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ABSTRACT
Data integration involves combining data residing in differ-
ent sources and providing users with a unified view of these
data through what is called a “global schema”. We address
here the problem of automatic construction of this global
schema in the semantic Web context, where data sources
are annotated with ontologies. We aim in other words to
automatically build a common vocabulary (ontology) that
will serve as a shared conceptual level for several heteroge-
neous data sources needing to share their data in a specific
application domain. We propose a solution based on the use
of a domain reference ontology (or “background knowledge”)
as a mediation support.

Keywords
Data integration, semantic Web, domain reference ontology,
background knowledge.

1. INTRODUCTION
Data integration involves combining data residing in differ-
ent sources and providing users with a unified view of these
data. This process is important and appears with increasing
frequency as the need to share existing data increases (in the
commercial or biological domains for example). We address
here the first data integration challenge pointed out in [16]:
“How to build an appropriate global schema”. Indeed, many
organizations hold some similar data in specific domains and
want to share some parts of it (merging databases of sim-
ilar companies or combining research results from different
bioinformatics sources for example). Data integration may
then alleviate users from knowing the structure of different
sources, as well as the way they are conciliated, when mak-

ing queries [16], through the provision of a global schema.
However, the question which arises is how to automatically
construct an appropriate global schema for a given set of
data sources?

In the context of semantic Web, for automation purpose such
a global schema is generally represented by an ontology. In-
deed, the number of data sources describing their data with
local-ontologies is growing and the integrated access to het-
erogeneous data sources, called ontology-based data integra-
tion [28], is becoming a challenging issue. Ontologies offer a
formal semantics which allows the automation of tasks such
as heterogeneity resolution, consistency checking, inference,
and global schema (ontology) construction. Our aim in this
article is to show how one can automatically build an appro-
priate global ontology for several data sources owners that
want to share parts of their data for a specific Web applica-
tion, but that do not want to (or can not) invest much efforts
on the hard task of building a consensual appropriate shared
conceptual level. This integration process can be done upon
data sources sharing a specific application domain where
the domain itself is described with a background-knowledge
or what is called “domain reference ontology”. A domain-
reference (or reference, called also mediator) ontology is an
ontology developed independently from any specific objec-
tive by experts in knowledge engineering with the collab-
oration of domain experts. It is a robust conceptualiza-
tion of the knowledge about a given generic domain such
as medicine, tourism, agriculture, etc. AGROVOC1 and
NALT2 in the agriculture domain and MeSH3 in the med-
ical field are some examples of reference ontologies. The
development of semantic Web allows to expect that such
reference ontologies will be formally represented and more
and more accessible and usable by humans and by machines
in the next few years.

1http://www.fao.org/agrovoc
2http://agclass.nal.usda.gov/agt
3http://www.nlm.nih.gov/mesh/



In this article, the underlying idea of our proposal is thus
the use of a reference ontology to automatically build a
global ontology that is appropriate to the sources to be in-
tegrated as well as to the target application domain (ref-
erence ontology). In our context, we consider that an ap-
propriate global ontology (i) should provide an appropri-
ate conceptualization of the application domain (maximiz-
ing relevant information for the sharing process and mini-
mizing irrelevant one). Moreover, it has to (ii) allow eas-
ily adding/querying data sources and (iii) be automatically
built and maintained.

We have integrated the above conditions to our solution (our
algorithm for global-ontology construction). For an easy
query processing, our algorithm lies on the Global As View
[11] approach. However it generalizes existing proposals so
that it is no longer necessary to have sources known in ad-
vance. An anchoring phase allows each source to participate
in the global ontology to some extent, whatever it is. For
easily adding data sources, it incrementally integrates data
sources, so it is easy to add a new source involved in the shar-
ing process. For an appropriate conceptualization, it selects
the smallest relevant information portion from the reference
ontology and only relevant information to be shared in the
application domain from each data source involved in the
sharing process.

The rest of this article is organized as follows: some pre-
liminary notions are presented in Section 2 followed by our
global-ontology-construction process in Section 3. Section 4
presents a case study and Section 5 some related works. We
conclude and evoke some futures work in Section 6.

2. PRELIMINARIES
In this article, we consider that each ontology O is con-
structed with the following elements [19]:

– C, a set of concepts, or classes;
– I, a set of concepts’ instances;
– R, a set of binary relations defined on C;
– Z, a set of axioms, which can be interpreted as integrity

constraints or relationships between instances and concepts,
and which can not be expressed by the relations in R.

We assume that the concepts of an ontology O are charac-
terized by a finite set A of attributes, where each attribute
a ∈ A has a domain values Va (Integer, Literal, Date, etc)
and

⋃
a∈A Va = V is the set of all domain values of the O’s

attributes. We accept in other words the following assump-
tions:

– (i) A concept is defined as a triplet (c, Ac, Vc) where
c is the unique name of the concept, Ac / Ac ⊆ A the set
of attributes describing the concept and Vc / Vc ⊆ V their
domain values (Vc =

⋃
a∈Ac Va).

The pair (Ac, Vc) is called the structure of the concept c. In
this article, we call generic concept every concept with an
empty structure.

– (ii) In an ontology O, a set (may be a singleton) of
relations can be defined between two concepts. If we de-
note by R(c, c′) = {r1(c, c

′), ..., rn(c, c
′)} the set of the bi-

nary relations defined in O between c and c′, then R =⋃
c,c′∈C R(c, c′).

In this paper, we explore more specifically the subsumption
relation between two concepts of an ontology O. This rela-
tion, denoted by (⊑), means that if (c, Ac, Vc) and (c′, Ac’,
Vc’) are two concepts of O and (c′ ⊑ c) then:

– (Ac, Vc) ⊆ (Ac’, Vc’).
– Ins(O,c′) ⊆ Ins(O,c), where Ins(O,c) denotes the set of

instances belonging to the concept c in O.
– if c′′ is a concept of O, then R(c, c′′) ⊆ R(c′, c′′).
– if c′′ is a concept of O such that (c′′ ⊑ c′), then (c′′ ⊑ c).

As we will see in the next sections, we don’t consider in
this article the instance level of an ontology. That is why
we don’t characterize items I and Z above. Notice that
this general formalization can correspond to any ontology
expressed in a semantic web language like RDFS [17] or
OWL [18].

3. AUTOMATIC BUILDING OF A GLOBAL
ONTOLOGY

Our objective consists in automatically building a global on-
tology that provides a shared conceptual level for several
data sources in a particular application domain. Our build-
ing process is done from the local ontologies and the do-
main reference ontology, that we also call mediator ontology.
Hereafter, we mention the four kinds of ontologies that we
deal with in the rest of this article.

- Local ontologies (LOi). Each source is represented
by its own local ontology LOi built from its data. Data
sources can be heterogeneous and/or stored in different
formats (structured, semi-structured, not-structured).
We don’t discuss here how these local ontologies are
built, for this we refer to works realized by [5, 7] in
this field. Also, we consider that a local ontology is
represented only by its conceptual (intentional) level,
so LOi = (C,R). The extensional level I (instances) is
represented in the data sources, similar to what have
been presented in [20].

- The mediator (or domain reference) ontology
(MO). It provides a general intensional knowledge
on the application domain. It is usually composed by
several disjoint hierarchies. Here, we exploit only a
simple part of these hierarchies by considering that
each hierarchy is a subsumption hierarchy composed
only by generic concepts (IsA relations between generic
concepts). Each data source uses MO to compute its
agreement.

- Agreements (Ai). We call agreement and we denote
it by Ai = 〈LO′

i,Mi〉 an ontology built automatically
from a local ontology LOi according to the mediator
ontology MO. It is composed of LO′

i, a subset of
LOi containing knowledge of LO that are relevant for
the application domain, and Mi, a set of mappings
between concepts of LOi and those of MO.

- The global ontology (GO=〈{Ai},MO′〉). It con-
sists in the set of agreements {Ai} together with MO′,
which is the smallest subset of MO that conciliates ev-
ery Ai in GO.
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Figure 1: General overview of our mediation-based
process

Figure 1 sketches the global ontology construction process:
each source (Si) involved in the sharing process is repre-
sented by its local ontology (LOi) and the reference on-
tology (MO) allows to find the portion of knowledge that
each source can share with others. This portion is called
agreement (A in Figure 1(a)). Then each agreement is in-
crementally integrated in the global ontology (GO) via MO
in what we call the conciliation phase (Figure 6(b)). Agree-
ment and Conciliation processes will be detailed respectively
in Sections 3.1 and 3.2.

3.1 Agreement process
Agreement process consists in the selection of knowledge
fragments of LO to be included in the global ontology GO.
To identify such knowledge we proceed first by applying an
anchoring process [2] to select from the local ontology rele-
vant concepts for the application domain.

Anchoring consists in associating concepts of a local ontol-
ogy, called anchored concepts, with concepts of the media-
tor ontology, called anchor concepts. Consider the example
shown in Figure 2, where concepts are represented by ovals
and attributes by rectangles. The single and double full
arrows represent respectively subsumption and equivalence
relationships between two concepts; simple binary relations
are represented by dashed arrows. Figure 2(a) shows an
excerpt of a local ontology LO that deals with both agri-
cultural and accommodation knowledge. We assume that
the application domain in which the source represented by
LO shares its data is the agricultural domain: Figure 2(b)
shows an excerpt of the agreement obtained after the an-
choring process. Prefix “mo :” denotes anchor concepts from
the mediator ontologie MO. We can notice that only con-
cepts related to agriculture are anchored because no anchor
is found for accommodation knowledge. Anchor concepts
generalize anchored concepts and will be used for finding se-
mantic links between concepts in different local ontologies.

We perform two successive anchoring steps: a lexical an-
choring process that selects relevant concepts to be anchored
based on syntactic matching, followed by a semantic one that
selects other concepts not-detected in the first step.
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Figure 2: An example of the agreement process

3.1.1 Lexical anchoring process
It consists in matching a local ontology LO with the medi-
ator ontology MO, i.e. in computing a set of mappings as
defined in [25].

Let LO be a local ontology, MO be the mediator ontology,
and Cl, Cm the respective concept sets of LO and MO. Lex-
ical anchoring of LO w.r.t. MO consists in finding a set of
mappings M = 〈m1, ...,mn〉 such that each mi is a relation
of the form: mi = (cl r cm), where cl ∈ Cl, cm ∈ Cm, and
r is a subsumption (⊑) or equivalence (≡) relation between
cl and cm. cm is called the anchor of cl and denoted by
anc(cl). In what follows, we use the following notations:
Anc(Cl), Anc−(Cl), CM, and RM for denoting respectively:

– anchored concept set of LO, Anc(Cl) ⊆ Cl;
– anchor concept set of LO, Anc−(Cl) =

⋃
cl∈Cl

anc(cl);

– concept set of M, CM = (Anc(Cl) ∪Anc−(Cl));
– relation set of M, RM =

⋃
cl∈Cl,cm∈Cm

(cl r cm), where

r ∈ {⊑,≡}.

The key point in the lexical anchoring (or matching) process
is to measure how much a concept cl in a local ontology LO
is related to a concept cm in the mediator ontology MO.
This is done by syntactically comparing concepts names (la-
bels). Many lexical similarity measures, proposed in the
literature [15, 6, 25], may be used and, as noticed in [25],
no similarity measure can give good results in all cases: it is
still necessary to look for the best one for each specific ap-
plication. However, whatever the application is, the relation
between cl and cm is obtained as follows. If we consider that
ϕ (ϕ : Cl × Cm → [0, 1]) is the chosen similarity measure,
then if ∀cmi ∈ Cl [ϕ(cl, cm) ≥ α ∧ ϕ(cl, cm) ≥ ϕ(cl, cmi)]
holds, where α is the maximum threshold similarity, then
the mapping m = (cl ≡ cm) is established between cl and
cm. If any anchor concept cm is not found for a concept cl,
then we apply a partial matches as well, if cm is a concept
that has a label consisting of a superset of words of the la-
bel of the concept cl, then we conclude that m = (cl ⊑ cm).
In other words, we use the partial lexical matches following
the intuition that additional words in a label additionally
constrain the meaning of that concept. Doing so, one can
conclude for example that StatisticDepartement ⊑ Departe-
men in Figure 2.

3.1.2 Semantic anchoring process
It consists in finding additional local concepts that may be
relevant for the application domain and which have not been
anchored during the lexical anchoring process. To identify



such concepts, we apply the following deduction rule: if cl
and c′l are two concepts of LO such that

(cl ∈ Anc(Cl)) ∧ (c′l /∈ Anc(Cl)) ∧ (c′l ⊑ cl)

holds then we conclude that c′l ∈ Anc(Cl) ∧ anc(c′l) = anc(cl).

The semantic meaning of this rule is well defined and corre-
sponds to the subsumption reasoning mechanisms [22]. In-
deed, c′l ∈ Anc(Cl) means there is a subsumption relation
(cl ⊑ cm) between cl and its anchor cm, so the subsumption
relation (c′l ⊑ cl) that exists between c′l and cl in LO allows
to deduce the subsumption relation (c′l ⊑ cm) between c′l and
cm. Therefore, c′l can be considered as an anchored concept,
semantically selected, and its anchor is cm. For example,
there are no direct anchors found for the concept Niambi in
Figure 2(a), but it appears in Figure 2(b) because Niambi
is a sub-concept of CropsVarieties, which is anchored by the
concept mo:Varieties.

3.1.3 From anchoring to agreement
After the anchoring process, we built the agreement A of
each source. It is an ontology composed by LO′, a subset of
LO containing knowledge fragments of LO that are relevant
for the application domain, and M the result of anchoring
LO w.r.t. OM. We compute LO′ from anchored concepts of
LO, with the following purposes: LO′ contains respectively
the (i) maximum of relevant ((ii) the minimum of irrelevant)
knowledge w.r.t. the application domain, and (iii) LO′ is
consistent if LO is consistent.

Thus, in addition to anchored concepts, LO′ may contain
unanchored concepts that we call selected concepts. A se-
lected concept cl1 is an unanchored concept that must be
related to an anchored concept cl in order to avoid loosing
information about cl and also to avoid inconsistency in LO′.
We consider that an unanchored concept cl1 of LO must be
a selected concept if:

– (cl ⊑ cl1), where cl is an anchored concept of LO.
– there exists in LO a relation r(cl, cl1) between cl and

cl1 , where cl is an anchored concept of LO.
– (cl1 ⊑ cl2), where cl2 is a selected concept of LO.

For instance, consider the local ontology LO shown in Fig-
ure 3(a) and assume that the concept Agriculture is an unan-
chored concept, as shown in Figure 3(b). Because we have
in LO the indirect relation: (Activity, relateTo, Agriculture)
and (Agriculture, concern, CropsVarieties) between the two
anchored concepts Activity and CropsVarieties, it is neces-
sary to select the concept Agriculture in order to keep it in
LO′. In what follows, we denote by Select(Cl) the selected-
concepts set from LO.

Let LO be a local ontology and MO be the mediator ontol-
ogy, the agreement A = 〈LO′,M〉 of LO w.r.t MO is such
that (i) M = 〈m1, ...,mn〉 is the result of the anchoring of
LO w.r.t MO, and (ii) LO′ = (C′

l ,R
′
l) is inductively defined

as follows:
– [CM ∪ Select(Cl)] ⊆ C′

l

– RM ⊆ R′
l

– If ∃ cl1 , cl2 / cl1 ∈ Anc(Cl) ∧ cl2 ∈ Cl ∧(cl2 ⊑ cl1)
then (cl2 ⊑ cl1) ∈ R′

l.
– If ∃ cl1 , cl2 / cl1 ∈ [Anc(Cl) ∪ Select(Cl)] ∧ cl2 ∈ Cl

∧(cl1 ⊑ cl2) then (cl1 ⊑ cl2) ∈ R′
l.
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Figure 3: Agreement process – the case of selected
concepts

– If ∃ cl1 , cl2 , r / cl1 , cl2 ∈ [Anc(Cl) ∪ Select(Cl)]
∧ r(cl1 , cl2) ∈ Rl then r(cl1 , cl2) ∈ R′

l.

Notice that all the above rules are designed to keep in LO′

as much semantic information contained in LO as possible.

3.2 Conciliation process
We can now build the global ontology GO by conciliating
the different agreements Ai = 〈LO′

i,Mi〉 obtained above.
The conciliation is achieved incrementally by integrating the
agreements into GO, one after another. Integrating an agree-
mentA in GO consists in linking its concepts with the ones of
other agreements already conciliated in GO. Links between
concepts in A are established through anchor concepts con-
tained in Mi for every agreement Ai. Let us recall that
all anchor concepts are part of the mediator ontology MO.
Thus, we search for links between anchor concepts in MO in
order to use them to conciliate concepts in GO. In this way,
our global ontology GO contains the following components:

– the set of agreements Ai = 〈LO′
i,Mi〉. They repre-

sent the shared part of local ontologies (LO′
i), together with

the mappings between their local concepts and the mediator
ones (Mi).

– an as small as possible subset MO′ of MO containing
only the part of the hierarchy which is usefull to link local
concepts.

To illustrate this process in the context of agricultural do-
main, consider the example in Figure 4. In this example
the concepts Tomate of the agreement A1 and FriedRice of
the agreement A2 are respectively anchored by the concepts
Tomato and Rice of the mediator ontology MO. The struc-
ture of the mediator ontology reveals that Tomato and Rice
have a common ancestor which is the concept Plan products.
We reproduce this relation to conciliate the concepts Tomate
and FriedRice in the global ontology GO.

Let {LOi} be a set of local ontologies and MO be the me-
diator ontology. The corresponding global ontology GO is
〈{Ai},MO′〉, where (i) {Ai} is the set of agreements built
from local ontologies, and (ii) MO′ the smallest subset of
MO that conciliates every Ai in GO, built by the algorithm
that we will present in the sequel of this section.

As suggested by the Figure 4 example, one particular inter-
est in our approach is the use of the hierarchy of the me-
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Figure 4: Illustration of the conciliation process

diator ontology MO in order to find links between anchor
concepts. These links are reproduced in the global ontology
GO for conciliating agreements.

The relation that we are looking for within the hierarchy H
of MO is the least common subsumer (lcs) of two anchor
concepts. It is important to notice that in our first experi-
ments we have only considered tree taxonomies, we plan as
a future work to generalize this point. We can follow the al-
gorithm proposed in [3] to compute the lcs of two concepts
c1 and c2 in MO, according to what follows.

Let MO be the mediator ontology, c1 and c2 two given con-
cepts in MO, the concept c of MO is the lcs of c1 and c2
in MO (noted c = lcsH(c1, c2)) iff (i) ∀i/i = 1, 2 (ci ⊑ c),
and (ii) if ∃c′ ∈ MO / (c1 ⊑ c′) ∧(c2 ⊑ c′) then c ⊑ c′.

Based on lcs computation in [3], MO′ consists in a sub-
sumption hierarchy between all anchor concepts of all Ai

and their lcs in MO. The algorithm that we propose to
achieve this uses the hierarchical proximity measure pro-
posed in [29], that we recall hereafter.

Let MO be the mediator ontology, c1 and c2 two concepts
of MO. The hierarchical proximity measure between c1 and
c2 in MO is such that:

simH(c1, c2) =
2 ∗ depthOf(lcsH(c1, c2))

depthOf(c1) + depthOf(c2)
,

where depthOf(c) returns the number of subsumers of c in
MO.

Moreover, let c, c′ ∈ MO. We say that c′ is the closest
concept of c in MO and we denote it by closestH(c) iff
∀i/ci ∈ MO [simH(c, c′) ≥ simH(c, ci)] holds. However, if
c′ ∈ MO′ (MO′ ⊆ MO) and ∀i/ci ∈ MO′ [simH(c, c′) ≥
simH(c, ci)] holds, then we say that c′ is the closest concept
of c in MO′ w.r.t. MO and we denote it by closestH′/H(c).

The conciliation of an agreement Ak = 〈LO′
k,Mk〉 with

other agreements already conciliated in GO = 〈{Ai}i 6=k,MO′〉
consists in integrating each anchor concept cm of Mk within
the hierarchy of MO′. To integrate a concept cm within the
hierarchy of MO′ we have to compute the lcs in MO be-
tween cm and the closest concept of cm in MO among the
anchor concepts already present in the hierarchy of MO′.

However, when the mediator ontology MO is very large,
which is frequently the case, this process can be hard and
costly. In addition, as said before, our mediation ontology

has a structure composed by disjoint hierarchies, so two dif-
ferent anchor concepts do not have necessarily the same root.
This configuration can make the lcs computation very diffi-
cult. To take into account all these constraints, we propose
to partition the mediator ontology into blocks in order to
limit lcs computation within the block that contains the an-
chors concepts to be connected. To realize this, a number of
methods proposed for ontology partitioning may be used [12,
13]. Their general objective is to improve the effectiveness
of automatic alignment methods by reducing the number of
concepts the alignment tool has to deal with.

Formally, let O be an ontology and C the set of all concepts
in O. A partitioning G of O breaks C into a set of blocks
{B1, ...,Bn}, which satisfies the following conditions:

– (i) ∀Bi,Bj/i, j∈ {1, ..., n}, if i 6= j then Bi∩Bj=⊘; and
– (ii) B1∪B2 ∪... ∪ Bn= C.

In our application context, we use the partitioning method
integrated into the ontology matching system Falcon-AO [14,
13]. This method is convenient for our context because it
deals well with subsumption relationships and allows effi-
cient partitioning of large-size ontologies. Indeed, using the
clustering ROCK algorithm [10] and by introducing the no-
tion of weighted links mainly based on a structural similarity
measure between concepts, Falcon-AO allows to partition an
ontology into blocks by classifying in each block the most
semantically-related concepts.

Our algorithm uses this closest semantic concepts notion
in order to limit lcs computation within only one block.
A set of blocks, denoted B is generated by applying this
algorithm to MO and each one is saved to be treated latter
as a sub-ontology of MO. Weighted links are kept for each
block and this process is done only once. The algorithm
that we present below uses these blocks to conciliate every
agreement Ai in the global ontology GO = 〈{Ai},MO′〉, by
incrementally computing the hierarchy H′ of OM′.



Algorithm 1 Conciliation

Input: Ak =
〈

LO′
k,Mk

〉

, GO =
〈

{Ai}i 6=k,MO
′
〉

, B
Output: The new GO
begin

foreach (m = (cl, r, cm) in RMk
) do

if (MO′ 6= ⊘) and (cm /∈ Cm′ ) then
Identify the block Bx ∈ B that contains cm
CBxm’

←− Cm′∩ CBx
/*concepts of Bx already

inserted in MO′*/
if (CBxm’

6= ⊘) then
ccl ←− closestH′/H(cm) /* H is the hierarchy

of Bx*/
clcs ←− lcsH(cm, ccl) /* the lcs is found in
Bx*/
if (clcs = ccl) then
MO′ ←MO′ ∪ {cm ⊑ ccl}

else if (clcs = ccm) then
MO′ ←MO′ ∪ {ccl ⊑ cm}
if (∃c ∈ MO′ / c = lcsH′ (ccl, c)) then
MO′ ←MO′ ∪ {cm ⊑ c}

end

else
MO′ ←MO′ ∪ {cm ⊑ clcs, ccl ⊑ clcs}
if (∃c ∈ MO′ / c = lcsH′ (ccl, c)) then
MO′ ←MO′ ∪ {clcs ⊑ c}

end

end

else
MO′ ←MO′ ∪ {cm ⊑ ⊤} /* ⊤ is the universal
concept*/

end

else
MO′ ←MO′ ∪ {cm ⊑ ⊤}

end

end

end

To illustrate our algorithm, we consider the two agreements
A1 = 〈OL′

1,M1〉 and A2 = 〈OL′
2,M2〉 such that:

– M1 = 〈(FrideRice ⊑ mo : Rice), (Onion ≡ mo : Onion)〉; and

– M2 = 〈(Sorgho ≡ mo : Sorgho), (Tomate ≡ mo : Tomato)〉

Results obtained by conciliating A1 and A2 are as follows:

1- Conciliate A1 in GO
Input: A1, GO =

〈

{},MO′ = {}
〉

iteration 1 − m1.1 = (FrideRice ⊑ mo : Rice)
MO′ = {Rice ⊑ ⊤}

itération 2 − m1.2 = (Onion ≡ mo : Onion)
Bx = Block 23079
ccl = Rice ; clcs = PlanProducts

MO′ = {Rice ⊑ PlanProducts, Onion ⊑ PlanProducts}

2- Conciliate A1 and A2 in GO

Input: A2, GO =
〈

{A1},MO′ = {Rice ⊑ PlanProducts,

Onion ⊑ PlanProducts}

itération 1 − m2.1 = (Sorgho ≡ mo : Sorgho)

Bx = Block 23079

ccl = Rice; clcs = Cereals

MO′ = {Rice ⊑ Cereals, Sorgho ⊑ Cereals,

Cereals ⊑ PlanProducts, Onion ⊑ PlanProducts}

itération 2 − m2.2 = (Tomate ≡ mo : Tomato)

Bx = Block 23079

ccl = Onion ; clcs = V egetables

MO′ = {Rice ⊑ Cereals, Sorgho ⊑ Cereals,

Cereals ⊑ PlanProducts,⊑ PlanProducts,

Tomato ⊑ V egetables, V egetables ⊑ PlanProducts}

Figure 5 illustrates the global ontology GO resulting from
the conciliation of A1 and A2. We have distinguished the
hierarchy MO′, composed of all anchor concepts in M =
M1 ∪M2, linked to each other by their lcs found in MO.
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Figure 5: An excerpt of the global ontology that
conciliates the two agreements A1 and A2

4. A CASE STUDY
We have implemented our solution, i.e., a global ontology
construction method based on a domain reference ontology,
in the context of the SIC-Senegal project. This project aims
to enable several partners (agricultural agencies) to share
their agricultural data. Each partner usually collects and
stores its data in different formats (spreadsheets, relational
databases, etc.). Previous works in this project [24] have
already allowed the provision of local ontologies that seman-
tically describe partner’s data. We address the last phase of
the integration process in this paper, i.e., the construction
of the intended global ontology to be shared between all the
partners. It represents the shared understanding of the ap-
plication domain and provides a structured vocabulary for
querying all the partners data.

In our experiments, we have considered the local ontologies
of three partners’ (P1, P1, P3) and the domain reference on-
tology AGROVOC as a mediator one:

– The partners P1 and P2 treat mainly information about
agricultural-crops varieties and the cultivated surfaces ; P3

deals with prices of agricultural products.
– The local ontologies LO1(P1), LO2(P2) and LO3(P3)

have respectively 323, 387 and 224 concepts.
– AGROVOC is an ontology proposed by the FAO (Food

and Agriculture Organization) for agriculture, forestry, fish-
eries, food and related domains (e.g. environment). It con-
tains up to 28 439 concepts.

After a brief explanation of our global ontology construction
in this context, especially agreement and conciliation, we
will present some evaluation results of our method.

Agreement. The first step of the agreement phase is the lex-
ical anchoring process. We performed our experiments with
different terminological-similarity-measures (Jaron-Winkler,
Levenshtein, etc.)4. We have then compared the mapping

4We have done our experiments with 8 similarity-measures
implemented in the SimMetrics API : http://staffwww.
dcs.shef.ac.uk/people/S.Chapman/simmetrics



results of the lexical anchoring process with a manual an-
choring process performed by an expert of the agricultural
domain. We note that the string metrics measure proposed
in [27] is the one that gave the best results. We have then
performed the last step of the agreement phase, i.e., the
semantic anchoring process, according to the methods de-
scribed in Section 3.1.2. The result being three agreements
A1, A2 and A3, respectively for the partners P1, P2 and P3.

Conciliation. In this phase we have built the global ontol-
ogy according to the method described in Section 3.2. An
excerpt is given in Figure 5.

Semantic expressiveness of the resulted global ontol-

ogy. To evaluate the semantic expressiveness5 of the con-
structed global ontology w.r.t. the considered application
domain, we have compared our approach to classical ontology-
matching techniques [25], in particular those sharing our
context and using a domain reference ontology as a me-
diation support [1, 2, 22]. These methods don’t build a
global ontology in the integration process, they are only
based on ontologies alignment. They have however, as the
ours, the objective of establishing links between different lo-
cal ontologies for an integration purpose. They start by
an anchoring phase as described in Section 3.1, our ap-
proach follows then with the conciliation process (please re-
fer to Section 3.2) while classical ontology-matching tech-
niques are based on derivation process [23]. Derivation is
just the deduction of proximity relations (isClose, narrower-
than, broader-than, is-equiv, etc.) between two anchoring
concepts through the structural relations that may exist
between their corresponding anchors in the domain refer-
ence ontology. Figure 6 briefly sketches the conciliation and
derivation processes while Figure 7 summarizes the results
obtained by applying them in our case study (blue line for
derivation and red line for conciliation).

By analyzing Figures 7(a) and 7(b), we can notice that the
number of discovered relations linking concepts in different
local ontologies (partners) is more important when using
conciliation (cf. Figure 6). In addition, the expert analysis
of our results showed that the semantics of that relations
is more explicit w.r.t. the application domain (Agricultural
Domain) than those discovered using derivation. This can
be justified by the fact that relationships discovered with
derivation are mainly proximity relationships. This kind of
relations have a weak semantics w.r.t. the considered ap-
plication domain. On the contrary, relations established by
conciliation have a well explicit semantics w.r.t. the consid-
ered application domain. As an example, the relation discov-
ered between the concepts Tomato and Onion through the
concept Vegetable in Figure 5, which means that both the
concepts Tomato and Onion are vegetables (sub-concepts of
Vegetable).

We can thus conclude that our integration-approach offers,
by using a global ontology for the mediation process, a more
interesting semantic expressiveness compared to classical ap-
proaches based on ontology-matching techniques.

5Semantic expressiveness is considered here as the number of
relations discovered between the concepts of the local ontolo-
gies to be integrated and their relevance to the application
domain.
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Figure 6: A general illustration of derivation and
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Figure 7: Global ontology building result plots

5. RELATED WORKS
In data integration process, when designing an integration
system I =< G,S,M >, where G is the expected global
schema, S the set of sources’ schemas, and M the set of
mappings between G, one starts by building G and S be-
fore having the choice between several approaches for the
construction of M : Local As View (LAV), Global As View
(GAV), Global-Local As View (GLAV) or Both As View
(BAV). Theses last ones have largely been studied in the
literature [4, 8, 9, 21].

The automation in building G (for automation purpose, G
is in most cases an ontology) is however not much studied
in the literature. On the one hand, because building an
ontology is considered as a difficult task in itself (see for ex-
ample [26]), and, on the other hand, ontologies-integration
task is also known to be difficult. This last task is gener-
ally ensured by computing correspondences, or mappings,
between ontologies (please see [25] for a survey).

In this article we have tackled the problem of data integra-
tion in the context of ontologies, i.e., ontology-based data
integration (please see [28] for a survey). Our main contri-
bution consists in the introduction of an automatic solution
for a global ontology construction problem. Our proposal
is based on a domain reference ontology as a background
knowledge. One the one hand, links between local ontolo-
gies are obtained from the taxonomical relationships of the
reference ontology and, on the other hand, mappings be-
tween the global ontology and local ones are obtained, by
syntactic matching, from the names of the local-ontologies
concepts and those of the reference-ontology-concepts. For
that reason, our algorithm depends on the performance of
ontology-matching techniques (cf. Section 3).



The use of reference ontologies for data integration has been
investigated in the literature (see for instance [2, 1, 22]). It
was shown that the reference ontology can significantly im-
prove the performance of the matching process. Our contri-
bution in this context is to show that the reference ontology
also allows to enrich the semantics of links discovered in the
matching process.

6. CONCLUSION
Our proposition in this article brings a solution to the prob-
lem of automatic construction of an appropriate global on-
tology. We have tackled this issue using a background-
knowledge (i.e., a domain-reference ontology) as a mediation
support. This global ontology can offer interesting proper-
ties, especially an appropriate conceptualization and easy
resource-adding and querying processes.

We are now working on the complexity evaluation of our al-
gorithm as well as the proof of its correctness and soundness.
We aim also to turn our proposition into a robust software
for ontology-based data integration.
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