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Chapter 4.    Data Accuracy   

This chapter describes our proposal for data accuracy evaluation.  

We reuse the framework proposed for data freshness evaluation and we propose 

a data accuracy evaluation algorithm 

 that takes into account the distribution of inaccuracies in source relations.  

We partition the query result according to data accuracy,  

labeling each portion with accuracy values and we discuss how such values can be used 

for enforcing data accuracy.  

1. Introduction 

The needs of having precise measures of data accuracy become increasingly critical in several fields. Examples 
are numerous: 

− Information Retrieval: There may be a great number of web sources providing data to answer a user query 
and generally a big portion of retrieved data is not relevant for users because of its lacks of accuracy (e.g. 
hotel lists with incorrect telephone numbers or imprecise prices). The analysis of data accuracy is useful 
for making a pre-filtering of data or sorting data according to their accuracy.  

− Decision making: When decision making is based on data extracted from autonomous data sources, 
external to the organization, a fine knowledge of data quality is necessary in order to associate relative 
importance to data. In this context, data accuracy should be informed to end-users, as an additional 
attribute qualifying data. Further strategies, as filtering inaccurate data can also be carried out. 

− Scientific experiments: Research experiments, especially in the field of life sciences, produce large 
amounts of data, which are published in databanks and journals. Searches of related experiments are 
frequently carried out in order to cross results and abstract similar behaviors. Comparison is not trivial 
and it is worsen by the existence of relatively imprecise data. In this context, the analysis of data accuracy 
may help reducing the search space in order to retrieve the most accurate experiments.  

− Web-services integration: When searching for a compatible service among a library of offered services, 
the selection is usually driven by criteria as response time or service availability. But when the service 
also provides data, data accuracy may play a critical role, for example, if the service provides yellow 
pages information. 

− Customer relationship management: Managing inaccurate data (e.g. wrong customer addresses) may 
become very expensive, so knowing data accuracy becomes crucial for taking decisions. Furthermore, as 
many data qualifying customers are obtained from external sources (e.g. address catalogs, yellow pages, 
census data) with varied quality, data accuracy may be an important factor when choosing among data 
providers.  

All these scenarios motivate the need of data accuracy evaluation methods capable of adapting to different user 
expectations and different perceptions of data accuracy. As argued in Chapter 2, data accuracy represents a 
family of quality factors. We recall the three accuracy factors that have been proposed in the literature (see Sub-
section 3.1 of Chapter 2 for further details):  

� Semantic correctness describes how well data represent states of the real-world. It captures the gap (or the 
semantic distance) between data represented in the system and real-world data.  

� Syntactic correctness expresses the degree to which data is free of syntactic errors such as misspellings 
and format discordances. It captures the gap (or syntactic distance) between data representation in the 
system and expected data representation.  

� Precision concerns the level of detail of data representation. It captures the gap between the level of detail 
of data in the system and its expected level of detail. 
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We consider all these accuracy factors. We use the term data accuracy when the discussion concerns all the 
factors and we refer to data semantic correctness, data syntactic correctness and data precision only when 
specific discussion is necessary. Concerning accuracy metrics, three types of metrics where described in Sub-
section 3.2 of Chapter 2 for any of the accuracy factors: 

− Boolean metric: It is a Boolean value (1=true, 0=false) that indicates if a data item is accurate or not.  

− Degree metric: It is a degree that captures the impression or confidence of how accurate is data, 
commonly represented in the [0-1] range. 

− Value-deviation metric: It is a numeric value that captures the distance between a system data item and a 
reference one, generally normalized to the [0-1] range. 

We consider all these types of metrics. When an accuracy value must be synthesized from a set of accuracy 
values, (e.g. for calculating the accuracy of a source relation from the accuracy of individual cells*) we calculate 
an average of the values. Note that when values are Boolean, the average coincides with a ratio (number of 
accurate data items in the set divided by the total number of data items in the set). See Sub-section 3.2 of Chapter 
2 for further details on aggregation functions.  

In this chapter we deal with data accuracy evaluation in data integration systems (DISs). We consider a relational 
context; specifically, we deal with user queries consisting in selections, projections and joins over a set of source 
relations. We address the problem of evaluating the accuracy of the data conveyed to users in response to their 
queries and deciding whether users’ accuracy expectations can be achieved or not.  

We propose partitioning query result in areas (e.g. sets of tuples) having homogeneous accuracy and labeling 
such areas with their accuracy values. This allows user applications to retrieve only the most accurate data 
(retrieving the area with the highest accuracy), to filter data not satisfying an accuracy threshold (excluding areas 
having lower accuracy) or to sort data according to their accuracy (sorting areas by their accuracy). Furthermore, 
user applications can display first the most accurate area, and if the user wants to see more data (e.g. the result is 
not complete enough), they can display the following area and so on. This represents a value-added to the 
conveyed data. 

In order to evaluate the accuracy of the data delivered to users and partition query result, we should consider 
how inaccuracies are distributed in source relations and how they are combined to produce query results. To this 
end, we partition source relations in areas having homogeneous accuracy. As argued in [Motro+1998] 
information sources are rarely of uniform quality, so a unique accuracy value for the whole relation may be a 
very crude estimation of the accuracy of specific data. Areas are defined as views (selections and projections) 
over the source relations. In other words, a partition constitutes a set of virtual relations defined by the predicates 
that characterize the partition.  

We reuse the quality evaluation framework proposed for data freshness, modeling the DIS as a quality graph and 
reducing accuracy evaluation to a problem of value aggregation and propagation through a graph. We present an 
accuracy evaluation algorithm that takes into account the partitions of source relations and propagates them to 
query result. We focus on a priori evaluation, i.e. estimating data accuracy before executing user queries. 
Evaluation results can be used for comparing several query plans in order to choose the one with highest 
accuracy or combining the K-top plans. Evaluation results can be also used at design time (e.g. for deciding 
which sources to include in the DIS) and at monitoring time (e.g. for estimating accuracy of test queries). See 
Section 3.7.1 of Chapter 3 for a description of these usages.  

Finally, we discuss the topic of accuracy improvement. We propose to use the partition of query results in order 
to select the areas that have the best accuracy. Note that we do not select whole relations but the portions that 
have the best accuracy, which differentiates our approach from the existing source selection approaches.  

The following sections describe the approach: Section  2 motivates data accuracy propagation and presents an 
overview of our approach. Section  3 presents the background knowledge required in this chapter, especially the 
algorithms that are directly used for accuracy propagation. Section  4 formalizes the evaluation approach and 
Section  5 suggests some improvement actions. We conclude, in Section  6, by drawing the lessons learned from 
our experiments. 

                                                           
* The term cell refers to an attribute of a tuple. 
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2. Intuitive approach 

In this section we present the intuition of our data accuracy evaluation approach. We consider a DIS in a 
relational context, providing a global schema that can be queried by users and accessing to a set of source 
relations that contain data for answering user queries. Our objective is to answer user queries using source data, 
sorting data in areas (sets of tuples) that have homogeneous accuracy and informing users of the accuracy of 
such areas. For example, if a user query asks for students’ data, we can answer saying ‘Student data with 5% of 

inaccuracies is: …, student data with 10% of inaccuracies is: … and so on’. We describe an a priori evaluation 
strategy, i.e. data accuracy of query results are estimated before executing queries based on estimations of 
accuracy of source data and on the way of combining it. In this way, only the data that satisfy user’s accuracy 
expectations will be extracted from sources and conveyed in response to the query. 

The following example will be used along the chapter for illustrating our evaluation approach. We exemplify the 
measurement of semantic accuracy with the Boolean metric, but the same discussion can be done for the other 
accuracy factors and metrics. 

Example 4.1. Consider the global schema of a DIS containing two relations: 

− S (stid, name, nationality, address, city, telephone, interview, test)  

− M (stid, year, mark)  

which provide information about students and their annual average marks respectively. Attributes 
describing students are: stid (the student identification number), name, nationality, address, city, telephone, 
interview (initial level determined by interviews; taking values ‘high’, ‘medium’ or ‘low’) and test (initial 
test result; taking values between 0 and 1). Attributes describing marks are: stid (the student identification 
number), year and mark (taking values in the 0-10 range, where 10 is the maximal mark). The keys of the 
relations are {stid} and {stid, year} respectively. 

Consider two sources providing information about students and marks: 

Source1: 

− Students (stid, name, interview, test, address, telephone) // students living at Montevideo. 

− Marks (stid, year, mark) // marks of those students 

Source2: 

− Classing (stid, name, nationality, interview, test) // students having a test punctuation superior to 0.8. 

Along the chapter, for illustrating some techniques, we will refer to the instances of the Students and Marks 

relations of Source1, which are shown Table 4.1 and Table  4.2 respectively. Accuracy values are illustrated 
coloring the inaccurate cells (Boolean metric). The accuracy values of the Classing relation are illustrated 
in Figure  4.2a also coloring inaccurate cells. Aggregated accuracy values for those relations (obtained as an 
average of accuracy of cells) are 0.60 (28/60), 0.80 (36/45) and 0.82 (102/125) respectively. 

Consider the following queries accessing to S and M: 

− UserQuery1 asks for students (stid, name, nationality, interview and test) that obtained ‘high’ level 
during interview 

− UserQuery2 asks for names and marks of students in year 2005 (keys are also projected) 

Figure  4.1 illustrates the queries expressed in relational algebra.  

Table  4.3 shows a possible answer to UserQuery2, obtained extracting data from the Students and Marks 
relations by performing the query Q2=πstid,year,name,mark(Students stid σyear=’2005’(Marks)). Colored cells 
correspond to inaccuracies. The accuracy of query result is 0.70 (28/40). Analogously, Figure  4.2d shows a 
possible answer to UserQuery1,.obtained extracting data from the Classing relation by performing the 
query Q1=σinterview=’high’(Classing). The accuracy of query result is 0.94 (66/70).   □ 
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       stid year mark 

stid name interview test address telephone  21 2005 7 

21 María Roca low 1.0 Carrasco 6001104  43 2005 10 

22 Juan Pérez medium .5 Coloniaa 1280/403 9023365  43 1004 8 

 56 2004 9 43 Emilio 
Gutiérrez 

high .8 Irigoitía 384 3364244 

 57 2004 3 

56 Gabriel García low .5 Propios 2145/101   57 2005 4 

 58 2005 6 57 Laura Torres medium .7 Maldonado & Yaro  099628734 

 101 2004 9 

 101 2005 10 58 Raúl González high 9 Rbla Rca Chile 
1280/1102 

4112533 

 102 2004 7 

 102 2005 10 101 Carlos 
Schnider 

high .9701 Copacabana 1210 094432528 

 103 2004 8 

102 Miriam Revoir medium .7945  9001029  103 2005 6 

103 A. Benedetti low .9146 Charrúa 1284/1 7091232  104 2004 10 

104 Luis López high .8220 Sixtina s/n   104 2005 9 
 

Table  4.1 – Students relation 

πstid, year, name, mark

σyear=2005

S M

Students.stid = Marks.stid

πstid, name, nationality, 

interview, test

S

σinterview=‘high’

(b)(a)  

Figure  4.1 – User queries: (a) UserQuery1, and (b) UserQuery2 

Table  4.2 – Marks relation 

stid year name mark 

21 2005 María Roca 7 

43 2005 Emilio Gutiérrez 10 

57 2005 Laura Torres 4 

58 2005 Raúl González 6 

101 2005 Carlos Schnider 10 

102 2005 Miriam Revoir 10 

103 2005 A. Benedetti 6 

104 2005 Luis Lopez 9 

Table  4.3 – Answer to UserQuery2 extracting 

data from the Students and Marks relations

Our approach for accuracy evaluation consists in two main phases: (i) partitioning source relations according to 
accuracy homogeneity in order to represent the distribution of inaccuracies, and (ii) for each user query, 
partitioning query result based on the partition of source relations.  

We partition each source relation in areas (sets of tuples) that are highly homogeneous with respect to their 
accuracy*. Homogeneity means that any sub-area of a highly homogeneous area would maintain roughly the 
same accuracy as the initial area. Homogeneity does not mean that all cells in an area have the same accuracy 
value, but that they can be considered as having the same accuracy value. Areas are defined as views (selections) 
over the relations. In other words, areas constitute virtual relations defined by the predicates that characterize the 
partition (the selection predicates) and consequently they can be treated as any relation.  

The accuracy of an area can be calculated as the average of the accuracy of its cells (or a sample of cells). The 
accuracy of cells can be measured using any of the techniques discussed in Chapter 2. When some knowledge 
about source data is available (e.g. 10% of data about foreign customers is inaccurate), it can be used for 
estimating accuracy. Such knowledge can be provided by source or domain experts or derived from users’ 
feedback on previously queried data. Note that as areas have homogeneous accuracy, the accuracy of a source 
relation can also be estimated from the accuracy of its areas, as a weighted sum, where weights are the number 
of cells in the areas. 

                                                           

* In Section  4, we provide a more complete definition of partitioning, in which areas can be partitioned in sub-areas (sets of attributes) in 
order to better represent the distribution of inaccuracies. We use a simpler intuition here in order to clearly motivate the proposal.  
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Example 4.2. Consider the Classing relation illustrated in Figure  4.2a (colored cells correspond to 
inaccuracies). The relation is partitioned in three areas C1, C2 and C3, i.e. Classing = C1 ∪ C2 ∪ C3, with 10, 
8 and 7 tuples (i.e. 50, 40 and 35 cells) respectively. Accuracy values are aggregated for areas, obtaining 
the values 0.98 for C1, 0.90 for C2 and 0.50 for C3. Figure  4.2b shows the partition, coloring areas with 
different colors. The accuracy of the relation Classing (calculated in previous example as 0.82) can also be 
calculated from the accuracy of its areas, obtaining (50*0.98 + 40*0.90 + 35*0.50) / (50+40+35) = 0.82.   □  

C1

C2
S1

S2

(b) (c)

C3

(a) (d)  

Figure  4.2 – (a) Distribution of inaccuracies in the Classing relation (colored cells correspond to inaccuracies), 

(b) partition of the relation, (c) partition of the answer to UserQuery1 extracting data from the Classing 

relation, (d) distribution of inaccuracies in the query answer 

In order to build a partition of query result, note that as areas are virtual relations they can be considered as 
source relations providing data for answering the user query. In other words, given a source relation R 
partitioned in areas R1,….Rn and an extraction query Q over R, we can define a set of queries Q1…Qn with the 
same semantics as Q, for extracting data from areas R1… Rn, respectively. We call them sub-queries because 
they extract a portion of the data returned by Q. For example, if Q=σP(R), we can define Qi=σP(Ri), 1≤i≤n. 
Furthermore, under certain hypotheses (a set of conditions that will be presented in Sub-section  3.1.4).the union 
of sub-queries is equivalent to the original query, i.e. Q ≡ Q1 ∪…∪ Qn.   
Each sub-query over an area of a source relation returns a set of tuples (eventually empty) that are contained in 
the result of the original query over the source relation. In other words, the query result is partitioned in areas, 
each one corresponding to the result of a sub-query. Furthermore, as areas of the source relation have 
homogeneous accuracy, a subset of their tuples maintains the accuracy, and therefore, the areas of the query 
result also have homogeneous accuracy. 

Example 4.3. Continuing previous example, consider the query Q1=σinterview=’high’(Classing) extracting data 
from the Classing relation in order to solve UserQuery1. The sub-queries S1, S2 and S3 over C1, C2 and C3, 
defined as Si =σinterview=’high’(Ci), 1≤i≤3, partition the result of Q1, as shown in Figure  4.2c (note that Q3 does 
not return any tuple).    
The accuracy of S1, S2 and S3 is estimated as the accuracy of C1, C2 and C3, i.e. 0.98, 0.90 and 0.50 
respectively, because of the accuracy homogeneity of C1, C2 and C3.   □ 

When several source relations provide the same type of data, the areas of those relations can be combined 
together. For example, the areas of the Students and Classing relations can be combined for answering 
UserQuery1. Furthermore, if the user query joins several relations, sub-queries may join areas that partition 
several source relations.  

Remember that user queries are expressed in terms of the global schema so we need to reformulate (rewrite) 
them over areas. The problem of rewrite user queries in terms of source relations has been largely studied (it is 
recalled in Sub-section  3.2). We propose to use query rewriting algorithms for combining areas of source 
relations instead of combining the whole relations. 

Once sub-queries have been generated and having an accuracy estimation for them, we can aggregate an 
accuracy value for the whole result (as we have done for source relations) by performing a weighted sum of the 
areas of the result, where weights are the number of cells in each area. To this end, we need to estimate the 
number of projected attributes and the number of selected tuples in each sub-query. While the former is simple to 
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obtain (it is structural), the latter needs the estimation of the selectivity of the query. Note that we do not need to 
know which tuples will be returned by each sub-query but how many tuples will be returned. 

Example 4.4. Continuing previous example, if we estimate that S1 returns all tuples of C1 (50 cells), S2 
returns a half of tuples of C2 (20 cells) and S3 returns no tuples, the accuracy of Q1 is calculated as  
(50*0.98 + 20*0.90 + 0*0.50) / (50+20+0) = 0.96.   □ 

As areas are not perfectly homogeneous and their accuracy may be an estimation, the accuracy measure obtained 
for query result is an approximation, not necessarily the exact value that can be computed knowing the precise 
query result (i.e. with a posteriori evaluation). In previous example, we obtained the value 0.96 instead of the 
exact value 0.94 = 66/70 obtained from the distribution of inaccuracies shown in Figure  4.2d. But note that the 
most homogeneous are the areas and the most precise are their accuracy measures, the most precise is the 
accuracy estimation for the areas of query result. In addition, if the estimation of the size of sub-queries results is 
good enough, the final accuracy aggregation should be near to the exact accuracy value. Then, the precision of 
the accuracy estimation relies on the methods used for estimating accuracy of source relations, partitioning them 
and estimating selectivity of sub-queries. 

In summary, our proposal for accuracy evaluation consists in three steps: 

1. Partitioning source relations according to accuracy homogeneity: This step consists in estimating data 
accuracy of a sample of each source relation and using accuracy estimations for partitioning the relations, 
conforming areas of homogeneous accuracy. To this end, we adapt the partitioning algorithm proposed in 
[Rakov 1998], which is presented in Sub-section  3.1.3. This step is executed once at DIS construction or 
periodically (but it is not executed for each user query). 

2. Rewriting user queries in terms of partitions: Each user query is rewritten in terms of the areas that 
partition source relations. Specifically, a query is expressed as the union of a set of sub-queries, each one 
accessing to only one area of each source relation. We utilize the Bucket algorithm [Levy+1996] for 
generating the sub-queries, which is recalled in Sub-section  3.2. The rewriting algorithm can also detect 
some cases of non-contributive sub-queries, i.e. sub-queries returning no tuples.  

3. Estimating data accuracy of query results: In this step, we estimate an accuracy value for each sub-query 
(area in the result) from the accuracy of areas of input relations. This estimation depends on the sub-query 
operations (selection, projection, join). In addition, the query result is expressed as the union of the sub-
queries and an accuracy value is aggregated for query result, as the weighted sum of their accuracy, where 
weights are the numbers of cells returned by sub-queries. In order to obtain those weights, we estimate the 
selectivity of operations. Some techniques for selectivity estimation are summarized in Sub-section  3.3.  

The quality evaluation framework proposed for data freshness is extended for the evaluation of data accuracy. In 
this context, quality graphs represent user queries (rewritten in terms of partitions) and are labeled with query 
properties (such as query selectivity) necessaries for accuracy evaluation. The framework is recalled in Sub-
section  3.4. 

Next section describes the techniques and algorithms that are used in our evaluation approach, and then, Section 
 4 formalizes the approach.  

3. Background  

In this section we review the concepts that are used throughout this chapter. We firstly discuss some existing 
approaches for accuracy evaluation that we adapt to our framework, in particular, a partitioning algorithm, and 
we recall some properties about fragmentation in the relational model. We also recall the query rewriting 
principle and we explain the Bucket algorithm. Then, we comment some techniques for selectivity estimation. 
We end the section recalling the quality evaluation framework presented in Chapter 3. 

3.1. Some related approaches for accuracy evaluation 

Our approach for accuracy evaluation is based on evaluation techniques proposed in two works: (i) an a priori 
evaluation approach, which assumes uniform distribution of errors [Naumann+1999], and (ii) an approach for a 
posteriori evaluation, which partitions source relations according to accuracy homogeneity [Rakov 1998]. The 
following sub-sections describe these approaches. 
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3.1.1. Techniques for a priori evaluation 

A methodology for propagating quality values (including data accuracy) along query operators was proposed in 
[Naumann+1999]. The approach consists in estimating the accuracy of query results based exclusively in the 
accuracy of source data. Accuracy of source relations (set granularity) is estimated as the ratio of syntactic 
correctness (the percentage of cells without errors).  

Queries are JSP (join, selection, projection) queries. Authors consider that errors are uniformly distributed in the 
source relations, so no matter which attributes are projected or which tuples are selected, the accuracy of the 
source relations is preserved. For the join operation, the accuracy of the joined data is calculated as the product 
of the accuracy of both input relations. The following example illustrates the approach: 

Example 4.5. Consider the query Q1 = σinterview=’high’(Classing) introduced in  Example 4.1. Selections 
preserve the accuracy value because of the hypothesis of uniform distribution of errors, so, accuracy of  
query result is estimated as the accuracy of Classing, i.e. 0.82. However, the accuracy of query result is 
0.94 (obtained from the distribution of inaccuracies illustrated in Figure  4.2).   □ 

The weak point of the Naumann’s approach is the strong hypothesis on uniform distribution of inaccuracies 
which is rarely applicable to real data. In most cases, query operations do not preserve accuracy values (e.g. 
query Q of previous example) and consequently, we do not obtain precise estimations of the accuracy of query 
results. The main problem is that we do not know where inaccuracies are concentrated (some attributes, some 
sets of tuples). Additional information describing relation instances is necessary to obtain more precise results. 
We propose to estimate the distribution of inaccuracies and thus partition source relations.   

In next sub-section we discuss an approach for partitioning source relations according to data accuracy, which 
has been proposed for a posteriori evaluation but can be adapted for a priori evaluation. 

3.1.2. Techniques for a posteriori evaluation  

An algorithm for partitioning source relations in areas that are highly homogeneous with respect to accuracy was 
proposed in [Rakov 1998] [Motro+1998]. Areas are defined with views, which may involve selections (with 
conjunctive conditions) and projections. The accuracy measurement is performed by taking a sample* of each 
source relation and measuring accuracy of the cells of the sample. Accuracy values for areas (set granularity) are 
ratios of semantic correctness (percentage of cells that correspond to real-world items). The accuracy values are 
used for partitioning the sample, using an automatic partitioning algorithm (Algorithm  4.1) that tests different 
partitioning criteria. Then, the same partition is applied to the whole relation. 

User queries are conjunctive queries; query operators are selection, projection and Cartesian product. The 
relational algebra is extended for operating with the partitions, i.e. operators take as input the relations and their 
partitions and return a relation and its partition. For example, the partition of a selection or projection is 
computed intersecting operation result with the partition of the input relation (intersecting projected attributes 
and selection conditions); accuracy is preserved because of accuracy homogeneity. At the end of the query, a 
unique accuracy value is calculated for the query result as a weighted sum of the accuracy of the areas (weights 
are the number of cells in each area). The following example illustrates the approach: 

Example 4.6. Consider the query Q1 = σinterview=’high’(Classing) presented in  Example 4.1 and the partition 
of the Classing relation in the areas C1, C2 and C3 shown in Figure  4.2b. Areas are defined by certain 
selection predicates P1, P2 and P3, i.e. Ci = σPi (R), 1≤i≤3. Accuracy of areas is 0.98 for C1, 0.90 for C2 and 
0.50 for C3. 
The partition of Q1 results from intersecting the partition of the Classing relation with the selection 
conditions, i.e. Si = σPi ∧ interview=’high’(Classing), 1≤i≤3. The extension of S1, S2 and S3 is obtained computing 
the query, in other words, we know which tuples of each area are selected. Consequently, we know the 
number of cells of each area that are selected (50, 20 and 0 respectively, as shown in Figure  4.2c). The 
numbers of selected cells are used as weights for aggregating the accuracy of the result.from the accuracy 
of areas, obtaining: (50*0.98 + 20*0.90 + 0*0.50) / (50+20+0) = 0.96.   □ 

                                                           
* Typical size for the sample is 10% of the source relation [Rakov 1998]. 
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The Rakov’s approach is based in the knowledge of query result. Specifically, his extended algebra intersects 
partitions with query results. The difference with our approach is that we do not know which tuples are returned 
by the query (because we perform a priori evaluation) but we estimate how many tuples may be returned by the 
query. However, our approach is inspired by the notion of partition of the Rakov’s approach. We reuse the 
partitioning algorithm (which is detailed in Sub-section  3.1.3) and the principle for calculating accuracy of query 
results as a weighted sum of accuracy of areas.  

Another a posteriori approach is proposed in [Laboisse 2005]. They propose measuring and storing accuracy 
values of source relation cells and storing accuracy values as additional attributes of source relations (called 
quality attributes). Then, when executing user queries quality attributes are also selected, so the accuracy values 
can be aggregated, obtaining a measure of the accuracy of query result. As this method obtains the precise 
accuracy value or query result, it will be used for comparing evaluation results. 

3.1.3. Partitioning algorithm 

This sub-section briefly describes the algorithm for partitioning a relation proposed in [Rakov 1998], whose 
pseudocode is shown in Algorithm  4.1. It is based on regression and classification trees. It proceeds iteratively, 
starting at the relation and splitting it in two areas (either horizontally or vertically but not both), then repeating 
the procedure for each area and so on. At each step, it finds the split that gives maximum gain in homogeneity. 
The splitting of an area stops when it can provide only marginal improvement in homogeneity (a threshold t is 
used as stop condition). This indicates that this area has a fairly homogeneous distribution of inaccuracies. 

Homogeneity is approximated by Gini indexes [Breiman+1984]. The Gini index G(v) is calculated as 
G(v)=2p(1-p), where p denotes the proportion of correct cells in a view v. The stop condition calculates the 
split’s reduction of Gini index: ∆G =G(v) –α1G(v1) –α2G(v2), where {v1, v2} is a split of v and αi = |vi| /|v|, i=1,2.  

As considering all possible splits of a relation is extremely expensive*, Rakov proposes heuristics for reducing 
the number of splits considered. Recall that there are two sorts of attributes: ordered and categorical. For 
horizontal splits, if an attribute is ordered and has k distinct values (a1 ≤ … ≤ ak), they consider the k-1 binary 
conditions x≤ ai as possible splits. If an attribute is categorical and has l distinct values, they order these values 
according to the number of inaccurate cells in the tuples having these values, and they treat them as ordered 
attributes. For vertical splits, if the number of attributes is small, all possible splits can be considered, but if it is 
large (say, n>20) the same strategy used for categorical attributes can be applied.   

FUNCTION Partitioning (t: THRESHOLD, R: Relation, G: QualityGraph) RETURNS LIST OF Views 

 LIST OF Views V = {}; 

 QUEUE Q = {R}; 

 WHILE Q is not empty DO 

  Get the next element N of Q; 

  Consider all possible splits of N and choose the maximal split s of N; 

  IF ∆G(s) * NumberCells(N) ≥ t 

   Split N and put the two resulting views in Q; 

  ELSE  

   Add N to V; 

 ENDWHILE; 

 RETURN V; 

END 

Algorithm  4.1 – Algorithm for finding a partition of a relation (taken from [Rakov 1998]) 

This notion of partition is similar to the notion of fragmentation largely studied in distributed databases (see for 
example [Ozsu+1991]). Next sub-section recalls properties of well-formed fragmentations.  

                                                           
* There are 2m-1-1 possible horizontal splits and 2n-1-1 possible vertical splits, being m the number of tuples and n the number of attributes of 
the relation. 
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3.1.4. Correctness of fragmentations 

Özsu and Valduriez [Ozsu+1991] enunciated three correctness rules that a fragmentation should verify in order 
to assure database consistency. The rules are: 

− Completeness: If a relation instance R is decomposed into fragments R1…Rn, each cell that can be found 
in R can also be found in one or more Ri. This property ensures that the data in a global relation is 
mapped into fragments without any loss. In the case of horizontal fragmentation the “item” typically 
refers to a tuple while in the case of vertical fragmentation it refers to an attribute. 

− Reconstruction: If a relation R is decomposed into fragments R1…Rn, it should be possible to define a 
relational operator ∇ such that R = ∇ Ri, i = 1..n. This property ensures that constraints defined on the 
data in the form of dependencies are preserved. In the case of horizontal fragmentation ∇ is typically the 
union operation while in the case of vertical fragmentation it is the join operation.  

− Disjointness: If a relation R is horizontally decomposed into fragments R1…Rn, and cell di is in Rj, it is 
not in any other fragment Rk, k ≠ j. This criterion ensures that the horizontal fragments are disjoint. If a 
relation R is vertically decomposed, its primary key attributes are typically repeated in all its fragments. 
Therefore, in case of vertical fragmentation, disjointness is defined only on the non-primary key attributes 
of a relation. 

Our proposal partitions (fragment) source relations horizontally and vertically. Horizontal partitions must verify 
the previous rules, i.e. a tuple must belong to one and only one fragment, allowing reconstructing the original 
relation using the union operator. Vertical partitions must also verify the rules, i.e. a non-key attribute must 
belong to one and only one fragment. Key attributes must belong to all fragments, allowing reconstructing the 
original relation using the join operator.  

Next sub-section describe another technique reused in this work: query rewriting. 

3.2. Query rewriting 

In this sub-section we recall the concept of query rewriting and we describe a rewriting algorithm. Query 
rewriting consists in reformulating a user query (expressed in terms of the global schema) into a (possibly) 
equivalent expression, called rewriting, that refers only to the source structures [Calvanese+2001].  

In the local-as-view (LAV) approach, the global schema is specified independently of the data sources and the 
mappings between them are established by defining every source relation as a view over the global schema. 
Expressing sources relations as views over the global schema, the query rewriting problem is similar to the 
problem of answering queries using views. 

Given a query Q over relations E1,…En (the global schema) and a set of views V={V1,…Vm} (the source 
relations) over E1,…En, a query Qr is a rewriting of Q if: (i) it is contained in Q and, (ii) it refers only to 
V1,…Vm. 

In most works, queries are conjunctive select-project-join queries and are expressed in Datalog-like notation. A 
query Q has the form: 

Q(X) � R1(Z1) ∧ … ∧ Rn(Zn) ∧ CQ 

where: 
− R1…R2 are relations; Zi is a set of variables representing the attributes of Ri

* 
− CQ is a conjunction of predicates of the form uθv where θ ∈ {=,<,>,≤,≥} and u, v∈ U1≤i≤n Zi 
− X ⊆ U1≤i≤n Zi is a set of variables representing the attributes projected by Q 

Given two queries Q1 and Q2, we say that Q1 is contained in Q2, denoted Q1 ⊆ Q2, if for all databases the set of 
tuples returned by Q1 is included in the set of tuples returned by Q2. Query containment has been studied in 
various works; see for example [Chandra+1977] [Chekuri+1997] [Klug 1988] [van der Meyden 1992].  

Several query rewriting algorithms have been proposed; a survey of methods is presented in [Calvanese+2001]. 
We briefly describe the Bucket algorithm [Levy+1996], which will be used later in this chapter. 

                                                           
* Some works allows representing constants in the domain of the attributes. We prefer, for ease of understanding, to represent constants with 
additional equality conditions. But the two styles are compatible and isomorphic. 
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The Bucket algorithm aims at computing all the rewritings that are contained in (and not necessarily equivalent 
to) the original query, by pruning the space of candidate rewritings. It proceeds in two steps: 

1. For each atom g in Q, create a bucket that contains the source relations that are contributive for g, i.e. the 
source relations from which tuples of g can be obtained. 

2. Build candidate rewritings (conjunctive queries obtained by combining one source relation from each 
bucket) and keep only rewritings that are contained in Q.  

The first step, whose running-time is polynomial in the number of sources, considerably reduces the number of 
possibilities considered in the second step. Although containment is intractable in general, its intractability is in 
the size of the query (which tends to be small) and only occur when queries have multiple occurrences of the 
same relations; consequently, the complexity of containment is not a problem in practice [Levy+1996]. 

The following sub-section reviews techniques for selectivity estimation. 

3.3. Selectivity estimation 

Selectivity estimation techniques are largely used in the field of query optimization; they use statistical 
information about the data that is stored in the database system to provide estimates to the query optimizer. 
Histograms are the most common statistical information used in commercial database systems. In this sub-
section we show how they are currently used to estimate the selectivity of complex queries. 

A histogram on attribute x consists of a set of buckets. Each bucket bi represents a sub-range ri of x’s domain, 
and has associated two values: (i) the frequency fi, representing the number of tuples t verifying t.x ∈ ri, and (ii) 
the distinct value dvi, representing the number of distinct values of t.x among all the tuples t satisfying t.x ∈ ri. 
The main assumption (uniform spread assumption) is that each bucket bi is composed of dvi equidistant groups 
of δi = fi /dvi tuples each (δi is called the density of the bucket) [Bruno+2002]. This assumption suggests a natural 
interpolation-based procedure to estimate the selectivity of range and join predicates. 

To estimate the cardinality of queries with range predicates using a histogram on the range attribute, the 
frequencies of histogram buckets that are completely or partially covered by the predicate are added (prorating 
partially covered buckets). Selectivity is obtained dividing query cardinality by relation cardinality.  

Example 4.7. Consider the query Q3=σR.a<15(R). Using the histogram on attribute R.a shown in Figure  4.3c 
the cardinality of Q3 is estimated adding the frequency of bucket b1 (which is completely contained) and 
half of the frequency of bucket b2 (which is contained at 50% assuming uniform spread), i.e. 60 + 20*0.50 
= 70 tuples; selectivity is 70/100=0.70.   □  

When queries have multiple range predicates, assuming attribute independence (independence assumption) 
selectivity is estimated as the product of the selectivity of each predicate. For example, given the query 
σP1∧P2(R) where si is the selectivity of predicate Pi, 1≤i≤2, the selectivity of P1∧P2 is estimated as s1*s2. 
Multidimensional histograms have been also proposed for the case of non-attribute independence.(see for 
example [Poosala+1997]). 
The method to estimate the cardinality of queries with join predicates using histograms on the join attributes 
consists of three steps [Bruno+2002]. In the first step, both histograms are aligned so that their boundaries agree 
(splitting some buckets). In the second step, each pair of aligned buckets is analyzed estimating the join size. 
Assuming that tuples belonging to the bucket with minimal distinct values joins with some tuples of the other 
bucket (containment assumption),  the density of the resulting bucket is calculated multiplying the density of 
input buckets, and frequencies and distinct values are recalculated. In the last step, the cardinality of the join is 
estimated adding frequencies of buckets. Selectivity is estimated dividing cardinality by the product of 
cardinalities of input relations. 

Example 4.8. Consider the query Q4= R R.a=S.b S. Using the histograms on attributes R.a and S.b shown in 
Figure  4.3a and Figure  4.3b, the estimation of the cardinality of Q4 proceeds as follows: Firstly, buckets of 
both histograms are aligned and frequencies and distinct values are prorated (Figure  4.3c and Figure  4.3d). 
Then, densities of aligned buckets are calculated multiplying input densities, e.g. δ1’’= 120 (60/2 * 20/5), 
and frequencies and distinct values are aggregated (Figure  4.3e), e.g. dv1’’=2 (minimum of dv1 and dv1’) 
and f1’’= 240 (δ1’’ * dv1’’). Finally, join cardinality is aggregated, obtaining 440 (240+40+160) tuples. 
Selectivity is 0.37 = 440 / (100*120).   □ 
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Figure  4.3 - Join selectivity estimation using histograms 

When considering arbitrary SPJ queries, we face an additional challenge: cardinality estimation requires 
propagating statistics through predicates. In other words, we need to build histograms for intermediate results 
based on the histograms of the base relations.  

Example 4.9. Consider the query Q5=σR.a<15(R R.a=S.b S) and the histograms shown in Figure  4.3a and 
Figure  4.3b. The histogram build for the intermediate result R R.a=S.b S may be used for estimating 
selectivity of the selection.   □ 

As statistics of intermediate results are estimations, their propagation along several query operators may 
considerably lack of precision. An alternative consists in precalculating statistics of some distinguished query 
results and using them for calculating selectivities of intermediate results. For example, if statistics for the  
R R.a=S.b S intermediate result are available, they can be used in the estimation of the selectivity of query Q5. In 
[Acharya+1999], authors propose the use of join synopses (precomputed samples of a small set of distinguished 
joins with foreign-key predicates) for building statistics of intermediate results. A more general approach 
covering JSP queries is presented in [Bruno+2002]. Authors propose to build SITs (statistics built on attributes of 
the result of a query expression) and present methods for selecting the most relevant SITs to compute. 

3.4. Quality evaluation framework  

This sub-section briefly recall the framework for data quality evaluation presented in Section 2 of Chapter 3. The 
framework models the DIS processes and properties and evaluates the quality of the data conveyed to the user. 
The goal of the framework is twofold, firstly, helping in the identification of the DIS properties that should be 
taken into account for data quality evaluation, and secondly, allowing the easy development of evaluation 
algorithms that consider such properties.  

The framework consists of: (i) a set of data sources, (ii) a set of data targets, (iii) a set of quality graphs 
representing several DISs processes, (iv) a set of properties describing DIS features and quality measures, and 
(v) a set of quality evaluation algorithms.  

A DIS is modeled as a workflow process in which the workflow activities perform the different tasks that 
extract, integrate and convey data to end-users. Each workflow activity takes data from sources or other 
activities and produces result data that can be used as input for other activities. Then, data traverses a path from 
sources to targets where it is transformed and processed according to the system logics. A quality graph is a 
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graph that has the same workflow structure as the DIS and is adorned with property values useful for quality 
evaluation. The nodes are of three types: (i) activity nodes representing the major tasks of a DIS, (ii) source 
nodes representing data sources accessed by the DIS, and (iii) target nodes representing data targets fed by the 
DIS. There are two types of edges: (i) control edges expressing the control flow dependencies between activities, 
and (ii) data edges representing data flow from sources to activities, from activities to targets and between 
activities. In the DISs considered in this chapter, control flow is induced by data flow, i.e. there is a control flow 
edge between two activities if and only if there is a data flow edge between them. Nodes and edges of quality 
graphs are adorned with property labels of the form property = value. Properties can be of two types: (i) 
features, indicating some characteristic of the DIS (costs, delays, policies, strategies, constraints, etc.), or (ii) 
measures, indicating a quality value corresponding to a quality factor. Figure  4.4 illustrates a quality graph. 
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Figure  4.4 – Quality graph 

The quality evaluation is performed by evaluation algorithms. As a quality graph describes the DIS integration 
process and its properties, it contains the input information needed by evaluation algorithms. Evaluation 
algorithms take as input a quality graph, calculate the quality values corresponding to a quality factor and return 
a quality graph with an additional property (corresponding to the evaluated quality factor). Evaluation algorithms 
may traverse the graph, node by node, operating with property values; this mechanism is called quality 
propagation. Concerning code, evaluation algorithms have the following signature: 

 FUNCTION AlgorithmName (G: QualityGraph) RETURNS QualityGraph 

The implementation of evaluation algorithms may vary according to the quality factor and the concrete 
application scenario. The framework does not constrain the way the algorithms can be implemented.  

Next section formalizes our approach for data accuracy evaluation. The techniques and algorithms described in 
this section are adapted and used during accuracy evaluation. 

4. Formal approach  

In this section we formalize our approach for accuracy evaluation. Accuracy can be measured using any of the 
techniques discussed in Chapter 2. Our approach is independent of the accuracy metric used but of course the 
accuracy measures depend on it. We consider a DIS in a relational context, i.e. it integrates data of relational 
sources and allows users to pose JSP (join, selection, projection) queries over a relational global schema. User 
queries are reformulated (rewritten) in terms of the source relations, obtaining a set of query rewritings that 
provide data for answering the user query.  

We address the problem of estimating the accuracy of the data conveyed to users in response to a query. We 
organize data in areas of homogeneous accuracy in order to inform users (or user applications) about the 
distribution of inaccuracies. To this end, source relations are partitioned in areas having homogeneous accuracy. 
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Areas are virtual relations (views) defined according to the partitioning criteria (selection conditions and 
projection attributes). User queries are rewritten over these areas (instead of over whole relations).  

We propose an a priori evaluation strategy, i.e. data accuracy is estimated before executing the rewriting queries, 
based exclusively on the accuracy of the areas of the source relations and on the operations (selection, projection, 
join) that define the rewriting.  

The problem can be stated as follows:  

Given: 

− a set of source relations partitioned in areas of homogeneous accuracy, and 

− a user query over the global schema,  

Obtain:  

− query rewritings (over areas of source relations) that answer the query, and  

− estimations of the accuracy of their data 

Our proposal for accuracy evaluation consists in three steps: 

1. Partitioning source relations according to accuracy homogeneity: This step consists in estimating data 
accuracy of a sample of each source relation and using accuracy estimations for partitioning the relations. 
This step is executed in a preparation phase, at DIS construction or periodically, but separated from the 
query evaluation phase. It is described in Sub-section  4.1. 

2. Rewriting user queries in terms of partitions: Each user query is rewritten in terms of the areas that 
partition source relations. This step consists in generating a set of query rewritings over these areas. The 
result to the user query consists of the union of the generated rewritings. This step is explained in Sub-
section  4.2. 

3. Estimating data accuracy of query results: In this step, we estimate the accuracy of the data returned by 
each rewriting, based on the accuracy of areas of source relations, and we aggregate an accuracy value for 
query result. The estimation is described in Sub-sections  4.3 and an accuracy evaluation algorithm is 
proposed in Sub-section  4.4. 

In order to enforce data accuracy, a simple improvement action consists in discarding rewritings (or directly 
areas of source relations) that have low accuracy. Note that areas can be discarded in an early phase (during the 
generation of the rewritings) so our proposal correspond to a selective rewriting strategy. This point is discussed 
in Sub-section  5.  

The following sub-sections describe each step. 

4.1. Partitioning of source relations according to accuracy homogeneity 

Inspired by the partitions proposed by Rakov [Rakov 1998], we partition each source relation according to data 
accuracy. The idea behind partitioning is to manipulate portions of the relation that have homogeneous accuracy, 
i.e. if we partition again, in any manner, the accuracy estimation will not considerably change. In this sub-section 
we define partitions and we discuss how a convenient partition can be obtained. 

For easy manipulation of partitions (which will be explained in next sub-section), we firstly partition the relation 
in areas according to selection predicates (horizontal partition) and then, we partition each area in sub-areas 
according to sub-sets of attributes (vertical partition). Partitions must verify the three correctness rules discussed 
in Sub-section  3.1.2, i.e. a tuple must belong to one and only one area, a non-key attribute must belong to one 
and only one sub-area and key attributes must belong to all sub-areas.  

In order to treat all attributes (key and non-key attributes) in the same manner, i.e. projecting them in only one 
sub-area, we duplicate key attributes, generating a new key for the relation (that composed of the new attributes). 
This strategy was introduced by Rakov [Rakov 1998] with the name of key expansion. 

Definition 4.1 (key expansion). Given a relation R(A1,…Am,…An), m≤n, where A1,…Am constitute a 
key of R, a key expansion of R, denoted R , is a relation obtained replicating the key attributes: 

R (K1,…Km,A1,…Am,…An). The replicated attributes (K1,…Km) conform a key of R , which is called 
expanded key.    □ 
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In vertical partitions, the expanded key is projected in all sub-areas and each attribute of the original relation is 
projected in only one sub-area. We formalize the concepts of partition, area and sub-area as follows: 

Definition 4.2  (horizontal partition). Given a relation R, its key expansion R  and a set of conjunctive 
predicates {P1,…Pm} over R, complete and disjoint (i.e. each tuple of R verifies one and only one 
predicate), a horizontal partition of R, denoted HPP1… Pm

(R), is a set of selection views {R1,…Rm}, 

called areas, obtained applying the predicates P1,…Pm to R . 

HPP
1
… P

m
(R) = {R1,…Rm} = {σP

1
( R ),…σP

m
( R )}    

We denote an area by a 4-uple <Name, Predicate, NumberTuples, KeyAccuracy> where Name is a 
name that identifies the area with respect to the relation, Predicate is the conjunctive predicate that 
defines the area (noted between square brackets), NumberTuples is the estimated number of tuples 
verifying the predicate and KeyAccuracy is the estimated accuracy of the key attributes of R.   □ 

Definition 4.3 (vertical partition). Given an area Ri of relation R and n disjoint subsets of attributes of R 
(S1…Sn), a vertical partition of Ri, denoted VPS1… Sn

(Ri), is a set of projection views {Ri1,…Rin}, called 

sub-areas, obtained projecting the subsets of attributes to Ri. Each attribute of R is projected in one and 
only one sub-area. The expanded key K of R  is projected in all sub-areas. 

VPS
1
… S

n
(Ri) = {Ri1,…Rin}= {πK,S

1
(Ri),… πK,S

n
(Ri)}      

We denote a sub-area by a 3-uple <Name, Attributes, Accuracy> where Name is a name that 
identifies the sub-area with respect to the relation, Attributes is the subset of attributes that defines the 
sub-area and Accuracy is the estimated accuracy of the sub-area.   □ 

Areas and sub-areas are virtual relations (views) defined by the partitioning criteria (selection conditions and 
projection attributes), i.e. source relations are not physically fragmented and stored as a set of independent 
fragments. Source relations are kept unchanged in data sources and metadata describing areas and sub-areas 
(which was specified in  Definition 4.2 and  Definition 4.3) is stored at the DIS.  

The following example illustrates the definition of partitions:  

Example 4.10. Consider the Students(stid, name, interview, test, address, telephone) and Marks(stid, year, 
mark) relations presented in  Example 4.1. The key expansion of relations are: Students(Kstid, stid, name, 
interview, test, address, telephone) and Notes(Kstid, Kyear, stid, year, mark), where {Kstid} and 

{Kstid,Kyear} are the expanded keys.  
In this step the relations are partitioned in areas and sub-areas and metadata (number of tuples, accuracy 
values) is estimated. A possible partition of the Students relation can be: 

− Area S1; [stid < 101]; 6 tuples; key accuracy=0.50 
− Sub-area S11; {stid, name, interview, test}; accuracy=0.50 
− Sub-area S12; {address, telephone}; accuracy=0.25 

− Area S2; [stid ≥ 101]; 4 tuples; key accuracy=1.00 
− Sub-area S21; {stid}; accuracy=1.00 
− Sub-area S22; {name, interview, test, address, telephone}; accuracy=0.87 

Analogously, a possible partition of the Marks relation can be: 

− Area M1; [year < 2004]; 1 tuple; key accuracy=0.00 
− Sub-area M11; {stid, year, mark}; accuracy=0.00 

− Area M2; [year ≥ 2004 ∧ stid < 101]; 6 tuples; key accuracy=0.67 
− Sub-area M21; {stid, year, mark}; accuracy=0.67 

− Area M3; [year ≥ 2004 ∧ stid ≥ 101]; 8 tuples; key accuracy=1.00 
− Sub-area M31; {stid, year, mark}; accuracy=1.00   □ 
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After partitioning a relation (horizontally and vertically), each cell of the relation belongs to a unique sub-area of 
a unique area, so we can represent partitions assigning different colors or patterns to each sub-area. Table  4.4 
illustrates the partition of the Students relation introduced in previous example. As the expanded key belongs to 
all sub-areas, it is not colored and can be omitted in the graphical representation. 

Kstid stid name interview test address telephone 

21 21 María Roca low 1.0 Carrasco 6001104 

22 22 Juan Pérez medium .5 Coloniaa 1280/403 9023365 

43 43 Emilio Gutiérrez high .8 Irigoitía 384 3364244 

56 56 Gabriel García low .5 Propios 2145/101  

57 57 Laura Torres medium .7 Maldonado & Yaro  099628734 

58 58 Raúl González high 9 Rbla Rca Chile 1280/1102 4112533 

101 101 Carlos Schnider high .9701 Copacabana 1210 094432528 

102 102 Miriam Revoir medium .7945  9001029 

103 103 A. Benedetti low .9146 Charrúa 1284/1 7091232 

104 104 Luis López high .8220 Sixtina s/n  

Table  4.4 – Graphical representation of areas and sub-areas 

In order to partition source relations, we can to use the Rakov’s algorithm presented in Sub-section  3.1.3. But 
remember that the algorithm alternates horizontal and vertical splits and consequently, the obtained partition may 
not correspond a set of areas decomposed in sub-areas. For example, the partition of Figure  4.5a can be returned 
by the Rakov’s algorithm. We have to restructure the partition according to  Definition 4.2 and  Definition 4.3. 

Given any hybrid partition of a relation R consisting in a set of fragments {F1,…Fk} verifying correctness rules, 
we can obtain another partition of R that follows  Definition 4.2 and  Definition 4.3.by further partitioning some 

of the fragments. In other words, we can obtain a set of sub-areas {S11,…S1m1
,…Sn1,…Snmn

} in which the sub-

sets {Si1,...S1i1
} vertically partition a certain area Ai, 1≤i≤n, and the set of areas {A1…An} horizontally partition 

R. We proceed as follows:.  
1. We obtain the set of selection predicates P={P1…Pr} that define the fragments F1…Fk, r≤k. Note that r 

can be smaller than k since several fragments can have the same selection predicate. 

2. While there exist in P two predicates Pi and Pj with a common sub-expression, i.e. Pi ∩ Pj ≠∅, we 
substitute Pi and Pj by Pi ∩ Pj, Pi – Pj and Pj – Pi. Since the predicates are conjunctions of simple 
inequalities on the attributes of R, this step will finish. We obtain a set of disjoint predicates 
P’={P1’,…Pn’}.  

3. We define a set of areas {Ai,…An} one for each predicate in P’. Note that {Ai,…An} conforms a 
horizontal partition of R, i.e. it is disjoint because the predicates in P’ are disjoint and it is complete 
because {F1,…Fk} was complete and we do not loose sub-expressions of predicates.  

4. We intersect each area Ai with the fragments F1…Fk, obtaining a set of sub-areas {Si1,…S1i1
}. Note that 

{Si1,…S1i1
} conforms a vertical partition of Ai, i.e. it is complete and disjoint because {F1,…Fk} was 

complete and disjoint.  

Example 4.11. Consider the hybrid partition of relation R shown in Figure  4.5a. Let Pi be the selection 
predicate of fragment Fi, 1≤i≤7. We define X= P3 ∩ P4. Observe that P5=P6=P7, P3= P2 ∪ X and P4= X ∪ P5. 
Then, the set of disjoint predicates obtained in step 2 is P’={P1,P2,X,P5}, which define the areas {A1, A2, 
A3, A4} shown in Figure  4.5b. Intersecting areas with the original fragments, we obtain the sub-areas {S11, 
S21, S22, S31, S32, S41, S42, S43, S44} shown in Figure  4.5b. 

Then, any hybrid partition of a relation (satisfying correctness rules) can be restructured in areas and sub-areas. 
In particular, the partition produced by the Rakov’s algorithm can be expressed in this way.  



Data Quality Evaluation in Data Integration Systems 

106  

F3F2

F5 F7F6

F4

F1

F3F2

F5 F7F6

F4

F1

(a) (b)

A4

A3

A2

A1

S22S21

S42

S32

S44S43S41

S31

S11

A4

A3

A2

A1

S22S21

S42

S32

S44S43S41

S31

S11

 

Figure  4.5 – Restructure of an arbitrary partition in areas and sub-areas: (a) partition before 

restructure and (b) partition after restructure  

In order to partition source relations, we propose to use the Rakov’s algorithm, however, areas and sub-areas can 
be also defined manually, using knowledge about source relations obtained from source administrators, third-
party consultants, experts or users’ feedback.  

The Rakov’s algorithm computes the accuracy of an area as the proportion of semantically correct cells. Such 
accuracy value (p) is the parameter for calculating the Gini indexes G(v)=2p(1-p), which are used to compute 
accuracy homogeneity and consequently to choose the split that represents maximal gain in homogeneity (see 
Sub-section  3.1.3 for details). In other words, the partitioning algorithm can be parameterized in order to 
calculate other accuracy metric, providing a function for computing the accuracy of areas.  

The partition obtained applying the Rakov’s algorithm is restructured as previously explained. Metadata 
describing areas and sub-areas is also obtained from the partition, as follows:  

− Areas are sequentially named as well as their sub-areas.  

− The predicates defining areas and the sub-sets of attributes defining sub-areas are taken from the partition.  

− The accuracy of a sub-area is estimated as the average of the accuracy of the cells of the sub-area. This 
estimation is also calculated by Rakov’s algorithm. 

− Accuracy of keys is estimated as the average of the accuracy of attributes that conform the key (accuracy 
of attributes is the accuracy of the sub-areas they belong because of accuracy homogeneity). Note that 
when all key attributes are projected in a unique sub-area, the accuracy of the key coincides with the 
accuracy of the sub-area.  

− Finally, remember that the Rakov’s algorithm partitions a sample of the source relation, so the number of 
tuples of an area is extrapolated from the number of tuples of the area in the sample, i.e. multiplying it by 
the ratio between relation size and sample size.  

 
Partitioning is performed once (at DIS construction) or periodically, but it is separated from the evaluation of 
accuracy of user queries. Next sub-section describes how queries are rewritten in terms of partitions and its 
impact in accuracy evaluation.  

4.2. Rewriting of user queries in terms of partitions 

We propose to rewrite user queries in terms of areas of source relations. At the end of the sub-section we 
consider the alternative of rewriting user queries in terms of sub-areas and we explain why we discarded this 
option. 

In order to express user queries in terms of the areas of source relations, we propose using classical query 
rewriting algorithms, as the Bucket algorithm [Levy+1996]. To this end, areas must be expressed as views of the 
global schema, following the local-as-view (LAV) approach. This sub-section explains the rewriting principle.  

In the local-as-view (LAV) approach source relations are expressed as views of the global schema. As each area 
is a view over a source relation, it can be easily expressed as a view of the global schema by unfolding the view 
over the source relation, i.e. substituting the source relation with its definition in terms of the global schema. 

The expression of areas in terms of the global schema is independent of user queries, i.e. it is done after 
partitioning source relations, but it is separated from the evaluation of accuracy of user queries.  
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Example 4.12. Continuing  Example 4.10, the Students and Marks relations are expressed in terms of the 
global schema (relations S and M) as follows: 

− Students(id, na, in, te, a, tp) � S(id, na, nt, a, c, tp, in, te) ∧ c = ‘Montevideo’ 

− Marks(id, y, m) � M(id, y, m)  

Remember the definition of their areas (expressed in Datalog-like notation): 

− S1(id, na, in, te, a, tp) � Students(id, na, in, te, a, tp) ∧ id < 101 

− S2(id, na, in, te, a, tp) � Students(id, na, in, te, a, tp) ∧ id ≥ 101 

− M1(id, y, m) � Marks(id, y, m) ∧ y < 2004 

− M2(id, y, m) � Marks(id, y, m) ∧ y ≥ 2004 ∧ id < 101 

− M3(id, y, m) � Marks(id, y, m) ∧ y ≥ 2004 ∧ id ≥ 101 

Substituting Students and Marks by their definitions we obtain the expression of areas in terms of the global 
schema:  

− S1(id, na, in, te, a, tp) � S(id, na, nt, a, c, tp, in, te) ∧ c=‘Montevideo’ ∧ id < 101 

− S2(id, na, in, te, a, tp) � S(id, na, nt, a, c, tp, in, te) ∧ c=‘Montevideo’ ∧ id ≥ 101 

− M1(id, y, m) � M(id, y, m) ∧ y < 2004 

− M2(id, y, m) � M(id, y, m) ∧ y ≥ 2004 ∧ id < 101  

− M3(id, y, m) � M(id, y, m) ∧ y ≥ 2004 ∧ id ≥ 101   □ 

In order to rewrite user queries in terms of areas, the Bucket algorithm first create buckets, comparing query 
predicates with area predicates and then generates the candidate rewritings, checking query containment. The 
Bucket algorithm was described in Sub-section  3.2. The following example shows its use:  

Example 4.13. Consider UserQuery2 presented in  Example 4.1, expressed in Datalog-like notation:  

− UserQuery2(id, y, n, m) � S(id, n, nt, a, c, tp, in, te) ∧ M(id, y, m) ∧ y=2005 

In order to rewrite UserQuery2 in terms of S1, S2, M1, M2 and M3 discussed in previous example, the 
following buckets are created: Buckets(S)={S1,S2} and Buckets(M)={M2, M3}. The area M1 is not included 
in the second bucket because it is contradictory to the query predicate (‘year < 2004’ and ‘year = 2005’). 

The following rewritings are generated, taking an area of each bucket: 

− QR1 (id, y, n, m) � S1(id, n, in, te, a, tp) ∧ M2(id, y, m) ∧ y=2005 

− QR2 (id, y, n, m) � S2(id, n, in, te, a, tp) ∧ M3(id, y, m) ∧ y=2005   

Area S1 is not combined with area M3 because they are contradictory (‘id < 101’ and ‘id ≥ 101’); 
analogously, area S2 is not combined with area M2. So, UserQuery2 ⊇ QR1 ∪ QR2.    

We only considered the areas of the Students and Marks relations for reducing the size of the example, but 
in order to rewrite UserQuery2 the areas of the Classing relation (areas C1, C2 and C3 discussed in  Example 
4.2) must be also considered for being added to Bucket(S). Consequently, new query rewritings may result 
from combining C1, C2 and C3 with M2 and M3.   □ 

The number of rewriting grows polynomially with the number of areas. As proved in [Levy+1996], the 
intractability of rewriting algorithms is not in the number of relations but in the size of the query (which tends to 
be small) and only occurs when queries have multiple occurrences of the same relations.  

We consider now the alternative of rewriting user queries in terms of sub-areas, explaining why we discarded it. 
Areas keep whole tuples of source relations. Therefore, when rewriting queries over areas, the rewriting 
algorithm joins whole tuples of sources relations (which is analogous to rewrite queries over source relations). 
However, sub-areas break tuples because they project some attributes of a relation. Firstly, we remark that there 
are extensions to the Bucket algorithm that consider the join of several relations of the same bucket in order to 
provide all required attributes, so query rewriting over sub-areas is possible. However, joining few attributes of a 
lot of relations seriously increase the risk of introducing semantic inconsistencies, i.e. building tuples that have 
no sense in real world. For example, we can return the name of a student and the telephone of another student, 
both having the same student id in different source databases. This risk is inherent to DIS but it extremely 
increases when we increase the number of joins (i.e. when we break tuples). In addition, rewriting algorithms 
avoid breaking tuples when possible for reducing this risk.  
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For this reason, we choose to rewrite user queries over areas and logically maintain sub-area metadata for 
calculating data accuracy. This is also the reason for partitioning source relations horizontally and then vertically 
instead of managing arbitrary hybrid partitions as in [Rakov 1998]. In next sub-section we evaluate data 
accuracy for each rewriting. 

4.3. Estimation of data accuracy of query results 

In order to estimate accuracy of areas and aggregate an accuracy value for the query result, we proceed in three 
sub-steps: (i) determining areas and sub-areas of the rewriting, (ii) estimating accuracy and key accuracy or the 
rewriting, and (iii) estimating the number of tuples of each area for performing the aggregation. Next sub-
sections describe each sub-step. 

4.3.1. Determination of the areas and sub-areas of a rewriting 

Each rewriting is defined as the join of several areas, each area containing some (eventually one) sub-areas. The 
result of the join is one area, which satisfies the selection predicates of all input areas, and contains the union of 
all sub-areas having some of the projected attributes.  Next example illustrates this. 

Example 4.14. Figure  4.6 illustrates a query rewriting that joins three areas (A1, A2 and A3), each one 
having several sub-areas (represented with different colors and patterns). The rewriting consists of an area 
(QR) with the union of the sub-areas that contain some of the projected attributes. Sub-area A12 does not 
belong to QR because none of its attributes are projected in the rewriting.   □ 

A2 A22A21A2 A22A21A12A1 A11 A12A1 A11

A21 A22QR A31 A32 A33A11 A21 A22QR A31 A32 A33A11

A3 A32 A33A31A3 A32 A33A31

 

Figure  4.6 – Joining several areas 

Each tuple returned by the rewriting will satisfy the predicates of all areas. So we build a unique area for the 
rewriting, as a conjunction of the predicates of the areas and the predicates of the rewriting. Note that predicates 
cannot be contradictory because the Bucket algorithm only returns contributive rewritings. Predicates that are 
less restrictive than other ones are not listed (e.g. ‘year = 2005’ is more restrictive than ‘year ≥ 2004’. 

The sub-areas of the rewriting are the union of the sub-areas of the input areas, intersecting attributes with the 
rewriting attributes. If the rewriting does not project any of the attributes of a sub-area, the sub-area is 
eliminated. The sub-areas of the rewriting conform a vertical partition of its unique area. The satisfaction of the 
completeness property is straightforward because all attributes of the rewriting belong to some sub-area of the 
inputs areas. Regarding the disjointness property, a problem can arise with natural join because, join attributes 
belong to two input sub-areas (which is necessary for performing the join) but are projected only once in the 
rewriting. The following example illustrates this case: 

Example 4.15. Consider the rewriting QR1 of  Example 4.13: 

 QR1 (id, y, n, m) � S1(id, n, in, te, a, tp) ∧ M2(id, y, m) ∧ y=2005 

The id variable is used in areas S1 and M2, conforming a natural join. The id variable represents an attribute 
of S1 (which is projected in a sub-area of S1) and an attribute of M2 (which is projected in a sub-area of M2). 
But it also represents an attribute of the rewriting, which must be projected in a unique sub-area.   □ 
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Each natural join attribute must be projected in a unique sub-area of the rewriting in order to satisfy the 
disjointness property required for partitions. To this end, we create a new sub-area for the attribute, whose 
accuracy value will be calculated as an average of the accuracy of both sub-areas, as will be explained in next 
sub-section. After calculating accuracy, sub-areas having the same accuracy value will be fusioned. 

Example 4.16. Continuing  Example 4.13, areas and sub-areas for QR1, and QR2 are calculated as follows: 
One area is created for each rewriting, QR1 and QR2 respectively, labeled with the input areas and the 
rewriting predicates. Rewriting QR1 joins areas S1 and M2, whose sub-areas are S11, S12 and M21. Sub-areas 
QR11 and QR12 result from intersecting attributes of sub-areas S11 and M21 with rewriting attributes; the join 
attribute is separated in sub-area QR13. No attribute of sub-area S12 is projected. Sub-areas of QR2 are 
calculated analogously. We obtain: 

− Area QR1 {stid < 101 ∧ year = 2005}; ? tuples; key accuracy = ?; inputs: S1 and M2 
− Sub-area QR11 {name}; accuracy = ?; input: S11  
− Sub-area QR12 {year, mark}; accuracy = ?; input: M21 
− Sub-area QR13 {stid}; accuracy = ?; inputs: S11 and M21 

− Area QR2 {stid ≥ 101 ∧ year = 2005}; ? tuples; key accuracy = ?; inputs: S2 and M3 
− Sub-area QR21 {name}; accuracy = ?; input: S22 
− Sub-area QR22 {year, mark}; accuracy = ?; input: M31 
− Sub-area QR23 {stid}; accuracy = ?; inputs: S21 and M31    

Input areas or sub-areas where also registered for understanding purposes.   □ 

Next sub-section explains how to calculate accuracy values and Sub-section  4.3.3 discusses the estimation of the 
number of tuples.  

4.3.2. Accuracy calculation 

If partitions are quite well defined, they should reasonably preserve the accuracy of sub-areas, being insensible 
to projection attributes and selection predicates, because of accuracy homogeneity. Regarding joins, as a tuple is 
build from two input tuples, the accuracy of resulting sub-areas may depend on both input areas. Specifically, 
accuracy may be propagated differently depending on the accuracy factor used.  

Remember that when evaluating semantic correctness metrics, if the key of a tuple is not accurate (does not 
correspond to a real-world entity) the whole tuple (all cells) are inaccurate. In other words, semantic correctness 
metrics evaluate if an attribute corresponds to the real world object represented by the key. For example, if a 
student identification number does not exists (e.g. stid 21), the data associated to such student id is incorrect too 
(i.e. ‘María Roca’ cannot be her name, ‘Carrasco’ cannot be her address, etc.). However, when evaluating 
syntactic correctness or precision, accuracy of cells does not depend on keys, for example, syntax constraints, 
belonging to a range or decimal precision can be checked independently of the key values. 

Then, when joining two relations (two areas), the accuracy of the cells in the result is calculated differently for 
semantic accuracy. The cells in the result that are semantically correct are those that were obtained from a 
correct value with two correct keys. When one of the keys is incorrect, the complete tuple is incorrect too. So, 
the accuracy of a sub-area in the join result is calculated as the accuracy of the input sub-area multiplied by the 
accuracy of the keys of the other areas. However, when evaluating syntactic correctness or precision, the 
accuracy of cells in the result is the accuracy of the cell in the input relation.  

In summary, we proceed as follows: 

− For syntactic correctness and precision factors: Accuracy of a sub-area is estimated as the accuracy of the 
input sub-area. 

− For semantic correctness: Accuracy of a sub-area is estimated as the accuracy of the input sub-area 
multiplied by the key accuracy of the other input areas.   

For sub-areas containing join attributes (that were separated in previous step), accuracy is calculated separately 
from each input sub-area and the average is taken. If some sub-areas have the same accuracy value, they are 
fusioned in a unique sub-area. Finally, key accuracy is calculated multiplying accuracy of keys of all input areas. 



Data Quality Evaluation in Data Integration Systems 

110  

Example 4.17. Continuing  Example 4.16, we estimate semantic correctness of sub-areas, obtaining: 

− Area QR1 {stid < 101 ∧ year = 2005}; ? tuples; key accuracy = 0.33 (0.50 * 0.67); inputs: S1 and M2 
− Sub-area QR11 {name}; accuracy = 0.33 (0.50 * 0.67); input: S11 
− Sub-area QR12 {year, mark}; accuracy = 0.33 (0.67 * 0.50); input: M21 
− Sub-area QR13 {stid}; accuracy = 0.33 (average {0.50 * 0.67, 0.67 * 0.50}); input: S11 and M21 

− Area QR2 {stid ≥ 101 ∧ year = 2005}; ? tuples; key accuracy = 1.00 (1.00 * 1.00); inputs: S2 and M3 
− Sub-area QR21 {name}; accuracy = 0.87 (0.87 * 1.00); input: S22 
− Sub-area QR22 {year, mark}; accuracy = 1.00 (1.00 * 1.00); input: M31 
− Sub-area QR23 {stid}; accuracy = 1.00 (average {1.00 * 1.00, 1.00 * 1.00}); inputs: S21 and M31    

Sub-areas {QR11, QR12, QR13} and {QR22, QR23} have the same accuracy value, so they are fusioned in sub-
areas QR11 and QR22 respectively, obtaining: 

− Area QR1 {stid < 101 ∧ year = 2005}; ? tuples; key accuracy = 0.33; inputs: S1 and M2 
− Sub-area QR11 {stid, year, name, mark}; accuracy = 0.33  

− Area QR2 {stid ≥ 101 ∧ year = 2005}; ? tuples; key accuracy = 1.00 (1.00 * 1.00); inputs: S2 and M3 
− Sub-area QR21 {name}; accuracy = 0.87  
− Sub-area QR22 {stid, year, mark}; accuracy = 1.00   □ 

The accuracy of each rewriting is aggregated as the average of accuracy of cells, i.e. weighting the average of 
accuracy of sub-areas by the number of attributes projected in the sub-area. 

Example 4.18. Continuing  Example 4.17, the accuracy of QR1 is 0.33 (the accuracy of its unique sub-area) 
and the accuracy of QR2 is 0.97 (0.87 * 1 + 1.00 * 3).   □ 

Next sub-section explains the estimation of the number of tuples of each area.  

4.3.3. Selectivity estimation  

As the answer to a query can be built as the union of several rewritings, an accuracy value for the query is 
aggregated as the weighted sum of the accuracy of rewritings (weights are the number of tuples). To this end, we 
need to estimate how many tuples has each rewriting.  

We propose to estimate the selectivity of rewritings in order to estimate their numbers of tuples. Any of the 
techniques discussed in Sub-section  3.3 can be used for estimating selectivity. In most cases, joins correspond to 
the equality between a primary key and a foreign key, so simple histograms are adequate for the estimation. 
However, other commercial algorithms used for query optimization or even statistics of previous execution of 
the same or similar queries can be used as estimation. In particular application scenarios, selectivity can be 
estimated by experts. Our approach is independent of the estimation strategy used but of course the obtained 
accuracy value depends on it.   

We define selectivity as follows:  

Definition 4.4 (selectivity). Given a query rewriting QR over a set of areas {R1,…Rk}, the selectivity of 
QR, denoted sel(QR), is the proportion of tuples of the Cartesian product of the areas R1,…Rk that verify 
the rewriting predicates. If the query rewriting has no selection (nor join) predicates, then all tuples are 
returned and thus selectivity is 1.   □ 

The number of tuples of the rewriting is estimated multiplying the number of tuples of input areas by the 
selectivity of the rewriting. 
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Example 4.19. Continuing  Example 4.18, consider that selectivity of QR1 and QR2 is estimated as 1/9 and 
1/8 respectively. The complete metadata of the partition is: 

− Area QR1 {stid < 101 ∧ year = 2005}; 4 (6 * 6 * 1/9) tuples; key accuracy = 0.33; inputs: S1 and M2 
− Sub-area QR11 {stid, year, name, mark}; accuracy = 0.33  

− Area QR2 {stid ≥ 101 ∧ year = 2005}; 4 (4 * 8 * 1/8) tuples; key accuracy = 1.00 (1.00 * 1.00); inputs: 
S2 and M3 
− Sub-area QR21 {name}; accuracy = 0.87  
− Sub-area QR22 {stid, year, mark}; accuracy = 1.00 

The global accuracy value for UserQuery2 is calculated weighting the accuracy of each rewriting by its 
number of tuples, obtaining (4 * 0.33 + 4 * 0.97) / (4 + 4) = 0.65. Note that the same value can be obtained 
weighting the accuracy of sub-areas of all areas by their number of cells, i.e. (0.33 * 16 + 0.87 * 4 + 1.00 * 
12) / (16+4+12) = 0.65.   □ 

Next sub-section discusses the implementation of this evaluation strategy in an accuracy evaluation algorithm. 

4.4. Reuse of the quality evaluation framework 

In this sub-section we describe how the quality evaluation framework introduced in Chapter 3 is reused for data 
accuracy evaluation. We firstly describe the construction of quality graphs and then we present an accuracy 
evaluation algorithm. 

4.4.1. Construction and adornment of quality graphs 

Once the query rewritings have been generated, a quality graph can be build for representing the calculation of 
the user query as the union of several (possibly one) rewritings.  

The graph is build as follows: 

− The user query is represented by a target node 

− Source relations are represented by source nodes.  

− Areas of source relations are represented by activity nodes, called area nodes. Edges link each area node 
with the corresponding source node. 

− Rewritings are represented by activity nodes, called rewriting nodes. Edges link each rewriting node with 
the ones representing the areas referenced by the rewriting. 

− The union of rewritings (eventually only one rewriting) is represented by an activity node, called the 
union node. This activity is predecessor of the target node and successor of all rewriting nodes.  

Figure  4.7 shows the quality graph for UserQuery2 expressed as the union of rewritings QR1 and QR2, computed 
in  Example 4.13. 

S
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M2 M3

QR1 QR2

 

Figure  4.7 – Quality graph representing the union of two query rewritings 
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Several properties, necessaries in the evaluation of data accuracy, adorn the quality graph and are input to the 
accuracy evaluation algorithm. Metadata describing areas and sub-areas is contained in the following property: 

− Areas: It is an ordered list of records (representing areas) composed of the following fields: 

− Predicate: It is a conjunctive predicate defining the area 

− Cardinality: It is the estimated number of tuples in an area (verifying the area predicate) 

− Key accuracy: Accuracy of key attributes 

− Sub-areas: It is an ordered list of sub-areas, represented as pairs < attributes, accuracy> composed 
of: the set of attributes that defines the sub-area and its accuracy value. 

This property is associated to source nodes (containing one record for each area) and area nodes (containing a 
unique record for the corresponding area). Rewriting nodes have associated further properties: 

− Predicate: It is a conjunctive predicate defining the rewriting predicate  

− Projected attributes: It is the set of attributes projected by the rewriting 

− Join attributes: It is the set of natural join attributes of the rewriting 

− Consider key: It is a Boolean flag indicating if key accuracy must be considered in accuracy propagation 
(This flag will be true for the propagation of semantic correctness and false for the propagation of 
syntactic correctness and precision). 

− Selectivity: It is the selectivity of the rewriting 

The evaluation algorithm calculates the following property: 

− Actual accuracy: It is an estimation of the actual accuracy of data outgoing a node (Aaccuracy for short). 

The algorithm also computes areas and sub-areas of the rewritings (and therefore associates the areas property to 
rewriting and union nodes). Next sub-section describes the evaluation algorithm. 

4.4.2. Accuracy evaluation algorithm 

In this sub-section we propose a basic algorithm for evaluating data accuracy. It follows the principle described 
in Sub-section  4.3, proceeding in three steps: (i) for each rewriting node, it creates an area, calculates its sub-
areas and calculate property values (predicates, cardinality, key accuracy and accuracy of sub-areas); (ii) for the 
union node, it inserts areas of all rewriting nodes; and (iii) it aggregates accuracy values for all data edges. The 
pseudocode is sketched in Algorithm  4.2. 

The first step performs two loops through area nodes incoming a rewriting. In the first loop, the key accuracy 
property is calculated multiplying the accuracy of input areas, the cardinality property is calculated multiplying 
rewriting selectivity by the cardinality of input areas and the predicate property is calculated as the conjunction 
of predicates of input areas and the predicate of the rewriting. The insert function of the Predicate class adds a 
new predicate as a new conjunction and also eliminates useless expressions (e.g. those that are less restrictive 
than other ones). In the second loop, the sub-areas property is calculated, inserting sub-areas of all input areas. 
This must be done in a separate loop because key accuracy (calculated in the first loop) is used for calculating 
accuracy of sub-areas in the case the ConsiderKey flag is switched on. After adding sub-areas to the unique area 
of the rewriting node, the intersectAttributes function intersects attributes of sub-areas with those projected by 
the rewriting, eventually eliminating empty sub-areas. Then, natural join attributes are separated in new sub-
areas, calculating their accuracy as an average of accuracy of all sub-areas where they are contained. This is 
done by the separateJoinAttributes function. Finally, the fusionSubAreas function fusions sub-areas having the 
same accuracy value. 

The areas created for each rewriting are added to a list (Uareas), so the second step only needs to set the list as 
value of the areas property of the union node. 

In the last step, for each source or activity node, the aggregateAccuracy function performs a weighted sum of the 
accuracy of sub-areas, where weights are obtained multiplying the number of attributes of the sub-area by the 
cardinality of the area. The obtained value is associated to all data edges outgoing the node. 

In next sub-section we deal with data accuracy improvement. We present a direct application of the approach for 
discarding the areas (or sub-areas) that cause overdrawing accuracy expectations.  
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FUNCTION ActualAccuracyPropagation (G: QualityGraph) RETURNS QualityGraph 

 ListOfAreas Uareas; // will contain all areas, which will be associated to the union node 

 

 FOR EACH rewriting node R in G DO // Set areas to writing nodes 

  Area area; 

  // First loop; sets predicate, cardinality and key accuracy 

  INTEGER K= 1; // will contain the product of accuracies of all keys  

  INTEGER card = G.getPropertyValue(R,“Selectivity”);  

  Predicate pred = G.getPropertyValue(R,“Predicate”);  

  FOR EACH predecessor A of R in G DO 

   Area auxarea = G.getPropertyValue(A,“Areas”).getFirstElement(); 

   K= K * area.getKeyAccuracy(); 

   card = card * area.getCardinality(); 

   pred.insert (area.getPredicate()); 

  ENDFOR; 

  area.setKeyAccuracy(K); 

  area.setCardinality(card); 

  area.setPredicate(pred); 

  // Second loop; sets sub-areas 

  FOR EACH predecessor A of R in G DO  

   Area auxarea = G.getPropertyValue(A,“Areas”).getFirstElement(); 

   IF (auxarea.getConsiderKey() == TRUE) 

    auxarea.updateSubAreasAccuracy(K); 

   area.addSubAreas(auxarea.getSubAreas()); 

  ENDFOR; 

  area.IntersectAttributes(G.getPropertyValue(R,“ProjectedAttributes”)); 

  area.SeparateJoinAttributes(G.getPropertyValue(R,“JoinAttributes”)); 

  area.FusionSubAreas(); 

  G.addPropertyValue(R,“Areas”,{area}); 

  Uareas.add (area); 

 ENDFOR; 

  

 Node U = union node of G; // Set areas to the union node 

 G.addPropertyValue(U,“Areas”,Uareas); 

 

 FOR EACH source and activity node A of G DO // Set accuracy aggregations to outgoing edges 

  ListOfAreas areas= G.getPropertyValue(A,“Areas”); 

  INTEGER value= aggregateAccuracy (areas); 

  FOR EACH data edge e outgoing A in G 

   G.addProperty(e,“ActualAccuracy”,value); 

  ENDFOR; 

 ENDFOR; 

 RETURN G; 

END 

Algorithm  4.2 - Basic algorithm for propagating accuracy actual values 
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5. Accuracy improvement 

In this section we discuss some base improvement actions for enforcing data accuracy when user accuracy 
expectations cannot be satisfied. Accuracy expectations correspond to upper bounds for the accuracy of result 
data. Remember that our evaluation approach groups result data in sub-areas having homogeneous accuracy. 
This means that we cannot assure that all cells in the result satisfy user expectations. Conversely, we can deliver 
data that, in average, satisfies user expectations. 

The proposal for accuracy improvement is simple: filtering “portions” of the query result having low accuracy. 
In this sub-section we discuss several ways and several moments for performing such filtering, which depend on 
user expectations. Specifically, three types of accuracy expectations can be expressed:  

− Accuracy of groups of cells, in average, should be lower than a threshold 

− Accuracy of groups of tuples, in average, should be lower than a threshold 

− Accuracy of the whole result should be lower than a threshold  

The first type of condition is the most restrictive. It corresponds to users that cannot tolerate tuples having 
inaccurate values, even if other cells have high accuracy values. Furthermore, accuracy expectations may 
concern only certain attributes, for example, users may require telephone numbers to be accurate, ignoring the 
accuracy of other attributes. As we partition query result in sub-areas having homogeneous accuracy, this type of 
condition suggests the filtering of sub-areas having low accuracy. If the condition involves only certain 
attributes, only the sub-areas containing those attributes are candidate to be filtered. Note that such filtering can 
be done in an early phase of the evaluation, i.e. when adding areas to buckets. We use the term selective 
rewriting for naming this improvement action. 

The second type of condition tolerates some attributes with low accuracy if the accuracy aggregation for the 
tuple is high enough. Certain users may accept receiving tuples that contain errors in some attributes if other 
cells are accurate. For example, when several attributes contain alternative ways of contacting customers 
(address, telephone, email…) errors in some attributes may be tolerated if the others have high accuracy values. 
This type of condition suggests the filtering of areas instead of sub-areas, i.e. aggregating an accuracy value from 
the accuracy of sub-areas and comparing it with user expectations. Conversely to the filtering of sub-areas, the 
filtering of areas must be done after computing rewritings, because the aggregation may concern sub-areas of 
several source relations.  

The last type of condition does not care about the accuracy of attributes or tuples but expresses that the whole 
result should achieve a certain level of accuracy. Note that query results consisting of tuples with very low 
accuracy and other tuples with high accuracy, may be accepted. This corresponds to users that want as much 
result data as possible, without neglecting accuracy. For example, a user may send advertising letters to their 
customers, tolerating up to 5% of mail return due to errors in contact information; this means that he wants to 
send the maximum of letters while he can assure a certain benefice. In order to satisfy this kind of constraints, 
we should deliver as many data as possible without descending to much their accuracy. This suggests ordering 
areas according to their accuracy and aggregating accuracy values incrementally, stopping when accuracy 
expectations are no longer satisfied. Furthermore, we can incrementally deliver data to users, allowing them to 
stop the delivery when they have enough data or data has too many errors. This strategy can be performed only 
after aggregating accuracy of all candidate rewritings. 

Three improvement actions were motivated: (i) selective rewriting of user queries, (ii) filtering of rewritings, and 
(iii) incremental delivery of results. In the following, we describe each action. 

Selective rewriting consists in generating query rewritings that satisfy a certain quality requirement, specifically: 
‘accuracy of all sub-areas must be higher than a threshold’. We propose modifying the rewriting algorithm, for 
excluding from buckets, the areas that have a “concerned” sub-area with lower accuracy. By concerned with 
means that the sub-area provides attributes for solving the query, i.e. the query will project some of its attributes. 
As the accuracy of sub-areas was pre-calculated during partitioning, the implementation of this strategy is 
straight-forward. 

The filtering of rewritings is also straight-forward. It can be done at the third step of our approach, i.e. when 
aggregating accuracy of rewritings (see Sub-section  4.3.2). 

For the incremental delivery of results, we propose aggregating accuracy of rewritings and ordering them 
according their accuracy. A simple loop and two variables implement this improvement action, as sketched in 
Algorithm  4.3. The algorithm receives a list of areas (of rewritings) and an accuracy expected value and returns a 
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list of areas ordered by accuracy (descendent order). The returned areas are those that can be conveyed to users 
satisfying accuracy expectations; conveying more areas means not longer achieving user expectations.   

Note that the estimation of rewriting selectivity is only useful for the third improvement action; the other actions 
filter individual sub-areas and rewritings. 

FUNCTION IncrementalDelivery (inAreas: ListOfAreas, Eaccuracy: INTEGER) RETURNS ListOfAreas 

 areas.sortByAccuracy();  

 ListOfAreas outAreas;  

 

 Area A = areas.getFirst(); 

 INTEGER acc= A.getAccuracy() * A.getCardinality(); // partial sum of accuracies * cardinalities 

 INTEGER card = A.getCardinality(); // partial sum of cardinalities  

 

 WHILE acc/card > Eaccuracy; 

  outAreas.add(A); 

  A = areas.getNext(); 

  acc = acc + A.getAccuracy() * A.getCardinality(); 

  card = card + A.getCardinality(); 

 ENDWHILE; 

 RETURN areas; 

END 

Algorithm  4.3 – Incremental delivery of data 

The following example summarizes the proposed improvement actions. 

Example 4.20. Consider the four rewritings illustrated in Figure  4.8 (QR1, QR2, QR3 and QR4). Accuracy 
values are written under sub-areas and aggregated values for areas are written, in bold, under area name. 
Consider the following conditions: 

− C1) Accuracy of sub-areas should be greater than 0.75  
− C2) Accuracy of areas should be greater than 0.75  
− C3) Accuracy of query result should be greater than 0.75  

Condition C1 is only satisfied by QR2. Furthermore, QR2 is the unique rewriting that should be generated. 
For example, as A12 does not satisfy the condition, the area containing A12 is deleted from the 
corresponding bucket and therefore, the rewriting QR1 is not generated. 

Condition C2 is satisfied by QR1 and QR2. Although sub-area A12 has a lower accuracy value, the accuracy 
aggregation for the rewriting is acceptable. For that reason, filtering must occur after accuracy aggregation. 

In order to verify condition C3, rewritings are ordered according to their accuracy, obtaining the following 
order: QR2 > QR1 > QR3 > QR4. We incrementally aggregate accuracy of such rewritings. For {QR2} 
accuracy is 0.90. For {QR2, QR1} accuracy is (0.90 * 20 + 0.80 * 10) / (20 + 10) = 0.86. Analogously, for 
{QR2, QR1, QR3} accuracy is 0.80. For {QR2, QR1, QR3, QR4} accuracy is 0.70, which does not satisfy the 
condition; so QR4 is eliminated.   □ 

The most restrictive are the conditions, the smallest is the result. Accuracy expectations should be balanced with 
completeness expectations for avoid filtering too much data and conveying a representative set of tuples to users. 
The trade-off among data accuracy and other quality factors is discussed, in Chapter 6, as future work.  
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10 

tuples
0.800.850.950.800.500.900.80

A12 A13QR1 A14 A15 A16A11 10 

tuples
0.800.850.950.800.500.900.80

A12 A13QR1 A14 A15 A16A11

20 

tuples

0.850.900.950.90

A22QR2 A23A21 20 

tuples

0.850.900.950.90

A22QR2 A23A21

10 

tuples
0.450.650.60

QR3 A32A31 10 

tuples
0.450.650.60

QR3 A32A31

20 

tuples

0.600.450.350.500.50

QR4 A42 A43 A44A41 20 

tuples

0.600.450.350.500.50

QR4 A42 A43 A44A41

 

Figure  4.8 – Filtering areas and sub-areas 

In terms of the elementary improvement actions proposed in Sub-section 4.4 of Chapter 3, the improvement 
actions proposed in this section correspond to deleting portions of the quality graph, i.e. invocating the 
replaceSubGraph action. In addition, the proposed improvement actions can be combined with other actions not 
treated in this thesis, for example, error correction techniques, in order to implement more complex improvement 
strategies for specific DISs. 

6. Conclusion 

In this chapter we dealt we data accuracy evaluation and enforcement topics.  

Based on the partitioning algorithm proposed in [Rakov 1998], we proposed the partitioning of source relations 
according to data accuracy and the propagation of such partitions to query results in order to better describe the 
distribution of inaccuracies. User queries are rewritten in terms of partitions and accuracy values are aggregated 
for the different rewritings. The query result consists in the union of tuples returned by rewritings. The number 
of tuples is calculated, estimating the selectivity of the rewriting, in order to aggregate an accuracy value for the 
query result.  

We presented a basic algorithm for data accuracy evaluation, which implements the proposal. Compared to 
existing proposals for a priori evaluation, our algorithm explicitly indicates the areas that have lower accuracy, 
which allows filtering data not satisfying accuracy expectations. The precision of the estimation relies on the 
techniques used for measuring accuracy of source relations, partitioning them and estimating the selectivity of 
rewritings. We do not tested different techniques in order to suggest the utilization of specific ones. This topic is 
suggested as perspective in Chapter 6. 

We also proposed some basic improvement actions, for filtering data with low accuracy in order to satisfy 
several types of accuracy expectations. Other improvement strategies can be analyzed and combined to these 
ones in order support more complete improvement strategies. The partitioning mechanism and the evaluation 
algorithm proposed in this section may help in the analysis. The proposal can be used at different phases of the 
DIS lifecycle (e.g. at design, production or maintenance phases), either for communicating data accuracy to 
users, comparing data sources, checking the satisfaction of user accuracy expectations or analyzing improvement 
actions for enforcing data accuracy. Chapter 5 illustrates the use of the approach in a real application. 

 


