
Tree Automata to Verify XML Key Constraints

Béatrice Bouchou
Université de Tours

LI/Antenne Univ. de Blois
3 place Jean Jaurès
41000 Blois, France

bouchou@univ-tours.fr

Mı́rian Halfeld Ferrari
Université de Tours

LI/Antenne Univ. de Blois
3 place Jean Jaurès
41000 Blois, France

mirian@univ-tours.fr

Martin A. Musicante
�

Univ. Federal do Paraná
Dep. de Informática

C.P. 19081
81531-970 - Curitiba - Brazil

mam@inf.ufpr.br

ABSTRACT
We address the problem of checking key constraints in XML. Key
constraints have been recently considered in the literature and some
of their aspects are adopted in XMLSchema. However, only few
works have appeared concerning the verification of such constraints.

Unranked deterministic bottom-up tree automata can be used to
validate XML documents against a schema. These automata work
over (unranked) trees used to represent XML documents.

In this paper we show how key constraints can be integrated in
such automaton by extending the automaton to carry up values from
the leaves to the root, during its run. In fact the tree automaton be-
comes a tree transducer. Under these conditions, the key verifica-
tion is done in asymptotic linear time on the size of the document.

Keywords: XML key constraints, tree automata, XML

1. INTRODUCTION
We consider a data-exchange environment where an XML doc-

ument should respect two kinds of constraints: schema constraints
and key constraints. Schema constraints correspond to attribute and
element restrictions. Key constraints give the possibility of iden-
tifying data without ambiguity and, therefore, introduce a value-
based method of locating items in a document. Keys for XML have
received more attention recently. They exist in XMLSchema [2]
and some formal definitions have been introduced in [9, 10].

We address the problem of validating both schema and key con-
straints. To this end we use bottom-up tree transducers as an ex-
tension of the tree automata introduced in [7]. Tree automata are a
natural way of describing structural constraints. However, in order
to validate key constraints we need to manipulate data values. To
this end, we introduce output functions whose basic task is to de-
fine the values to be carried up from children to parents in an XML
tree.

In this work we concentrate our attention to the validation of key
constraints as defined in [9]. We present an efficient key validator�

On leave at Université de Tours. Partly supported by CAPES
(Brazil) BEX1851/02-0.

Copyright is held by the author/owner.
International Workshop on the Web and Databases (WebDB).
June 12–13, 2003, San Diego, California.

whose work consists in executing a tree transducer over an XML
document.

We see an XML document as a structure composed by an un-
ranked labeled tree and functions type and value. The function type
indicates the type of a node (element, attribute or data). The func-
tion value gives the value associated to a node. Figure 1 shows
part of the labeled tree representing the document used in our ex-
amples. Each node is represented by a label and a position (for
instance, position

�
is associated to the label politicPos). More-

over, in this figure, an XML element has both its sub-elements and
attributes as children. Elements and attributes associated with an
arbitrary text have a child labeled data. Attribute labels are de-
picted with a preceding @. The following example illustrates how
the tree transducer performs the validation of a key constraint.

. . .

. . .

. . .
0

00

000 ����� � � � � � 	 01

010 011
 ����	

 	������

012
 ����	

 	 �����

013

02

 ��� � � � � ����� 1
 ��� � � � � ������

����� �

� 	���� ����� � 	 ��	
����� �

0110

@ � ����� � � ��� �
@ � � ���������� � @ � ����� ����� �@ � � �����

011000 ����� �
01101 ����� �011010

01200

012000

01201

012010

01210

01100

� � ��� �0121

 	������
� ��� � 	���	
0120

�������
� �� � ���!0100

� �"��	���� ��	
 � !

� �"� 	�����	 ! � # �$� � � ! ����� �� �%�&� �%�&�'�%�! � (*) � ��� !� + ��� � ! � �,�&� �-�&�.�/�!
0111

01110

Figure 1: Tree representation of an XML document.

Example 1.1 We suppose the document of Figure 1, describing
the organization of indirect elections, i.e., the electoral colleges
that vote for different political positions. Now consider the con-
straint expressed by 021436587�9;:<92=?>@5$A8B�0DC 1E=F587�7�G"HIG�B4J�C 1EKIGMLON�PEQRQ to indi-
cate that for a political position, an electoral college can be uniquely
identified by the year of the election. In other words, year is a key
for an electoral college voting for a given political position. We say
that politicPos defines context nodes, college defines target nodes
and year defines key nodes.
In order to verify the above constraint, we execute our tree trans-
ducer over the tree of Figure 1. This execution consists of visiting
the tree in a bottom-up manner, according to the following steps:

1. The tree transducer computes the values associated to all
nodes labeled data.

We consider S�LI7�TUG�0 �IV"�8� QXWZY �8� Y , S�LI7�T[GO0 � Y �*� Q\W VM]*]8^
as some of the values computed in this step1.

2. The tree transducer analyzes the parents of the data nodes. If
they are key nodes, they receive the values computed in step
1. Otherwise, no value is carried up.

In our case, the values Y �8� Y and
VM]*]8^

are passed to the key
nodes

�IVM�
and

� Y � , respectively.
3. The tree transducer continues its execution just passing the

values from children to parent until it finds a target node. At
this level the values for each key are grouped in a list.

In our case, the node
�IV

(labeled college) is a target node. As
the key is composed by just one item, the list contains only
the value Y �8� Y .

4. This step consists of carrying up the lists of values obtained
in the previous step until finding a context node. At this level,
the transducer tests if all the lists are distinct, returning a
boolean value.

In our case, politicPos is a context node. It receives several
lists, each one containing the year of a college. The test ver-
ifies the uniqueness of those years.

5. The boolean values computed in step 4 are carried up to the
root. At the root, the conjunction of these boolean values is
obtained.

The key constraint 021_3[5*7�9;:D9`=">@58A8B�0DC 1�=?5*7�7�G"HIG$BFJ�C 1�KaGMLON$P*QRQ is satis-
fied if the conjunction computed at step 5 results in :DNETUG . b

Given the tree representation c of an XML document, we can
test schema and key constraints by a single bottom-up visit of the
labeled tree. Example 1.1 illustrates how the key constraint verifi-
cation is performed. In [7] schema constraint verification is treated
in details (see Section 3 for a short explanation on this aspect).

The main contributions of our work ared An efficient validator for both schema and key constraints.
The validation is performed by the bottom-up visit of the
XML tree, in only one pass.d A method for allowing the use of DTDs with key constraints.
DTDs are easily translated into a tree automata [7]. In this
work we give an algorithm to add key constraint verification
to the tree automata. In this way, our verification takes into
account both unique and not null properties of the key.d An unranked bottom-up tree transducer (a generalization of
the ranked one [11]) where syntactic and semantic aspects
are well separated. Schema validation deals with syntactic
(structural) features of an XML tree (a plain tree automata
can be used to this end). Key validation is about semantics.
It requires an extension of tree automata allowing the manip-
ulation of data values.

The rest of this paper is organized as follows. In Section 2 we re-
call the definitions of unranked labeled trees and key constraints. In
Section 3, unranked tree transducers are introduced as an extension
of tree automata. We present a method to express key constraints
as output functions and we show that, in this way, an efficient ver-
ification of key constraints is possible. Finally, in Section 4, we
consider some related work, and we discuss our perspectives for
further research. Proofs are omitted due to lack of space.

1Node
� Y �*� does not appear in Figure 1, but from the definition

of positions in Section 2, it is easy to see that it is a grand-child of
node

� Y .

2. XML TREES AND KEY CONSTRAINTS
In this section we recall the notions of unranked e -valued trees

and key constraints.
Firstly, let f be the set of all finite strings of positive integers

with the empty string g as the identity. In the following definition
we assume that h�5Eij0�:RQlkmf is a nonempty set closed under pre-
fixes2, i.e., if TonpS , Srqsh�5Eij0�:RQ implies Toqth�5Eij0�:_Q .
Definition 2.1 - e -valued tree : : A nonempty e -valued tree : is
a mapping :vuah�5*iw0�:_Qyxze where h�5*iw0�:_Q satisfies: {s| � B_T�{sqh�5Eij0�:_QFB �~} 9 } {���T[9�qth�5Eij0�:_Q . The set h�5Eij0�:_Q is also called
the set of positions of : . We write :?0;SIQlW�L , for S�qph�5Eij0�:_Q , to
indicate that the e -symbol associated to S is L . For each position3 in h�5Eij0�:_Q , =?�6927�h�N8GM��0�3�Q denotes the positions 3[9 in h�5Eij0�:RQ , and� L�:R�[GMNI0�3�Q denotes the father of 3 . Define an empty tree : as the
one having h�5*iw0�:_Q�W�� . b

Unranked trees can be used to represent an XML document. In
fact, there are different ways to encode an XML document as a tree.
The following definition introduces our choice of representation.

Definition 2.2 - XML tree c : Let epW�e��D���E��e��M���_��J�h�L�:DL6P be an
alphabet where e �D��� is the set of element names and e �M��� is the set
of attribute names. An XML tree is a tuple c�W�0�:?B�:DK�3UG$BDS�LI7�T[G*Q
where:d : is a e -valued tree (i.e., :�u8h�5*iw0�:_Q�x�e).d :DK�3UG and S�LI7�T[G are functions defined as follows for a posi-

tion 3sq�h�5Eij0�:RQ ::DK�3UG�0�3�Q�W �� � h�L�:DL if :"0�3�Q�W�h�L�:DLG�7�GMisGM�U: if :"0�3�Q�q�e��D���L�:<:DNE9` ?T6:DG if :"0�3�Q�q�e �M���S�La7�TUG�0�3�Q�W¢¡ S�La7£q V if :<K�3UG�0�3�Q�W�h�LO:<LT[��hOG � 9`�¤GMh otherwise

where V is an infinite (recursively enumerable) domain. b
An XML key constraint over c is defined in three steps. In the

first step we identify a set of positions from the root as the context
in which the key must hold. In the second step, we obtain a set
of target positions on which the key is being defined. Finally, we
specify the set of values that distinguish each target position. We
use a subset of XPath expressions, as in [10], to specify context and
target positions and to obtain the values that compose keys.

Using the syntax of [9] a key can be written as0`>�BM0`>@¥2B4JE>�¦MB"C�C�C�B4>�§�PEQRQ
where > , > ¥ and >�¦MB"C�C�C�B4>�§ are path expressions. > is called the
context path, > ¥ the target path and > ¦ B"C�C�C�B4>�§ the key paths. Fig-
ure 2 shows a e -valued tree with the positions we can reach by
following each path. Level 3 corresponds to the root of the tree
(reached by the path “ 1 ”). The context path begins at the root and
specifies a set of context positions, shown in level 2. We say that
these positions are associated to context labels. From each context
position 3 , we define a set of target positions (associated to target
labels) corresponding to the nodes reachable from 3 by following
the path > ¥ (level 1). The key constraint specified by >�¦"B?C�C�C�B4> §
must hold for every target position. Level 0 corresponds to the po-
sitions composing a key (each of them associated to a key label).

Now, in [9], we find different types of keys, i.e., different defi-
nitions of the semantics of a key. In our work, we adopt the def-
inition called strong keys. Moreover, we consider that key paths
2The prefix relation in f , denoted by n is defined by: T�n¢S iffT[¨©W�S for some ¨�qªf .

Level 0

(«8¬�«E­)Level 1

(«)
Level 2

(¬)Level 3

(«8¬�« ­ ¬�®D¯)
Figure 2: Context, target and key positions in an XML tree.

must define attributes or elements which occur exactly once and
are associated to a data node. This restriction is also present in
XLMSchema [10]. In the following we formalize the notion of key
satisfaction and we present some examples of XML keys.

Definition 2.3 - Key satisfaction [9]: An XML tree c is said to
satisfy a key 0`>�BM0`> ¥ BFJ�> ¦ BMC�C�C�B4>�§8P*QRQ iff for each context position 3
defined by > the following conditions hold:0;9�Q For each target position 3 ¥ reachable from 3 via > ¥ there exist a
unique position 3O° from 3 ¥ , for each >U°I0 V@} { }²± Q .0;9`9�Q For any target positions 3 ¥ , 3 ¥ ¥ , reachable from 3 via > ¥ , when-
ever the values reached from 3 ¥ and 3 ¥ ¥ via >U°O0 Vj} { }�± Q are
equal, then 3 ¥ and 3 ¥ ¥ must be the same position. b
Example 2.1 Considering the document represented by Figure 1,
we write the following keys:d´³ ¦�Wµ021I0DC 143[5*7�9;:D9`=?>@5$A8B?J�C 1M:D9;:R7�G*PEQRQ
Within the context of the whole document (“ 1 ” denotes the empty
path from the root), a political position is identified by its title.d´³·¶ Wµ02143[5*7�9;:D9`=">@58A8B�0DC 1E=?5*7�7�G"HIGBFJC 1�KIG�LON$P*QRQ
For a political position, an electoral college can be uniquely identi-
fied by the year of the election.d´³r¸ Wµ0�143[5*7�9;:D9`=?>@5$A�1E=F587�7�G"HIG�B"0DC 1_3UGMN$A"5E��BJ�C 1E��LOisGE1 @ � 9`N$A?:?BMC 1��¤LOi�G*1 @ 7�LaA?:?B"C 1� ?9`NE:D��P*QRQ
Within a electoral college, a person can be uniquely identified by
the composition of his/her first, last name and birthday.
Its worth to remark that in ³r¸ we cannot replace “ 1E��LOisGE1 @ � 92N8A?: ,C 1��¤LOi�G*1 @ 7�LaA?: ” by “ C 1E��LOisG ” since in this case the key values are
XML trees rather than a data node (i.e., a text). b
3. TREE TRANSDUCERS FOR XML

We consider an XML tree c that should respect a given schema
and some key constraints. We introduce an unranked tree trans-
ducer capable of verifying both the schema and the key validity.
This transducer extends the tree automaton of [7] by associating an
output function to each transition rule. In this way, we allow values
to be carried up from leaves to the root. In the following we formal-
ize the concepts of output function and unranked tree transducer.

Definition 3.1 - Output function: Let D be an infinite (recur-
sively enumerable) domain and c¹W¹0�:FBD:DK�3UG$BDS�LI7�T[G*Q be an XML
tree. An output function

�
takes as arguments: 0;9�Q a position 3pqh�5Eij0�:RQ , 0;9`9�Q a set A of pairs 0;L�:�:?B_7�º*Q where LO:�: is a tag associ-

ated to a list 7 º q D » and 0;929`9�Q a list 7 of items in D. The re-
sult of applying

� 0�3£B_A$BR7;Q is a list of items in D. In other words,� u$h�5Eij0�:RQ�¼�½¾02e�¼ D » Q�¼ D » x D » . b
The notation D » denotes all the lists of items in D.

Definition 3.2 - Unranked bottom-up tree transducer (UTT):
An UTT over e and D is a tuple ¿ÀW�0`ÁrB_eÂB D B_Á�ÃaB4Ä·B_Å�Q whereÁ is a set of states, ÁXÃwkÀÁ is a set of final states, Ä is a set of
transition rules and Å is a set of output functions. For each transi-
tion rule in Ä , there is an output function

�
in Å .

Each transition rule in Ä has the form L�B_Æ�B_ÇÈxÊÉ where (i)L�qËe ; (ii) Æ is a set of two disjoint sets of states, i.e., ÆÌWJ*ÆUÍ<Î4ÏÑÐ"ÒE��Ó<Î4Ô4Õ�B4ÆUÎDÐ ��Ö Î4× � ��P (with ÆUÍ<Î4ÏÑÐ"Ò*��Ó<Î4Ô_ÕXkØÁ and Æ�ÎDÐ ��Ö ÎF× � �ÙkÁ); (iii) Ç is a regular expression over Á and (iv) ÉXq�Á . Each out-
put function in Å has the form

� 0�3£B4A8B_7�QÑW�7 ¦ as in Definition 3.1. b
Now, we consider the execution of an UTT on a e -valued tree :

(in c). As : represents an XML document, the children of any po-
sition 3�qsh�5Eij0�:RQ can be classified into two groups: those that are
unordered, corresponding to the attributes of the node, and those
that are ordered, corresponding to the sub-elements.

The transducer states two types of constraints: schema constraints
and key constraints. Schema constraints are stated by the transition
rules in Ä . In order to verify these constraints, i.e., to assume a
state É at position 3 , the transducer ¿ performs the following tests:

1. If 3 has attribute children then the states assumed for them
should correspond to those specified by the sets in Æ , namely,Æ�Í�ÎFÏ�ÐMÒE��Ó<Î4Ô_Õ and Æ�ÎDÐ ��Ö ÎF× � � , corresponding, respectively, to3 ’s children that must appear in the tree and those that may
appear3.

2. If 3 has element children then the concatenation of the states
assumed at them must belong to the language generated by
the regular expression Ç .

Key constraints are expressed by the output functions in Å (see
Algorithm 3.1). As the tree is to be processed bottom-up, the ba-
sic task of the output functions is to define the values that will be
passed to the parent position, during the run.

Definition 3.3 - A run of ¿ on a finite tree : : Let : be a e -valued
tree and ¿ÚWÛ0`Á¾B_eÂB D BRÁ�ÃIB4Ä·B_Å�Q be an UTT. A run of ¿ on : is:
(i) a tree NruIh�5*iw0;N$Q�xÜÁ such that h�5*iw0;N$Q�WÚh�5Eij0�:_Q and (ii) a
function £ u8h�5Eij0;N8Q�x D » , defined as follows:

For each position 3 whose children are those at positions4 3 � ,C"C"C , 3�0;�·Ý V Q (with �ª| �), we have NI0�3�Q�W�É and £ 0�3�Q�W�7 if and
only if all the following conditions hold:

1. :"0�3�Q�W�L·qoe .
2. There exists a transition LUB4Æ�B_ÇÞxßÉ in Ä with an associated

output function
�

in Å .
3. There exists an integer

�~} 9 } 0;��Ý V Q such that the children
of 3 (i.e., the positions 3 � B"C"C"CMB;3£0;�sÝ V Q) can be classified5

according to the following rules:

(a) the positions 3 � B"C?C"C"B;3�0;9´Ý V Q are members of a set
posAtt (possibly empty) and

(b) the positions 3[9RB"C"C?C"B;3�0;�àÝ V Q are members of a set
posEle (possibly empty) and

(c) every children of 3 is a member of posAtt or of posEle
but no position is in both sets.

3These sets correspond to the required and implied attributes of a
DTD.
4The notation 3�0;�jÝ V Q indicates the position resulting from the
concatenation of the position 3 and the integer �tÝ V . If �sW � the
position 3 has no children.
5In an XML tree, the children at positions 3 � B"C"C?C"B;3�0;9£Ý V Q corre-
spond to attributes and the positions 3[9 , C?C"C , 3�0;��Ý V Q correspond
to elements.

4. The tree N and the function £ are already defined for positions3 � B"C"C"CMB;3£0;�oÝ V Q . We suppose NI0�3 � QlWÛÉMá , C"C"C , NI0�3�0;��ÝV QRQÑW�É ×Iâ ¦ and £ 0�3 � Q�W©7 á , CMC"C , £ 0�3£0;�tÝ V QRQ�W�7 ×Iâ ¦ .
5. The word ÉMÖ6C"C"CDÉ ×Iâ ¦ , composed by the concatenation of the

states associated to the positions in posEle, belongs to the
language generated by Ç .

6. The sets of Æ (Æ�Í�ÎFÏ�ÐMÒE��Ó<Î4Ô_Õ and ÆUÎDÐ ��Ö Î4× � �) respect the fol-
lowing properties:

(a) ÆUÍ<Î4ÏÑÐ"Ò*��Ó<Î4Ô_Õlk�JMÉ á B"CMC"C?BRÉMÖ â ¦ P and

(b) 0�JMÉ á B"C"C"C"BDÉMÖ â ¦ PyãyÆ�Í�ÎFÏ�ÐMÒE��Ó<Î4Ô_Õ*Q�k²Æ�ÎDÐ ��Ö ÎF× � � .
7. Given AsWäJO0�:"0�3�{�QFB_7 °8Q@å �à} { } 0;9ÑÝ V QFB_7 °²æWèç�é�P , the

output associated to position 3 is7�W £ 0�3�Q�W � 0�3£B_A8B concat 0`7�Ö_B"C?C"C"B_7 ×Iâ ¦ QRQFC
We say that a run N is successful if NI0`g4Q is a final state of the au-
tomaton. The output of a run is given by £ 0`g4Q . b

For a given XML tree, the existence of a successful run of an
UTT implies that the document conforms to the DTD [7].

Notice that, in step (7) of Definition 3.3, the output function
for each node is defined in terms of the position 3 (the first ar-
gument of the function

�
) and the result of the output functions

of its children (the second and third arguments). The argument A
corresponds to the set of pairs (att, l). This set is formed by pairs
containing the name and the outputs of the attributes of 3 . The third
argument is obtained by concatenating the outputs coming from the
sub-elements of 3 .

In what follows, we aim to construct the output function of an
UTT, in such a way that the value associated to the root after a
successful run (£ 0`g4Q) is a list containing a truth value, which will
be true if and only if the key constraint is verified.

In order to verify a key ³ Wµ0`>�BM0`> ¥ BFJ�> ¦ B"C�C�C�B4>�§$P*QRQ we should:

1. Collect the values associated to the positions defined by the
paths > ¦ BMC�C�C�B4>�§ . Carry up these values taking into account if
they correspond to attributes or elements.

2. At the target positions defined by > ¥ , group the values for
each key, in lists (of

±
elements). Carry up these lists to the

context level.
3. At context positions defined by > , verify the uniqueness con-

dition. Carry up a boolean value denoting the result of this
test.

4. At the root, calculate the conjunction of these boolean values.

The above operations should be performed for all paths leading
from the root to a key node. Values not belonging to these paths
should be discarded.

Context, target and key nodes in ³ are defined in a top-down
fashion. In order to identify these nodes with a bottom-up automa-
ton, we must traverse the paths stated by ³ in reverse. We keep a
representation of the reversed paths in the form of finite automata.

Before presenting the algorithm that translates keys into output
functions, we give an example of such translation. We use the no-
tation ê©C G to represent a configuration of the automaton ê , i.e.,
the current state G of the automaton ê .

Example 3.1 We consider the verification of ³·¸ of Example 2.1
over the tree of Figure 1. We suppose an UTT whose transition
rules represent some schema constraints and we want to add to it
the output functions implementing the verification of ³ ¸ . The fi-
nite state automata (FSA) associated to ³·¸ are the ones given in
Figure 3. Notice that ê and ê ¥ represent respectively the paths

1436587�9;:<92=?>@5$A�1�=?5*7�7�G"HIG and C 143UGMN8AM5E� of ³r¸ in reverse. The automa-
ton ê ¥ ¥ represents the disjunction of the paths C 1E��LOisGE18ë � 9`N8A?: ,C 1E��LOisGE18ë@7�L6A?: and C 1� ?9`N�:R� in reverse.

person

name

name

ìyí
: î�ï î;ð

ì
: î ï î ð î�ñ

î ð î�òìyí í
: î ï î�ñ î�ó

î�ôbirth

first

last

college PoliticPos

Figure 3: Automata corresponding to the paths of ³·¸ in re-
verse.

Following Figure 1, we consider firstly how the values concerning
the element ”3UGMN$A"5E� ” at position

�IV*V
are carried up.

1) For the data nodes, the output functions have to get the data
values, as well as to initiate the execution of the automaton to rec-
ognize the key paths. The output function, in this case, will return a
singleton list, containing a pair (the initial configuration of the key
automaton ê ¥ ¥ and the value of the node):� 0 �IV*VM�*�8� BF�OB�ç"é�Q�Wµç�02ê ¥ ¥ C G á BMç >@92G�NEN*GMé�Q�é ;� 0 �IV*VM�OVM� BF�OB�ç"é�Q�Wµç�02ê ¥ ¥ C G�á8BMç Æ�i�9;:R�aé�Q�é ;� 0 �IV*V8V"� BF�IBMç"é�QÑWµç�02ê ¥ ¥ C G á B"ç �OV 1 �IV 1*õ V é�Q�é .
2) The fathers of the data nodes mentioned in the previous step have
key labels. For each of them the output function must transmit this
information together with the value received from its child. Doing
that, it executes a first transition of the key FSA ê ¥ ¥ , using each
key label as input. For instance, reading the label

� 9`N8A?: from stateG�á we reach state G$¦ . Thus we should define:� 0 �IV*VM�*� BF�IBMç�02ê ¥ ¥ C G�á8BMç >@92GMN*N*G"é�Q�é�Q�Wµç�02ê ¥ ¥ C G$¦MBMç >@92G�NEN*GMé�Q�é ;� 0 �IV*VM�OV BF�IBMç�02ê ¥ ¥ C G á BMç Æ�i�9;:D�aé�Q�é�QÑWµç�02ê ¥ ¥ C G ¶ BMç Æ�it9;:R�aé�Q�é ;� 0 �IV*V8V B?�OBMç�02ê ¥ ¥ C G�á8BMç �IV 1 �IV 18õ V é�Q�é�QyWmç�02ê ¥ ¥ C G ¸ BMç �OV 1 �OV 1*õ V é�Q�é
where G ¦ , G ¶ , G ¸ are the states reached by the key FSA ê ¥ ¥ when
reading the key labels (Figure 3).

Notice that data nodes which are not part of a key should not pass
values to their fathers. Consider, for instance, the node at position�8�

. We have
� 0 �8� B4�IB�ç�02ê ¥ ¥ C G á BMç >@N8GEA"9`hOG��U:�é�Q�é�Q�Wµç"é .

3) Next we consider position
�IV8V"�

. This position has two attribute
children. In this case, the output function must promote the at-
tribute values only if the current label belongs to the inversed key
paths (represented by ê ¥ ¥). In our case we have:� 0 �IV*VM� BMJ�02ë � 9`N$A?:?BOç�02ê ¥ ¥ C G$¦"B"ç >@92GMNEN8G"é�Q�é�QFB02ë@7�LaA?:?B"ç�02ê ¥ ¥ C G ¶ BMç Æ�i�9;:D�aé�Q�é�Q_P$B�ç"é�Q�Wç�02ê ¥ ¥ C G�ö*B"ç >@92GMNEN8G"é�QFBM02ê ¥ ¥ C GE÷EBMç Æ�i�9;:D�aé�Q�é .
where G ö and G ÷ are the states reached by ê ¥ ¥ when reading the
label ” ��LIi�G ” from G ¦ and G ¶ , respectively (Figure 3).

4) For the node
�IV*V

, the label ”3UGMN8A"5*� ” is the target label; it re-
ceives from its children two lists of values (one from attributes and
one from elements). In order to transmit only key values, the output
function of a target label should 0;9<Q select those that are preceded
by a final state of the key automaton ê ¥ ¥ , 0;9`9�Q join them in a new
list, and 0;9`9`9<Q execute the first transition of the target FSA ê ¥ . In
our case we have, for node

�IV*V
:� 0 �OV8V B8�OB�ç�02ê ¥ ¥ C G ö B�ç >@9�GMNEN8G"é�QFB"02ê ¥ ¥ C G ÷ B"ç Æ�it9`:D�aé�QFB02ê ¥ ¥ C G ¸ B�ç �IV 1 �IV 18õ V é�Q�é�QyWç�02ê ¥ C G ¦ BMç >@92GMN*N*G$B4Æ�i�9;:R�¤B �IV 1 �IV 18õ V é�Q�é .

The other target nodes will get their output values in a similar
way. For instance, at position

�OV Y we obtain the list ç�02ê ¥ C G$¦MBç ê�LON*KUB_ø¾TU7�LI=EB �8ù 1 �$ú 1*ûEü*é�Q�é .
5) For the node

�IV
, the label ” =F587�7�GMHIG ” is the context label, the

output function should work in a similar way as in stage 4: it should0;9�Q select the sublists that are preceded by a final state of the target
automaton ê ¥ ; 0;929�Q check if all these sublists are distinct and 0;929`9�Q
execute the first transition of the context FSA ê . So, in our case,
for node

�IV
, we have:� 0 �OV B4�OBMç�02ê ¥ C G�¦MB"ç >@92GMNEN8G$B_Æ�it9`:D�ÙB �OV 1 �OV 1*õ V é�QFB02ê ¥ C G ¦ B"ç ê�LON*KUBDø¾TU7�LO=*B �*ù 1 �8ú 1Eû*ü�Q�é`B*C"C"CDé�QÑWç�02ê©C G$¦MBMç ý\é�Q�é .

where ý is true iff all the sublists selected in the third argument of�
are distinct.

6) The computation should continue up to the root, verifying whether
the labels visited are recognized by the context FSA or not: in our
example,� 0 � B4�IBMç�02ê�C G$¦MBMç 4é�Q�é�QÑWµç�02ê�C G ¶ B"ç 4é�Q�é
where G ¶ is the state reached by ê when reading the label “Politic-
Pos” (Figure 3).

7) At the root position the last output function should select the
sublists that are preceded by a final state of the context FSA ê and
should return the conjunction of all boolean values in these sublists.
In our example:� 0`g"B4�OBMç�02ê©C G ¶ BMç *¦Ré�QFB"C"CMC"B"02ê©C G ¶ BMç Ï é�Q�é�QÑWmç�02ê�þ�C G Ã BMç ý\é�Q�é
where ý is true iff all Ö are true. The (final) configuration êàþ�C G Ã
is introduced to keep the homogeneity of the lists returned by the
output function. It corresponds to the final configuration of an au-
tomaton ê þ accepting only the root label. b

The following algorithm shows how output functions can be de-
fined in order to represent a given key. Note that, since our UTT
is an extension of a deterministic tree automaton having the same
expression power of a non ambiguous DTD [7], a label Lÿq�e cor-
responds to a unique transition function and thus to a unique output
function.

Algorithm 3.1 - Key constraints as output functions: Let ³ W0`>�BM0`> ¥ B?JE> ¦ B"C"C"C"BR>�§$PEQRQ be a key. Let ê W ��� B4eÂB��EB_G á B��	� (re-
spectively, ê ¥ W ��� ¥ B4eÂB�� ¥ B_G�á*B
� ¥ � and ê ¥ ¥ W ��� ¥ ¥ B_eÂB�� ¥ ¥ BIG�á8B
� ¥ ¥ �) be the finite state automaton that recognizes the path > in re-
verse (respectively, the paths > ¥ and >�¦´åÑC?CMCyå�> § in reverse). Letê þ W ��� þ BFJ�NE5E5E:_P�B�� þ B_G á BFJ�GEÃOP�� be the automaton recognizing
the path root (in reverse).

Let ¿ßW 0`Á¾B_eÂB D B_Á�ÃOBFÄÿB_Å�Q be an UTT whose transition rules
represent some schema constraints. The domain D is defined as0 ��
�� ¥
�� ¥ ¥
�� þ QÂ¼ V » . We assume that the transition rules
of ¿ have the general form LUB4Æ�B_Ç�x¹É � . In order to express the
key ³ , each transition rule of ¿ is associated to an output function
defined according to its label L :

1. If LpWËh�L�:DL (the rule has the form h�L�:<L�B_JE�OB4��P�B4�jx É�� �M���)
then the output function is

� 0�3£B4A8B_7;QÑWµç�02ê ¥ ¥ C G á B"ç S�LI7�T[GO0�3UQ�é�Q�é .
2. If L is a target label then the output function is defined as:� 0�3£B4A8B_7�QÑWµç�02ê ¥ C � ¥ 0`G á BRLaQFBR=?5E��=?L�:"0 filter §?�<Õa0;= ¦ B?C"C"C"BR= Ï QRQRQ�é
where:ç = ¦ B?C"C"C"BR=D° â ¦ é[W�� Ð �MÖ Ô 0 orderByName 02AEQRQ andç =D°IB"C"C"C?BR= Ï éUW�7 .

For the target nodes, the output list is composed by a pair con-
taining 0;9�Q the configuration of the target automaton reached from
its initial state G�á by reading L and 0;9`9�Q a list of all the values com-
posing a key.

We impose an order to the pairs coming from attribute children
(i.e., those contained in A); this is done by sorting them in the lexi-
cographic order of their tags and then eliminating these tags.

The function “filter §?�DÕ ” filters the key lists, leaving only the val-
ues associated to key positions. Notice that each =�§ is a pair of
an automaton configuration and a list of values. The filter selects
the lists of values in the pairs whose configuration corresponds to a
final state of ê ¥ ¥ . The list operation “concat” returns the concate-
nation of all its argument lists into one list.

Notice that at this step, the output function will return a singleton
list, whose only element is a pair formed by a configuration of ê ¥
and a list of all the values that belong to the key.

3. If L is a context label then the output function is
� 0�3£B4A8B_7;Q¾Wç�02ê©C �I0`G á BDL6QFB�H�0 filter ��� Ô��?� �40`7;QRQ�é where

H�0Rç S ¦ C"C"CRS Ï é�QÑW �� � ç :<N*T[GMé if S ¦ C"CMCRS Ï
are all distinct listsç � LI7;AMG"é otherwise

The function “filter ��� Ô��?� � ” simply filters the target lists in a sim-
ilar way as key lists were filtered in the previous case. For the con-
text nodes, we must check that the lists formed at the target level
are all different. The result of this level is a singleton list that con-
tains a pair. This pair is formed by a configuration of ê and a list
containing a boolean value (the result of checking the validity of
the key for each specific context).

4. If L is the root label then the output function is� 0�3£B4A8B_7�QÑW����søs0 filter Í�Î4× � ��� �_0`7;QRQ where
���søs0Rç ¦ é`B"C"C"CMB"ç Ï é�Q�Wmç�02ê þ C GEÃaBMç � °�� Ï°�� ¦ R°"é�Q�é .

At the root level, we calculate the conjunction of the truth val-
ues that were obtained for each subtree rooted at the context level.
The function “filter Í<Î4× � ��� � ” simply filters the context lists, as in the
previous cases.

5. In all other cases (i.e., when LoæW©h�L�:<L and L is not a target label,
nor a context label, nor the root) the output function is defined as:� 0�3£B4A8B_7;Q�W��£0Rç =*¦MB?CMC"C"BR= Ï é�Q
where , ç = ¦ B"C"CMC"BD= Ï é is the list of pairs obtained from the chil-
dren of 3 , such that ç =*¦�B"C?C"C"BR= ° â ¦RésW�� Ð �MÖ Ô 0 orderByName 02A�QRQ
and ç =R°OB?CMC"C"BR= Ï é�W�7 . In other words, key pairs coming from the
attribute children of the node are sorted and then projected, as in
step 2.

The function � is defined by the following procedure:

procedure h(� : list of pairs);
var result : list of pairs;
begin
result [];
foreach =´Wµ0"!ßC G$BRSIQ in � //* ! stands for ê , ê ¥ or ê ¥ ¥

if �I0`G$BRLaQ�W�G ¥ is a transition in ! then
result concat(N*G*A"TU7�:?BMç�0"!�C G ¥ BRSIQ�é);

return result;
end;

This definition concerns the positions that are at the key levels
or that does not belong to levels 1, 2 or 3 in Figure 2. The result-
ing list is formed by pairs, each of which contains an automaton
configuration and a list of values. b

The key verification is done in asymptotic linear time on the size
of the document. Given the key constraint 0`>�BM0`> ¥ BFJE> ¦ B?C�C�C�BF>�§$PEQRQ
the validation process consists in a bottom-up visit of each XML
tree we want to validate. The copy, concat and filtering opera-
tions performed during this validation have constant time complex-
ity #¾0 ± Q . Thus, verifying if the lists are distinct, at the context
level, takes time #¾0;= ¶ Q where = is the number of target nodes, i.e.,
those reachable by the path 1*>´1E> ¥ . Note that = usually represents
a very small number when compared to the size of the tree.

The following theorem states that tree transducer generated by
Algorithm 3.1 validates the key constraints.

Theorem 3.1 Let ³ WÜ0`>�B�0`> ¥ BFJE>Ñ¦MB"C�C�C�B4>�§8P*QRQ be an XML key
over an XML tree c . Let ¿ be a tree transducer that expresses ³
according to Algorithm 3.1. Then,c satisfies ³ iff £ 0`g4QÑWmç�02ê þ C GEÃaBMç :DNETUG"é�Q�é . b
4. CONCLUSIONS

In this paper we show how both schema and key constraints can
be represented and validated by bottom up tree transducers. Both
constraints are verified in a single bottom-up visit of an XML tree.
This approach can be very useful in the context of the incremental
validation of updates to XML documents.

In [5, 9] we find different proposals for expressing keys. Some
of them had been incorporated to schema languages such as XML-
Schema [2] and Schematron [1]. In our work we use the notion of
strong keys of [9]. Moreover, we consider that there is no inconsis-
tency between key and schema. We refer to [4] as a survey on the
problem of statically verifying the consistency of schema and key
constraints.

Key validation is the subject of recent research [5, 10, 6]. In [5]
a constraint language, designed to support incremental validation,
is proposed. The incremental validation of constraints is done by
translating constraints into logic formulas and then generating in-
cremental constraint checking code from them. In [10] a key val-
idator is proposed which works in asymptotic linear time in the size
of the document. Our algorithm also has this property. In [10] (in-
cremental) validation relies on the use of index. In contrast to our
approach, schema constraints are not considered in [5, 10]. In [6]
both schema and integrity constraints are considered in the process
of generating XML documents from relational databases. They
propose a formalism inspired by attribute grammars [12] with both
synthesized (bottom-up evaluation) and inherited (top-down evalu-
ation) data. Although some similar aspects with our approach can
be observed, we place our work in a different context. In fact, we
consider the evolution of XML data independently from any other

database sources (in this context both validation and re-validation
of XML documents can be required).

We are currently pursuing the following lines of research:0;9�Q The generalization of our method to treat more than one key
constraint, as well as to treat more general schema definitions. We
are in the process of verifying some properties respected by UTTs,
such as their closure under intersection.0;9`9�Q The introduction of a notion similar to attribute inheritance
to our output functions (they already implement synthesized at-
tributes). This notion should be similar to those of L-attributed
grammars, as used in compiler construction [3] and should be im-
plemented in a single-pass bottom-up tree transducer. This feature
will allow the validation of other kinds of constraints.0;9`9`9<Q The use of tree transducers for the incremental validation of
key constraints. We aim at the extension of the incremental vali-
dation method for XML documents under schema constraints pro-
posed in [8]. This method relies on the execution of a tree automa-
ton only on the part of the XML tree affected by the update.

5. REFERENCES
[1] The Schematron: An XML structure validation language

using patterns in trees. Available at
http://www.ascc.net/xml/resource/schematron.

[2] XML schema. Available at
http://www.w3.org/XML/Schema.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
principles, techniques, and tools. Addison-Wesley, 1988.

[4] M. Arenas, W. Fan, and L. Libkin. On verifying consistency
of XML specifications. In ACM Symposium on Principles of
Database System, 2002.

[5] M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng.
Automated update management for XML integrity
constraints. In Program Language Technologies for XML
(PLANX02), 2002.

[6] M. Benedikt, C-Y Chan, W. Fan, J. Freire, and R. Rastogi.
Capturing both types and constraints in data integration. In
SIGMOD, San Diego, CA, 2003.

[7] B. Bouchou, D. Duarte, M. Halfeld Ferrari Alves, and
D. Laurent. Extending tree automata to model XML
validation under element and attribute constraints. In ICEIS,
2003.

[8] B. Bouchou and M. Halfeld Ferrari Alves. Updates and
incremental validation of XML documents. Submitted paper,
2003.

[9] P. Buneman, S. Davidson, W. Fan, C. Hara, and W.C. Tan.
Keys for XML. In WWW10, May 2-5, 2001.

[10] Y. Chen, S. Davidson, and Y. Zheng. Validating constraints
in XML. Technical Report MS-CIS-02-03, Department of
Computer and Information Science, University of
Pennsylvania, 2002.

[11] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata
Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997 (new version
2002).

[12] P. Deransart, M. Jourdan, and B. Lorho. Attribute grammars:
Definitions, systems and bibliography. Number 323 in LNCS
- Lecture Notes in Computer Science, 1988.

