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Abstract. This paper deals with updates of XML documents that sat-
isfy a given schema, e.g., a DTD. In this context, when a given update
violates the schema, it might be the case that this update is accepted,
thus implying to change the schema. Our method is intended to be used
by a data administrator who is an expert in the domain of application of
the database, but who is not required to be a computer science expert.
Our approach consists in proposing different schema options that are
derived from the original one. The method is consistency-preserving:
documents valid with respect to the original schema remain valid. The
schema evolution is implemented by an algorithm (called GREC) that per-
forms changes on the graph of a finite state automaton and that gener-
ates regular expressions for the modified graphs. Each regular expression
proposed by GREC is a choice of schema given to the administrator.

1 Introduction

We consider an XML-based data-exchange environment in which exist both or-
dinary users and administrators. We are interested in updates to valid XML
documents, i.e., those that satisfy some schema constraints. When a valid XML
document is updated, we have to verify that the new document still conforms to
the imposed constraints. Invalid updates, i.e., updates resulting in invalid XML
documents, can be treated in different ways, according to the kind of user per-
forming them. Invalid updates performed by ordinary users are rejected, whereas
invalid updates performed by administrators can be accepted, thus provoking
changes on the schema.

We propose a method to enforce the validity of an update by means of chang-
ing the schema. Our approach aims to deal with the increasing demand for tools
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specially designed for administrators not belonging to the computer science com-
munity, but capable of making decisions on the evolution of an application [8].
This kind of user needs a system that assures a consistent evolution of the schema
in a incremental and interactive way. The main features of our method are: (a)
If an update violates schema constraints then corrective actions are taken to
restore validity. This is done by computing all relevant schema changes. Each
option is obtained from the characteristics of the schema and documents being
updated. (b) Valid documents w.r.t. the original schema remain valid w.r.t. the
new one. (c) Different choices of schema are given to the administrator. The ad-
ministrator can decide which schema is to be adopted, based on their knowledge
about the semantics of the documents.

To our knowledge, our approach adopts a new strategy to deal with schema
evolution. Research papers in a similar domain (such as [7, 10, 11]) propose to
change XML documents but not the schema, in case of invalid updates. Notice
that our aim is much less ambitious than automatic learning of automata: we
propose GREC as a simple and directly usable solution to an interesting problem.
Nevertheless, as much work has been done in the area of inference of regular
grammars from examples [?,?], we are considering the comparison between our
approach and these ones.

An XML document is seen as an unranked labeled tree t having different
kinds of nodes (data, elements and attributes). We assume a schema (defining
some element and attribute constraints) specified by an unranked bottom-up
tree automaton A [1]. Checking if an XML document respects the constraints
established by the schema is equivalent to run A with input t. Updates are seen
as changes to be performed on XML tree representations and invalid updates are
those that produce XML trees which cannot be recognized by A. We focus on
(changing the schema after invalid) insertions, since deletions are easy to treat.

An insert operation consists in the insertion of a sub-tree t′ into a given
position p of t. Before accepting an insertion, we have to test if the new tree
respects the constraints established by the associated tree automaton A. These
tests are incremental [3]. If the tests fail, changes on the schema are proposed
to the administrator. Changing the schema means changing A. The following
example illustrates (i) how to validate an XML document using A and (ii) how
an insertion requested by an administrator can lead to changes to A.

Example 1. Fig. 1(a) shows the labeled tree t, representing part of an XML
document. Each node has a label (e.g., Author) and a position (like 00, for
an Author node and ε for the root). Let A be a tree automaton representing
a schema. The execution of A with input t is represented by the labeled tree r

(Fig. 1(b)). To illustrate how we obtain r, suppose that A contains the transition
rule

Production, <∅, ∅> , qSub (qY ear qJPaper
+)∗ → qProduction (1)

The intended semantics of the regular expression E = qSub (qY ear qJPaper
+)∗ is

that the production of a given author is stated by the area (or subject) of their
research, followed by a list of journal papers, presented by year.
Rule (1) states that a position p, labeled Production in t, can be associated with



the state qProduction in r if the constraints established by Rule (1) are respected4.
As position 001 in t respects these constraints then node 001 in r is assigned to
the corresponding state.
The tree automaton executes bottom-up by considering each position and the
transition rule that applies to it. A tree automaton accepts a document tree if
and only if the state associated to the root is final. In this case, we say that t is
valid.
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Fig. 1. (a) Labeled tree t. (b) Labeled tree r

We consider now an insertion of a tree ta at position 0013 (i.e., on the right of
position 0012) of the valid tree t. We suppose that the execution of A over ta

results in a labeled tree whose root is associated to qConfPaper.
In our case, as the update concerns position 0013, we should check if the subtree
rooted at position 001 (0013’s father) still respects the validity conditions. In
other words, we should verify whether the state associated to position 001 after
the update is still qProduction. This is done by analyzing the behavior of Rule (1).
As the transition rule defines the possible children of a node using regular expres-
sions we should check if the word qSubqY earqJPaperqConfPaper, corresponding to
the concatenation of the states associated to children of position 001 after the
update, matches the regular expression E. In our case, this does not happen and
thus we have an invalid update.
As our user is an administrator, the requested update will be taken as a re-
quest to change the schema. To understand this request we consider the new
word qSubqY earqJPaperqConfPaper and the original regular expression E = qSub

(qY ear qJPaper
+)∗ appearing in (1). The goal is to replace A by a new tree au-

tomaton A′ having the following characteristics: (i) every XML document valid
with respect to A is also valid with respect to A′ and (ii) A′ differs from A only
in the regular expression affected by the update. The options are:
1. (qSub(qY ear qJPaper

+)∗qConfPaper?) and (qSub(qY ear qJPaper
+)∗(qConfPaper)

∗):

Choices allowing the insertion of one or several conference papers to a given
domain (not organized by year).
2. (qSub(qY ear qJPaper

+qConfPaper?)
∗) and (qSub(qY ear qJPaper

+qConfPaper
∗)∗):

These options allow the insertion of one or several conference papers to a given
domain per year.

4 Here, the constraints are: p should have no attribute children (due to the tuple
<∅, ∅>) and the word formed by the concatenation of the states associated to the
element children of p should match the regular expression qSub (qY ear qJPaper

+)∗.



3. (qSub(qY ear(qJPaper qConfPaper?)
+)∗) and (qSub(qY ear(qJPaper qConfPaper

∗)+)∗):

Choices allowing the insertion of several conference papers to a given domain
every year. In the first case, each conference paper (if it exists) should be preceded
by a journal paper while, in the second case, this restriction is dropped. In both
cases, a conference paper exists only if at least one journal paper exists.

4. (qSub(qY ear(qJPaper | qConfPaper)
+)∗):

Journal and conference papers can exist alone. However, at least one of them
should exist per year, i.e., authors must have one publication per year.

Given these options, the administrator can choose the one that fits the best the
application. ut

From the above example, we can notice that our goal is to propose several
choices of regular expressions, trying to foresee the needs of an application.
Indeed, each candidate regular expression E ′ corresponds to a language L(E ′)
more general than L(E) ∪ {w′} (where E is the original regular expression and
w′ 6∈ L(E)). We are neither interested in the candidate E|w′ that adds just one
word to L(E), nor in candidates too general allowing any kind of updates5. Our
interest concerns candidates E ′ such that they are as similar to E as possible.
Notice that in the previous example, each proposed regular expression have just
one alphabet symbol inserted, in relation to the original one. This condition will
be reflected by a very simple notion of distance, defined in Section 2.

Each transition rule of A has the general form a, S, E → q where a is
a label, S is a tuple of two disjoint sets of states establishing attribute con-
straints (S =<Soptional, Scompulsory> with Soptional for optional attributes and
Scompulsory for compulsory ones), E is a regular expression establishing element
constraints and q is a state. A run of A on a tree starts its computation at the
leaves and then simultaneously works up the paths of the tree. The tree automa-
ton accepts a tree t if all the attributes and element constraints defined in A (via
the transition rules) hold in t. The insertion of a labeled tree ta at position p of
tree t can provoke changes on S (if the root of ta is an attribute) or on E (if the
root of ta is an element or data). We concentrate on the changes occurring on E,
i.e., we only consider the insertion of sub-elements. Moreover, we only consider
the insertion of one sub-element at a time.

Given a transition rule a, S, E → q. Let w = αβ be the word formed by the
concatenation of the states associated to the element children of the position p,
in a valid XML tree t. Thus, w belongs to the language L(E). The insertion of
ta as a child of position p, in t, corresponds to the construction of a new word
w′ = αnβ (always associated to the sub-elements of p). Notice that n corresponds
to the state that A associates to the root of ta. If w′ is not in L(E) then the
rule a, S, E → q cannot be applied after the update. Our approach consists
in computing new regular expressions to replace E according to the structure
imposed by E (i.e., number of starred sub-expression, disjoint symbols, etc.) and
the characteristics of the unrecognized word w′. Thus, we propose a method that,

5 As, for instance, a method that gives E′ = a∗b∗ as the result for E = ab, w = ab

and w′ = aab.



given a regular expression E and a new word w′ to accept, (i) computes a finite
state automaton ME associated to E; (ii) performs some modifications on ME

to obtain new automata M ′

E that accepts w′ and (iii) finds regular expressions
E′ associated to each M ′

E . To avoid important changes in E, we propose new
regular expressions that have the smallest distance from E, that preserve the
syntactic nesting of E and that respect the structure of w′. To this end, we
introduce an algorithm called GREC which is an extension of the transformation
of a Glushkov automaton into a regular expression presented in [6].
Section 2 presents some theoretical notions necessary to understand the schema
evolution method implemented by GREC which is introduced in Section 3. Proofs
are omitted due to lack of space (see [2]).

2 Theoretical Background

In this section, we consider the method proposed in [6] to obtain a homogeneous6

finite state automaton, called Glushkov automaton, that recognizes the language
associated to a given regular expression. Given a regular expression, a Glushkov
automaton is built by subscribing each alphabet symbol in this regular expression
with its position. In a Glushkov automaton, each non initial state corresponds
to a position in the regular expression. For instance, given the regular expression
E = (a(b|c)∗)∗d, the subscribed regular expression is E = (a1(b2|c3)

∗)∗d4. The
Glushkov automaton M = (Σ, Q, ∆, q0, F ), built from E, is such that: the al-
phabet is Σ = {a, b, c, d}, the set of states is Q = {0, 1, 2, 3, 4}, the initial state is
q0 = 0, the set of final states is F = {4} and the transition relation ∆ is defined
by the edges of the graph in Fig. 2(a).
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Fig. 2. (a) Pictorial representation of a FSA for (a(b|c)∗)∗d. (b) Its Glushkov graph

A Glushkov graph is the directed graph G = (X, U) obtained from a Glushkov
automaton such that each node in X corresponds to a state and each edge in U

to a transition. Since Glushkov automata are homogeneous, their edges are not
decorated as shown in Fig. 2(b).

Let G = (X, U) be a graph. An edge between nodes r and s, denoted by
u = (r, s), is a loop iff r = s. A path is a sequence of nodes x0, . . . , xn such that,
for every 0 ≤ i < n, (xi, xi+1) is an edge in G. A path with no edges is said to be
trivial. A graph has a root node r (resp. an antiroot) if there exists a path from

6 A finite state automaton is said to be homogeneous [6] if one always enters a given
state by the same symbol.



r to any node in the graph (resp. from any node in the graph to r). A graph is
a hammock if it has both a root (r) and an antiroot (s), with r 6= s.

Now we consider the graph properties taken from [6], that will be used later
on in this work. A set O ⊆ X is said to be an orbit if for all x and x′ in O there
exists a non trivial path from x to x′. An orbit is maximal if for each node x of O
and for each node x′ out of O, there does not exist a path from x to x′ and a path
from x′ to x. Notice that an orbit is maximal if it is not contained in any other
orbit. Let O be an orbit, we define: In(O)={x ∈ O | ∃x′ ∈ (X\O), (x′, x) ∈ U} as
the input of O and Out(O)={x ∈ O | ∃x′ ∈ (X \O), (x, x′) ∈ U} as the output of
O. An orbit O is stable if ∀x ∈ Out(O) and ∀y ∈ In(O), the edge (x, y) exists. An
orbit O is transverse if ∀x, y ∈ Out(O), ∀z ∈ (X \ O), (x, z) ∈ U ⇒ (y, z) ∈ U ,
and if ∀x, y ∈ In(O), ∀z ∈ (X \ O), (z, x) ∈ U ⇒ (z, y) ∈ U . An orbit O is
strongly stable (resp. strongly transverse) if it is stable (resp. transverse) and if
after deleting the edges in Out(O) × In(O), every suborbit is strongly stable
(resp. strongly transverse).

Example 2. The graph (a hammock) of Fig. 2(b) has 7 orbits. The orbit O1 =
{1, 2, 3}, with In(O1) = {1} and Out(O1) = {1, 2, 3}, is maximal. Orbits O2 =
{1, 2} and O3 = {2, 3} are not maximal. Orbit O3 is stable since all the edges
in Out(O3) × In(O3) are in O3. It is transverse since all the edges (1, 2), (1, 3),
(2, 4) and (3, 4) exist in the graph. In fact, O1, O2 and O3 are strongly stable
and strongly transverse. ut

Given a graph G in which all orbits are strongly stable, we build a graph
without orbits SO(G) by recursively deleting, for each maximal orbit O, all
edges (x, y) such that x ∈ Out(O) and y ∈ In(O). The process ends when there
are no more orbits. Notice that SO(G) is defined in a unique way [6].

Let x be a node in a graph without orbits G = (X, U). We denote by Q−(x) =
{y ∈ X | (y, x) ∈ U} the set of immediate predecessors of x and by Q+(x) =
{y ∈ X | (x, y) ∈ U} the set of immediate successors of x. The graph G is
reducible if it is possible to reduce it to one node by successive applications of
any of the rules R1, R2 and R3 below (as illustrated in Fig. 3).
Rule R1: If two nodes x and y are such that Q−(y) = {x} and Q+(x) = {y},
then replace node x by node xy and delete node y.
Rule R2: If two nodes x and y are such that Q−(x) = Q−(y) and Q+(x) =
Q+(y), then replace node x by node x|y and delete node y.
Rule R3: If a node x is such that y ∈ Q−(x) ⇒ Q+(x) ⊂ Q+(y), then replace
node x by node x? and delete the edges going from Q−(x) to Q+(x).

Notice that each node of the graph has a regular expression (which, initially,
is just the position identifying the node). At the end of the process, the graph
has just one node whose content is the regular expression corresponding to the
original Glushkov automaton. In this way, we obtain a regular expression from
a Glushkov automaton.

If x is optional, by R3 we build a regular expression in the following way: If
the original regular expression associated to x is of the form E+ (resp. E) then
the new one will be E∗ (resp. E?). From now on, we use the notation E! to stand
both for E? and E∗. The node resulting from the application of one rule keeps
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the identities of its origins, responding for them. Notice that the above rules do
not account to the construction of E+ expressions. This kind of expression will
appear by considering the orbits existing in the original graph. It is important
to remark that the reduction process works from inside to outside of the nested
maximal orbits. Maximal orbits are built during the construction of SO(G) and
they are hierarchically organized according to the set-inclusion relation.

The characterization7 of Glushkov FSA is given by the following theorem.
Moreover, from Lemma 1 below, we can associate an orbit in a Glushkov graph
to a Kleene closure in the corresponding regular expression.

Theorem 1. [6] G = (X, U) is a Glushkov graph iff the following conditions
are satisfied: (1) G is a hammock, (2) each maximal orbit in G is strongly stable
and strongly transverse and (3) the graph without orbit of G is reducible.

Lemma 1. [6] Let G = (X, U) be a graph that satisfies the properties (2) and
(3) of Theorem 1. Let O be a maximal orbit in G. By iteration of R1, R2 and R3

in SO(G), the orbit O is reduced to a unique node, under the assumption that R1

and R2 are only applied to pairs (x, y) ∈ (O×O) or (x, y) ∈ [(X \O)× (X \O)].

We define now a very simple notion of the distance between two regular
expressions, based on the number of positions of the subscribed expressions:

Definition 1. Let E and E ′ be regular expressions. Let E and E ′ be subscripted
expressions built from E and E ′, respectively, by using the Glushkov method. Let
SE (resp. SE′

) be the set of positions of E (resp. E ′). The distance between E

and E′, denoted by D(E, E ′), is D(E, E′) =|| SE − SE′

||.

3 Schema Evolution by Changing Glushkov Graphs

We recall that, in our work, a schema is defined by an unranked bottom-up
tree automaton A obtained from an (unambiguous) DTD [1] and that updates
are seen as changes to be performed on an XML tree as shown in Example 1.
Invalid updates produce XML trees which cannot be recognized by A. To deal
with this kind of updates we present a method that proposes changes to the

7 To characterize a Glushkov FSA, add an end mark (#) to every string [6].



schema. If the update corresponds to the insertion of an attribute then the new
schema is obtained just by allowing the existence of a new optional attribute. No
attributes can be inserted as compulsory, otherwise the validity of documents
with respect to the original schema is not preserved. Schema evolution due to
a delete operation is also straightforward to define, since it consists in rendering
optional the deleted attribute or sub-element. The challenge in this context is
to consider the evolution of the schema caused by the insertion of an element. In
this case, the schema evolution is achieved by changing the regular expression
E that constraints the sub-elements of a given node in the XML tree. In this
context, our problem can be expressed as follows:

(1) The insertion of a labeled tree t1 as a child of node a in tree t means changing
the original word w obtained from the children of a. The new word w′ is obtained
from w by inserting the new state (associated to the root of t1).

(2) Given the regular expression E (with w ∈ L(E)) and a word w′, our problem
is to propose new regular expressions E ′, such that D(E, E′) = 1, and whose
languages contain, at least, the word w′ and L(E).

To work on words w and w′, we use a Glushkov automaton ME . This au-
tomaton is built by applying the method of [6], mentioned in Sect. 2, over each
E that appears in the transition rules of A. In ME each state (but the initial
one) corresponds to a position in the subscribed regular expression E. The only
final state of ME is subscribed with the position of the end mark (#).

We consider now the execution of ME over the new word w′. Let p be the
position of w′ where the new symbol is inserted. We define the nearest left state
(snl) as a state in ME reached after reading the first p − 1 symbols in w′ (or
in w). Similarly, we define the nearest right state (snr) as a state in ME that
succeeds snl when reading the p-th position of w. Notice that to determine nodes
snl and snr (to be passed to GREC), we scan w′ using ME. If the inserted symbol
already belongs to the alphabet of ME , a simple backtracking technique may be
used to identify snl and snr (see [2] for details). Notice that both snl and snr

exist and, when ME is deterministic (as usually recommended in XML domain),
they are unique.

Without loss of generality, we assume that an insertion operation always
corresponds to the insertion of a new position in E. Thus, to accept the new
word, we should insert a new state in ME . This new state (snew) should be added
to ME and there should exist a transition from snl to snew . However this is not
the only change to be performed on ME . Other changes are needed in order to
keep the graph associated to the automaton as a Glushkov graph. These changes
depend on the situation of snl and snr in the Glushkov graph.

For a general regular expression E, the task of finding the places where the
new symbol may be added is not trivial. There is a great variety of possible
solutions and it is hard to find those that fit the best in a given context. As
shown in Example 1, we want that the candidates respect the nesting of sub-
expressions of the original regular expression. The reduction process of [6] is well
adapted to our goal of proposing solutions that preserve the general structure
of the original regular expression E, since it follows the syntactic nesting of E



using the orbits. Moreover, inserting a new state in ME means inserting just
one new position in the corresponding E. In other words, our approach proposes
only new regular expressions E ′ such that D(E, E′) = 1.

Each reduction step in [6] consists in replacing part of the automaton graph
by nodes containing more complex regular expressions. The reduction finishes
when the automaton graph is formed by just one node containing one regular
expression, which corresponds to the original regular expression. Our goal is to
build a new graph G′ from a Glushkov graph G by preserving the Glushkov
properties (Theorem 1).

Fig. 4 presents a high level algorithm for the procedure GREC (Generate
Regular Expression Choices), which is an extension of the method of [6] (ex-
plained in Sect. 2). GREC generates a list of regular expressions, each of which
corresponds to a solution obtained by the insertion (in different places) of snew

in the original graph. The generated list contains the options we give to the
administrator. GREC takes five input parameters: a graph without orbits GA, a
hierarchy of orbits OA, two nodes of the graph, corresponding to snl and snr,
and the new node snew to be inserted.

(1) procedure GREC(GA, OA, snl, snr, snew) {
(2) if graph GA has only one node
(3) then stop
(4) else{
(5) Ri := ChooseRule(GA, OA);

(6) for each (GB , OB):=LookForGraphAlternative(GA , OA, Ri, snl, snr, snew) do

(7) GraphToRegExp(GB, OB);

(8) GC := ApplyRule(Ri, GA);

(9) GREC(GC , OA, snl, snr, snew);

(10) } }

Fig. 4. Algorithm to generate regular expression choices from a Glushkov graph

The Procedure ChooseRule uses the information concerning orbits to select
a rule to be applied in the reduction of the graph. The Procedure ApplyRule

computes a new graph resulting from the application of the selected rule, and the
Procedure GraphToRegExp computes a regular expression from a given graph.

At each step of the reduction, GREC checks whether the chosen rule affects
nodes snl or snr and, in this case, it modifies the graph to take into account the
insertion of the new node snew . The modifications to the graph being reduced
are driven by R1, R2 and R3 and by the information concerning the orbits
of the original graph. Each of these modifications is performed by the iterator
LookForGraphAlternative (line (6) of Fig. 4). The iterations stop when no
more alternatives are found. The role of iterator LookForGraphAlternative is
two-fold: (i) it verifies whether nodes snl and snr satisfy the conditions stated in
R1, R2 and R3 and (ii) it generates new graphs (GB in the algorithm of Fig. 4)
over which the algorithm GraphToRegExp is applied to generate new regular
expressions. The following definitions formalize how LookForGraphAlternative

builds new graphs from the original one.



Definition 2. Let GA = (XA, UA) be a Glushkov graph and x, y ∈ XA be two
nodes on which R1 can be applied. Define each Gi = (Xi, Ui) from GA as follows:

Case 1 (x = snl and y = snr):
G1: X1 = XA ∪ {snew}; U1 = UA ∪ {(x, snew)} ∪ {(snew , y)}.

Case 2 (x = snr and y = snl):
G1: X1 = XA ∪ {snew}; U1 = UA ∪ {(y, snew)} ∪ {(snew , z) | z ∈ Q+(y)}.
G2: X2 = XA ∪ {snew}; U2 = UA ∪ {(snew , x)} ∪ {(z, snew) | z ∈ Q−(x)}.

Definition 3. Let GA = (XA, UA) be a Glushkov graph and x, y ∈ XA be two
nodes on which R2 can be applied. Define each Gi = (Xi, Ui) from GA as follows:

Case 1 (x = snl and snr ∈ Q+(x)):
G1: X1 = XA ∪ {snew}; U1 = UA ∪ {(x, snew)} ∪ {(snew , z) | z ∈ Q+(x)}.

Case 2 (x = snr and snl ∈ Q−(x)):
G1: X1 = XA ∪ {snew}; U1 = UA ∪ {(snew , x)} ∪ {(z, snew) | z ∈ Q−(x)}.

Case 3 (snl ∈ Q−(x) and snr ∈ Q+(x)):
G1: X1 = XA ∪ {snew}; U1 = UA ∪ {(z, snew) | z ∈ Q−(x)} ∪ {(snew , v) | v ∈ Q+(x)}.

Definition 4. Let GA = (XA, UA) be a Glushkov graph and x ∈ XA be a node
on which R3 can be applied. Define each Gi = (Xi, Ui) from GA as follows:

Case 1 (snl ∈ Q−(x) and snr ∈ Q+(x)) or (snl ∈ Q−(x) and snr 6∈ Q+(x)) or

(snl 6∈ Q−(x) and snr ∈ Q+(x)):
G1: X1 = XA ∪ {snew}; U1 = UA ∪ {(snew , x)} ∪ {(z, snew) | z ∈ Q−(x)}.
G2: X2 = XA ∪ {snew}; U2 = UA ∪ {(x, snew)} ∪ {(snew , z) | z ∈ Q+(x)}.
G3: X3 = XA ∪ {snew}; U3 = UA ∪ {(z, snew) | z ∈ Q−(x)} ∪ {(snew , v) | v ∈ Q+(x)}.

Rules R1, R2 and R3 are first applied inside each orbit [6]. During the
reduction process, each orbit O of the original graph is reduced to just one node
containing a regular expression. This regular expression is then decorated by +.
Before applying this decoration we have to consider the insertion of snew in the
orbit O. The next definition summarizes the situations in which we perform a
modification on an orbit. It gives the conditions and modifications concerning
the cases in which a whole orbit is represented by one node of the graph.

Definition 5. Let GA = (XA, UA) be a Glushkov graph. Let O be an orbit
reduced to one node x ∈ XA. We define each Gi = (Xi, Ui) from GA as follows:

Case 1 (x = snl and x = snr):
G1: X1 = XA ∪ {snew}; U1 = UA ∪ {(snew , x)} ∪ {(z, snew) | z ∈ Q−(x)}.
G2: X2 = XA ∪ {snew}; U2 = UA ∪ {(x, snew)} ∪ {(snew , z) | z ∈ Q+(x)}.

Case 2 (snl ∈ Q−(x) and snr ∈ O):
G1: X1 = XA ∪ {snew}; U1 = UA ∪ {(snew , x)} ∪ {(z, snew) | z ∈ Q−(x)}.
G2: X2 = XA ∪ {snew}; U2 = UA ∪ {(v, snew) | v ∈ Q−(x)} ∪ {(snew , z) | z ∈ Q+(x)}.

Case 3 (snl ∈ O and snr ∈ Q+(x)):
G1: X1 = XA ∪ {snew}; U1 = UA ∪ {(x, snew)} ∪ {(snew , z) | z ∈ Q+(x)}.
G2: X2 = XA ∪ {snew}; U2 = UA ∪ {(v, snew) | v ∈ Q−(x)} ∪ {(snew , z) | z ∈ Q+(x)}.

Moreover, in all cases, snew is added to the orbit O.

Notice that for each graph built using the definitions above a regular expres-
sion is obtained.



Example 3. Consider Example 1 and the Glushkov automaton (Fig. 5(a)) corre-
sponding to E=qSub(qY ear qJPaper

+)∗# (and E= 1 (2 3+)∗4). In this case, GREC
takes as input a hierarchy of orbits containing O1 = {3} and O2 = {2, 3}. It
starts the reduction by O1. At this step, Definition 5 (third case) applies since O1

is represented by just one node, snl = 3 and snr = 4. Graphs (without orbits) G1

and G2 (Fig. 5(b)-(c)) are built, giving rise to (qSub(qY ear(qJPaper qConfPaper !)
+)∗)

and (qSub(qY ear(qJPaper | qConfPaper)
+)∗), respectively (options 3 and 4 from

Example 1).
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Fig. 5. (a)Automaton. (b)-(c) Graphs updated by LookForGraphAlternative

GREC solutions respect the properties stated by the following theorems.

Theorem 2. Let G be Glushkov graph and GA = SO(G). Let OA be the hierar-
chy of orbits obtained during the construction of GA. Let Ri be one of the reduc-
tion rules R1, R2 or R3. For any nodes snl, snr and snew, each pair (GB , OB)
resulting from the execution of LookForGraphAlternative(GA, OA, Ri, snl,

snr, snew) is a representation of a Glushkov graph G′, where GB is a graph
without orbits, and OB is the hierarchy of orbits obtained when constructing GB

from G′.

Theorem 3. Let E be a regular expression and L(E) be the language associated
to E. Given w ∈ L(E) such that w = αβ, let w′ = αnβ where n is a symbol and
w′ 6∈ L(E). Let ME be a deterministic Glushkov automaton corresponding to E,
let GA be the graph without orbits obtained from ME and let OA be the hierarchy
of orbits obtained during the construction of GA. Let snl be a state in ME reached
after reading α and let snr be a state that succeeds snl in ME when reading w.
Let snew be a new node not in GA. The execution of GREC (GA, OA, snl, snr,

snew) returns a finite, nonempty set of regular expressions {E1, . . . , Em}. For
each Ei, we have L(E) ∪ {w′} ⊂ L(Ei) and D(E, Ei) = 1.

If unambiguous expressions are required as a result, GREC signalizes the am-
biguity of a candidate regular expression - we can then transform the chosen
candidate into an equivalent unambiguous regular expression along the lines of
[?]. Notice that if E is unambiguous and n is not in E then each candidate
regular expression Ei given by GREC is unambiguous.

4 Conclusion

In this paper we propose a method to dynamically change the schema for XML
databases based on an update of just one document. Our approach is original in



the sense that it does not impose changes on documents, but rather, computes
a set of new schema that preserve the consistency of the document and that
has minimal changes in relation to original regular expression. GREC solutions
are ordered according to the hierarchy of orbits (given as input) which can
define different context of updates (see [2] for details). We have implemented a
prototype of GREC using the ASF+SDF [4] meta-environment under Linux.

We are currently considering the following research directions: (i) The gener-
alization of the schema evolution process discussed here, to consider a sequence
(or a set) of administrator’s updates and (ii) the implementation of an XML
update language such that UpdateX [?] in which incremental schema evolution
will be integrated.

Acknowledgements: We would like to thank the anonymous referees for their
useful comments and corrections.
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jer. Evolution and change in data management - issues and directions. SIGMOD

Record, 29(1):21–25, 2000.
9. M. de Rougemont. The correction of XML data. In The First Franco-Japanese

Workshop on Information, Search, Integration and Personalization - ISIP, 2003.
10. H. Su, D. Kramer, L. Chen, K. T. Claypool, and E. A. Rundensteiner. XEM:

Managing the evolution of XML documents. In RIDE-DM, pages 103–110, 2001.
11. H. Su, H. Kuno, and E. A. Rundensteiner. Automating the transformation of XML

documents. In 3rd WIDM. ACM, 2001.


