999]. In sources with access

constraints (as restrictions on the query frequency) or dissemination frequencies, such properties should be taken

into account. In specific scenarios, the values of source data actual freshness, processing cost or inter-process

delay may be directly provided by expert users, system administrators or source providers (set as labels of the

quality graph) without need of considering additional DIS properties.

The second aspect concerns the type of estimation, which could be a precise measure of data freshness at this

moment or an estimation of data freshness in the average or worst case. The former implies storing metadata in

each activity execution (e.g. the extraction time) and executing the evaluation algorithm each time the DIS

conveys data (e.g. for each user query). The latter implies keeping statistics and bounds for property values

which may be used to calculate upper bounds or average case values of data freshness (without need of

calculating freshness when conveying data).

In summary, we should compare the magnitude of source data actual freshness, processing costs and inter-

process delays with respect to freshness expectations (aided by the scenario modeled in previous step). For the

relevant ones, we should identify the DIS properties that influence their calculation and the desired estimation

type in order to obtain their calculation strategies. For example, if the processing cost of extraction activities is

relevant, communication delay with sources is the preponderant cost and we want a worst case estimation, a

good estimation strategy for the processing cost may consist in keeping statistics of communication costs and

taking the maximum. We should study how to acquire each DIS property value. Some properties values may be

directly provided by expert users, source providers or DIS administrators, or may be measured or estimated

using specialized routines, for example, reading statistics.

Example 3.8. Let’s analyze the relevant properties for the three DISs of Example 3.5. Users expect

freshness values of “a week” for DIS1 and DIS3. With such freshness requirements, the “day” is a good unit

for measuring freshness and properties values. Properties with values ranging in “some minutes” or less can

be neglected. However, as users expect freshness values of at most “five minutes” for DIS2, the

measurement unit for it should be the “minute” and property values ranging in “some seconds” are relevant.

We want to estimate property values in the worst case. For DIS1 the processing cost of simple JSP queries

(seconds) and the inter-process delay for merging source data (seconds) can be neglected. For DIS3 the

relevant processing costs are due to the reconciliation processes (activities C4 and C6), which may require

human interaction (to solve conflicts or errors) and may last some days. DIS3 materializes data, so there is

an asynchrony between the data extraction and the data delivery. Sources are queried at different times

(because of negotiations with source providers), provoking important inter-process delays between the

executions of some activities; then, the refreshment frequencies should be considered. For DIS2,

synchronizing extractors introduces a relevant delay, as the data extracted from a source may be held while

waiting for data from the other source. The synchronization timeout is an upper bound for such delay that

can be used to estimate it in the worst case. The communication delay with the sources can be important

too, as well as the processing cost (seconds) of the merge activity.

For DIS1 and DIS3, where users are interested in data timeliness, source data actual freshness (days, weeks

or months) is relevant. It can be estimated, in the worst case, as the source update frequency. □

The relevant DIS properties are summarized in Sub-section 3.4.3, as well as the properties necessaries for

implementing the combineActualFreshness function. The latter is studied in next sub-section.

*
 Remember that source data actual freshness is always zero when measuring data currency.

 Verónika Peralta

 53

3.4.2. Combination of input values

As argued in Sub-section 3.1, when an activity has several predecessors, the freshness of data coming from them

is combined, synthesizing an input freshness value for the activity. That is, given the input values iv1, iv2,… ivn,

where ivi is the freshness value (plus the inter-process delay) of data coming from the i
th
 predecessor, the

combineActualFreshness function returns an estimation of the freshness of the whole input:

cv= CombineActualFreshness (iv1, iv2,… ivn)

The combination strategy depends on the activity semantics. Firstly, if the activity chooses among inputs (e.g. a

mediator that returns only the data extracted from the most reputable source), the synthesized value is the input

value of such source. Conversely, if the activity merges data from several inputs, the synthesized value should be

calculated as a function of the input ones.

A simple combination function considers the worst case, i.e. it returns the maximum of input values.

Analogously, the function can return an average (or weighted average) of input values. Typical weights are data

volume, data volatility or source reputation). Furthermore, voting strategies can be taken into account (e.g. given

more weight to data that is present in more sources). Specialized functions can be defined considering the

characteristics of specific scenarios.

Analogously to the calculation of source data actual freshness, processing costs and inter-process delays, the

combination function may be based on some DIS properties. We should identify the DIS properties that

influence its calculation and determine their calculation strategies.

Example 3.9. Let’s analyze the combineActualFreshness functions for the three DISs of Example 3.5. For

scenarios Sc2 and Sc3 the appropriate implementation is taking the maximum of predecessors freshness.

However, in scenario Sc1 users expect to know how fresh is film information, independently to when the

cinema data was last updated. We take into account data volatility (movie information is more volatile than

actors’ information); the strategy consists in ignoring input values of sources providing more stable data.

The nature of data dimension is used to define this strategy: expert users assign volatility values. When

input activities have the same data volatility, the function returns the maximum input value. □

Next sub-section summarizes the relevant properties and their calculation strategies.

3.4.3. Summary of relevant properties and their calculation

As a result of this step, we produce a list of DIS properties that are necessary for overloading the

getSourceActualFreshness, getInterProcessDelay, getProcessingCost and combineActualFreshness functions

and we sketch the calculation strategies for their implementation. Both properties and strategies will be used in

next step for implementing these functions.

Table 3.1 summarizes the DIS properties that are relevant in the calculation of the overloaded functions for the

three scenarios of previous examples, indicating, to which graph components they correspond (for example,

indicating that only the processing cost of certain activity is relevant) and how to acquire the property values.

Table 3.2 summarizes the calculation strategies for them.

 DIS property Scope Acquisition

Sc1 Source actual freshness Update frequency All sources Source providers

Communication delay Wrappers
Statistics of connections

to sources Processing cost

Processing cost Activity B3 Statistics of executions

Inter-process delay
Synchronization

timeout

Control edges

incoming activity B3
System administrator

Sc2

Combine actual

freshness
Data volatility Data edges

Expert users (at source

level); replicated to edges

Source actual freshness Update frequency All sources Source providers

Processing cost Interaction cost Activities C4 and C6 Statistics of executions Sc3

Inter-process delay Refreshment frequency All activities System administrator

Table 3.1 – DIS properties used for overloading functions

Data Quality Evaluation in Data Integration Systems

54

 Scenario Sc1 Scenario Sc2 Scenario Sc3

Processing cost Neglect

For wrappers (B1 and B2):

- communication delay with
sources + processing cost

For merge activity (B3):

- processing cost
(worst cases from statistics)

Processing cost

(worst case from statistics)

Inter-process

delay
Neglect

For edges incoming B3:

- synchronization timeout
For other edges:

- neglect

For edges outgoing activities:

- 1 / refreshment frequency of
input node

For other edges:

- Neglect

Source data

actual freshness
1 / update frequency Neglect 1 / update frequency

Combine actual

freshness

Maximum of input

values

When different data volatility:

- input value of the most
volatile input

When equal data volatility:

- maximum of input values

Maximum of input values

Table 3.2 – Calculation strategies for overloading functions

In next sub-section we describe how to take into account these properties and strategies in the implementation of

freshness evaluation algorithms.

3.5. Instantiation of the evaluation algorithm

The freshness evaluation algorithm can be instantiated to adapt it to a specific scenario, overloading the

getSourceActualFreshness, getInterProcessDelay, getProcessingCost and combineActualFreshness functions, in

order to consider in each function, the DIS properties that are most relevant for the scenario (as discussed in

previous sub-section).

Generally, the implementation of the overloaded functions is very simple and consists in obtaining the values of

some DIS properties or invoking routines to read statistics. However, for some particular scenario, more

complex functions may be implemented. As an example, Table 3.3 shows a pseudocode of the

getSourceActualFreshness function for scenario Sc1. The function reads the update frequency property, acquired

from source providers (as specified in Table 3.1) and registered as a label of source nodes of the quality graph.

The calculation follows the strategy described in Table 3.2. As another example, the getProcessingCost function

for scenario Sc3 should invoke an external function for reading statistics of processing costs of activities (stored

for example in a log) and obtaining the maximum. The DIS should store such statistics during execution (no

necessarily at each execution).

FUNCTION getSourceActualFreshness (G: QualityGraph, A: Node) RETURNS INTEGER

 INTEGER frequency = G.getPropertyValue(A,“UpdateFrequency”);

 RETURN 1 / frequency;

END

Table 3.3 – Overloading of a function for scenario Sc1

The framework does not constraint the type of code that can be used in the implementation of overloaded

functions; all user-defined functions can be invoked. In addition, the functions implemented for a scenario may

be reused for other scenarios (e.g. the function of Table 3.3 may be also used in scenario Sc3). Furthermore,

alternative implementations might be provided in order to support different freshness estimations, for example, if

some users need a metric but other users want to analyze another one. This gives additional flexibility to our

approach.

A real application scenario is studied in Chapter 5 (Sub-section 3.2). We identify the relevant DIS properties and

overload the corresponding functions to instantiate the freshness evaluation algorithm. .

 Verónika Peralta

 55

Next sub-section discusses the propagation of freshness expected values which allows to constraint source

providers on the freshness of source data.

3.6. Propagation of freshness expectations

Analogously to the propagation of freshness actual values, we can propagate freshness expected values from

target to source nodes. The propagated freshness expected values may help the DIS designer to know the

freshness that he should ask the source providers for. A direct application of this propagation strategy is the

comparison of alternative data sources in order to select the one that provides the freshest data.

Sub-section 3.1 presented the propagation of freshness actual values from source to target nodes. The

propagation of freshness expected values is quite similar but presents some additional problems. In this sub-

section we discuss the propagation of freshness expected values and we present the corresponding propagation

algorithm.

The propagation algorithm calculates the following property:

− Expected freshness: It is an estimation of the expected freshness for data outgoing a node (Efreshness for
short).

The propagation principle is to traverse the quality graph (in sense inverse to the edges) calculating the expected

freshness for data outgoing each node, i.e. the maximum freshness value that may be tolerated for the data

produced by the node, in order to achieve freshness expectations. Intuitively, while for calculating actual values

we add processing costs and inter-process delays to source data actual freshness, for calculating expected values,

we should subtract them from target data expected freshness. A first intuitive propagation algorithm starts with

target data expected freshness, and for each node, subtract the processing cost of the node and the inter-process

delay with the predecessor node. Next example illustrates the idea:

Example 3.10. Consider the quality graph of Figure 3.7a as input for the propagation of freshness expected

values. Actual freshness was propagated with the basic algorithm described in Sub-section 3.1, taking the

maximum as combination function (as illustrated in Example 3.4). The expected freshness for (A3, T1) is

calculated as the target data expected freshness of T1, i.e. 30 units of time. The expected freshness for

(A1,A3) is calculated as the expected freshness of (A3, T1) minus the cost of A3 minus the inter-process

delay of (A1,A3), obtaining a value of 21 (30-4-5) units of time. The other values are calculated

analogously. Figure 3.7b shows the output quality graph. □

S1 S2

A1 A2

T1

A3

sourceAfreshness=10

delay=0

cost=3

sourceAfreshness=5

delay=0

delay=5 delay=2

cost=5

cost=4

delay=0

targetEfreshness=30

Afreshness=5Afreshness=10

Afreshness=10Afreshness=13

Afreshness=22

S1 S2

A1 A2

T1

A3

sourceAfreshness=10

delay=0

cost=3

sourceAfreshness=5

delay=0

delay=5 delay=2

cost=5

cost=4

delay=0

targetEfreshness=30

Afreshness=5Afreshness=10

Afreshness=10Afreshness=13

Afreshness=22

Efreshness=19Efreshness=18

Efreshness=24Efreshness=21

Efreshness=30

(a) (b)

Figure 3.7 – Propagation of freshness expected values: (a) input quality graph, and (b) output quality graph

In previous example, freshness expected values are propagated in the same way to all predecessors. However, in

certain scenarios, different values should be propagated to each predecessor. Such differentiation depends on the

Data Quality Evaluation in Data Integration Systems

56

semantics of the combination function (combineAcutalFreshness), which synthesizes an input freshness value for

each node. The following example illustrates this idea:

Example 3.11. Consider again the quality graph of Figure 3.7a but suppose that freshness actual values

were propagated using a different combination function which returns the freshness of input data coming

from S1 (for example, because of data volatility). Note that it does not matter which is the freshness of data

coming from S2, if freshness of data from S1 is good enough, freshness expectations are achieved. For

example, if the source data actual freshness of S2 is 5000 units of time instead of 5 units of time, the actual

freshness of (A3, T1) continues being 22 units of time, which does not surpass freshness expectations. So,

the propagation of freshness expected values in this quality graph should respect this intuition, i.e. the

expected freshness for (A2,A3) should be infinite. □

When a node has several predecessors, its expected freshness is decomposed among the predecessors obtaining

an expected value for each predecessor. We define the decomposeExpectedFreshness function for performing

such decomposition. Given an input value iv corresponding to the expected freshness for data outgoing a node

(minus the processing cost of the node), the decomposeExpectedFreshness function returns a set of values

{v1, v2,… vn} where vi is the expected freshness value for data incoming the node from the i
th
 predecessor:

{v1, v2,… vn} = decomposeExpectedFreshness (iv)

Previous example motivated that the decomposition of expected values should be coherent to the combination of

actual values. Specifically, the decomposeExpectedFreshness function should have the inverse effect of the

combineActualFreshness function. The idea is that, if the combination function is applied to the propagated

expected values, the synthesized value should satisfy freshness expectations. To see this, let v be the freshness

expected value for a node and v1, v2,… vn the freshness expected values propagated to the node predecessors, i.e.

decomposeExpectedFreshness (v) = {v1, v2,… vn}; then, the combination function applied to v1, v2,… vn should

return a smaller value than v. In other words, the decomposition function should warranty that

combineActualFreshness (v1, v2,… vn) ≤ v.

The expected values propagated to predecessors (i.e. v1, v2,… vn) should be the greatest values that allows

achieving freshness expectations (i.e. v). In other words, the combination function applied to smaller values

should return a synthesized value that is smaller than freshness expectations. For that reason, we require the

combineActualFreshness and decomposeExpectedFreshness functions to be monotonic.

The decomposition function is the solution to the following optimization problem:

Maximize: (v1, v2,… vn)

subject to: combineActualFreshness (v1, v2,… vn) ≤ v

Unfortunately, for some combination functions the decomposition function cannot be easily deduced.

Furthermore, in some situations, we cannot completely determine expected values and we only obtain equations

with some degree of freedom, which are not as useful as those illustrated in previous examples. Next example

illustratres one of such cases.

Example 3.12. Consider that the combination function for the quality graph of Figure 3.7a performs an

average of both input values, i.e. for activity A3, combineActualFreshness (18,12) = 15. The freshness

expected values for predecessors of activity A3 should be the greater values that verify that

combineActualFreshness (v1,v2) ≤ 30-4, i.e. (v1+v2)/2 ≤ 26.

In this case, values v1 and v2 are not determined and there is a space of solutions that verifies the condition.

Specifically, solutions are of the form (v, 52-v}. □

In cases where the optimal decomposition function cannot be exactly determined, the function should be

implemented for returning some values that could be useful for a particular scenario but knowing that it will be

more restrictive than necessary, for example, decomposeExpectedFreshness (v) = {v,v…v}.

Once the decomposition function has been identified, for a specific scenario, the propagation of expected values

is analogous to that of actual values. It can be sketched as follows (see Figure 3.8): First, for each successor

activity (C1… Cm), we obtain the expected freshness. We take the most restrictive value (the minimum) and we

subtract the processing cost. Then, we decompose such value in a set of values, one for each predecessor activity

(P1… Pn), and we subtract, from each value, the inter-process delay with the corresponding predecessor.

 Verónika Peralta

 57

1. u1 = ExpectedFreshness(A,C1) …

um = ExpectedFreshness(A,Cm)

2. v = min {u1,…um} – ProcessingCost(A)

3. {v1,…vn} = DecomposeExpectedFreshness (v)

4. ExpectedFreshness (P1,A) = v1 - InterProcessDelay (P1,A) …

ExpectedFreshness (Pn,A) = vn - InterProcessDelay (Pn,A)

Figure 3.8 – Expected freshness propagation strategy

The previous strategy is implemented in an algorithm for propagating freshness expectations:

ExpectedFreshnessPropagation (see Algorithm 3.2). The algorithm first spans target nodes, obtaining target data

expected freshness and storing the expected freshness for each incoming edge. Then, the algorithm traverses

activity nodes, calculating the minimum expected freshness of outgoing edges and subtracting the processing

cost. The resulting value is decomposed obtaining an expected value for each predecessor, in a list (valList).

Each value of the list is subtracted of the corresponding inter-process delay and stored for the incoming edge. A

pseudocode of the algorithm can be sketched as shown in Algorithm 3.2.

The decomposeExpectedFreshness function is an abstract function that should be overloaded to implement the

adequate decomposition strategy.

FUNCTION ExpectedFreshnessPropagation (G: QualityGraph) RETURNS QualityGraph

 INTEGER efreshness, value, m;

 FOR EACH target node T DO

 efreshness = getTargetExpectedFreshness(G,T);

 EDGE e = data edge incoming T in G
 G.addProperty(e,“ExpectedFreshness”,efreshness);

 ENDFOR;

 FOR EACH activity node A in inverse topological order of G DO

 m = min ({G.getPropertyValue(e,“ExpectedFreshness”) / e is a data edge outgoing A in G})

 value= m – getProcessingCost(G,A);

 HASHTABLE valList = edges incoming A in G;

 decomposeExpectedFreshness (value, valList);

 FOR EACH data edge e incoming A in G DO

 efreshness = valList.get(e) – getInterProcessDelay(G,e);

 G.addProperty(e,“ExpectedFreshness”,efreshness);

 ENDFOR;

 ENDFOR;

 RETURN G;

END

Algorithm 3.2 – Basic algorithm for propagating freshness expected values

Next sub-section presents some direct applications of both types of freshness propagations.

3.7. Usages of the approach

The algorithms for propagating actual and expected values of data freshness proposed in previous sub-sections

can be used in different contexts, either in order to evaluate data freshness in an existing DIS or to determine

constraints for DIS development. This sub-section summarizes the freshness evaluation approach by briefly

presenting some usages of the approach for different purposes and at different development stages. Some of

these usages are developed in the remaining of the chapter (Sections 4 and 5) and in Chapter 5.

Data Quality Evaluation in Data Integration Systems

58

3.7.1. Evaluating data freshness at different phases of the DIS lifecycle

The data freshness evaluation approach can be used at different phases of the DIS lifecycle, e.g. at design,

production or maintenance phases. Depending on the phase, a quality graph may represent an existing DIS

(implemented, operative) or a specification of a DIS (not yet implemented). In the former, precise property

values (source data actual freshness, processing costs and inter-process delays) can be obtained during DIS

execution. In the latter, property values should be estimated, generally based on cost models. In both cases,

property values can be upper bounds (e.g. worst case processing costs) so the evaluation algorithm will obtain

upper bounds for data freshness.

Some usages of the approach, in an existing DIS are:

− At query evaluation: We can evaluate data freshness during query evaluation in order to obtain precise
freshness values of the conveyed data (possibly labeling data with its freshness values). The actual

freshness evaluation algorithm can be integrated to the query evaluation process. Precise property values

can be obtained during DIS execution. In that case, we obtain the actual freshness of the conveyed data.

− At query planning: We can evaluate data freshness before executing a query in order to predict the
freshness of data that may be returned in response to the query. Data freshness evaluation should be based

on estimations of property values (e.g. using cost models or statistics of previous query evaluations). This

is the case of virtual DIS (e.g. mediation systems) where the calculation operations (activities) are decided

for each user query. Query optimizers use costs models and statistics for predicting operations costs.

− At DIS monitoring: We can evaluate data freshness offline (after executing several queries) in order to
monitor if the DIS has quality problems. Data freshness evaluation should be based on estimations of

property values (generally based on statistics of DIS executions). The data freshness evaluation algorithm

can be integrated to a quality auditing tool.

Some usages of the approach, in a DIS specification are:

− At DIS design: We can evaluate data freshness in a (conceptual or logical) model of the DIS in order to
validate the model. Data freshness evaluation should be based on estimations of DIS properties (e.g. using

cost models).

− At DIS maintenance: When doing modifications to DIS design (e.g. changing implementation of some
activities or adding new components for providing additional processing), we can evaluate data freshness

of the new model in order to validate the changes or decide if they are convenient. Statistics or cost

models for the new/modified components can be used as estimations of DIS properties.

− At DIS reengineering: When reengineering a DIS (possibly because of quality problems), we can evaluate
data freshness in a new version of the DIS (e.g. substituting some activities by more performing ones) in

order to validate the modifications. Data freshness evaluation should be based on statistics of DIS

executions and estimations of property values for the new components.

Note that for query evaluation and DIS monitoring data freshness evaluation is performed a posteriori, i.e. after

executing queries, however, for query planning data freshness evaluation is performed a priori, i.e. before

executing queries. In a DIS specification, data freshness evaluation is also performed a priori.

3.7.2. Different applications of the evaluation approach

Both types of propagations (of actual and expected values), either a priori or a posteriori, can be used for

different purposes, ranging from simple quality assessment (e.g. for informing users of actual freshness) to

quality improvement (e.g. for analyzing improvement actions). In this sub-section we discuss several usages of

the approach.

Data freshness assessment

A first use of the approach consists simply on evaluating data freshness and communicating it to the

correspondent actors (designers, administrators, users, source providers). The evaluation results can be used for

different purposes, for example:

− Communicating data freshness to users: Propagating freshness actual values, from sources to targets, we
obtain metadata (data freshness) that qualifies conveyed data. Freshness values can be communicated to

 Verónika Peralta

 59

users either as labels of conveyed data (in response to a query) or as upper bounds (before executing the

query). In both cases, providing data freshness values to users represent a value-added to the data.

− Estimating data freshness: Using estimations of property values (e.g. based on cost models or statistics)
we can estimate the freshness of data that may be returned by a DIS. Results can validate design decisions

or motivate the development of more performing components. So, data freshness may have impact in

early design steps. In addition, at maintenance phase, freshness estimations may serve for monitoring the

DIS.

− Specifying constraints for source data actual freshness: Propagating freshness expected values, from
targets to sources, we obtain freshness expected values for source data. These values may serve as

constraints (upper bounds for source data actual freshness) for warranting the achievement of freshness

expectations. They can be communicated to source providers when negotiating the service. In that way,

freshness expectations also may have impact in early design steps.

− Specifying constraints for DIS development: The comparison among target data expected freshness and
source data actual freshness serves to determine constraints for DIS implementation. Their difference, if

positive, indicates the longest period of time that DIS processes are allowed to spend in manipulating

data, i.e. it is an upper bound for the execution delay of the DIS which includes the processing costs of

activities and the inter-process delays among them. Examples of constraints are: maximal processing

costs for activities, minimal execution frequencies for activities, minimal refreshment frequencies for

materialized data and minimal access frequencies for data sources.

Comparison of different DIS implementations

A direct application of the freshness evaluation approach is the comparison among different quality graphs. The

application consists in evaluating data quality in each quality graph and selecting the one that produces data with

the highest quality (data freshness can be the unique quality criteria or can be balanced with other ones). The

quality graphs may differentiate, for example, in the access to alternative data sources, in the use of different

activities and in the interaction among activities (data and control flows).

− Selecting a quality graph: Freshness actual values can be propagated, from sources to targets, obtaining
measures for comparing among graphs. The comparison can be done at different moments, for example,

at design phase, we can compare different (conceptual or logical) models for the DIS, at production phase

(query planning), we can compare alternative execution plans, at maintenance phase we can compare

different modifications to DIS implementation.

− Selecting a data source: Given a model for the DIS, accessing to some generic sources (specification of
the data types that must be provided by sources), we can propagate freshness expected values to sources

obtaining constrains for source data. Then, candidate sources can be compared in order to select the one

that provides data with the highest quality. Analogously, the comparison can be done at the different

phases of the DIS lifecycle.

In this line, we used the freshness evaluation approach in a mediation application in the context of data

personalization. Complementing a procedure that automatically generates mediation queries for accessing

alternative data sources, the evaluation approach was used for estimating data freshness of the generated queries

in order to select the best one for a given user [Kostadinov+2004]. This application is described in Chapter 5

(Sub-section 3.1).

Data freshness analysis

The data freshness propagation algorithms can be used as auditing tools for measuring the quality of the data

produced by the DIS and analyzing the DIS based on data quality. Analysis includes checking if freshness

expectations are satisfied and, if not, determining the critical points of the DIS. Both types of propagations are

useful:

− Checking if freshness expectations are satisfied for targets: We can compare freshness values obtained
with the ActualFreshnessPropagation algorithm with those expected by users (target data expected

freshness). The comparison allows finding the data targets for which freshness expectations are satisfied

and those for which freshness expectations are overdrawn. This result may be important for informing

users about the expectations that are not satisfied (inviting them to relax expectations).

Data Quality Evaluation in Data Integration Systems

60

− Checking if freshness expectations are satisfied by sources: Analogously, we can compare freshness
values obtained with the ExpectedFreshnessPropagation algorithm with those provided by sources

(source data actual freshness). The comparison allows finding the data sources for which freshness

expectations are satisfied and those for which freshness expectations are overdrawn. This result may be

important for informing source providers about data that is not satisfactory for users (inviting them to

provide a better service. i.e. fresher data).

In both cases, we identify portions of the DIS (targets, sources, paths from sources to targets) that may be

analyzed in detail and possibly improved. Analysis can be done at design phase in order to validate the model, at

production phase in order to monitor the DIS and at maintenance phase in order to suggest modifications. Sub-

sections 4.1 to 4.3 discuss data freshness analysis.

Data freshness improvement

If freshness expectations are overdrawn, different improvement actions can be taken in order to enforce data

freshness. Certain strategies intent to improve DIS implementation (e.g. substituting an activity by a more

performing component, synchronizing activities for reducing delays, powering hardware for accessing more

frequently or performingly to data sources) and other ones intent to obtain fresher source data (e.g. substituting a

data source, negotiating with source data providers for relaxing access constraints). Sub-section 4.4 discusses

improvement actions.

Next section discusses data freshness enforcement. It utilizes both types of quality propagations for analyzing the

quality graph, building a diagnostic on the achievement of freshness expectations and highlighting the

bottlenecks for data freshness achievement, i.e. the portions of the quality graph that should be improved in order

to enforce data freshness. We also present some improvement actions that can be applied to those bottlenecks in

order to enforce data freshness.

4. Data freshness enforcement

The DIS should provide, for each target node, the data freshness expected by the users. The freshness evaluation

approach, presented in previous section, allows checking if a DIS satisfies freshness expectations. To do such

validation, we can calculate the freshness actual values for target nodes and compare them with those expected

by users. If freshness actual values are lower than expected values then freshness can be guaranteed. If freshness

actual values are greater than expected values, freshness expectations are not achieved and some improvement

actions should be followed in order to enforce freshness. Examples of improvement actions are improving the

implementation of activities in order to reduce their processing cost and synchronizing activities in order to

reduce inter-process delays among them. The identification of critical paths (portions of the quality graph that

represent bottlenecks for freshness calculation) allows concentrating improvement actions in the subsets of

activities that cause freshness expectations to be overdrawn.

In this section we present an approach for analyzing the quality graph at different levels of abstraction in order to

identify critical paths and apply improvement actions to the nodes in the path.

4.1. Top-down analysis of data freshness

In this sub-section we propose an approach for analyzing data freshness in a top-down way, inspired from OLAP

browsing mechanisms. Generally, OLAP users start analyzing aggregated data and when abnormal or warming

situations are suspected, they perform drill-downs on identified data in order to obtain further information for

understanding the phenomena, determining causes and conceiving solutions. Analogously, the proposed

approach first analyzes data freshness in a high-level quality graph (macroscopic representation of the DIS) and

analyzes more detailed quality graphs (microscopic representations of the DIS) when further details are

necessaries for enforcing data freshness. Data freshness analysis consists in propagating data freshness values as

discussed in previous section (ActualFreshnessPropagation algorithm), checking if freshness expectations can be

achieved. If freshness values satisfy freshness expectations the DIS is appropriate for users freshness needs,

however, if freshness values overdraw freshness expectations, detailed information about DIS activities (i.e. a

lower level quality graph) may be useful for identifying bottlenecks and proposing improvement actions.

 Verónika Peralta

 61

We consider a hierarchy of representations of the DIS processes (quality graphs at different abstraction levels)

and two operators: level-up and level-down, which allow changing from a representation to another one, i.e.

changing the level of abstraction. Figure 3.9 shows a hierarchy of quality graphs composed of three levels; the

highest-level graph has a unique activity representing the whole DIS, allowing the visualization of the data

sources that participate in the calculation of data targets; the intermediate-level graph abstracts macro activities

and the lowest-level graph shows details about activity logics (i.e. detailed data and control flows).

S1

B11

S2

B12

S3

B21

S4

B31

S5

B32

S6

B41

S7

B42

S8

B43

B13 B22 B33 B71 B44 B45

B51 B61 B72 B46

T1 T2 T3 T4 T5

B81

S1

B11

S2

B12

S3

B21

S4

B31

S5

B32

S6

B41

S7

B42

S8

B43

B13 B22 B33 B71 B44 B45

B51 B61 B72 B46

T1 T2 T3 T4 T5

B81

S1 S2 S3 S4 S5 S6 S7 S8

A1 A2 A3

A5 A6 A7

A4

T1 T2 T3 T4 T5

A8

S1 S2 S3 S4 S5 S6 S7 S8

A1 A2 A3

A5 A6 A7

A4

T1 T2 T3 T4 T5

A8

S1 S2 S3 S4 S5 S6 S7 S8

DIS

T1 T2 T3 T4 T5

S1 S2 S3 S4 S5 S6 S7 S8

DIS

T1 T2 T3 T4 T5

level-down

level-down

level-up

level-up

Figure 3.9 – Hierarchy of quality graphs

Next sub-sections model the hierarchy of quality graphs, describe the operations for browsing inside the model

and aggregating processing costs and inter-process delays for high-level graphs, and discuss data freshness

evaluation at different levels of the hierarchy.

4.1.1. Hierarchy of quality graphs

For representing the hierarchy of quality graphs we need two components: (i) an ordered sequence of quality

graphs (each graph increasing the level of abstraction of its predecessor in the sequence), and (ii) a relation

among activities of consecutive levels, indicating that they correspond to the same conceptual task.

For representing the latter, we consider a hierarchy of activities where the root represents the whole DIS and

each level represents DIS activities at a given level of abstraction. High-level activities abstract high-level tasks

while lower-level activities show the processing details of the tasks. Ascending in the hierarchy correspond to

abstracting task behaviors while descending in the hierarchy can be interpreted as decomposing an activity in

more detailed and precise sub-tasks. For example, certain extraction activity may be decomposed in a sequence

of sub-activities that perform the connection to the source, the execution of an extraction query, the filtering of

irrelevant or erroneous data and the storage of the resulting data. Figure 3.10 shows the hierarchy of activities for

the DISs of Figure 3.9. Note that all branches of the hierarchy tree have the same length.

We represent the hierarchy of quality graphs with the above-mentioned components: a hierarchy of activities and

an array of quality graphs:

Definition 3.7 (hierarchy of quality graphs). A hierarchy of quality graphs is a pair (AH, GH) where

AH is a tree of activities representing the hierarchy of activities and GH is a list of quality graphs

representing the levels of abstraction. □

Data Quality Evaluation in Data Integration Systems

62

B11 B12 B21 B31 B32 B41 B42 B43B13 B22 B33 B71B44 B45 B51 B61 B72B46 B81

A1 A2 A3 A5 A6 A7A4 A8

DIS

level 1

level 2

level 3

Figure 3.10 – Hierarchy of activities

When referring to two consecutive graphs in the hierarchy, the lowest-level graph is called detailed graph and

the highest-level graph is called summarized graph.

In the following, we show how to build a summarized graph from a detailed one, how to aggregate property

values and how to evaluate data freshness in it. To this end, we need to make some hypotheses about the

hierarchy of quality graphs and the propagation of data freshness. The first hypothesis concerns the semantics of

activities. It states that the execution of sub-activities must have the same effect than executing their parent

activity, i.e. take the same inputs and produce the same outputs (both in data and control flows). Consequently,

there may exist an edge between two activities (A and B) if and only if there is an edge between a sub-activity of

A and a sub-activity of B. The second hypothesis states that data and control flow of the lowest-level quality

graph must warranty that there will be no cycles at any abstraction level. In other works, if there is a path among

a sub-activity descendent of A and a sub-activity descendent of B (being A and B two activities of the same

high-level quality graph), it must not exist a path among any sub-activity descendent of B and any sub-activity

descendent of A. The third hypothesis states that sibling sub-activities must be connected in the corresponding

quality graph. This hypothesis is necessary to calculate processing costs of high-level activities, as will be

explained in next sub-section. The last hypothesis states that the combineActualFreshness function returns the

maximum of input values and consequently, the decomposeExpectedFreshness function returns the same value

to all predecessors. This hypothesis is necessary to prove that freshness values can be propagated at all

abstraction levels. Using different combination and decomposition functions we should make analogous proofs

that those that will be shown in Sub-section 4.3. We have chosen these functions because they are the most

typically used in several types of DIS, for example [Naumann+1999] [Braumandl 2003].

Given a quality graph of level L and a hierarchy of activities, the quality graph of level L+1 can be built using

the buildLevelGraph function (see Algorithm 3.3). The method starts adding source and target nodes (which are

the same for all levels) and then adds the activity nodes of level L+1. An edge between two nodes is created

whether there is an edge between children activities. Given the quality graph of lowest-level and the hierarchy of

activities, all higher-level quality graphs can be built invoking successively the buildLevelGraph function.

The GraphHierarchy class has methods for managing the array of quality graphs and the tree of activities:

 FUNCTION getLevel (G: QualityGraph) RETURNS INTEGER

 FUNCTION getLevel (A: Activity) RETURNS INTEGER

 FUNCTION getLevelGraph (level: INTEGER) RETURNS QualityGraph

 FUNCTION getLevelGraph (A: Activity) RETURNS QualityGraph

 FUNCTION levelUp (G: QualityGraph) RETURNS QualityGraph

 FUNCTION levelDown (G: QualityGraph) RETURNS QualityGraph

 FUNCTION getSubActivities (A: Activity) RETURNS ActivitySet

 FUNCTION getParentActivity (A: Activity) RETURNS Activity

 FUNCTION getSiblingActivities (A: Activity) RETURNS ActivitySet

The getLevel functions return the level (in the hierarchy) of a quality graph, giving either the graph or one of its

activities. The getLevelGraph functions return the quality graph of a level, giving either the level or one of its

activities. The levelUp and levelDown functions return the quality graphs that are immediately upper (less detail)

and lower (more detail) in the hierarchy than a given quality graph, respectively. The getSubActivities,

getParentActivity and getSiblingActivities functions return the corresponding neighbors in the hierarchy of

activities.

 Verónika Peralta

 63

FUNCTION buildLevelGraph (AH: TREE OF Activity, int level, G: QualityGraph)

 RETURNS QualityGraph

 QualityGraph Q;

 Q.insertNodes (G.getSourceNodes());

 Q.insertNodes (G.getTargetNodes());

 Q.insertNodes (AH.getLevelNodes(level));

 FOR EACH edge e=(B1,B2) in G DO

 IF (B1 is a source or target node) THEN A1=B1;

 ELSE A1 = AH.getParentActivity(B1);

 IF (B2 is a source or target node) THEN A2=B2;

 ELSE A2 = AH.getParentActivity(B2);

 Q.insertEdge (A1,A2,e.getType());

 ENDFOR;

 RETURN Q;

END

Algorithm 3.3 – Method for building the hierarchy of quality graphs

In order to evaluate data freshness in high-level quality graphs, processing costs and inter-process delays should

be calculated from the processing costs and inter-process delays of lower-level graphs (which is analogous,

following the analogy with OLAP applications, to the aggregation of measures, i.e. the roll-up operation). Next

sub-section discusses their calculation.

4.1.2. Labeling of high level quality graphs

In this sub-section we deal with the calculation of processing costs and inter-process delays of high-level quality

graphs. In order to simplify the analysis, we label quality graphs with such properties*. The labeling of the

lowest-level quality graph can be done executing the getSourceActualFreshness, getProcessingCost and

getInterProcessDelay functions discussed in Section 3.

Intuitively, the processing cost of an activity in the summarized graph should be the time necessary to execute all

its sub-activities in the detailed graph. In other words, the processing cost should equal the extent of time

between the start of execution of the initial sub-activity (the first one in starting execution) and the end of

execution of the final sub-activity (the last one in finishing execution). In order to find initial and final sub-

activities, and consequently calculating the processing cost, sub-activities are scheduled, respecting the

processing costs and inter-process delays of the detailed graph, as follows:

Definition 3.8 (execution schedule). An execution schedule is a function that maps sub-activities to time

intervals of the form <tA,TA>, with 0 ≤ tA ≤ TA; tA is called the starting time and TA is called the ending

time of the execution of sub-activity A. A schedule verifies the following conditions: (i) for each sub-

activity, the length of its interval equals its processing cost, (ii) for each pair of consecutive sub-activities,

the separation between their intervals equals the inter-process delay between them, (iii) for some sub-

activity, tA=0. The sub-activity (or sub-activities) that satisfies the last condition is called initial sub-

activity. The sub-activity (or sub-activities) that has maximum ending time is called final sub-activity. □

Execution schedules can be visualized using Gantt charts as illustrated in Figure 3.11b. Time-intervals are

represented by rectangles, which lengths indicate processing costs. Separations among rectangles represent inter-

process delays.

*
 The same analysis can be done without labeling quality graphs but overloading the getSourceActualFreshness, getProcessingCost and

getInterProcessDelay functions for high-level quality graphs. For simplifying the understanding of the approach, we calculate property
values, label quality graphs with them and overload functions for simply reading the property values.

Data Quality Evaluation in Data Integration Systems

64

Execution schedules can be computed using the Critical Path Method (CPM) [Hiller+1991]. The method uses a

potential task graph, which is a directed labeled graph whose nodes represent tasks (activities) and whose edges

represent precedence constraints, labeled with time constraints (delays). The potential task graph for a set of sub-

activities {B1,…Bn} can be built from the detailed graph. The problem of finding starting times for sub-activities

reduces to finding most expensive paths in the potential task graph. The Ford algorithm [Hiller+1991] computes

starting times with order O(m
3
) being m the number of edges of the graph. Ending times are calculated adding

processing costs to starting times.

The following example illustrates the use of the execution schedule for calculating processing costs.

Example 3.13. Consider an activity B with 3 sub-activities: B1, B2 and B3. Figure 3.11a shows a portion of

the quality graph that contains the sub-activities. Figure 3.11b shows the execution schedule corresponding

to the quality graph. The starting times of B1, B2 and B3 are 1, 0 and 4 respectively, while their ending times

are 3, 2 and 8 respectively. The initial sub-activity is B1 and the final sub-activity is B3. □

0 1 2 3 4 5 6 7 8

B1

B2

B3

time
B2 cost=2B1cost=2

delay=1

B3cost=4

delay=2

(a) (b)

Figure 3.11 – Calculation of starting and ending times of sub-activities: (a) portion of a quality graph,

(b) execution schedule

Now, we can formalize the calculation of processing costs in a high-level graph. Let A be an activity of a

summarized graph S and let {A1…Am} be the sub-activities of A in a detailed graph D. The processing cost of A

is calculated as the time passed from the starting time of its initial sub-activity (zero) to the ending time of its

final sub-activity. Figure 3.12 shows the calculation formula.

ProcessingCost (A) = EndingTime(FinalSubActivity(A))

= max {EndingTime(A1),… EndingTime(Am)}

Figure 3.12 – Calculation of processing costs in high-level graphs

In order to calculate inter-process delays, we should consider delays among sub-activities but also take into

account the starting and ending times of sub-activities. Intuitively, the inter-process delay between two activities

A and B in a summarized graph should be the difference of time between the executions of their sub-activities in

the detailed graph. Specifically, inter-process delay should equal the extent of time between the ending time of

the final sub-activity of A and the starting time of the initial sub-activity of B. To this end, the execution

schedules of activities A and B can be concatenated, respecting the inter-process delay among sub-activities, as

shown in Figure 3.13b.

Example 3.14. Consider two activities A and B of a summarized graph with sub-activities {A1,A2} and

{B1,B2} respectively. Figure 3.13a shows a portion of the detailed graph that contains the sub-activities;

shadow zones highlight siblings in the hierarchy of activities. Figure 3.13b shows the execution schedules

(global time is added at the top of the figure for facilitating the visualization of inter-process delays). As the

inter-process delay of (B1,A2) is 8 units of time, the schedules are shifted in 8 units of time respect to global

time. The inter-process delay of (B,A) is easily seen in the graphic: it is 3 units of time. □

 Verónika Peralta

 65

0 1 2 3 4 5 6 7 8

A1

A2

B1

time

B1 cost=3A1cost=2

delay=1

A2cost=4

delay=8

(a) (b)

delay=1

B2 cost=1 B1

9 10 11 12 13 14 15

0 1 2 3 4 5

0 1 2 3 4 5 6 7

Figure 3.13 – Concatenation of execution schedules: (a) portion of a quality graph, (b) execution

schedules

Now, we can formalize the calculation of inter-process delays in a high-level graph. Let A and B be two

activities of a summarized graph S and let {A1…Am} and {B1…Bn} be their sub-activities in a detailed graph D,

respectively. The inter-process delay between two sub-activities Ai and Bj may be greater or equal to the inter-

process delay between A and B. Equality is achieved when Ai is a final sub-activity of A and Bi is an initial sub-

activity of B. In the rest of the cases, the difference of time between the ending time of a final sub-activity of A

and the ending time of Ai, and the difference of time between the starting time of Bj and the starting time of an

initial sub-activity of B (which is time 0), are both subtracted from the inter-process delay of (Ai,Bj). Note that

inter-process delays can be negative in a summarized graph if B starts execution before A finishes. Figure 3.14

shows the calculation of inter-process delays.

InterProcessDelay (A,B) = max {InterProcessDelay (Ai,Bj) –

(EndingTime(FinalSubActivity(A)) – EndingTime(Ai)) – StartingTime(Bj)
 / (Ai,Bj) is a data edge of D, 1≤i≤m, 1≤j≤n }

Figure 3.14 – Calculation of inter-process delays in high level graphs

The maximum is taken in the case there exist several data edges among sub-activities of A and sub-activities of

B, despite the same value should be obtained if inter-process delays are coherently assigned in the detailed

graph.

Next example summarizes the calculation of processing costs and inter-process delays.

Example 3.15. Figure 3.15 shows a summarized graph S with three activities (A3, A6 and A7) and a

detailed graph D with six sub-activities

(B31, B32, B33, B61, B71

and B72); both graphs are simplified versions

or those of Figure 3.9. Figure 3.15a shows processing costs and inter-process delays of D while Figure

 3.11b shows starting and ending times of sub-activities (e.g. the starting time of B33 is 4 units of time and

its ending time is 8 units of time). The processing cost of A3 is calculated as the ending time of its final sub-

activity (B33), i.e. 8 units of time. The inter-process delay between A3 and A7 is calculated as the inter-

process delay between B32 and B71 minus the difference of ending times among B33 and B32 minus the

starting time of B71, obtaining a value of -3 (3 – (8-2) – 0) units of time. The other processing costs and

inter-process delays are calculated analogously, following the formulas of Figure 3.12 and Figure 3.14. □

Next sub-section discusses the use of such labels for calculating data freshness in high-level quality graphs.

4.1.3. Data freshness evaluation at different abstraction levels

Having built the hierarchy of quality graphs and labeled the graphs with processing cost, inter-process delay and

source data actual freshness properties, we can evaluate data freshness at the different abstraction levels using

the ActualFreshnessPropagation algorithm. Lemma 3.1 proves that freshness values calculated in a summarized

graph are greater or equal to those calculated in a detailed graph. In other words, the propagation of freshness

values in high-level graphs brings upper bounds for data freshness.

Data Quality Evaluation in Data Integration Systems

66

S5

A3

T2 T3

cost=8

(a) (c)

A7 cost=7A6cost=1

S4

delay=-3delay=5

S5

B32

T2 T3

<0,2>

B72 <3,7>B61<0,1>

S4

B31<1,3>

B71 <0,1>B33<4,8>

(b)

S5

B32

T2 T3

cost=2

B72B61cost=1

S4

delay=2delay=5

B31cost=2

B71

delay=3delay=1

B33cost=4

delay=2

cost=4

cost=1

Figure 3.15 – Calculation of processing costs and inter-process delays in high level graphs:

(a) detailed graph, (b) starting and ending times in the detailed graph, and (c) summarized graph

Lemma 3.1. Given a summarized graph S obtained applying the level-up operator over a detailed graph D, it is

verified that:

∀ target node V (being B the predecessor of V in D and being A the parent activity of B in S)

. Freshness(A,V) ≥ Freshness(B,V)

The proof is deferred to Sub-section 4.3 because we need to use some results presented in such sub-section.

In most situations, the level-up method preserves freshness actual values propagated to target nodes, i.e. the

same freshness values are obtained if evaluation is performed in a summarized or in a detailed graph. Exceptions

may occur when an activity has several initial and final sub-activities, as illustrated in next example. In such

exceptions, some freshness values of the summarized graph may be greater than those of the detailed graph.

Example 3.16. Consider the propagation of freshness actual values in the summarized and detailed graphs

of Figure 3.16 (S and D respectively). Note that actual freshness of data incoming V2 is preserved, but

actual freshness of data incoming V1 is considerably lower in the detailed graph. The reason is that there is

a path from S2 to T1 in S but there is no path between them in D. □

S1

A1

A4

T1 T2

S1

A

T1 T2

S2

A2

A3

S2

delay=0

cost=10

delay=0delay=0

cost=5

delay=1

delay=0delay=0

cost=4

cost=3

delay=0 delay=0 delay=0

cost=1

delay=2delay=0

Afreshness=20 Afreshness=100 Afreshness=20 Afreshness=100

Afreshness=24 Afreshness=105Afreshness=24

Afreshness=25 Afreshness=110Afreshness=110Afreshness=110

(a) (b)sourceAfreshness=20 sourceAfreshness=20sourceAfreshness=100 sourceAfreshness=100

Figure 3.16 – Propagating data freshness: (a) summarized graph, (b) detailed graph

 Verónika Peralta

 67

 Lemma 3.1 warranties that data freshness analysis realized in high-level graphs are valid in lower-level ones, i.e.

if freshness expectations are satisfied in high-level graphs they are achieved in lower-level ones. When

expectations are overdrawn, the level-down method allows decomposing activities and analyzing the graph in

detail in order to obtain more accurate freshness values. Furthermore, better adapted improvement actions can be

applied to detailed graphs in order to enforce data freshness (which will be discussed in Sub-section 4.4).

The levelUp and levelDown functions allow browsing in the hierarchy of quality graphs, but they return the

whole graph of the corresponding level. In order to analyze in detail certain activities (e.g. for trying to optimize

them and then enforce data freshness) we need methods for browsing portions of the quality graphs. Next sub-

section presents such methods.

4.2. Browsing among quality graphs

There are two basic operations to refine the analysis of an activity: focus+ and zoom+. Focusing on an activity

means concentrating the analysis in the activity ignoring the other ones, in other words, keeping only the portion

of the quality graph that is relevant for the analysis: the activity and its neighbors. Zooming in an activity means

analyzing the sub-activities that compose the given activity, in other words, descending a level in the hierarchy

of quality graphs and showing the sub-activities and their neighbors. The focus– and zoom–methods achieve the

inverse effects.

Example 3.17. Consider the top-down analysis of Figure 3.17 over the hierarchy of quality graphs of

Figure 3.9. We start the analysis at the high-level quality graph (first panel). The second panel results of

applying the zoom+ operation to the node representing the DIS; it shows the main DIS activities. Suppose

that we want to analyze activity A4, for example, for trying to reduce its processing cost. To this end, we

apply the focus+ operation to A4 (third panel), showing A4 and its neighbor nodes. The last panel results of

applying the zoom+ operation to A4; it shows the sub-activities that compose it and their neighbor nodes.

Note that after applying some operations, source and target nodes might represent activities. Applying

zoom–and focus– operations in reverse order we obtain the highest-level quality graph. □

A7 A8

A4

S6 S7 S8

T4

A1 A2 A3

A7A5 A6 A8

A4

S1 S2 S3

DIS

T1 T2 T3

Z+

Z-

S4 S5 S6 S7 S8

T4 T5

S1 S2 S3 S4 S5 S6 S7 S8

T1 T2 T3 T4 T5 B72

B41 B42

B45

B46

B44

B81

B43

Z+

Z-

S6 S7 S8

T4

F+

F-

Figure 3.17 – Operations for browsing the hierarchy of quality graphs: zoom+ (Z+), zoom– (Z–),

focus+ (F+) and focus– (F–)

Algorithm 3.4 shows the pseudocodes of the focusing methods. The focus+ method returns a sub-graph of the

given quality graph containing the given activity, its predecessors and successors and the edges among them, i.e.

it returns the sub-graph induced by an activity and its neighbors. The neighborSubGraph method (see Algorithm

 3.6) returns the portion of the quality graph of a given level induced by a given set of nodes and their neighbors.

The focus– method returns a quality graph (of the same abstraction level than the given one) containing the

activity, its sibling nodes (in the hierarchy of activities), their predecessors and successors and the edges among

them, i.e. it returns the sub-graph of the level graph induced by an activity, its siblings and their neighbors.

Algorithm 3.5 shows the pseudocodes of the zooming methods. The zoom+ method returns a quality graph (of

the immediately inferior abstraction level) containing the sub-activities of the given activity, their predecessors

and successors and the edges among them, i.e. it returns the sub-graph of the inferior-level graph induced by sub-

activities and their neighbors. The zoom– method returns a quality graph (of the immediately superior abstraction

level) containing the parent activity of the given one, their predecessors and successors and the edges among

them, i.e. it returns the sub-graph of the upper-level graph induced by the parent activity and their neighbors.

Data Quality Evaluation in Data Integration Systems

68

FUNCTION focus+ (G: QualityGraph, A: Activity) RETURNS QualityGraph

 RETURN neighborSubGraph (G,{A});

END

FUNCTION focus– (GH: GraphHierarchy, A: Activity) RETURNS QualityGraph

 QualityGraph G = GH.getLevelGraph(A);

 ActivitySet SA = GH.getSiblingActivities(A)) ∪ {A};

 RETURN neighborSubGraph (G,SA);

END

Algorithm 3.4 – Focusing methods

FUNCTION zoom+ (GH: GraphHierarchy, Activity A) RETURNS QualityGraph

 QualityGraph G1 = GH.getLevelGraph(A);

 QualityGraph G2 = GH.levelDown(G1);

 ActivitySet SA = GH.getSubActivities(A);

 RETURN neighborSubGraph (G2,SA);

END

FUNCTION zoom– (GH: GraphHierarchy, Activity B) RETURNS QualityGraph

 QualityGraph G1 = GH.getLevelGraph(A);

 QualityGraph G2 = GH.levelUp(G1);

 Activity A = GH.getParentActivity(B);

 RETURN neighborSubGraph (G2,{A});

END

Algorithm 3.5 – Zooming methods

FUNCTION neighborSubGraph (G: QualityGraph, SA: ActivitySet) RETURNS QualityGraph

 QualityGraph Q;

 Q.insertNodes (SA);

 FOR EACH node A of SA DO

 Q.insertNodes (G.getPredecessors(A));

 Q.insertNodes (G.getSuccessors(A));

 ENDFOR;

 FOR EACH edge e incoming or outgoing nodes of SA in G DO

 Q.insertEdge (e);

 ENDFOR;

 RETURN Q;

END

Algorithm 3.6 – A method for building sub-graphs induced by a set of nodes and their neighbors

The focus+ and zoom+ methods allow refining the analysis of an activity. In order to refine the analysis of a

(connected) sub-graph of the quality graph, analogous methods can be defined for focusing and zooming in a set

of connected activities. Their signatures are the following:

 FUNCTION focus+ (G: QualityGraph, SA: ActivitySet) RETURNS QualityGraph

 FUNCTION focus– (GH: GraphHierarchy, SA: ActivitySet) RETURNS QualityGraph

 FUNCTION zoom+ (GH: GraphHierarchy, SA: ActivitySet) RETURNS QualityGraph

 FUNCTION zoom– (QH: GraphHierarchy, SA: ActivitySet) RETURNS QualityGraph

Pseudocodes are analogous.

 Verónika Peralta

 69

When expectations are overdrawn, the zoom+ method allows decomposing an activity in order to study it in

detail and eventually finding accurate improvement actions (which will be discussed in Sub-section 4.4), for

example, substituting a sub-activity for a more performing component. Furthermore, if ending times are

decreased in the detailed graph, the processing cost of the activity may be decreased in the summarized graph

too. Then, the zoom+ method represents an interesting opportunity for enforcing data freshness. In addition, the

focus+ method allows focusing on one activity and ignoring the others, which is more manageably than

enormous graphs with details about all activities.

Next sub-section presents a method for finding the activities that constitute bottlenecks for data freshness

calculation. The zoom+ and focus+ methods may be applied to these activities, targeting the analysis of data

freshness.

4.3. Determination of critical paths

For each target node, it may exist a path (along the data flow), starting at a source node, for which the freshness

of delivered data can be obtained adding all the inter-process delays and processing costs of the nodes in the

path, to the source data actual freshness of the source node. This path is called the critical path of the target node

and represents the bottleneck for data freshness. The following example presents the intuition of critical paths.

Example 3.18. Consider the quality graph of Figure 3.18. The freshness of data produced by activity A6

(delivered to target T2) can be calculated adding the source data actual freshness of source S1 (0), plus inter-

process delays (0,0,10,20) and processing costs (30,60,30,5) in the path from S1 passing by activities

A1,A3,A5 and A6, i.e. 0 + (0,0,10,20) + (30,60,30,5) = 155. So, this path is a critical path for T2. □

sourceAfreshness=0

A1 A2

A3

A5

A4

A6

delay=0

cost=30 cost=20

cost=60 cost=10

cost=30

cost=5

sourceAfreshness=5sourceAfreshness=60

delay=10

delay=60delay=10

delay=20

S1 S2

T1

S3

T2

delay=0 delay=0 delay=0

delay=0

delay=0

Afreshness=0

Afreshness=30

Afreshness=60 Afreshness=5

Afreshness=25

Afreshness=45Afreshness=90

Afreshness=130

Afreshness=130

Afreshness=155

Figure 3.18 – An example of critical paths

As previously argued, the freshness of the data delivered to the user may be improved optimizing the design of

the activities in order to reduce their processing costs or synchronizing the activities in order to reduce the inter-

process delays among them. Sometimes the changes can be concentrated in the critical path, i.e. reducing source

data actual freshness, processing costs and inter-process delays of the nodes of the critical path. This motivates

the analysis and determination of critical paths.

The existence of critical paths depends on the definition of the combination function, i.e. for certain functions the

critical path may not exist. In this sub-section, we consider that the combination function returns the maximum

Data Quality Evaluation in Data Integration Systems

70

of input values and we prove that for such function the critical path always exists. Similar analysis can be done

for finding bottlenecks for other combination functions.

Before defining critical paths we define the concepts of data path and path freshness.

Definition 3.9 (data path). A data path in a quality graph is a sequence of nodes of the graph, where

each node is connected to its successor in the sequence by a data edge. We denote a data path, giving the

sequence of nodes that compose it, comma separated and between square brackets, for example

[A0,A1,A3,A4]. We also use suspension points for omitting intermediate nodes, for example [A0,…A4]. □

Definition 3.10 (path freshness). Given a data path in a quality graph [A0,A1,…Ap], starting at a source

node A0, the path freshness is the freshness actual value propagated along the path (ignoring other nodes

of the graph), i.e. it is the sum of source data actual freshness of the source node, the processing costs of

the nodes in the path and the inter-process delays among the nodes*:

PathFreshness([A0,…Ap]) = SourceActualFreshness (A0) + Σx=0..p ProcesssingCost(Ax)

 +Σx=1..p InterProcessDelay(Ax-1,Ax) □

The critical path for an activity is the data path (from a source node to the activity) that determines the freshness

of the activity, i.e. the freshness actual value for the activity is equal to the path freshness. In other words, if we

ignore other nodes and we calculate data freshness only using the critical path we obtain the same freshness

value. We define a critical path as follows:

Definition 3.11 (critical path). Given an activity node Ap, a critical path for Ap is a data path [A0,…Ap],

from a source node A0, for which the freshness of data produced by node Ap (delivered to each successor,

e.g. C) equals the path freshness.

Freshness(Ap,C) = PathFreshness([A0,…Ap])

Given a target node Ti, a critical path for Ti is the critical path of its predecessor activity. □

The following lemma states the existence of at least a critical path for each activity node.

Lemma 3.2. Given an activity node Ap, with successor Ap+1, there exists a data path [A0,A1,…Ap] from a source

node A0 to Ap that verifies:

Freshness(Ap,Ap+1) = PathFreshness([A0,…Ap])

Proof:

According to the ActualFreshnessPropagation algorithm, freshness of data produced by node Ap (delivered to

Ap+1) is obtained adding the processing cost of Ap to the combination of freshness values (plus inter-process

delays) of predecessors (P1… Pn). The considered combination function returns the maximum input values.

Freshness(Ap,Ap+1) = ProcessingCost(Ap) + max ({ Freshness(P1,Ap) + InterProcessDelay (P1,Ap), …
Freshness(Pn,Ap) + InterProcessDelay (Pn,Ap) })

Let Ap-1 be the predecessor that achieves the maximum in the previous formula. Then:

Freshness(Ap,Ap+1) = ProcessingCost(Ap) + InterProcessDelay (Ap-1,Ap) + Freshness(Ap-1,Ap)

Applying the same reasoning to Ap-1, to its predecessor achieving the maximum (Ap-2) and so on, we obtain:

Freshness(Ap,Ap+1) = ProcessingCost(Ap) + InterProcessDelay (Ap-1,Ap)
+ ProcessingCost(Ap-1) + InterProcessDelay (Ap-2,Ap-1) + …
+ ProcessingCost(A1) + InterProcessDelay (A0,A1)
+ SourceActualFreshness (A0)

By definition of path freshness (Definition 3.10) we have:

Freshness(Ap,Ap+1) = PathFreshness ([A0,A1,…Ap]) ■

*
 Remember that, as defined in Sub-section 3.1, processing costs are associated to all nodes (with zero value for source and target nodes) and

inter-process delays are associated to all data edges (with zero value for edges outgoing source nodes or incoming target nodes).

 Verónika Peralta

 71

The following lemma and its corollary provide a way of finding critical paths by computing the path freshness of

all data paths from source nodes. They state that critical paths are those that have the greatest path freshness.

Lemma 3.3. Given an activity node Ap, with successor Ap+1, all data paths [A0,…Ap] from source nodes verify:

Freshness(Ap,Ap+1) ≥ PathFreshness([A0,… Ap])

Proof by induction in the length of the path:

→ Basis step: for data paths of length 2 [A0,A1] . Freshness(A1,A2) ≥ PathFreshness([A0,A1])

Proof:

Freshness(A1,A2) = ProcessingCost (A1) + max ({Freshness(X,A1) + InterProcessDelay (X,A1)
/ X is a predecessor of A1 })

Taking a particular predecessor achieves a smaller or equal value. Then, for A0:

Freshness(A1,A2) ≥ ProcessingCost (A1) + Freshness(A0,A1) + InterProcessDelay (A0,A1)

= ProcessingCost (A1) + SourceActualFreshness(A0) + InterProcessDelay (A0,A1)
= PathFreshness([A0,A1]) ■

→ Inductive step: Assume that for all data paths of length h≥2 [A0,…Ah-1] .
Freshness(Ah-1,Ah) ≥ PathFreshness([A0,…Ah-1]) in order to prove that for data paths of length h+1

[A0,…Ah-1,Ah] . Freshness(Ah,Ah+1) ≥ PathFreshness([A0,…Ah-1,Ah])

Proof:

Freshness(Ah,Ah+1) = ProcessingCost(Ah) + max ({Freshness(X,Ah) + InterProcessDelay(X,Ah)
/ X is a predecessor of Ah })

Taking a particular predecessor achieves a smaller or equal value. Then, for Ah-1:

Freshness(Ah,Ah+1) ≥ ProcessingCost (Ah) + Freshness(Ah-1,Ah) + InterProcessDelay (Ah-1,Ah)

Using inductive hypothesis:

Freshness(Ah,Ah+1) ≥ ProcessingCost (Ah) + PathFreshness([A0,…Ah-1]) + InterProcessDelay (Ah-1,Ah)
= PathFreshness([A0,…Ah-1,Ah]) ■

Corollary:

Given an activity node Ap, with successor Ap+1, the freshness of data produced by Ap is equal to the maximum

path freshness of the paths from a source node, i.e.:

Freshness(Ap,Ap+1) = max {PathFreshness([A0,… Ap])

/ [A0,… Ap] is a data path from a source node}

Proof:

By Lemma 3.3 the freshness of data produced by Ap is greater or equal to the path freshness of all data paths

from source nodes and by Lemma 3.2 we know that there exists a path that verifies the equality (a critical path).

So such path is the one with greatest path freshness. ■

Corollary of Lemma 3.3 suggest an effective method for calculating critical paths: finding the data paths with

greatest path freshness. They can be computed using the Critical Path Method (CPM) [Hiller+1991], labeling a

potential task graph with processing costs, inter-process delays and source data actual freshness (the potential

task graph is similar to the quality graph but all labels are associated to edges). The Bellman algorithm

[Hiller+1991] computes critical paths with order O(m) being m the number of edges of the graph.

We can now prove Lemma 3.1 using Lemma 3.2 and Lemma 3.3, as follows:

Data Quality Evaluation in Data Integration Systems

72

Proof of Lemma 3.1. The lemma stated that given a summarized graph S obtained applying the level-up

operator over a detailed graph D, it is verified that:

∀ target node V (being B the predecessor of V in D and being A the parent activity of B in S)

. Freshness(A,V) ≥ Freshness(B,V)

Proof:

Let [X,B11,…B1m
1
,B21,…B2m

2
,…Bn1,…Bnm

n
] be the critical path built by Lemma 3.2, with Bnm

n
=B, and let Ai be

the parent activity of Bi1,…Bim
i
, 1≤i≤n, with An=A. Note that the path [X,A1,…An] must exist in S because, by

construction (BuildLevelGraph method), an edge (Bim
i
,B(i+1)1), 1≤i<n, cause the edge (Ai,Ai+1) to belong to S.

On the one hand, by Lemma 3.2 and definition of path freshness we have:

Freshness(B,V) = PathFreshness([X,B11,…B1m
1
,B21,…B2m

2
,…Bn1,…Bnm

n
])

= SourceActualFreshness(X) + ProcessingCost(B11) + InterProcessDelay(B11,B12)
 + … + ProcessingCost(Bnm

n
) (1)

On the other hand, by Lemma 3.3 and definition of path freshness we have:

Freshness(A,V) ≥ PathFreshness([X,A1,… An])

= SourceActualFreshness(X) + ProcessingCost(A1) + InterProcessDelay(A1,A2)
 + … + ProcessingCost(An) (2)

We define αi=StartingTime(Bi1) and βi=EndingTime(Bim
i
), 1≤i≤n. Note that:

ProcessingCost(Bi1) + InterProcessDelay(Bi1,Bi2) + … + ProcessingCost(Bim
i
) = βi – αi (3)

According to the calculation of processing costs and inter-process delays for summarized graphs (Figure 3.12

and Figure 3.14 respectively) we have:

ProcessingCost(Ai) = EndingTime(FinalSubActivity(Ai)

InterProcessDelay(Ai,Ai+1) = max ({InterProcessDelay(Bij,B(i+1)k) – EndingTime(FinalSubActivity(Ai)) +
EndingTime(Bij) – StartingTime(B(i+1)k) / (Bij,B(i+1)k) is a data edge of D})

In particular, the edge (Bim
i
,B(i+1)1) achieves a smaller or equal value in previous formula. By algebraic

manipulation we have:

InterProcessDelay(Bim
i
,B(i+1)1) ≤ EndingTime(FinalSubActivity(Ai)) + InterProcessDelay(Ai,Ai+1) – βi + αi+1

= ProcessingCost(Ai) + InterProcessDelay(Ai,Ai+1) – βi + αi+1 (4)

Substituting (3) and (4) in (1) we obtain:

Freshness(B,V) ≤ SourceActualFreshness(X) + (β1 – α1)
 + (ProcessingCost(A1) + InterProcessDelay(A1,A2) – β1 + α2) + (β2 – α2) + …

 + (ProcessingCost(An-1) + InterProcessDelay(An-1,An) – βn-1 + αn) + (βn – αn)

= SourceActualFreshness(X) – α1 + ProcessingCost(A1) + InterProcessDelay(A1,A2) + …

 + ProcessingCost(An-1) + InterProcessDelay(An-1,An) + βn

As α1 ≥ 0 and βn ≤ ProcessingCost(An):

Freshness(B,V) ≤ SourceActualFreshness(X) + ProcessingCost(A1) + InterProcessDelay(A1,A2) + …

 + ProcessingCost(An-1) + InterProcessDelay(An-1,An) + ProcessingCost(An)

Finally, using (2):

Freshness(B,V) ≤ PathFreshness([X,A1,… An]) ≤ Freshness(A,V) ■

As proved in previous lemma, when calculating freshness in a more detailed graph we may obtain more precise

values than in a summarized graph. In addition, some improvement actions can be better applied in a more

detailed graph which brings more specific information about processing costs and inter-process delays.

Next sub-section discusses some strategies for enforcing data freshness when user freshness expectations cannot

be achieved.

 Verónika Peralta

 73

4.4. Improvement actions

If freshness actual values are greater than expected values, freshness expectations are not achieved and some

improvement actions should be followed in order to enforce freshness. Freshness actual values can be improved

optimizing the design and implementation of the activities in order to reduce their processing cost, synchronizing

the activities in order to reduce the inter-process delay among them, or negotiating with source providers in order

to obtain fresher source data. In addition, freshness expected values can be relaxed negotiating with users.

Consequently, improvement actions can be the response to one of the following objectives: (i) reduce processing

costs, (ii) reduce synchronization delays, (iii) reduce source data actual freshness, or (iv) augment target data

expected freshness.

The result of applying an improvement action will be changes in the topology or the properties of the quality

graph (i.e. changes in nodes, edges and labels). Elementary actions are:

− addNode (N: Node) – This action adds a node to the quality graph. The node is not yet connected to
other nodes (it has no incoming nor outgoing edges) and has not labels.

− addEdge (e: Edge) – This action adds an edge to the quality graph. The edge has not labels.

− addProperty (N: Node, P: Property, value: Object) – This action associates a label property=value
to a node of the quality graph. If the property is already associated to the node, its value is updated. The

data type of the value corresponds to the data type of the property.

− addProperty (e: Edge, P: Property, value: Object) – This action associates a label property=value
to an edge of the quality graph. If the property is already associated to the node, its value is updated. The

data type of the value corresponds to the data type of the property.

− removeNode (N: Node) – This action removes a node (and all incoming and outgoing edges, as well as

associated properties) from a quality graph.

− removeEdge (e: Edge) – This action removes an edge (and all associated properties) from a quality

graph.

− removeProperty (N: Node, P: Property) – This action deletes a property from a node of the quality

graph.

− removeProperty (e: Edge, P: Property) – This action deletes a property from an edge of the quality

graph.

All these elementary actions are member methods of the QualityGraph class.

Elementary actions can be combined, conforming macro actions that solve typical improvement strategies. There

is a great variety of macro actions that can be defined. Their feasibility depends on the particular application

scenario, i.e. an action that considerably improves freshness in a DIS may have no impact on another one. In this

sub-section we illustrate some typical macro actions (without trying to be exhaustive) that can be applied in a

great variety of DISs. Examples of macro actions are:

− replaceNode (G: QualityGraph, N: Node, N’: Node, NP’: NodePropertySet) – This action
replaces a node (N) by a new one (N’), keeping the same edges. A set of properties (NP’) is associated to

the new nodes. The action can be used, for example, for replacing an activity by a more performing one

(reducing processing cost) or replacing a source by another one (reducing source data actual freshness).

− replaceSubGraph (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NS’: NodeSet, ES’: EdgeSet,
NP’: NodePropertySet, EP’: EdgePropertySet) – This action replaces a set of nodes and a set of

edges conforming a sub-graph (NS and ES) by new set of nodes (NS’), connected by a set of edges (ES’).

Sets of properties (NP’ and EP’) are associated to the new nodes and edges respectively. The action can

be used, for example, for replacing a set of activities by a set of more performing components or

replacing a source and its wrapper by new ones providing fresher data.

− decomposeNode (G: QualityGraph, N: Node, NS’: NodeSet, ES’: EdgeSet,

NP’: NodePropertySet, EP’: EdgePropertySet) – This action replaces a node (N) by a new set of

nodes conforming a sub-graph (NS) which represent refined tasks, connected by a set of edges (ES’). Sets

of properties (NP’ and EP’) are associated to the new nodes and edges respectively. The action can be

used, for example, for replacing an activity by a set of activities representing refined tasks (which can be

optimized or synchronized separately).

Data Quality Evaluation in Data Integration Systems

74

− parallelizeNodes (G: QualityGraph, NS: NodeSet, ES’: EdgeSet, EP’: EdgePropertySet) – This
action replaces a set of edges among a path of nodes (NS), corresponding to a sequential execution, by

edges (ES’) connecting the nodes according to a parallel execution. A set of properties (EP’) is associated

to the new edges. The action can be used, for example, for parallelizing the execution of certain activities

in order to reduce global processing cost.

− changeNodesProperties (G: QualityGraph, NP’: NodePropertySet) – This action changes property
values of a set nodes. The argument NP’ is a set of 3-uples of the form <node,property,value>. The action

can be used, for example, for changing the processing cost property after optimizing the implementation

activities, changing the source data actual freshness property after negotiation with source providers or

changing DIS policies (e.g. refreshment frequencies) that will impact inter-process delays.

− changeEdgesProperties (e: Edge, EP’: EdgePropertySet) – This action changes the property values
of a set of edges. The argument EP’ is a set of 3-uples of the form <edge,property,value>. The action can

be used, for example, for changing the inter-process delay property after synchronizing activities.

In order to facilitate the easy implementation of macro actions, we define two additional macro actions (that can

be used as templates) which manage (add and remove respectively) sets of nodes, edges and labels, invoking

elementary actions. They have the following signatures:

 PROCEDURE addSets (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NP: NodePropertySet, EP:

EdgePropertySet)

 PROCEDURE removeSets (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NP: NodePropertySet,

EP: EdgePropertySet)

Inputs consists of a quality graph, a set of nodes, a set of edges, a set of triplets <node,property,value> and a set

of triplets <edge,property,value>. Pseudocodes are shown in Algorithm 3.7.

PROCEDURE addSets (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NP: NodePropertySet,

EP: EdgePropertySet)

 FOR EACH node N in NS DO

 G.addNode(N);

 FOR EACH node e in ES DO

 G.addEdge(e);

 FOR EACH triplet (node,prop,value) in NP DO

 G.addProperty(node,prop,value);

 FOR EACH triplet (edge,prop,value) in EP DO

 G.addProperty(edge,prop,value);

END

PROCEDURE removeSets (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NP: NodePropertySet,

EP: EdgePropertySet)

 FOR EACH node N in NS DO

 G.removeNode(N);

 FOR EACH edge e in ES DO

 G.removeEdge(e);

 FOR EACH triplet (node,prop,value) in NP DO

 G.removeProperty(node,prop);

 FOR EACH triplet (edge,prop,value) in EP DO

 G.removeProperty(edge,prop);

END

Algorithm 3.7 – Template macro actions

Algorithm 3.8 shows the pseudocodes of the replaceNode, replaceSubGraph, decomposeNode, parallelizeNodes,

changeNodesProperties and changeEdgesProperties macro actions. They are quite similar: they build the

appropriate sets (nodes, edges, labels) and invoke the addSets and removeSets template actions.

 Verónika Peralta

 75

PROCEDURE replaceNode (G: QualityGraph, N: Node, N’: Node, NP’: NodePropertySet)

 EdgeSet ES’;

 EdgePropertySet EP’;

 FOR EACH edge e=(B,N)T incoming N in G DO

 e’ = (B,N’)T;

 (prop,value) = G.getProperties(e);

 ES’.insert(e’);

 EP’.insert(e’,prop,value);

 FOR EACH edge e=(N,C)T outgoing N in G DO

 e’ = (N’,C)T;

 (prop,value) = G.getProperties(e);

 ES’.insert(e’);

 EP’.insert(e’,prop,value);

 removeSets(G,{N},{},{},{});

 addSets(G,{N’},ES’,NP’,EP’);

END

PROCEDURE replaceSubGraph (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NS’: NodeSet,
ES’: EdgeSet, NP’: NodePropertySet, EP’: EdgePropertySet)

 removeSets(G,NS,ES,{},{});

 addSets(G,NS’,ES’,NP’,EP’);

END

PROCEDURE decomposeNode (G: QualityGraph, N: Node, NS’: NodeSet, ES’: EdgeSet,

NP’: NodePropertySet, EP’: EdgePropertySet)

 removeSets(G,{N},{},{},{});

 addSets(G,NS’,ES’,NP’,EP’);

END

PROCEDURE parallelizeNodes (G: QualityGraph, NS: NodeSet, ES’: EdgeSet, EP’:

EdgePropertySet)

 EdgeSet ES;

 FOR EACH edge e incoming a node of NS in G DO

 ES.insert(e);

 FOR EACH edge e outgoing a node of NS in G DO

 ES.insert(e);

 removeSets(G,{},ES,{},{});

 addSets(G,{},ES’,{},EP’);

END

PROCEDURE changeNodesProperties (G: QualityGraph, NP’: NodePropertySet)

 addSets(G,{},{},NP’,{});

END

PROCEDURE changeEdgesProperties (G: QualityGraph, EP’: EdgePropertySet)

 addSets(G,{},{},{},EP’);

END

Algorithm 3.8 – Macro improvement actions

In the remaining of the sub-section, we discuss the use of macro improvement actions according to the four

objectives above mentioned.

Data Quality Evaluation in Data Integration Systems

76

Reducing processing costs

A typical way of reducing processing costs is replacing the current implementation of an activity by a more

performing one. To this end, a new ad-hoc process can be created or an existent component can be reused (e.g. a

web service provided by a third party developer). In the latter case, additional activities (adapters) may be

necessaries for connecting the existing activities to the new component. The cost of adapters must be taken into

account. Complex activities may be decomposed in simpler portions in order to replace only some of them.

Another improvement action consists in parallelizing the execution of some activities. Analogously, additional

activities may be necessaries for controlling the execution (e.g. waiting for the end of all the activities before

executing successors).

Further actions include running some activities in a more performing server and powering CPU and memory. In

this case, the topology of the quality graph does not change but property values are modified to reflex the new

scenario (the processing cost may be one of the updated properties). In addition, specific actions can be defined

for specific scenarios.

Example 3.19. Consider activity A6 of the quality graph of Figure 3.19a, which integrates data coming

from predecessor activities and also builds aggregates and statistics needed by successor activities. The

process that implements A6 can be decomposed in three routines (Figure 3.19b): activity A61 performs data

integration, activity A62 computes statistics for successor A7 and activity A63 build aggregates for successor

A8. The decomposition allows replacing some routines by more performing ones, e.g. replacing A61 by A64

(Figure 3.19c) and allocating more resources to it in order to execute it more performingly. Note that the

time for building statistics for A7, is unnecessarily paid for data going to A8, thus, activities A62 and A63 can

be parallelized (Figure 3.19c).

The applied improvement actions are:

- decomposeNode (G, A6, {A61,A62,A63}, {(A5,A61),(A4,A61),(A61,A62),(A62,A63),(A63,A7),(A63,A8)},
{<A61,’ProcessingCost’,3>,<A62,’ProcessingCost’,2>,<A63,’ProcessingCost’,1>},

{<(A5,A61),’InterProcessDelay’,12>,<(A4,A61),’InterProcessDelay’,0>,

<(A61,A62),’InterProcessDelay’,0>,<(A62,A63),’InterProcessDelay’,0>,

<(A63,A7),’InterProcessDelay’,7>,<(A63,A8),’InterProcessDelay’,7>})

- replaceNode (G, A61, A64, {<A64,’ProcessingCost’,2>})

- changeNodesProperties (G, {<A64,’ProcessingCost’,1>})

- parallelizeNodes (G, {A62,A63}, {(A64,A62),(A64,A63),(A62,A7),(A63,A8)},
{<(A64,A62),’InterProcessDelay’,0>,<(A64,A63),’InterProcessDelay’,0>,

<(A62,A7),’InterProcessDelay’,7>,<(A63,A8),’InterProcessDelay’,7>}) □

A5

A6

A4

A8

cost=6

delay=12

delay=7

Afreshness=27

Afreshness=45

A7

delay=0
Afreshness=5

delay=7
Afreshness=45

A5

A61

A4

A8

cost=3

delay=12

delay=7

Afreshness=27

Afreshness=45

A7

delay=0
Afreshness=5

delay=7
Afreshness=45

A62

cost=1

delay=0
Afreshness=42

A63

cost=2

delay=0
Afreshness=44

(b)

A5

A64

A4

A8

cost=1

delay=12

delay=7

Afreshness=27

Afreshness=41

A7

delay=0
Afreshness=5

delay=7
Afreshness=42

A63 cost=1

delay=0
Afreshness=40

A62

delay=0
Afreshness=40

cost=2

(c)(a)
Figure 3.19 – Portions of a quality graph: (a) before performing improvement actions, (b) after

decomposing an activity, (c) after replacing and parallelizing activities

 Verónika Peralta

 77

Reducing inter-process delays

A typical way of reducing inter-process delays is synchronizing activities, eventually changing their

synchronization policies, for executing one after the other. Activities may have synchronous or asynchronous

(pull or push) policies, driven by temporal or non-temporal events (see Sub-section 2.3 of Chapter 2) and

coexistence of different policies may introduce delays. Even synchronization-related properties (synchronization

policies, execution frequencies, synchronization events, control events) are inherent to control flow, they

indirectly causes inter-process delays among activities. Synchronizing activities do not necessarily mean that

activities must execute one immediately after the other; certain delays may be necessaries due to processing

constraints, for example the need of sequentially execute other activities or system routines. Then, improvement

actions may reduce delays instead of eliminating them.

Unfortunately, improving the synchronization among some activities may worsen the synchronization with

another ones. Consequently, when applying local synchronization techniques to portions of the quality graph, the

impact to the whole graph should be studied. Next example illustrates this fact.

Example 3.20. Figure 3.20a shows three activities A5, A6 and A8, the two former with periodic pull policies

and the latter with aperiodic pull policy. Activity A5 executes every 12 units of time and activity A6 every

7 units of time, both materializing data. As they execute asynchronously, activity A6 reads data that have

been materialized for some time, 12 units of time in the worst case. Activity A8 executes aperiodically,

when users pose queries, but also reads data that has been previously materialized, 7 units of time in the

worst case. Figure 3.20b illustrates their execution over time (executions are represented by rectangles,

which lengths indicate processing costs) and the materialized data that is used as input (dotted lines).

If activity A6 is synchronized with activity A5 (its execution frequency is changed for executing every 12

units of time, just after A5) inter-process delays are negligible. But note that in this case, the inter-process

delay with activity A8 will be 12 units of time in the worst case (instead of 7).

However, if we change the execution frequency of activity A6 for executing every 6 units of time (as shown

in Figure 3.20c), inter-process delays between activities A5 and A6 are either 0 or 6 units of time (6 units of

time in the worst case, instead of 12) and delays between activities A6 and A8 are at most 6 units of time

(instead of 7).

0 6 12 18 24 30 36 42 48

A5

A6

A8

timeA5

A6

A8

delay=12

delay=7

Afreshness=27

Afreshness=45

(b)(a)

ExecFrequency=1/12

ExecFrequency=1/7

cost=6

SyncPolicy=periodic pull

SyncPolicy=aperiodic pull

SyncPolicy=periodic pull

0 6 12 18 24 30 36 42 48

A5

A6

A8

(d)(c)

A5

A6

A8

delay=6

delay=6

Afreshness=27

Afreshness=39

ExecFrequency=1/12

ExecFrequency=1/7

cost=6

SyncPolicy=periodic pull

SyncPolicy=aperiodic pull

SyncPolicy=periodic pull

time

Figure 3.20 – Synchronization of activities: (a) portion of a quality graph, and (b) diagram of activity

executions before the improvement action, and (c) portion of the quality graph and (d) diagram of

activity executions after the improvement action

Data Quality Evaluation in Data Integration Systems

78

The applied improvement actions are:

- changeNodesProperties (G,{<A6,’ExecFrequency’,1/6>})

- changeEdgesProperties (G,{<(A5,A6),’InterProcessDelay’,6>,<(A6,A8),’InterProcessDelay’,6>}) □

Increasing the refreshment frequency of materialized data (i.e. executing the activity more frequently) may

improve freshness, as shown in previous example. However, note that refreshment frequencies are constrained to

allowed source accesses and activity processing times. The former arises when sources can only be queried at

certain times or the number of source accesses is limited (for example because of source access price) and

requires negotiation with source data providers for relaxing access constraints. The latter is intuitive: if an

activity last 5 units of time for executing, it cannot execute every 2 units of time. So, synchronization techniques

may be complemented by techniques for reducing processing costs, for example, decomposing an activity in

portions with smaller processing costs and then increasing the refreshment frequency of new activities.

In previous example we only had two activities with periodic execution. The problem is more complex when

activities have several predecessors and successors, each one with different synchronization policies.

Furthermore, the combination of pull and push policies with different types of events makes very difficult the

development of general synchronization techniques; specific techniques should be studied for particular

application scenarios. In Section 5, we present a detailed analysis for one concrete scenario.

Reducing source actual freshness

If a source provides with data having too high freshness actual values, it can be substituted by another source

providing with the same type of data but having lower freshness actual values. Note that the decision of

substituting a source may also depend on other quality factors (e.g. accuracy, completeness, availability). The

replacement of a source may imply the modification of other DIS components, especially wrapper activities.

Note that the new source may provide with incomplete information, for example, if it does not provide with

certain attributes (which may be provided by another source). Then, a source can be replaced by a sub-graph

(accessing several sources) that calculates the same data. Note that even source data actual freshness may be

reduced, processing costs of new activities may be higher, so they should also be studied. Analogously, certain

sub-graphs representing the access to several sources can be replaced by the access to a unique source.

Example 3.21. Figure 3.21a shows a portion of a quality graph accessing to source S2. Figure 3.21b shows

the replacement of source S2 for sources S4 and S5, and the consequent replacement of wrapper activity A2

for activities A21, A22 and A23. The applied improvement action is:

- replaceSubGraph (G, {S2,A2}, {}, {S4,S5,A21,A22,A23}, {(S4,A21),(S5,A22),(A21,A23),(A22,A23),(A23,A5)},
{<S4,’SourceActualFreshness’,12>,<S5,’SourceActualFreshness’,6>,<A21,’ProcessingCost’,2>,

<A22,’ProcessingCost’,1>,<A23,’ProcessingCost’,2>},

{<(A21,A22),’InterProcessDelay’,0>,<(A22,A23),’InterProcessDelay’,0>,

<(A23,A5),’InterProcessDelay’,0>}) □

A22

A5

cost=1

sourceAfreshness=6sourceAfreshness=12

delay=0

S4 S5

Afreshness=12 Afreshness=6

Afreshness=7

A23

delay=0
Afreshness=16

cost=2

A21cost=2

delay=0
Afreshness=14

A5

sourceAfreshness=24

S2

Afreshness=24

A2

delay=0
Afreshness=25

cost=1

(b)(a)

Figure 3.21 – Portions of the example quality graph (a) before and (b) after replacing a source

 Verónika Peralta

 79

The comparison of different source data providers allows selecting the sources that provide the freshest data. The

propagation of freshness expected values aids in such selection. Negotiating with source providers is also

possible, demanding (and eventually paying) for a better service (i.e. better source data actual freshness).

Augmenting target expected freshness

Finally, when data freshness cannot be further improved, i.e. user expectations are too high for the data that can

be effectively obtained from data repositories or improvement actions are too expensive (e.g. imply the

acquisition of new hardware), we should negotiate with users in order to relax freshness expectations.

Furthermore, many users have incremental behaviors, i.e. they ask for certain freshness values (very exigent) and

if the DIS cannot provide these values, they try with relaxed values and so on.

Example 3.22. Consider that a user has demanded a freshness expected value of 10 units of time for certain

data target T but the DIS cannot convey so fresh data, so the user is notified receiving no data. Then, the

user decides to relax freshness expectations demanding a freshness expected value of 15 units of time and

then, he tries his query again. The applied improvement action is:

- changeNodesProperties (G, {<T,’TargetExpectedFreshness’,15>}) □

Summary

All previously discussed actions are general enough to be applied to different types of DIS but their use for

freshness enforcement should be guided by some high-level strategy in order to be effective. On the contrary, the

ad-hoc use of improvement actions may be not viable. For example, manually finding optimal refreshment

frequencies in order to minimize inter-process delays, in a DIS with several tens of activities is not an easy

matter. Our approach consists in studying the DIS in a high-level quality graph and zooming in the critical paths

(or portions of the paths) in concentrate improvement actions in the nodes and edges of the path. Clearly, in

some scenarios, the actions applied to critical paths are not enough for enforcing data freshness and other

portions of the graph should be studied, for example, when the synchronization of some activities degraded the

synchronization of other ones. The methods for browsing in the hierarchy of quality graphs are useful to this end.

The set of macro actions described in this sub-section is not complete, in the sense of trying to cover all possible

improvement strategies. On the contrary, our approach allows the definition of specialized strategies for concrete

application scenarios, as the one that will be presented in Section 5.

Next sub-section summarizes our approach with an example.

4.5. Summarizing example

In the following example, we analyze a quality graph where freshness expectations are not achieved. We firstly

compute the critical path and we zoom in activities with higher processing costs and synchronization delays,

analyzing possible improvement actions.

Example 3.23. Consider the DIS of Figure 3.22a, which has two data sources (Source1 and Source2) and

two data targets (Query1 and Query2). Figure 3.22b shows a first zoom+ operation in order to show the ac-

tivities that compose the DIS process, which perform the data extraction (Extr1 and Extr2), integration (In-

teg3) and aggregation (Aggr4 and Aggr5). Considering the properties shown in Figure 3.22b, we achieve

freshness values of 68 hours for Query1 and 61 hours for Query2. The former is acceptable, but the latter is

too high and must be reduced in order to achieve user expectations.

We analyze the critical path for Query2, i.e. [Source2, Extr2, Integ3, Aggr5]. First of all, we browse in the

hierarchy of quality graphs, focusing in each activity of the critical path and zooming in them in order to

have an overview of candidate portions to improve, as shown in Figure 3.22 (c, d and e). Extr2 extracts and

cleans information from Source2; it is composed of three sub-activities: the wrapping process (Wrap21) and

two cleaning processes (Clean22 and Clean23). Integ3 consolidates data extracted from both sources; it is

composed of an initial integration activity (Integ31), a cleaning activity that corrects some kinds of common

errors (Clean32) and a final activity that performs complex calculations (Calc33). Due to the complexity of

operations, both Integ31 and Calc33 materialize data once a day. Aggr5 builds data needed by Query2; it is

composed of an aggregation activity (Aggr51) and a posterior cleaning process for grouped data (Clean52).

Data Quality Evaluation in Data Integration Systems

80

Source1 Source2

Extr1 Extr2

Aggr4

Integ3

Aggr5

Query1 Query2

cost=0

Afreshness=24

cost=5

cost=3 cost=4

cost=12

sourceAfreshness=24sourceAfreshness=1

Afreshness=1

Afreshness=29

delay=2 delay=0

Afreshness=1

Afreshness=61Afreshness=68

Afreshness=41

delay=24 delay=16

Afreshness=41

targetEfreshness=48targetEfreshness=72

Source1 Source2

Query1 Query2

Afreshness=24

cost=44

sourceAfreshness=24sourceAfreshness=1

Afreshness=1

Afreshness=68Afreshness=68

targetEfreshness=48targetEfreshness=72

DIS

(a) (b)

Z+

Z-

Clean32

Afreshness=33
delay=24

cost=1Aggr51

Clean52

Query2

Afreshness=61

targetEfreshness=48

Afreshness=58
delay=0

cost=3

Integ31

cost=2

Afreshness=29
delay=0

Source2

Wrap21

Clean22

Clean23

sourceAfreshness=24

Afreshness=24

cost=0

cost=3

delay=0

delay=0
Afreshness=24

Afreshness=27

Wrap11

Aggr41

Integ31

Clean32

Calc33

cost=1

cost=3

Afreshness=29
delay=2 delay=0

Afreshness=1

Afreshness=32
delay=1 delay=0

Afreshness=32

Afreshness=33

delay=0

delay=24

A
freshness=33

delay=24
Afreshness=41

cost=8

Clean23

Aggr51

refreshFreq=1/24

refreshFreq=1/24

(c) (d) (e)

F
+

F
-

Z
+

Z
-

F
+

F
-

Z
+

Z
-

F
+ F
-

Z
+ Z
-

F
+F
-

Z
+Z
-

F
+F
-

Z
+Z
-

Figure 3.22 – Browsing in the critical path for Query2: (a)highest-level quality graph, (b) zoom+ in the

DIS node; and focus+ and zoom+ in activities: (c) Extr2, (d) Integ3, and (e) Aggr5

Let’s start analyzing Integ3 and its synchronization with successors. Note that there is a big inter-process

delay between Clean32 and Aggr51 due to the refreshment frequencies of Integ31, as shown in Figure 3.22d.

A good improvement action consists in increasing the refreshment frequency of Integ31 (and thus executing

Calc33 more frequently). This action should be negotiated with the provider of Source2 (to know if the

source can be accessed more frequently) and DIS administrators (to know if the wrapper can be executed

more frequently). Note that as activity Calc33 is very costly, it may continue executing once a day. Then,

the first improvement actions consists in changing the refreshment frequency of Integ31 to 12 hours and

consequently changing the inter-process delay between Clean32 and Aggr51 to 12 hours, i.e.:

- changeNodesProperties (G3,{<Integ31,’RefreshFrequency’,1/12>})

- changeEdgesProperties (G3,{<(Clean32,Aggr51),’InterProcessDelay’,12>)

Figure 3.23a shows the detailed graph for activity Integ3 after these actions. Returning to the summarized

graph, freshness actual value for Query2 is 49 hours, which is still not acceptable.

Another improvement action consists in parallelizing the cleaning sub-activities of Extr2. Both activities act

over different data so the output of the wrapper can be decomposed in two disjoint sets (substituting Wrap21

 Verónika Peralta

 81

by Wrap24) and merged at the end (adding activity Mer25), both having negligible cost. As Clean23 finishes

before Clean22, it materializes data. Actions are:

- replaceSubGraph (G, {}, {(Clean23,Integ31)}, {Mer25}, {(Clean23,Mer25),(Mer25,Integ31)},
{<Mer25,’ProcessingCost’,0>},

{<(Clean23,Mer25),’InterProcessDelay’,0>,<(Mer25,Integ31),’InterProcessDelay’,0>})

- replaceNode (G, Wrap21, Wrap24, {<Wrap24,’ProcessingCost’,0>})

- parallelizeNodes (G3, {Clean22,Clean23},
{(Wrap24,Clean22),(Wrap24,Clean23),(Clean22,Mer25),(Clean23,Mer25)},

{<(Wrap24,Clean22),’InterProcessDelay’,0>,<(Wrap24,Clean23),’InterProcessDelay’,0>,

<(Clean22,Mer25),’InterProcessDelay’,0>,<(Clean23,Mer25),’InterProcessDelay’,1>})

Figure 3.23b shows the detailed graph for activity Extr2 after these actions. Returning to the summarized

graph (Figure 3.23c), freshness actual value for Query2 is 47 hours, which is acceptable. □

Integ31

cost=2

Afreshness=27
delay=0

Source2

Wrap24

Clean22

Mer25

sourceAfreshness=24

Afreshness=24

cost=0

cost=3

delay=1

delay=0
Afreshness=24

Afreshness=26

Wrap11

Aggr41

Integ31

Clean32

Calc33

cost=1

cost=3

Afreshness=29
delay=2 delay=0

Afreshness=1

Afreshness=32
delay=1 delay=0

Afreshness=32

Afreshness=33

delay=0

delay=12

A
freshness=33

delay=24
Afreshness=41

cost=8

Clean23

Aggr51

refreshFreq=1/12

refreshFreq

=1/24

(b)(a)

Clean23 cost=2

delay=0
Afreshness=24

delay=0
Afreshness=27

Source1 Source2

Extr1 Extr2

Aggr4

Integ3

Aggr5

Query1 Query2

cost=0

Afreshness=24

cost=3

cost=3 cost=4

cost=12

sourceAfreshness=24sourceAfreshness=1

Afreshness=1

Afreshness=27

delay=2 delay=0

Afreshness=1

Afreshness=47Afreshness=66

Afreshness=39

delay=24 delay=4

Afreshness=39

targetEfreshness=48targetEfreshness=72

(c)

Figure 3.23 – Quality graphs after improvement actions: (a) detailed graph for Integ3, (b) detailed

graph for Extr2, and (c) summarized graph (after all actions)

Along this section we have illustrated that data freshness enforcement may consist of several improvement

actions (we have given examples of actions), which use for DIS design or reengineering depends on the

particularities of concrete application scenarios. To illustrate this, next section fixes an application scenario and

analyzes one improvement strategy: the synchronization of activities in order to enforce data freshness. Other

strategies can be analyzed analogously for specific application scenarios; the quality evaluation framework and

the general strategies discussed in this section (critical path, top-down analysis, actual and expected freshness

propagation) may help in the analysis.

5. Synchronization of activities

Previous section proposed a set of elementary and macro improvement actions and argued that improvement

strategies for DIS design can be enunciated for concrete DIS scenarios based on improvement actions. The

purpose of this section is to illustrate the development of an improvement strategy.

Based on an improvement action (change of execution frequencies of activities) suggested in Sub-section 4.4 for

reducing inter-process delays, we discuss the determination of appropriate execution frequencies for activities.

We consider a concrete application scenario where activities have specific synchronization policies and we deal

with their synchronization in order to find the optimal execution frequencies that allow achieving freshness

expectations. Next sub-section motivates and states the problem and the rest of the section discusses optimal and

heuristic solutions.

Data Quality Evaluation in Data Integration Systems

82

5.1. DIS synchronization problem

The comparison among source data actual freshness and target data expected freshness serves to determine

constraints for DIS design. Their difference, if positive, indicates the longest period of time that DIS processes

are allowed to spend in manipulating data, i.e. it is an upper bound for the execution delay of the DIS, which

includes the processing costs of activities and the inter-process delays among them. If processing costs of

activities are not too high, i.e. if all activities can execute in less time than the bound for the execution delay, the

achievement (or overdraw) of freshness expectations depends on inter-process delays. The idea is to synchronize

activities in a way that inter-process delays are sufficiently small to allow achieving freshness expectations.

Example 3.24. Consider the quality graph of Figure 3.24. In the path [S2,A2,A3,A4,T1], the difference

between freshness expectations and source data actual freshness is 12 units of time. The activities in the

path summarize 4 units of time of processing costs, so 8 units of time can be spent in inter-process delays,

i.e. greater values will cause freshness actual value to overdraw freshness expected value.

If activity A3 executes every 3 units of time and activity A4 executes asynchronously with each user query,

the delay among A3 and A4 will be 3 units of time in the worst case. Analogously, we can set the execution

frequency of A2 for obtaining a delay of 5 units of time between A2 and A3. These delays of 3 and 5 units of

time can be tolerated. Of course, delays in the path [S1,A1,A3,A4,T1] must also be analyzed. □

S1 S2

A1 A2

A3

sourceAfreshness=5

cost=2

sourceAfreshness=18

cost=1

cost=3

T1

targetEfreshness=30

A4
cost=0

Figure 3.24 – Determination of execution policies

Before enunciating the problem, we state some hypotheses that fix the application scenario, specially, the DIS

synchronization policies:

− Activities providing data to targets (called conveyance activities) execute when users ask for data (pulled
by data targets) and do not materialize data; the other activities (called intermediate activities) execute

asynchronously, guided by periodic pull events and may materialize data.

− Activities must finish execution before starting a new execution. Consequently, the execution period* of
an activity should be greater or equal to its processing cost.

− Inter-process delays are determined exclusively by the execution frequencies of activities, i.e. they are not
influenced by other DIS properties (e.g. hardware constraints, scheduling restrictions, communication

delays). Activities can be executed in parallel. Control flow coincides with data flow.

− Sources present no access constraints, i.e. they can be accessed as frequently as needed.

− Processing costs, source data actual freshness and target data expected freshness, as well as execution
periods, are all integer values, multiples of certain unit of time T (e.g. a day, an hour, fifteen minutes).

The combineActualFreshness function returns the maximum of input values.

Synchronizing activities consist in finding an appropriate execution frequency for each intermediate activity in

order to coordinate the whole DIS and obtain inter-process delays that allow achieving freshness expectations.

Note that different synchronization policies (providing the execution frequency for each activity) may allow

*
 The execution period is the inverse of the execution frequency, i.e. if an activity executes every P units of time, execution frequency is 1/P

and execution period is P.

 Verónika Peralta

 83

achieving freshness expectations. We need a method for finding feasible policies but we also need to decide

which one to choose. Several criteria for selecting when a policy is better than another can be proposed. An

example of this kind of criteria is minimizing the overall maintenance cost, which can be calculated as the

processing cost of each activity, weighted par its execution frequency [Theodoratos+1999]. Finding the best

synchronization of activities is an optimization problem. It can be stated as follows:

Definition 3.12 Given a quality graph G, labeled with source data actual freshness, target data expected

freshness and processing cost properties, the DIS synchronization problem consists in finding the most

appropriate execution frequencies for intermediate activities in a way that inter-process delays allow

achieving freshness expectations, minimizing maintenance cost. □

In the following sub-sections we characterize the solution space and propose some algorithms to solve the

problem.

5.2. Characterization of the solution space

A solution to the DIS synchronization problem is a set of execution periods (or execution frequencies), one for

each intermediate activity. In this sub-section we characterize the solution space, determining the conditions that

a solution must verify.

Basically, the idea is to bound the amount of time that can be consumed in synchronization, studying the

difference between actual and expected freshness. We firstly obtain upper and lower bounds for the freshness of

the data produced by each activity, which are called uppermost and lowest freshness values respectively. The

lowest freshness value is calculated propagating source data actual freshness, from sources to targets, adding the

processing costs of activities. This is the lowest freshness value that the DIS might obtain, which is achieved if

all activities are synchronized for starting as soon as the predecessor activities finish, without data

materialization and consequently, without inter-process delays. Note that this kind of synchronization is not

always possible. The uppermost freshness value is calculated propagating target data expected freshness, from

targets to sources, subtracting the processing costs of activities. This is the greatest freshness value that can be

supported by the DIS in order to achieve freshness expectations for data targets. The lowest and uppermost

freshness values can be calculated using the propagation algorithms described in Section 3 (see Algorithm 3.1

and Algorithm 3.2) overloading the getInterProcessDelay function in order to return zero.

If for some activity, the lowest freshness value is greater than the uppermost freshness value, freshness cannot be

assured no matter the synchronization of activities and other improvement actions should be followed, for

example, for reducing processing costs. On the contrary, if the uppermost freshness value is greater than the

lowest freshness value, their difference is an upper bound for the execution period of the activity. We define the

greatest execution period for the activity as such difference.

Definition 3.13 The greatest execution period of an activity is calculated as the difference between

uppermost and lowest freshness values. □

The valid execution periods for an activity are those comprised among the processing cost (smallest execution

period that can be implemented) and the greatest execution period (calculated as explained before). Obviously, if

for some activity, the processing cost is greater than the greatest execution period, freshness cannot be assured

no matter the synchronization of activities and consequently, other improvement actions should be followed.

We can now characterize the solution space.

Definition 3.14 Given a quality graph G, with k intermediate activities {A1…Ak} that produce

intermediate data consumed by other activities and n-k conveyance activities {Ak+1…An} that deliver data

to some target node, the solution space of the DIS synchronization problem consists of two conditions:

(i) ProcessingCost(Ai) ≤ ExecutionPeriod(Ai) ≤ GreatestExecutionPeriod(Ai), 1≤i≤k

(ii) ActualFreshness(Ai,Ti) ≤ ExpectedFreshness(Ai,Ti), k+1≤i≤..n, for Ti being the successor of Ai

The former condition ranges the execution period of intermediate activities (which are the variables of the

problem) between the processing cost and the greatest execution period of the activity. The latter assures

that actual freshness is not greater than expected freshness for all conveyance activities. □

Data Quality Evaluation in Data Integration Systems

84

For calculating data freshness (in order to check the second condition), inter-process delays must be calculated.

Let’s start defining the notion of synchronism.

Definition 3.15 Two activities are synchronized with a shift time of K (K-synchronized for short), if for

each execution of the latter activity there is an execution of the former exactly K units of time before. □

Example 3.25. Consider two activities A and B, where A executes every 4 hours. If B also executes every

4 hours, just 1 hour after A, then they are 1-synchronized. If B executes every 8 hours, immediately after an

execution of A, they are 0-synchronized. But if B executes every 3 hours, it is shifted with A in a variable

number of hours, between 0 and 3 hours, so they are not synchronized. □

If two activities A and B are 0-synchronized, B can start executing as soon as A finishes, which will minimize

the waste of time between them. The inter-process delay among them is negligible. If two activities A and B are

not 0-synchronized, A must materialize data, which will be asynchronously read by B. In this case, there is a

positive inter-process delay between A and B. In order to estimate the inter-process delays, we analyze the

execution periods of activities. If A and B are both periodically executed, the inter-process delay among them

can be calculated, in the worst case, with the following formula:

InterProcessDelay(A,B) = ExecutionPeriod(A) – GCD(ExecutionPeriod(A),ExecutionPeriod(B))

where GCD is the greatest common divisor function. Note than when A and B are 0-synchronized, the GCD

function equals the execution period of A, so the inter-process delay is zero. Also note that the inter-process

delay obtained with this formula should be increased if the execution of activities is shifted, for example, for

executing B one hour after. If B is not periodically executed (which is the case of conveyance activities) the

inter-process delay between A and B can be calculated, in the worst case, with the following formula:

InterProcessDelay(A,B) = ExecutionPeriod(A)

Example 3.26. Figure 3.25 shows the three synchronization cases discussed in Example 3.25. In case (b),

GCD(4,8)=4 so inter-process delay is 4–4=0. In case (c), GCD(4,3)=1, so inter-process delay is 4-1=3 in

the worst case; Figure 3.25c illustrates the cases where inter-process delay takes the maximum value. In

case (a), GCD(4,4)=4, so inter-process delay is 4–4=0; however, for external reasons activity B is config-

ured for executing one hour after A, 1-synchronized, so delay is 1. □

B

0 3 6 9 12

A

15 18

B

A

B

A

(a)

(b)

(c)

time

Figure 3.25 – Determination of inter-process delays

Having a calculation method for inter-process delays, the getInterProcessDelay function can be conveniently

overloaded and actual freshness can be evaluated using the ActualFreshessPropagation algorithm, which allows

to practically check the second condition of the solution space (see Definition 3.14). However, in order to

formalize the problem, the second condition should be expressed in terms of the variables (execution periods).

As stated in the corollary of Lemma 3.3, the freshness of the data produced by an activity node coincides with

the path freshness of its critical path. If we calculate all paths from a source to a conveyance activity, we can

 Verónika Peralta

 85

decompose the second condition in a set of conditions, one for each path, stating that the path freshness must be

lower or equal to expected freshness.

We formalize the problem as a nonlinear integer programming (NLIP) problem (see Definition 3.16). The

variables (xi) represent the execution periods of intermediate activities. The objective function corresponds to the

overall maintenance cost (sum of processing costs weighted by execution frequencies), which must be

minimized. The constraints delimit the solution space. The former ranges variables between the processing cost

and the greatest execution period of the activity. The latter states that for each path going from a source node to a

conveyance activity, the path freshness must be lower or equal to the expected freshness of the activity. This

assures that actual freshness is not greater than expected freshness for all conveyance activities. Note that neither

the objective function nor the second constraint (due to GCD) are linear.

Definition 3.16 Given a quality graph G, with m sources {S1…Sm}, k intermediate activities {A1…Ak}

and n-k conveyance activities {Ak+1…An}, let ci, zi, afi, efi be non-negative integers corresponding to:

− ci: the processing cost of activity Ai, 1 ≤ i ≤ n,

− zi: the greatest execution period of activity Ai, 1 ≤ i ≤ k.

− afi: the source data actual freshness of source node Si, 1 ≤ i ≤ m,

− efi: the expected freshness for data produced by activity Ai, k < i ≤ n.

Let {P1…Pr} be the set of paths from a source node to a conveyance activity. Pj has the form

 [Pj0, Pj1,… Pjw
j
, Pj(w

j
+1)], 1 ≤ j ≤ r, wj ≤ k, where:

− Pj0 is the index of a source relation, i.e. 1 ≤ Pj0 ≤ m,

− Pji is the index of a intermediate activity, i.e. 1 ≤ Pji ≤ k, 1 ≤ i ≤ wj,

− Pj(w
j
+1) is the index of a conveyance activity, i.e. k < Pj(w

j
+1) ≤ n.

The DIS synchronization problem is formalized as follows:

Minimize: Σi=1..k (ci / xi)

subject to:

 ci ≤ xi ≤ zi, i:1..k

 afP
j0
 +Σi=1..(w

j
+1) (cP

ji
) +Σi=1..(w

j
–1) (xP

ji
 – GCD (xP

ji
,xP

j(i+1)
)) +xP

jw
j

 ≤ efP
j(w

j
+1)

, i:1..k, j:1..r □

Example 3.27. Consider the quality graph of

Figure 3.26. Maximal execution periods are

calculated propagating uppermost and lowest

freshness values. There are two paths from

sources to conveyance activities: [S1,A1,A3,A4]

and [S2,A2,A3,A4]. The NLIP problem for this

quality graph is:

Minimize: 2/x1 + 1/x2 + 3/x3

subject to:

 2 ≤ x1 ≤ 20

 1 ≤ x2 ≤ 8

 3 ≤ x3 ≤ 8

 x1 + x3 – GCD (x1,x3) ≤ 20

 x2 + x3 – GCD (x2,x3) ≤ 8

The two latter conditions have been simplified

from:

 5 + 2 + 3 + 0 + x1 – GCD (x1,x3) + x3 ≤ 30

 18 + 1 + 3 + 0 + x2 – GCD (x2,x3) + x3 ≤ 30 □

S1 S2

A1 A2

T1

A3

sourceAfreshness=5

cost=2

sourceAfreshness=18

cost=1

cost=3

targetEfreshness=30

LowestFreshness=18LowestFreshness=5

LowestFreshness=22

UppermostFreshness=27UppermostFreshness=27

UppermostFreshness=30

UppermostFreshness=26UppermostFreshness=25

LowestFreshness=19LowestFreshness=7

greatestPeriod=8

greatestPeriod=8greatestPeriod=20

A4
cost=0

LowestFreshness=22
UppermostFreshness=30

Figure 3.26 – Quality graph labeled with uppermost and

lowest freshness values and greatest execution periods

 86

In practice, using the ActualFreshnessPropagation algorithm for obtaining freshness actual values is better than

generating all possible paths from sources to conveyance activities. The following sub-section discusses different

algorithms for solving the problem.

5.3. Solutions to the DIS synchronization problem

In this sub-section we discuss different solutions to the DIS synchronization problem. We first present a naïve

method for rapidly finding a solution (generally non optimal). Then, we discuss a branch-and-bound* algorithm

for finding the optimal solution. The solution built with the naïve method is used for pruning the solution space.

Other properties are analyzed for providing further pruning. However, as most branch-and-bound methods, the

algorithm only can be executed with small size graphs due to its high complexity. We then discuss heuristics for

finding non-optimal but good-enough solutions.

All algorithms return a tuple (an array of execution periods, one for each intermediate activity) that belongs to

the solution space, i.e. verifies the two constraints of the problem defined in previous sub-section. Each tuple has

associated a maintenance cost, i.e. its value for the objective function. Tuples are called candidate tuples when

feasibility is not yet checked and solutions when they are a feasible solution to the problem.

We define the following type to manage tuples and their costs:

TYPE Tuple = RECORD (periods: ARRAY OF INTEGER, cost: FLOAT)

Next sub-sections describe the algorithms.

Naïve algorithm

The naïve algorithm builds a candidate tuple, assigning the same execution period to all the intermediate

activities, in a way that all intermediate activities are 0-synchronized without inter-process delay among them.

The unique inter-process delays are those with conveyance activities. The value assigned to all variables is the

smallest of the greatest execution periods of activities. Observe that if for an activity, its processing cost is

greater than the assigned execution period, then, the candidate tuple is not a feasible solution (it does not verify

the first problem constraint). So, the naïve algorithm does not always find a solution.

A pseudocode of the naïve algorithm can be sketched as shown in Algorithm 3.9 (BaseSolution function). It first

obtains the minimum of the greatest execution periods and then assigns it as execution period of all intermediate

activities. If the candidate tuple is not a feasible solution, it returns an infinite cost tuple. The MaintenanceCost

function calculates the objective function.

FUNCTION BaseSolution (G: QualityGraph) RETURNS Tuple

 Tuple T;

 P = min {G.getPropertyValue(A,“GreatestExecutionPeriod”) / A is an intermediate activity}

 FOR EACH intermediate activity A in G DO

 IF (getProcessingCost(G,A) > P) THEN

 T.cost = infinite;

 RETURN T;

 ELSE

 T.periods[A] = P;

 ENDFOR;

 T.cost = MaintenanceCost (G,T);

 RETURN T;

END

Algorithm 3.9 – Naïve algorithm for building a base solution

*
 Branch-and-bound is a classical method for solving NLIP problems [Cooper 1981] [Li+2003].

 Verónika Peralta

 87

If the naïve algorithm finds a solution, such solution can be used as first solution for an exhaustive branch-and-

bound algorithm (for pruning some tuples), if not, we take the infinite cost tuple (that obviously will not prune

any tuple). Next sub-section presents a branch-and-bound algorithm for finding an optimal solution.

Optimal algorithm

The optimal algorithm will traverse the solution space, exhaustively testing all possible values for variables

(comprised between the range imposed by the first problem constraint, i.e. the processing cost and the greatest

execution period). The traversal starts with a tuple composed of the greatest execution periods and proceeds, in

each iteration, decreasing one of the variables in a unit of time, backtracking when we can assure that the optimal

solution cannot be found decreasing more variables (pruning criteria).

FUNCTION OptimalSolution (G: QualityGraph) RETURNS Tuple

 Tuple Best = BaseSolution (G);

 Tuple T;

 FOR EACH intermediate activity A in G DO

 INTEGER P = G.getPropertyValue(A,“GreatestExecutionPeriod”);

 G.setPropertyValue(A,”ExecutionPeriod”,P);

 T.periods[A] = P;

 ENDFOR;

 T.cost = MaintenanceCost (G,T);

 RETURN BacktrackingIteration (G,T,Best);

END

FUNCTION BacktrackingIteration (G: QualityGraph, T: Tuple, Best: Tuple) RETURNS Tuple

 IF (T.cost < Best.cost) THEN

 G = ActualFreshnessPropagation (G);

 IF IsFeasibleSolution (G,T) THEN RETURN T;

 ELSE

 FOR EACH intermediate activity A in G DO

 Tuple S = T;

 IF (S.periods[A] > getProcessingCost(G,A)) THEN

 S.periods[A] --;

 G.setPropertyValue(A,”ExecutionPeriod”,S.periods[A]);

 S.cost = MaintenanceCost (G,S);

 Best = BacktrackingIteration (G, S, Best);

 ENDFOR

 ENDIF

 ENDIF

 RETURN Best;

END

FUNCTION IsFeasibleSolution (G: QualityGraph, T: Tuple) RETURNS BOOLEAN

 FOR EACH intermediate activity A in G DO

 If (G.getPropertyValue(A,”ActualFreshness”) > G.getPropertyValue(A,”ExpectedFreshness”))

 RETURN false;

 ENDFOR

 RETURN true;

END

Algorithm 3.10 – Exhaustive backtracking algorithm for finding the optimal solution

Data Quality Evaluation in Data Integration Systems

88

In order to define pruning criteria, let’s start observing an important property of the problem: the objective

function (maintenance cost) is monotonic decreasing; it takes smaller values when the variables take greater

values. This means that if we find a feasible solution (x1, x2,… xk), all candidates tuples (y1, y2,… yk) with yi ≤ xi,

1≤i≤k, will have a greater or equal maintenance cost and thus, they can be pruned. This property also suggest that

it is better to evaluate tuples with bigger values first; for that reason, the traversal starts with the greatest

execution periods. Analogously, when the maintenance cost of a tuple is greater than that of a known solution,

the branch can be pruned. Conversely, the second problem constraint is not monotonic due to the GCD function,

which oscillates. This means that evaluating the constraint for a candidate tuple (x1, x2,… xk) does not allow to

infer its value for neighbor tuples. It makes difficult the expression of pruning criteria for this constraint.

A pseudocode of the algorithm is shown in Algorithm 3.10 (OptimalSolution function). It builds a candidate

tuple with the greatest execution period for each activity and invokes the BacktrackingIteration function, which

traverses the solution space. The base solution built by the naïve algorithm is used as current best solution. In

each iteration of the BacktrackingIteration function, the cost of the candidate tuple is compared with the cost of

the current best solution and if it is smaller, actual freshness is evaluated, invoking the

ActualFreshnessPropagation algorithm (note that graph G is labeled with the execution periods of T, for

allowing the evaluation of data freshness with these periods). Freshness actual values are compared with

freshness expected values for each conveyance activity (IsFeasibleSolution function). If the comparison is

successful, the tuple becomes the new best solution and the current branch is pruned. If not, the function iterates

descending each variable in a unit of time. The execution period of the corresponding activity is updated in the

graph and the maintenance cost is recalculated, then, the BacktrackingIteration function is recursively called for

the new tuple.

As most branch-and-bound methods, the algorithm has combinatory complexity, and consequently it can only be

executed with small size graphs. The GCD function, which is called several times per iteration during data

freshness evaluation (for each data edge between intermediate activities), has also exponential order. However,

as GCD arguments are bounded, the function results can be pre-calculated and stored in a matrix, which can be

accessed with order 1. Next sub-sections discuss heuristics for reducing problem size.

K-Path heuristic

One of the difficulties of the problem is the synchronization of activities having several predecessors and/or

successors, because improving the synchronization with one of them may degrade the synchronization with

another one. However, activities that have one predecessor and one successor can be easily synchronized with

their predecessors or successors without affecting other nodes. Executing these activities at different frequencies

has no sense and causes the degradation of data freshness.

A first idea for reducing problem size is 0-synchronizing activities that have one predecessor and one successor,

i.e. activities belonging to a K-path. K-paths are defined as follows:

Definition 3.17 Given a quality graph G, a K-path in G is a path of intermediate activities [A1,A2,…Au],

where the activities in the path (excepting the initial one) have only one incoming edge in G and the

activities in the path (excepting the final one) have only one outgoing edge in G. □

Example 3.28. In the quality graph of Figure 3.27 there are 5 K-paths, which are highlighted with shadow

boxes. □

A heuristic for improving the optimal algorithm presented in previous sub-section (K-path heuristic), consists in

assigning the same execution periods to the activities belonging to a K-path. This reduces the number of

variables of the problem and therefore reduces the problem size. For example, in the quality graph of Figure

 3.27, the original problem has 10 variables (x1…x10) while the heuristic problem has only 5 variables (x1, x2, x4,

x6 and x9). As the optimal algorithm has combinatorial complexity, a reduction of the problem size considerably

impacts its performance. Furthermore, the bounds for the execution period of the activities in a K-path are more

restrictive. The lower bound must be the greatest of processing costs (in order to can execute all activities) and

the upper bound must be the least of greatest execution periods. However, it can be proved that the greatest

execution period is the same for all activities in a K-path (because of the way actual and expected freshness are

propagated).

The BacktrackingIteration function (see Algorithm 3.10) should be lightly modified for iterating in the K-paths

instead of on intermediate activities (FOR clause) but setting execution periods of all the activities in the K-path.

 Verónika Peralta

 89

A2 A6

A3

A9

A7

A10

S2 S3

T1

S4

T2

A8

A4

A5

A11 A12

A1

S1

Figure 3.27 – Identification of K-paths

Random heuristic

Another idea is to build a candidate tuple with random execution periods (among solution space bounds) and

then check its feasibility (using the AcutalFreshnessPropagation function). The random selection can be done for

each intermediate activity or for each K-path, i.e. combined with the K-path heuristic.

The repeatedly execution of the random heuristic, a certain number of times, allows the comparison among the

found solutions and the selection of the better one. Evidently, this method does not assure to find the optimal

solution, however better solutions are found if we increase the number of executions. If we have a bound for the

maintenance cost, we can stop when finding a good enough solution. Note that the bound may be not feasible

(even for the optimal solution), so the method should also have a stop condition in the number of iterations.

If the better random solution is not good enough, it can be used as a base solution (instead of the naïve one)

providing further pruning to the solution space. Furthermore, the most solutions we find, the most the solution

space can be reduced. For understanding this idea, remember that the objective function is monotonic, so each

time we find a feasible solution we can prune the solution space, eliminating all tuples that are smaller than the

found solution.

Example 3.29. Consider the two-variable solution space (x1, x2) shown in Figure 3.28a, for the

synchronization of two intermediate activities (or two K-paths). Bounds for variables are [a1,b1] and [a2,b2]

respectively. If we found a feasible solution (s1,s2), we know that all smaller tuples will not improve the

objective function, so we can reduce the solution space deleting the region under (s1,s2), i.e. the shadow

region of Figure 3.28a. Considering other feasible solutions, the solution space is yet reduced, as shown in

Figure 3.28b.

a1 b1s1

a2

b2

s2

a1 b1s1

a2

b2

s2

Figure 3.28 – Reduction of the solution space: (a) with one feasible solution, and (b) with several

feasible solutions

Data Quality Evaluation in Data Integration Systems

90

The solution space can be stored in a boolean k-dimensional matrix corresponding to variables (x1, x2,… xk),

where a false value means that the tuple has been pruned of the solution space*. The BacktrackingIteration

function can be improved checking the belonging to the matrix before iterating (instead of simply compare with

processing costs; see Algorithm 3.10).

The oscillatory nature of the GCD function makes difficult the definition of local searches for optimizing a

feasible solution, as in the Greedy Randomized Adaptive Search Procedure (GRASP) [Pitsoulis+2001].

However, we think that advances in operations research methods can be applied in order to find more

appropriate heuristics, which is out of the scope of this thesis.

6. Conclusion

In this chapter we dealt we data freshness evaluation and enforcement topics.

We proposed a quality evaluation framework that is a first attempt to formalize the elements involved in data

quality evaluation. In the framework, the DIS is modeled as a directed acyclic graph, called quality graph, which

reflex the workflow structure of the DIS and contains (as labels) the DIS properties that are relevant for quality

evaluation. Quality evaluation is performed by evaluation algorithms that calculate data quality traversing the

quality graph.

We presented a basic algorithm for data freshness evaluation. Compared to existing evaluation proposals that

only combine freshness values of source data, our algorithm takes into account two DIS properties that have

impact in data freshness: the processing cost of activities and the inter-process delay among them. The algorithm

can be instantiated for different application scenarios by analyzing the properties that influence the processing

costs, inter-process delays and source data actual freshness in specific scenarios.

We also presented an enforcement approach for analyzing the DIS at different abstraction levels, identifying the

portions that cause the non-achieved of freshness expectations. We suggested some basic improvement actions,

which can be used as building-blocks for specifying macro improvement actions adapted to specific scenarios.

As an application, we studied the development of an improvement strategy that follows an improvement action

for a concrete application scenario. Other improvement strategies can be analyzed analogously; the quality

evaluation framework and the general strategies discussed in this section (critical path, top-down analysis, actual

and expected freshness propagation) may help in the analysis.

The proposal can be used at different phases of the DIS lifecycle (e.g. at design, production or maintenance

phases), either for communicating data freshness to users, specifying constraints for source data or DIS

development, comparing different DIS implementations accessing to alternative sources, checking the

satisfaction of user freshness expectations or analyzing improvement actions for enforcing data freshness.

Chapter 5 presents some applications that illustrate some of these usages.

Although we have shown that out approach can be used for DIS maintenance and evolution, we don’t treat this

subject in this thesis. The work of Marotta [Marotta 2006] based in our framework, treats the problem of

detecting changes in source data quality and propagating changes to the DIS. They also apply improvement

actions to enforce data freshness after changes. The work of Kostadinov [Mostadinov 2006] treats the expression

of user preferences and then, the changes in user quality expectations. In Chapter 6, we discuss the relationship

with such works as perspectives of research in these areas.

*
 Specific data structures for storing sparse matrices or geo-spatial data can be used.

