
Attribute Grammar for XML Integrity

Constraint Validation ⋆

Béatrice Bouchou1, Mirian Halfeld Ferrari2, and Maria Adriana Vidigal Lima3

1 Université François Rabelais Tours, Laboratoire d’Informatique, France
2 LIFO - Université d’Orléans, Orléans, France

3 Faculdade de Computação, Universidade Federal de Uberlândia, MG, Brazil

Abstract. The main contribution of this paper is a generic grammar-
ware for validating XML integrity constraints. Indeed, we use an at-
tribute grammar to describe XML documents and constraints. We thus
explain the main parts of this novel algorithm and we report on ex-
periments showing that our method allows for an effective and efficient
validation of XML functional dependencies (XFD).

1 Introduction

This paper deals with integrity constraint validation on XML documents. Our
validation method can be seen as a grammarware, since it is based on a gram-
mar describing an XML document to which we associate attributes and seman-
tic rules. Our grammar is augmented by semantic rules that define, for each
integrity constraint, the verification process. In this way we show that XML
integrity constraints can be compiled to an attribute grammar [1, 15]. To instan-
tiate an integrity constraint we introduce a set of finite state automata (FSA).
Indeed, XML integrity constraints are defined by using path expressions which
can be seen as simplified regular expressions over XML labels. These finite state
automata help us to determine the role of each node in a constraint satisfaction.

To explain the main parts of our method, we focus on the validation of
functional dependencies (XFD). The approach presented here implements the
general proposal introduced in [7], where we present a homogeneous formalism
to express different kinds of integrity constraints, including XFDs, and introduce
the basis of our general validation method.

Our method validates an XML tree in one tree traversal. In the document
reading order, we first go top-down until reaching some leaves and then, bottom-
up, as closing tags are reached. During the top-down visit, the validation process
uses attributes to specify the role of each node with respect to a given integrity
constraint. In the bottom-up visit the values concerned by the constraints are
pulled up via some other grammar attributes. Its running time is linear in the
size of the XML document, in the number of paths composing the constraint
and in the number of obtained tuples containing the constraint values.

⋆ Partially supported by: Codex ANR-08-DEFIS-04

Related work: Although several approaches for XML functional dependencies
have been proposed in the literature (we refer to [3, 11, 18, 19, 21] as examples
of ongoing works on the subject over the decade), the implementation of con-
straint validators has received less attention. Proposals in [4, 5, 8] just address
specific constraints such as primary or foreign keys. Our approach performance
is comparable to implementations in [17, 16], but contrary to them, it intends
to be a generic model for XML constraints validation, provided constraints are
defined by paths. The ideas guiding this work are the ones outlined in [7, 10].
We describe an incremental validation method for keys in [6]. In [9] the notion of
incremental validation is considered via the static verification of functional de-
pendencies with respect to updates. However, in that work, XFDs are defined as
tree queries which augments considerably the complexity of an implementation.

Indeed, one important difference among all the XFD proposals concerns the
expressive power of the language used to specify the components of the de-
pendency. Even if path languages in [2, 18–20] are slightly different, they all
express unary queries. In [2, 18, 20] only simple paths are allowed while in [19]
simple, composed, ascendant or descendent paths are permitted. Differently, the
approach in [11] uses an n-ary path language. Similarly to us, in all these ap-
proaches, once a path is defined, one needs to determine instantiations of this
path. The way it is done depends on the path language used and on the assump-
tion of an underlying schema (that allows to define tree tuples [2] and generalized
tree tuples [20]). Notice also that paths defining constraints induce a notion of
tree pattern that the document must conform to (called Paths(D) in [2], Schema
Graph in [12] or Legal paths in [18]), which can be seen as a schema (though less
restrictive than a DTD). Thus, following [15] and [13], an extended attribute
grammar can always be used to represent the selecting part of any of these
different notions of XML functional dependencies. Then, functions for checking
features of the selected components must be defined. In this way, attribute gram-
mars are generic enough to accommodate many kind of integrity constraints. For
instance we plan to consider the possibility of using it to compute XFD defined
by tree queries such as in [9].

Paper organisation: Section 2 introduces our XFD definitions. In Section 3
we explain how finite state automata can help us to develop our validation
algorithm. Section 4 presents the XFD verification process based on attribute
grammar. In Section 5 we consider complexity and experimental results.

2 Functional Dependencies in XML

Let Σ = Σele ∪ Σatt ∪ {data} be an alphabet where Σele is the set of element
names and Σatt is the set of attribute names. An XML document is represented
by a tuple T = (t, type, value). The tree t is the function t : dom(t) → Σ where
Σ is a set of tags and where dom(t) is the set of positions u.j, such that (∀j ≥
0) (u.j ∈ dom(t)) ⇒ (∀i 0 ≤ i < j) (u.i ∈ dom(t)); where i and j ∈ N and u ∈
U (U is a set of sequences of symbols in N, and the symbol ε which is the empty

sequence). Given a tree position p, function type(t, p) returns a value in {data,

element, attribute}. Similarly, value(t, p) =

{

p if type(t, p) = element
val ∈ V otherwise

where V is an infinite recursively enumerable domain. We also recall that, in an
XML tree, attributes are unordered while elements are ordered. As many other
authors, we distinguish two kinds of equality in an XML tree, namely, value and
node equality. Two nodes are value equal when they are roots of isomorphic sub-
trees. Two nodes are node equal when they are the same position. To combine
both equality notions we use the symbol E, that can be represented by V for
value equality, or N for node equality.

Figure 1 illustrates an XML document that models the projects of a company.
Notice that each node has a position and a label. For instance, t(ǫ) = bd and
t(1.0) = pname. Nodes in positions 1.2.1.1 and 0.1.2.1 are value equal, but
nodes 0.1.2 and 1.2.1 are not value equal (element quantity in their subtrees is
associated to different data values).

A path for an XML tree t is defined by a sequence of tags or labels. The
path languages PLs (defined by ρ ::= l | ρ/ρ | _) and PL (defined by υ ::=
[] | ρ | υ//ρ) are used to define integrity constraints over XML trees.

In PL and PLs, [] represents the empty path, l is a tag in Σ, the symbol
"/" is the concatenation operation, "//" represents a finite sequence (possibly
empty) of tags, and "_" is any tag in Σ. The language PLs describes a path
in t, while PL is a generalization of PLs including "//". Then, one path in PL
describes a set of PLs paths. In this work we adopt the language PL that is
a common fragment of regular expressions and XPath. A path P is valid if
it conforms to the syntax of PLs or PL and for all tag l ∈ P , if l = data or
l ∈ Σatt, then l is the last symbol in P . We consider that a path P defines a
finite-state automaton AP having XML labels as its input alphabet.

Definition 1. Instance of a path P over t : Let P be a path in PL, AP the
finite-state automaton defined according to P , and L(AP) the language accepted
by AP . Let I = v1/ . . . /vn be a sequence of positions such that each vi is a
direct descendant of vi−1 in t. Then I is an instance of P over t if and only if
the sequence t(v1)/ . . . /t(vn) ∈ L(AP). 2

As an example, consider the path bd/project/supplier. From Figure 1, we
can see that ǫ/0/0.1 or ǫ/1/1.1 are instances of this path. Integrity constraints
in XML are expressed by sets of paths. A set of paths can form a pattern M if
all paths have a common prefix and for all path P ∈ M , if P1 is a subpath of P ,
then P1 ∈ M . Thus, a pattern is a tree pattern.

Definition 2. Pattern and Pattern Instance : A pattern is a finite set of
prefix-closed paths in a tree t. Let LongM be the set of paths in M that are not
prefix of other paths in M . Let Instances(P, t) be the set of all instances of a
path P in t. Let PInstanceSeti be the set of path instances that verifies:

1. For all paths P ∈ LongM there is one and only one instance inst ∈
Instances(P, t) in the set PInstanceSeti.

2. For all inst ∈ PInstanceSeti there is a path P ∈ LongM .

3. For all instances inst et inst′ in PInstanceSeti, if inst ∈ Instances(P, t)
and inst′ ∈ Instances(P ′, t), then the longest common prefix of inst and
inst′ is an instance of path Q in t, where Q is the path with the longest
common prefix for P and P ′.

An instance of a pattern M is a tuple I = (ti, typei, valuei) where typei(ti, p) =
type(t, p), valuei(ti, p) = value(t, p) and ti is a function ∆ → Σ in which:

– ∆ =
⋃

inst ∈ PInstanceSeti{p | p is a position in inst}

– ti(p) = t(p), ∀p ∈ ∆ 2

A functional dependency in XML (XFD) is denoted X → Y (where X and
Y are sets of paths) and it imposes that for each pair of tuples4 t1 and t2 if
t1[X] = t2[X] then t1[Y] = t2[Y]. We assume that an XFD has a single path
on the right-hand side and possibly more than one path on the left-hand side -
generalizing the proposals in [3, 18, 14, 19]. The dependency can be imposed in
a specific part of the document, and, for this reason, we specify a context path.

Definition 3. XML Functional Dependency : Given an XML tree t, an
XML functional dependency (XFD) is an expression of the form

γ = (C, ({P1 [E1], . . . , Pk [Ek]} → Q [E]))
where C is a path that starts from the root of t (context path) ending at the
context node; {P1, . . . , Pk} is a non-empty set of paths in t and Q is a single
path in t, both Pi and Q start at the context node. The set {P1, . . . , Pk} is the
left-hand side (LHS) or determinant of an XFD, and Q is the right-hand side
(RHS) or the dependent path. The symbols E1, . . . , Ek, E represent the equality
type associated to each dependency path. When symbols E or E1, . . . , Ek are
omitted, value equality is the default choice. 2

Definition 4. XFD Satisfaction : Let T be an XML document, γ = (C,
({P1 [E1], . . . , Pk [Ek]} → Q [E])) an XFD and let M be the pattern {C/P1,
. . . ,C/Pk, C/Q}. We say that T satisfies γ (noted by T |= γ) if and only if for
all I1M , I2M that are instances of M in T and coincide at least on their prefix
C, we have: τ1[C/P1, . . . , C/Pk] =Ei,i∈[1...k] τ

2[C/P1, . . . , C/Pk] ⇒ τ1[C/Q] =E

τ2[C/Q] where τ1 (resp. τ2) is the tuple obtained from I1M (resp. I2M), cf. pre-
ceding footnote. 2

Notice that our XFD definition allows the combination of two kinds of equal-
ity (as in [19]). We consider some XFDs, verified by the document in Figure 1:

XFD1: (db, ({/project/pname} → /project [N]))
Project names are unique and identify a project. The context is db, so in this
case the dependency must be verified in the whole document.
XFD2: (db, ({/project/pname} → /project))
Subtrees of projects which have the same name are identical.
XFD3 : (db/project, ({/supplier/@sname, /supplier/component/@cname}

→ /supplier/component/quantity))

4 Tuples formed by the values or nodes found at the end of the path instances of X
and Y in a document T .

MSI
@sname

@cname quantityprice

component

supplier

K8N

datadata
182,90

1.2.1.2.01.2.1.1.0

1.2.0 1.2.1

1.2.1.21.2.1.11.2.1.0

22

pname

1.0.0

1.0

Proj2
data @sname

@cname quantityprice

component

datadata

1.1.1.2.01.1.1.1.0

1.1.1.21.1.1.11.1.1.0

10309,00

E7205

Intel

supplier

1.1

1.1.0 1.1.1

1.2

pname

data

0.0.0

0.0

Proj1

project
1

@sname

price quantity@cnamequantityprice@cname

componentcomponent

supplier

project

db

datadatadatadata

0.1.2.2.00.1.2.1.00.1.1.2.00.1.1.1.0

0.1.2.20.1.2.10.1.2.0

0

0.1

0.1.0 0.1.20.1.1

0.1.1.20.1.1.10.1.1.0

182,90

K8N 955X Neo

MSI

75185,00

ε

Fig. 1. Tree representing an XML document containing projects information.

3 Finite State Automata for XFD

To model the paths of an XFD, we use finite-state automata (FSA) or trans-
ducers (FST). The use of finite state machines allows (i) to clearly distinguish
each path (e.g. the context path) and so to define the computation of needed at-
tributes, and (ii) to easily deal with the symbol // and thus to deal with different
instantiations for a unique path (e.g., instances a.b and a.x.b for path a//b).

The input alphabet of our finite machines is the set of XML tags. The output
alphabet of our transducers is composed by our equality symbols. As usual, we
denote a FSA by 5-tuple A = (Θ, V , ∆, e, F) where Θ is a finite set of states;
V is the alphabet; e ∈ Θ is the initial state; F ⊆ Θ is the set of final states; and
∆: Θ× V → Θ is the transition function. A FST is a 6-tuple A = (Θ, V , Γ , ∆,
e, F , λ) such that: (i) (Θ, V , ∆, e, F) is a FSA; (ii) Γ is an output alphabet
and (iii) λ is a function from F to Γ indicating the output associated to each
final state.

From Definition 3 we know that in an XFD, path expressions C, Pi and Q
(i ∈ [1, k]) specify the constraint context, the determinant paths (LHS) and the
dependent path (RHS), respectively. These paths define path instances on an
XML tree t. To verify whether a path instance corresponds to one of these paths
we use the following automata and transducers:

– The context automaton M = (Θ,Σ,∆, e, F) expresses path C. The alphabet
Σ is composed of the XML document tags.

– The determinant transducer T ′ = (Θ′, Σ, Γ ′, ∆′, e′, F ′, λ′) expresses paths Pi

(i ∈ [1, k]). The set of output symbols is Γ ′ = {V,N}×N
∗ such that V (value

equality) and N (node equality) are the equality types to be associated to

each path. Each path is numbered because there may be more than one path
in the LHS. Thus, the output function λ′ associates a pair (equality, rank)
to each final state q ∈ F ′;

– Path Q is expressed by the dependent transducer T ′′ = (Θ′′, Σ, Γ ′′, ∆′′, e′′, F ′′,
λ′′). The set of output symbols is Γ ′′ = {V,N} and the output function λ′′

associates a symbol V or N to each final state q ∈ F ′′.

Figure 2 illustrates FSA and FST for constraints XFD1 and XFD2. We
remark that the context automaton and the determinant transducers are equal
for XFD1 and XFD2. For XFD1, the dependent transducer expresses the ap-
plication of node equality, while, for XFD2, the application of value equality
(for all values obtained from nodes rooted project). The automaton and the cor-
responding transducers for XFD3 are illustrated in Figure 3. The determinant
transducer (T ′

3) gathers the attribute values of @sname and @cname that, to-
gether, determine the quantity of a component. This dependency employs value
equality for @sname, @cname and quantity with respect to context project,
defined by M3.

4e | (V,1)e | (V,1)4

 2

2

2

0

2

5
*

1

3

e | V61

1

1 0

5

2

e | N6

3

1

e

e

pname
e

e

e
db

project

project T ":

M :

T ":

T ’:

e

e
pname

e

e

e
db

project

project

T ’:

M :

Fig. 2. Automata and transducers corresponding to XFD1 and XFD2.

10

4

6

e | (V,1)

2

5

9

e | (V,2)

1

e | V
8

7

3

11

03

3

3

T’ :

T" :

e

e

e

e

e

e

e

e quantity

@cname

component

component

project

e

@sname

supplier

supplier

db
M :

Fig. 3. Automaton and transducers for XFD3.

4 XFD Validation: Attribute Grammar Approach

The integrity constraint validation process for an XML document can be accom-
plished with the use of an attribute grammar. Attribute grammars are extensions
of context-free grammars that allow to specify not only the syntax, but also the
semantics of a language. This is done by attaching a set of semantic rules to
each production of a context-free grammar. In a semantic rule, two types of at-
tributes can be found: synthesized and inherited. Synthesized attributes carry
information from the leaves of a tree to its root, while inherited ones transport
information inversely, from root to leaves.

Definition 5. Attribute Grammar [1]: An attribute grammar is a triple
GA = (G,A, F) where: G = (VN , VT , P,B) is a context-free grammar; A is the
set of attributes and F is a set of semantic rules attached to the productions.
For X ∈ VN ∪VT , we have A(X) = S(X)+I(X), i.e., A(X) is the disjoint union
of S(X), the set of synthesized attributes of X and I(X), the set of inherited
attributes of X . If a is an attribute of A(X), we denote it X.a. For a production
p : X0 → X1 . . . Xn, the set of attributes of p is denoted by W (p) = {Xi.a | a ∈
A(Xi), i ∈ [0 . . . n]}. For each production p : X0 → X1 . . .Xn, the set Fp contains
the semantic rules that handle the set of attributes of p. 2

According to Definition 5, a set A(X) of attributes is associated to each
grammar symbol X to describe its semantic features. This gives rise to the
following definition for the semantic rules:

Definition 6. Semantic rules attached to production rules: In an at-
tribute grammar, each production p : X0 → X1 . . .Xn where X0 ∈ VN and
Xi ∈ (VN ∪ VT)

∗, i ∈ [1 . . . n] is associated to a set of semantic rules of the form
b := f(c1, c2, ..., ck), where f is a function and: (i) b is a synthesized attribute
of X0 and c1, c2, ..., ck are attributes of non-terminal symbols Xi, or (ii) b is an
inherited attribute of a symbol Xi and c1, c2, ..., ck are attributes of X0 and/or
non-terminal symbols Xj , j ∈ [1, . . . , i]. 2

Definition 6 establishes that the semantic analysis of a sentence using an
attribute grammar is accomplished by a set of actions that is associated to each
production rule. In each action definition, the values of attribute occurrences are
defined in terms of other attribute values.

In the context of XFD validation, it would be possible to consider the XML
type (or schema) as the grammar to be enriched with semantic rules. However,
because in our approach integrity constraints are treated independently from
schemas, we use a general grammar capable of describing any XML tree. Thus,
we consider a context-free grammar G with the following three generic produc-
tion rules where α1 . . . αm denote children nodes (being either XML elements or
attributes) of an element A, or the ROOT element:

– Rule for the root element: ROOT → α1 . . . αm, m ∈ N.
– Rule for an internal element node: A → α1 . . . αm, m ∈ N

∗.

– Rule for an element containing data and for an attribute: A → data.

Grammar G is extended with semantic rules composed by attributes and
actions concerning integrity constraints. Reading an XML document means vis-
iting the XML tree top-down, opening tags, and then bottom-up, closing them.
During a top-down visit (to reach the leaves), the validation process specifies
(with the aid of FSAs) the role of each node with respect to a given XFD. This
role is stored in an inherited attribute. Once the leaves are reached, we start a
bottom-up visit in order to pull up the values concerned by the integrity con-
straints. These values are stored into different synthesized attributes. In the rest
of this section, Tables 1-4 introduce our attributes and semantic rules.

Inherited attribute. Firstly, we consider the inherited attribute conf which
represents for each node in t its role concerning the given XFD. Its value is a set
of FSA configurations. All nodes in t, except nodes of type data are bound to
a conf attribute, but for some nodes the value of conf is the empty set, which
means that this node is not on any path of the XFD.

Tables 1 and 2 show the semantic rules that specify the operations to be
executed on conf, considering root or internal nodes (except leaves). The first
instruction associated to production ROOT → α1 . . . αm in Table 1 sets the at-
tribute conf of the root node to be M.q1, provided that the root node label is the
first transition label in M . Then the value of ROOT.conf is transmitted, using
the descending direction, to αi.conf . If ROOT.conf contains a configuration
with a final state for M , then it is necessary to start considering the transducers
for calculating configurations for αi.conf .

Table 1. Semantic Rule for Root Production: Attribute conf .

Production Attributes

ROOT → α1 . . . αm ROOT .conf := { M.q1 | δM (q0, ROOT) = q1}
for each αi (1 ≤ i ≤ m) do

αi .conf := { M.q′ | δM (q1, αi) = q′ }
if (q1 ∈ FM) then

αi .conf := αi .conf ∪ { T ′.q′1 | δT ′(q′0, αi) = q′1 }
∪ { T ′′.q′′1 | δT ′′(q′′0 , αi) = q′′1 }

Similarly, Table 2 specifies how values are assigned to attributes conf of
internal node children (using rule A → α1 . . . αm). For each αi, we consider
each configuration M.q in the parent’s conf (M standing for either M , T ′ or
T ”): the transition δM (q, αi) gives us a new configuration that is stored in
αi’s conf . Furthermore, we verify if we must change from context automaton to
determinant and dependent transducers, as illustrated in Example 1.

Example 1. - We consider XFD3 (Section 2) for a company and its projects: this
dependency is depicted by automaton M3 and transducers T ′

3 et T ′′

3 of Figure 3. The
inherited attribute conf is calculated from the root to the leaves as shown in Figure 4.

Table 2. Semantic Rule for Internal Node Production: Attribute conf .

Production Attributes

A → α1 . . . αm for each αi (1 ≤ i ≤ m) do

for each M.q ∈ A.conf do

αi .conf := { M.q′ | δM (q, αi) = q′ }

if (M = M) ∧ (q ∈ FM)
then αi .conf := αi .conf ∪ { T ′.q′1 | δT ′ (q′0, αi) = q′1 }

∪ { T ′′.q′1 | δT ′′ (q′0, αi) = q′1 }

In the root node, attribute conf has configuration5 {M3.e1} obtained for node labelled
db. This configuration comes from the first transition in M3. For the node in position 0.1
(with label supplier), attribute conf contains T ′

3.e4 and T”3.e9, as its parent contains
a configuration with M in a final state, which denotes a context node. 2

 2conf = {M.e }

 7conf = {T’.e }

 11conf = {T’’.e }

conf = {T’.e } 7

 1conf = {M.e }

conf = {T’’.e } 11

 5conf = {T’.e } 10 6conf = {T’.e , T’’.e } conf = {T’.e , T’’.e } 6 10

 9 4conf = {T’.e , T’’.e }

@sname

...

datadata

0.1.1.2.00.1.1.1.0

0.1.0 0.1.1

0.1.1.20.1.1.10.1.1.0

955X Neo

5185,00

0.0

data

0.0.0

0

0.1

MSIProj1

datadata

0.1.2.2.00.1.2.1.0

0.1.2.20.1.2.10.1.2.0

0.1.2

182,90

K8N

7

db

ε

project

supplierpname

component component

@cname price quantity @cname price quantity

conf = { }

conf = { } conf = { }

Fig. 4. Inherited attributes conf for XFD3.

Synthesized attributes. We use the ascending direction to compute synthe-
sized attributes: the values that are part of the dependency are collected, treated
and carried up to the context node. At the context nodes, these values are com-
pared in order to verify XFD satisfaction.

For each functional dependency, with possibly many paths, there are k + 3
synthesized attributes, where k is the number of paths in the determinant part of

5 To simplify notations M3,T
′

3 and T ′′

3 do not contain indexes in Figure 4.

the dependency (Definition 3). They are denoted by c, inters, dc and dsj (1 ≤
j ≤ k). Attribute c is used to carry the dependency validity (true or false)
from the context level to the root. Attribute inters gathers (bottom-up) the
values from the nodes that are in determinant and dependent path intersections.
Finally, dsj and dc are attributes for storing the values needed to verify the
dependency. These values can be of type data (leaves of t) or node positions,
according to the XFD definition of E and Ej .

Attribute inters builds the tuple <l1, l2> where l1 is a tuple containing the
values of the determinant part and l2 contains the value of the dependent part.
Consider, for instance, the validation of XFD3 in Figure 5. The context node
at position 0 has just one supplier (position 0.1) that provides two distinct com-
ponents. In this context, there is a path instance for supplier/@sname and two
instances for the pattern formed by paths supplier/component/@cname and sup-
plier/component/quantity. Thus, tuple < l1, l2 > assigned to inters in position
0.1 is {<< MSI, 955XNeo >, 5 >,<< MSI,K8N >, 7 >>}. To compute the
value of this tuple we combine the values carried from the determinant part and
assemble this combination with the value of the dependent part. Then, attribute
inters carries the XFD values up to the context level.

Table 3. Semantic Rule for Leaf Production: Attributes dsj and dc.

Production Attributes

A → data for each configuration M.q in A.conf do

if (M = T ′) ∧ (q ∈ FT ′)
y := λ′

T ′(q)
j := y.rank
if (y.equality = V)

then A.dsj := < value(t, data) >
else A.dsj := < value(t,A) >

if (M = T ′′) ∧ (q ∈ FT ′′)
if (λ′′

T ′′(q) = V)
then A.dc := < value(t, data) >
else A.dc := < pos(t,A) >

The values of attributes c, inters, dsj and dc are defined according to the
role of the parent node w.r.t. the XFD. We recall that this role is given by the
value of attribute conf. Table 3 shows how to calculate dsj and dc for parents
of nodes data (the grammar rule for leaves). As seen in Section 3, transducer
T ′ has an output function λ′ and associates the couple (equality, rank) to each
final state q ∈ F ′ of T ′, where equality stores the equality type (V ou N) and
rank is the rank j of Pj . Transducer T ′′ follows the same idea, but in this case,
as the dependent part of an XFD has just one path, the output function λ′′

associates to each final state q ∈ F ′′ only one symbol representing the equality
type. In Table 3, the function value(t, A) returns the parent position. In Figure 5
we depict values of attributes ds1, ds2 and dc for XFD3.

Table 4. Semantic Rule for Internal Node Production: Attributes dsj , dc, inters, c.

Production Attributes

A → α1 . . . αm intersF lag := true

for each configuration M.q in A.conf do

(1) if (M = T ′′) ∧ (q ∈ FT ′′) then

if (λ′′

T ′′(q) = N) then A.dc := < value(t,A) >
else A.dc := < α1.dc, . . . , αm.dc >

(2) if (M = T ′) ∧ (q ∈ FT ′) then

y = λ′

T ′(q) j = y.rank
if (y.equality = N) then A.dsj := < value(t,A) >

else A.dsj :=< α1.dsj , . . . , αm.dsj >

(3) if (M = T ′′) ∧ (q /∈ FT ′′) then

for each αi (1 ≤ i ≤ m) do

if (αi.inters =<>) then A.dc := αi.dc

if (M = T ′) ∧ (q /∈ FT ′) then

for each αi (1 ≤ i ≤ m) do

if (αi.inters =<>) then

for each j (1 ≤ j ≤ k) do A.dsj += αi.dsj
(4) if (M = M) ∧ (q ∈ FM)

then A.inters := A.inters + αw.inters
A.c := < ∀ w, z in A.inters, w 6= z: w.l1 = z.l1

⇒ w.l2 = z.l2 >
intersF lag := false

(5) if (M = M) ∧ (q /∈ FM)

then A.c := < (∀ xw : αw.c =< xw >⇒
m∧

w=1

xw) >

intersF lag := false
end for

(6) if (intersF lag = true) then

for each j (1 ≤ j ≤ k)
if (A.dsj =<>) then A.dsj := ε // ε is the empty string

if (A.dc =<>) then A.dc := ε
temp := < A.ds1 × · · · × A.dsk >
A.inters := < temp× A.dc >

if (∀ M.q ∈ A.conf : q /∈ FT ′ ∧ q /∈ FT ′′) then

for each αi (1 ≤ i ≤ m) do

A.inters += αi.inters
A.inters := mapping(A.inters)

Table 4 defines the synthesized attribute computation for internal nodes. In
the following, we explain their computation, respecting the numbering in Table 4.
We denote p the parent’s position whose synthesized attributes are computed.

1. When p is a node in the XFD dependent path (transducer T ′′) and is also
the last node, we have: if E = V , values for attribute dc are obtained from
the values of p descendants whose type is data; if E = N then dc stores p.

2. When p is the last node for an XFD determinant path Pj we have: if E = V
the value of an attribute dsj is obtained from p descendants whose type is

data; if E = N then dsj stores p. In this case, rank j and the equality type
of Pj come from λ′ (y = λ′

T ′(q)).

3. When p is a node corresponding to the intersection of paths in XFD, then
p is seen as a point where obtained values should be combined in order to
build a tuple containing the values of the determinant and the dependent
parts. We denote this tuple by < l1, l2 >, where l1 is a tuple of determinant
values, and l2 is the dependent value. As a result, < l1, l2 > contains the
combined XFDs values to be carried up.

4. When p is an XFD context node then attribute inters should keep all n-
tuples (the final dependency values) from attributes inters of descendant
nodes. At this point the XFD is validated for a specific context, and if it is
satisfied, attribute c is assigned true, otherwise false.

5. When p is a node in the context path, then c is assigned the conjunction of
values obtained from attribute c of its descendants (one attribute c for each
context node). If c is true then the XFD is respected up to node p. If p is
the root node then the XFD is respected in the whole document.

6. To combine values from the determinant and dependent parts we use a
boolean variable (intersF lag), a variable (temp) and a mapping function.
Variable intersF lag indicates when there are no more intersections to cal-
culate (which means that the node is in the context path). When there are
intersections to calculate, we proceed by steps. Firstly we build a n-tuple
for dsj and dc of a node A. This is done by assigning to temp the Carte-
sian product of each dsj . Afterwards, a second Cartesian product is done to
combine attribute values from temp and dc. The resulting tuple < l1, l2 >
is stored in A.inters. At this point, function mapping verifies, for each tu-
ple l1, if there are empty values that may be replaced by non-empty values
obtained from another tuple l1. It returns a completed tuple.

Example 2. In Figure 5, we show the computation of attributes c, inters, dsj and dc
for XFD3 of Example 1. Due to the determinant part of XFD3, attributes dsj store
the values obtained from @fname (supplier name) and @cname (component name).
On the other hand, dc stores a value for quantity. The attributes dsj and dc carry
the dependency values up to the first intersection node (component). Notice that for
position 0.1.1 we have ds1 = {ǫ} ds2 = {955XNeo} and dc = {5}. To compute temp
we perform ds1 × ds2 which gives temp = {{ǫ, 955XNeo}}. The attribute inters is
computed using Cartesian products between dsj and dc. Thus inters = temp × dc,
which gives inters = {{{ǫ, 955XNeo}, 5}}. The function mapping is not executed for
nodes component (positions 0.1.1 and 0.1.2) because there is only one tuple l1 in each
attribute inters. The next intersection, for node supplier in position 0.1, creates the
following tuple, obtained from ds1 of @sname: < <MSI ,ε>, ε>. The attribute inters
of node supplier stores the new tuple and also puts together the tuples of attributes
inters from subnodes: < < <MSI ,ε>, ε>,< <ε, 955XNeo>,5>,< <ε, K8N>,7> >.
Next, function mapping verifies for each two binary tuples in inters if their values can
be joined. The result is: < < <MSI , 955XNeo>,5>, < <MSI , K8N>,7> >. In the
context node, labelled project, the dependency is verified (according to Definition 4)
and the value true is assigned to the attribute c. This last attribute is carried up to
the tree root as well as attributes c from other context nodes. 2

εinters = { << , K8N>, 7>}inters = {<< , 955X Neo>, 5> }ε

dc = <7>
ds2 = <K8N>

dc = <5>
ds2 = <955X Neo>

dc = <7>

7182,90

0.1.2.1.0 0.1.2.2.0

data data

ds2 = <K8N>
@cname

K8N

0.1.2.0

quantityprice

0.1.2.1 0.1.2.2

component
0.1.2

185,00

0.1.1.1.0 0.1.1.2.0

data

5
data

price

0.1.1.1

quantity

0.1.1.2
ds2 = <955X Neo>

@cname

955X Neo

0.1.1.0
dc = <5>

ds1 = <MSI>
component@fname

MSI

0.1.10.1.0

Proj1

0.0.0

data

pname
0.0 inters = { <<MSI, 955X Neo>, 5> , <<MSI, K8N>, 7>}

supplier
0.1

ds1 = <MSI>

project c = <true>

0

...

ε

c = <true>
db

Fig. 5. Synthesized Attributes c, inters, dsj and dc for XFD3.

To finish this section, we notice that the grammar presented here generates
any well-formed XML document (having elements or attributes in Σelem or Σatt).
It can be seen that the documents which respect a given set of XFD are exactly
the ones having a value true as the attribute c for their context nodes.

5 Algorithm Analysis and Experimental Results

As we have discussed in [7, 10], our grammarware can be regarded as a generic
way of implementing constraint verification from scratch that requires only one
pass on a XML document. Indeed, our way of using attribute grammar for ver-
ifying integrity constraints consists in the following stages:
(1) define a generic grammar capable of generating any labelled tree;
(2) define inherited attributes to distinguish nodes which are involved in the
integrity constraints, specified by using FSA;
(3) define synthesized attributes whose values are computed by functions that
check the properties stated by a given constraint.
Thus, our generic aspect refers to the fact that, by adapting some parameters,
the same reasoning is used to validate different constraints: in particular, by
determining which nodes are important in a constraint definition and, as a con-
sequence, by establishing which FSA and attributes are needed.

The following table illustrates the parameter adaptation for XFD, keys (XKeys)
and foreign keys (XFK). The case XFD was discussed in this paper. We refer

to [6] for details concerning key and foreign key validation. Notice that besides
context and leaf nodes, key specification also needs an extra special node denoted
by target. Consequently, three finite state automata are used, one associated to
each special node in the key (or foreign key) specification.

Constr. Path expression FSA Attributes

XDF (C, ({P1 [E1], . . . , Pk [Ek]}
→ Q [E])) M , T and T ′ Inherit.: : conf

Synth.: c, inters, dsj , dc

XKeys (C, (Tg,{P1, . . . , Pk})) AC , ATg et AP Inherit.: conf
Synth.: c, tg et f

XFK (C, (TgR, {PR
1 , . . . , PR

k })
⊆ (Tg, {P1, . . . , Pk})) AC , AR

Tg, A
R
P Inherit: conf

Synth.: c, tg et f

As shown in Section 4, XFD validation can be divided in two parts: (i)
generation of tuples and (ii) checking, at a context level, the distinctness or
(value) equivalence of the obtained tuples. Tables 3-4 have offered the details of
these operations: the rules describe how to compose tuples, how to verify when
we reach a context node and, in this case, how to perform appropriate checking.
The validation of other integrity constraints is done in a similar way, changing
the tests performed and the actions in concerned nodes.

The generation of tuples and their verification for a given XFD is done while
parsing the XML document T and its time complexity is O(n.np.nt) where n
is the number of nodes in T , np is the number of paths for the given XFD and
nt is the number of obtained tuples (instances of the XFD to be compared).
This complexity is not affected by the shape of the XML document, but it can
be affected by the number of XFD instances existing in the document. When
there is a large number of XFD instances, the comparisons performed are time
consuming at context level.

Each XFD is checked by running the finite state automaton that corresponds
to its path and we use two stack structures to store the inherited and synthesized
attributes. The synthesized attributes are collected to compose the XFD tuples
until a context level. At this point, we use a hash table to store the formed tuples.
The index/value pair for the hash table is defined by the tuple determinant and
dependent parts, respectively. Thus, a tuple insertion in the hash table is valid if
its determinant part is not already an index. Otherwise, the dependant value of
the tuple that exists in the hash table is compared with the dependant value of
the one to be inserted: if they are distinct then the XFD is not respected under
the particular context and this part of the validation returns false.

The implementation of our validation method was done in Java. XML docu-
ments have been created specifically for our tests using the template-based XML
generator ToXGene6. By using the Xerces SAX Parser documents are read and
the necessary information stored into our data structures. The experiments were
performed using a PC with Intel Pentium Dual CPU TE2180 at 2.00GHz, 2GB

6 http://www.cs.toronto.edu/tox/toxgene/

RAM under Microsoft Windows XP. For the tests illustrated in Figure 6, we
used 4 XML documents containing projects information (as shown in Figure 1)
with varying sizes (8MB, 41MB, 83MB and 125MB) where we considered strings
of size 10 and integers of size 3 for random data generation in ToXGene tem-
plates. In Part (a) we show time validation when we have a fixed number of
paths (2 determinant paths as XDF3 shown in Section 2) but a varying number
of concerned tuples. The validation time increases linearly w.r.t. the number of
tuples. In Part (b) we do the inverse: we have a varying number of determinant
paths for a fixed number of tuples (1000K).

8MB 41MB 83MB 125MB

100 500 1000 1500 4321

00

tim
e

(s
ec

)

tim
e

(s
ec

)

Number of paths

(a) (b)
Number of tuples (K)

10

20

30

40

50

10

20

30

40

50

Fig. 6. (a) Validation time with number of LHS paths fixed to 2. (b) Validation time
with number of tuples fixed to 1000K.

6 Conclusions

An attribute grammar can be used as an integrity constraint validator. This
paper shows its application as an XFD validator while in [6] the same reason-
ing has been used for keys. As in [17, 16], the validation is performed in linear
time w.r.t. the document size and the number of XFD paths and instances. The
added value of our proposal lies in its generic nature, since our generic attribute
grammar can stand for any XML constraint validator (provided that the con-
straint is expressed by paths), by adjusting attributes, tests and the needed FSA.
An incremental version of XFD validation is obtained by extending the propos-
als introduced in [6]. We consider the possibility of adapting our approach to
implement more powerful languages such as the tree patterns proposed in [9].

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley, 1988.

2. M. Arenas and L. Libkin. A normal form for XML documents. In ACM Symposium
on Principles of Database System, 2002.

3. M. Arenas and L. Libkin. A normal form for XML documents. ACM Transactions
on Database Systems (TODS), 29 No.1, 2004.

4. M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Automated update man-
agement for XML integrity constraints. In Program Language Technologies for
XML (PLANX02), 2002.

5. N. Bidoit and D. Colazzo. Testing XML constraint satisfiability. Electr. Notes
Theor. Comput. Sci., 174(6):45–61, 2007.

6. B. Bouchou, A. Cheriat, M. Halfeld Ferrari, D. Laurent, M. Lima, and M. Mu-
sicante. Efficient constraint validation for updated XML databases. Informatica,
31(3):285–310, 2007.

7. B. Bouchou, M. Halfeld Ferrari, and M. Lima. Contraintes d’intégrité pour XML.
visite guidée par une syntaxe homogène. Technique et Science Informatiques,
28(3):331–364, 2009.

8. Y. Chen, S. Davidson, and Y. Zheng. XKvalidator: A constraint validator for XML.
In Proceedings of ACM Conf. on Information and Knowledge Management, 2002.

9. F. Gire and H. Idabal. Regular tree patterns: a uniform formalism for update
queries and functional dependencies in XML. In EDBT/ICDT Workshops, 2010.

10. M. Halfeld Ferrari. Les aspects dynamiques de XML spécification des interfaces de
services web avec PEWS. Habilitation à diriger des recherches, Université François
Rabelais de Tours, 2007.

11. S. Hartmann, S. Link, and T. Trinh. Solving the implication problem for XML
functional dependencies with properties. In Logic, Language, Information and
Computation, volume 6188 of LNCS. Springer Berlin-Heidelberg, 2010.

12. S. Hartmann and T. Trinh. Axiomatising functional dependencies for XML with
frequencies. In Foundations of Information and Knowledge Systems (FoIKS), 4th
Int. Symposium, pages 159–178, 2006.

13. Christoph Koch and Stefanie Scherzinger. Attribute grammars for scalable query
processing on XML streams. The VLDB Journal, 16:317–342, July 2007.

14. J. Liu, M. W. Vincent, and C. Liu. Functional dependencies, from relational to
XML. In Ershov Memorial Conference, pages 531–538, 2003.

15. F. Neven. Extensions of attribute grammars for structured document queries. In
Proceedings of International Workshop on Database Programming Languages, 1999.

16. Md. S. Shahriar and J. Liu. On the performances of checking XML key and
functional dependency satisfactions. In OTM Conferences (2), pages 1254–1271,
2009.

17. M. W. Vincent and J. Liu. Checking functional dependency satisfaction in XML.
In XSym, pages 4–17, 2005.

18. M. W. Vincent, J. Liu, and C. Liu. Strong functional dependencies and their
application to normal forms in XML. ACM Transactions on Database Systems,
29(3), 2004.

19. J. Wang and R. Topor. Removing XML data redundancies using functional and
equality-generating dependencies. In Proceedings of the 16th Australasian Database
Conference, 2005.

20. Cong Yu and H. Jagadish. XML schema refinement through redundancy detection
and normalization. The VLDB Journal, 17:203–223, 2008.

21. X. Zhao, J. Xin, and E. Zhang. XML functional dependency and schema normal-
ization. In HIS ’09: Proceedings of the 9th International Conference on Hybrid
Intelligent Systems, pages 307–312, 2009.

