Assisting XML Schema Evolution that Preserves Validity
Béatrice Bouchou, Denio Duarte?

'Université Francgois Rabelais de Tours - LI/Campus Bldisance
2Universidade Comunitaria Regional de Chapeco / Unoat@ap€ETEC (SC) Brazil

beatri ce. bouchou@ni v-tours. fr, deni o@nochapeco. edu. br

Abstract. We consider the problem of XML schema evolution preserhiega-
lidity of existing documents related to the original schemide aim of such
schema evolution is to fit new needs without revalidatingxlting valid XML
documents. We propose an approach to assist users to sgehd#yna updates
that have no impact on existing document validity. An XMleswhis modeled
as a set of regular expressions, each constraining the abmdel of XML
elements. Given the user needs, we work on Glushkov graplesesnting reg-
ular expressiong” in the schema: this representation gives straightforwgardl
the right places in&' that may be changed while preserving validity.

1. Introduction

More and more applications use XML to store and exchange daga, which are often
stored in XML databases. In this context, XML documents akdyi.e., they respect

a schema. The schema serves two purposgsit efines an interface for programs
and users to query the data, and {t determines how the database management system
physically stores the data on the disk. In an XML environmeistquite natural to have

the ability to respond to changes in the real world by allgyvihe schema to evolve,
especially within the Web framework.

The schema evolution problem deals with the update of a selwéran it no longer
meets the needs of the user. The goal of schema evolutioarcbsis to allow schemas
to change while maintaining access to the existing dataedddthe evolution can be
conservativeor non-conservativeIn the first case, all documents that were valid w.r.t.
the old schema are valid w.r.t. the new one. In the second dasements valid for the
original schema are no more guaranteed to meet the structunsatraints described by
the evolved schema.

The non-conservative schema evolution may be problemiate $t is necessary
to validate all documents against the new schema and, ifaheyot valid, they should
be adapted to it. The document adaption process can proat&daks since it may be
necessary to delete tags (and their information) from itrédger, when documents to be
revalidated are stored in different sites, not only theingfer cost should be considered
(in addition to the whole revalidation cost), but also pesbs due to access control should
be faced.

To our knowledge, most of work in schema evolution deals watmon-
conservative approach. Indeed, the focus has been firsfitted®hema update primi-
tives: in [Su et al. 2001], a complete and sound set of pruastis proposed, which can
make previously valid documents invalid. In this case, ththars propose changes to

be performed on documents in order to make them valid. Thes sgwproach is fol-
lowed in [Al-Jadir and EI-Moukaddem 2003]. For example,itlehange the parent re-
lationship primitive may change an element occurrence frortimes to exactly once.
In this case, all documents having this element repeated baushanged in order to
have it only once. In [Prashant and Kumar 2006], the authgrsotsolve the problem
of revalidation by building an XSLT script to force the doceim to be valid with rela-
tion to the new schema (as an extension of the approach mdpodSu et al. 2001)).
In [Guerrini et al. 2005, Mesiti et al. 2006], a set of scherpdate primitives is also pro-
posed and the impact of schema updates over documents ysedalln the same way
as in [Raghavachari and Shmueli 2004], the authors takenéalyas of similarities and
differences between the old schema and the new one to aviaddtag portions of doc-
uments. The basic idea is, considering the updates made tectiema, to identify the
parts of the new schema that would require that documents Ineusevalidated. Only
the document portions corresponding to these schema partsen revalidated (and are
changed, if necessary).

From above, we can conclude that, although the consenatolation of schema
has been identified as a desirable feature for XML databaResdick et al. 2000,
Costello and Schneider 2000], there is not a significant ahofuresearch work in this
area. The approach proposed in [Bouchou et al. 2004] is ceatsee, however the new
schema is inferred from an invalid document, that is, thé@nstdo not consider schema
update primitives.

In this paper, we consider a framework for schema evolutiah ®s the one pro-
posed in [Guerrini et al. 2005, Mesiti et al. 2006], and wespreé a way of assisting user
to specify schema updates with no impact on validity. To dowsopropose intuitive way
to enter updates, together with a method to determine hompéement them as conser-
vative extensions of the original schema (keeping existing documents valid without
making any change on them).

In this way, we try to respond to the increasing demand fdstsjeecially designed
for administrators not belonging to the computer scieneeraanity, but capable to make
decisions on the evolution of an application [Roddick e2&l00]. This kind of user needs
a system that assures a consistent evolution of the scheamamecremental way.

To illustrate this need, let us suppose that a librarianspaasible for feeding an
XML database with information about laboratories and tipeiiblications. Suppose also
that the current XML schema accepts only journal articleisilehe laboratories want
conference articles to be also stored as publications idlate&base. Thus, the librarian
receiving this demand has to change the schema accordingtys situation, the librarian
is not a computer science expert, thus he/she should haeéta ssist him/her to evolve
the schema.

We consider an XML schema as a set of rules. Each rule usesilaregpression
to define the allowed sub-elements of an element. The maitifitaon an XML schema
consist in changes on the regular expressions of the schérmaed, our algorithm is
based on the computation of a new regular expression toexztgiven regular language
in a conservative way. Thus, our problem can be formulatéerms of regular expression
evolution:

Given a regular expressiafi, suppose that an update must be performed
over E. A new regular expressiof’ is built from E such thatl(E) C
L(E').

The following example gives an overall idea of the method.

Example 1.1 Consider a schemaé that constraints XML documents storing researchers
and their publications. Suppose that one of the constramts§ is: publications
are grouped by journal articles organized by subject and gégublication. That

is, the content model of eleme®ublication is modeled by the regular expression
E'=Subject (Year Journal™)*. Let the following extract of an XML documentvalid
with respect tas:

<Publication>
<Subject> Automata</Subject>
<Year> 1965</Year>
<Journal> Theorical Computer Science/Journal >
<Journal> International Journal of Computer Scienc&lournal >

</Publication>
Supposing that a user wants to updéitey inserting a new elementon ference into the
content model ofPublication (i.e., Subject (Year Journal™)*), the resulting regular
expressionE’ may beSubject (Year Journal™ Conf er ence™)*, and, in this case]
is no more valid with respect to the new schefiasince the new element was inserted
as a mandatory element, in sequence withirnal*. This example shows that the user
must know the syntax of regular expressions to be able totagta schema otherwise
he/she may invalidate all the database.
In this situation, if the user could insert the new elementjbst saying that the
element must follow elemenyournal, that it must be at the same level as el-
ement Journal, and that he/she wants the update to preserve the validiben
our system would build, for example, the following regulaxpeession £/ =
Subject (Year (Journal|Conf erence)™)*. In this casel still is valid with respect
to bothS” andS. O

The Example 1.1 shows how difficult can be the schema eveolutie user should
be aware that elements order must be respected and thatwhelereent should be in-
serted as non-mandatory, otherwise the documents willeaavalid with respect to the
new schema. Indeed, expressions ke ject (Year (Journal|Conference)™)* are not
trivial to build from Subject (Year Journal™)*. More generally, the task of finding the
places where the new symbol may be added is not trivial.

Our idea is to allow the user to update the content model of@ement without
worrying about details from the regular expression thatdess this content model. No-
tice that this can be achieved only for a subset of updateifpras. Indeed, if the update
is the removal (or the replacement) of a mandatory sub-eientés unavoidable to delete
(or replace) this sub-element in all documents where it app®therwise the documents
will become invalid. Nevertheless, as shown in [Guerrirale2005], some update prim-
itives are known to have no impact on validity under certainditions. These primitives
are the following:

IMost of XML schemas are modeled by regular expressions [tl.Gimu 2000].

e Sub-element insertion in a content model.

e Cardinality extension of a sub-element in a content modaelirfstance making a
sub-element optional, or allowing repetition of an exigtsub-element.

e Substructure (regular expression) insertion in a conteteah

e Element creation: a new rule is added to schema to descriee @lement (prob-
ably inserted as a sub-element in another rule).

In this paper, we propose a set of primitives among thoselwduie able to have
no impact on validity. In addition, we aim to hide from the utee conditions for keeping
the consistency of the XML database. For example, the usgrimsart a sub-elemert
in a content modet by just saying thate must be inserted inte, with several options
such as the context, the type (sequence or choice), etc. eButing content modef
will always havee as an optional sub-element. To summarize, we consider aWwank
in which the user can specify one update in an intuitive wagl, ask that this update must
preserve the validity of existing documents, and we promoseethod to compute the
accurate update.

In what follows we first present the theoretical context of ptoposition (sec-
tion 2), then we describe our method (sectioni.®),the update primitives and their im-
plementation as a conservative schema evolution.

2. Background

We first present the schema model used in this paper, then segilge the notions used
in our schema evolution assistance method.

We remind that XML documents are seen as unranked labeled {re., trees
whose nodes have a finite but arbitrary number of childrenl, aonsequently, XML
schemas are modeled as regular tree grammars. More pyesigedefine the schema
model (based on [Papakonstantinou and Vianu 2000]) asifsllo

Definition 2.1 A schemasS over an alphabeX for XML documents consists of a root
type in ¥ and a mapping associating to eacke X a language oveE. The language
associated ta is described by a regular expressibp. We callcontent modedf a the
regular expressiofy, associated ta. O

Example 2.1 Suppose a schema that models the document presented in Exarp
The schem@ is, therefore, as follows:

Y = {University, Lab, Name, M embers, Publications, Position, Subject, Y ear, Journal,
Title, text}

root : University

University : Lab* (1)
Lab: Name Members™ Publication* (2)
Publication : Subject (Year Journal™)* 3)
Members : Position Name? (4)

Notice that, for example, the rule (3) represents the cameael of Publication which is
modeled by the regular expressiép,, = Subject(Year Journal®)* and the intended
semantics of/p,; is that the production of a given author is stated by the aresubject)
of his/her research, followed by a list of journal papergsented by year. O

2The other rules have the form text ore : ¢, wheretext represents a text value andepresents the
empty word.

Figure 1. (a) Glushkov Automaton for a(b ¢™)*#. (b) Its Glushkov graph

For the sake of simplicity, we adopt here the simplest schadel, correspond-
ing to a DTD. But our method can be used for every schema lagygghased on regular
expressions (for a taxonomy of such languages see [Murala2®05]). Notice also that
we do not consider XML attributes since they are not conséby regular expressions:
possibilities of conservative change concerning attalaéfinition are limited since one
can only add non compulsory attributes.

Now we introduce a method to transform a graph built from ddistate automa-
ton (FSA) into its corresponding regular expression. Thethad, which is the basis of
our approach to update conservatively XML schemas, isradlas follows: starting from
regular expressions defining the content models of elementbuild Glushkov automata
based on the algorithm proposed in [Bruggeman-Klein 198Bjch is known to be effi-
cient. These automata are seen as directed graphs and raick stth the corresponding
content models. A schema update is then performed over #phdhat corresponds to
the content model to be updated. After that, the changedgdsajeduced to a regular ex-
pression following the method proposed in [Caron and Zi&@Q (which is, again, very
efficient).

Our motivation to use the reduction process is that it allawidentify the starred
sub-expressions of a regular expressiband, thus, it is quite simple to introduce updates
in right places in order to be sure to extend the language ionaarvative way. In the
following we detail the reduction method and we define théamstoforbits andcontexts
that are need to identify the starred sub-expressions.

A Glushkov automaton is built by subscripting each symbdharegular expres-
sion with its position. In this way, the automaton is homaemrs.

Example 2.2 Given the regular expressibly = (a(b c*)*#, the subscripted regular
expression isE = a;(by c3)*#4. The Glushkov automaton/ = (3, Q, A, q, F),
built from E, is such that: the alphabet 5 = {a,b, ¢, #}, the set of states i§ =
{0,1,2, 3,4}, the initial state ig, = 0, the set of final states I8 = {4} and the transition
relationA is defined by the edges of the graph in Figure 1(a). O

A Glushkov graptis the directed grapy = (X, U) obtained from a Glushkov
automaton such that each nodeXncorresponds to a state and each edgé&/ito a
transition. Since Glushkov automata are homogeneous dipeseof aG are not labeled
as shown in Figure 1(b). A graph hasamt noder (resp. arantiroot s) if there exists a
path fromr to any node in the graph (resp. from any node in the graph td graph is a
hammockf it has both a root«) and an antiroots), with » # s. Thanks to the end mark
(#), the Glushkov graphs used in this work Aeemmocks

Now we consider the graph properties taken from [Caron aadiZ000], that

3A FSA is said to behomogeneoufCaron and Ziadi 2000] if one always enters a given state by th
same symbol.
“We add an end mark¥) to the regular expressiafi and to every string belonging (F).

will be used later on in this work. A s&® C X is said to be amrbit if for all z andz’

in O there exists a non trivial path fromto 2’. An orbit is maximalif for each noder

of O and for each node’ out of O, there does not exist a path framto 2’ and a path
from 2’ to x. Notice that an orbit is maximal if it is not contained in anher orbit.
Let O be an orbit, we definein(O)={z € O | 32’ € (X \ O),(2',z) € U} as the
input of © andOut(O)={z € O | 32’ € (X \ O), (z,2") € U} as theoutputof O.

An orbit O is stableif Vo € Out(O) andVy € In(O), the edggz, y) exists. An orbit
O is transversdf Vz,y € Out(0),Vz € (X \ O),(z,2) € U = (y,2) € U, and if

Vo,y € In(0),Vz € (X \ O),(z,2) € U = (z,y) € U. An orbit O is strongly stable
(resp.strongly transversgf it is stable (resp. transverse) and if after deletingedges
in Out(O) x In(QO), every suborbit is strongly stable (resp. strongly transsjke

Example 2.3 The graph (a hammock) of Figure 1(b) has 2 orbits. The @hit= {2, 3},
with In(O;) = {2} andOut(O;) = {3}, is maximal. OrbitO, = {3} is not maximal.
Orbit O, is stable since all the edges @ut(Oy) x In(O,) are inOs. It is transverse
since the edgé3, 4) exists in the graph. In fact);, O, are strongly stable and strongly
transverse. O

Given a graplg in which all orbits are strongly stable, we buildgeaph without
orbits G,,, by recursively deleting, for each maximal orld} all edges(x, y) such that
x € Out(O) andy € In(O). The process ends when there are no more orbits. Notice
thatg.,, is defined in a unique way [Caron and Ziadi 2000]. During thestaiction of
G astructure that stores the computed maximal orbigsisfalso built. This structure is
calledhierarchy of orbits The hierarchy of orbit{ is hierarchically organized according
to the set-inclusion relation.

Giveng,,, it is said to bereducible([Caron and Ziadi 2000]) if it is possible to
reduce it to one state by successive applications of anyedthitee rulefk;, R, andR3
explained below (illustrated by Figure 2). Letbe a node irG,, = (X,U). We note
Q (x) = {y € X | (y,x) € U} the set of immediate predecessorscadnd Q™ (z) =
{y € X | (z,y) € U} the set of immediate successorszof The reduction rules are
defined as follows (we denotéx) the regular expression associated to nedande the
resulting regular expression in each case):

Rule R;: If two nodesr andy are such thal ~ (y) = {z} andQ* (z) = {y}, then replace
nodez by nodery and delete nodg.

Rule R;: If two nodesz andy are such tha®~(z) = Q@ (y) andQ™* (z) = Q" (y), then
replace node by nodez|y and delete nodg.

Rule R;: If a nodex is such thay € @~ (z) = QT (x) C Q™ (y), i.e, each predecessor
of nodex is also a predecessor of any successor of ngdben delete the edges going
from @~ (z) to @ (x). In this case we build a regular expression in the followiraywif
r(z) is of the formE (resp.E™) thene will be E? (resp.E*).

The reduction process starts at the lowest level of the taleyaof orbits and works
bottom-up, from the smallest orbits to the maximal onesi{sdtsion). Indeed, during the
construction ofG,,,, the orbits are hierarchically ordered, according to tharsgusion
relation. The information concerning the orbits of the ovay graph is used to add the
transitive closure operator (") to the regular expression being constructed. Thus, dur-
ing the reduction process, when a single node representivigpie orbit is obtained, its

-

*_\ \\ .~ B R, ﬁ_\ \\ /
Q00—) N @'y —% @ 0, QW

Qo) L0 R QT), W‘ Q'
_ \/\”Q+(X) 0 .
Q) - R o (x),m@/“ﬂ Q)

~

Figure 2. Rules Ry, R; and R3

content is decorated with a*.

Example 2.4 Figure 3 shows some steps of reduction of the Glushkov gvaphat repre-
sents the regular expressién= (a(b|c)*)*# (E = (a1(ba|cs)*)*#4): (i) starting fromg
without orbits (Figure 3(a)),i{) RuleR; is applied over nodezand3 (Figure 3(b)), {i7)
node2|3 is decorated with “+” since it represents a whole orbit (Feg8(c)), (v) Rule
R; is applied over nod€2|3)™ resulting in(2]3)* (Figure 3(d)), ¢) Rule R; is applied
over noded and(2|3)* and the resulting node is decorated with “+” since it repnéese
whole orbit (Figure 3(e)), and/{) Rule R3 is applied over nod¢1(2|3)*)* resulting in
(1(2]3)*)* (Figure 3(f)). This process continues up to the originapyres reduced to just
one node containing the positional regular expressien,0(1(2/3)*)*4. Discarding the
position0, it corresponds to the original regular expresgiofb|c)*)*#. O

H@ @2

\—/

D@D

Figure 3. Reduction of a Glushkov graph without orbits built from (a(b|c)*)*#

A characterization of Glushkov automata is given by theofwlhg theorem.

Theorem 2.1 [Caron and Ziadi 2000] A finite state automatan is a Glushkov automa-
ton iff its graphG = (X, U) satisfies the following conditiong1) G is a hammock(2)
each maximal orbit inG is strongly stable and strongly transverse af8) the graph
without orbit ofG is reducible. In this cas€j is called a Glushkov graph.

It has been shown in [Bruggeman-Klein and Wood 1992] thatyeweximal or-
bits of a Glushkov graplyy built from a regular expressiol’ represent starred sub-
expressions of.

Example 2.5 Giving the regular expressiol = a(b ¢™)*# (@nd E = a;(by c5)*#4).
From the grapty of Figure 1(b), a graph without orbitg,,, is built and we havé{ =
{{2,3},{3}}. The orbit{3} represents the starred subexpressioand the orbit 2, 3}
represents the starred subexpressiort)*. 0

We use the hierarchy of orbifg of a Glushkov graph to define the contexts in a
regular expression. For each orbitif) a context is defined. Moreover, we define also a
context calledgeneralhaving all symbols that do not participate in any orbitof

Definition 2.2 Let E be a regular expression aftbe the subscripted regular expression
of E. Let My be a Glushkov automaton built frofi andG = (X, U) be the graph built
from Mg. Let H be the hierarchy of orbits @f. Let x(p) denote the symbol i that
corresponds to each positiprin £ (remind that each positionin E is also a node in
X). The context® of E are defined as follows:

(¢) for each orbitO € H,Co = {x(p) | p€ O AVO; COp ¢ O}

(i¢) the general context i€ e ;e = {X(p) | VO € H = p & O}. O

We notice that if a regular expressid@hhas no starred sub-expression, the only
context of £ is the general one. On the other hand, if all symbols’oére in starred
sub-expressions, the general context is empty.

Example 2.6 Giving the regular expressiofi = a(b ¢*)*# and the hierarchy of orbits
H = {{2,3},{3}} from Example 2.5. The built contexts afg;; = {c}, C(233 = {b}
andcgeneral = {a} 0

3. Schema Evolution Framework

3.1. Update Primitives

In our approach the update primitives specified by the usereaecuted on Glushkov
graphs that represent regular expressions. The use of Kaugjraphs to implement

these primitives allows our method to utilize the orbite.(the starred sub-expression in
F) to guide the way thak’ is updated.

We propose four atomic primitives for the creation of a nesnent, the insertion
of a sub-element in a content model, the extension of theraity of a sub-element
(from at most onceo severa) and the possibility to make a mandatory sub-element op-
tional. These atomic primitives are based on the work pitesein [Guerrini et al. 2005].

These primitives may be directly written as such, but, soweaim is to assist the
user in updating the schema, we propose an interactiveltabatlows the user to specify
each feature of the update query in an intuitive way and,, ttedouilt the correspondingly
primitive. Among these features.@, an insertion), we must have tlgentextin which
the update is expected to appear. We propose to denote ibbls lappearing in starred
sub-expressions (see Example 2.6). More precisely, thegiges one element name
to identify the target starred sub-expressigithen he/she chooses whether the inserted
sub-element has to appear before or aftelotice that the user may choose a label that
appears more than once in the regular expression: in thés tas system should obtain
the accurate occurrendeg., the right subscript in the subscripted expression.

We consider the Glushkov gragh= (X, U) built from a regular expressiof
that describes the content model of the element to be updétedemind that irg each
node (but the node) corresponds to a position in the subscripted regular expaF.
The only node that does not have out edges is subscriptedheiffosition of the end mark
(#). By abuse of notation, we use batbntextand orbits interchangeably. Thus, when
referring to the inputs of a contegtwe mean the symbols that correspond to the positions
belonging to the inputs of the orld? from whichC was built (see Definition 2.2).

You have chosen to insert Conference in the content model
of Publication.

Select an element that has a semantic close to that of Conference:
Publication : Subject (Year Jourr_.}el*)*

Select if you want to insert Conference:
relatively to Journal ®
relatively to (Journal+) O

Select if you want to insert Conference:

as a choice: Journal | Conference ®
before: Conference Journal O
after: Journal Conference O

Do you want Conference to be repeated ?
yes O
no ®

Figure 4. Steps of the interaction for an insertion

Our schema update primitives work on the Glushkov graph,nksgrting edges
(also a node for the insertion primitive). Indeed, as theesth update must keep the
validity of documents, no deletion is performed on the grapither node deletion, nor
edge deletion). Once modified, the Glushkov graph is redtaiésicorresponding regular
expressiont’ and £’ replacest in the original content model. Graph modifications are
performed as follows:

¢ Insertion: the node (that represents the elemento be inserted intd) is in-
serted into the corresponding Glushkov gr&pfin a given position or context),
and new edges are created fromito

e Making an element optional: given a nodec X that represents a mandatory
elemente in E, G is updated as follows: edges are added from predecessars of
to successors of.

e Extending the cardinality of an element: given a nade X that represents an
elemente in F, G is updated as follows: a new singleton oritcontaining only
the position ofe is inserted in the hierarcht of G.

e Creation: given a new elemeatand its content modekt., a new rulee : E, is
inserted into the schenta

The atomic primitives can be composed to form high level gias in order to
express more complex updates in a more compact way. For égains possible to
insert an expression into a content model or to make optemalole sub-expression.

3.2. Insertion Primitive

The advantage of our proposition is to allow a user to exgnesker need in an intuitive
way, while guaranteeing that the schema update will keepxfsting document validity.

In order to illustrate how the user can specify an insertiegshow in Figure 4 main steps

of the interaction. First, the user has chosen the insedpmration, the content model

to be updated (elemetublication), and he/she has given the name of the element to
be inserted C'on ference). After that, the user can choose one element in the regular
expression by clicking on it: in Figure 4, he/she has chogemrnal. Then it is possible

to choose either the element or its context as the referdrtbe msertion: by default the
element is chosen.é., Journal is chosen, and nofournal™). It is also necessary to

precise the relationship between the new element and theenheference: in Figure 4,
choicehas been chosen. Last, the user is asked whether the newnelmiagebe repeated
or not: by default it is not repeated.

The update operation corresponding to the choices in Figusethe following:
ins(Publication, Con ference, 3, false, choice, false). Notice that, since the user se-
lects one element in the expressiBnand only one, it is possible to get the correspond-
ing position inE without ambiguity (in the previous example, the user chbsernal, SO
the generated update operation has the positi@s third parameter). We define now the
insertion atomic primitive.

Definition 3.1 Lete be an element of a schersa(i.e., e € ¥) and E' the content model
of e. Lete’ the new element’ to be inserted. Let be a position inF, associated to the
element inE, which is the reference for the insertion. Lgte a Glushkov graph built
from E, and letC be the context built from an orbi® (of G) such that- € O. We denote
by ins(e, €', T, context, mode, times) the atomic primitive for inserting an elemetit
into the content model of, where:

e context is a boolean that defines the reference of insertian, whethere’ is
inserted relatively t@ (context=true) or r (context=false),

e mode defines whether’ is inserted as achoice a sequence-before, or a
sequence-after, in relation to the chosen reference, and

e times is a boolean: itimes=true thene’ will be decorated with' . O

Notice that the insertion of in E is guided by the most internal orbit whereppears.

Example 3.1 The example of interaction in Figure 4 leads to the update
ins(Publication, Con ference, 3, false, choice, false), which will result in the
regular expressiot’: Subject (Year (Journal | Conference)™)*#. Remark that the
contexts are€ 3, ={Journal}, Ca5,={Y ear} andC jepera={ Subject }. O

Figure 5 presents the algorithins, which implements the insertion primitive.
First, a new node:.. representing the element to be inserted is added to the ¢iiaph
08). Next, new edges are inserteddrdepending on the input parameters (linés 23):
the first test is whether the new element will be inserted d@sée, a sequence-be fore
or asequence-a fter, and next whether the reference is the positiar its orbit. Before
building the new regular expression (lia&), the orbit®’ and all orbits in which®’ is
included are updatedt,. is inserted and the inputs and outputs are also updated@)ne
Itis also tested whether the input parametetes is true: if it is the case, a singleton orbit
Is inserted intdH (line 25). This new orbit will provoke the decoration of nodg with
“+”, which is transformed into “*” by the reduction rules jle 26) sincen.. is inserted as
an optional node.

Figure 6 shows the graph built by Algorithins (Figure 5) from the Example 3.1:

e As the context parameter isfalse, the new nodé is inserted into the orbit
wherec appearsi.e., O = {3}, in relation withc (i.e., 7 = 3).

e As themode parameter ighoice, all successors of nodehave edges from the
new nodes (line 12 of Figure 5):(5,4). Also, all predecessors 8fhave edges to the new
node (linel3 of Figure 5):(2, 5).

e O and the orbits in whicl® is included are updated with the new node (l7e
of Figure 5). Thus, the new hierarchy of orbit§{i3, 5}, {2, 3,5}, {0,1,2,3,4,5}}.

¢ Finally, a new regular expression is built fragy,, (line 29 of Figure 5).

Algorithm ins(e, €/, 7, context, mode, times)
Qutput: The new content nodel E’ of e.

01.
02.

€.

03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

Let S be the schenn.
Let e: E. in S be the representation of the content nodel

Let 6= (X,U) be a G ushkov graph built from E..
Let H be the hierarchy of orbits of G.
Let O be the orbit in H such that 7€ O.
Let n. be the new node, representing ¢ (ng ¢ X)
¢ —G MH<H
| nsert no into X’
| f mode = choice
| f context I nsert (ne,n,) into U for each n, e QT (Out(O))
| nsert (n;,ne) into U’ for each n; € Q= (In(0))
El se Insert (ng,n,) into U for each n, e Q" (1)
I nsert (n;,ne) into U’ for each n; € Q (1)
El se | f mode = sequence- before
| f context Insert (ne,n) into U’ for each ne Q (In(O)
I nsert (n,n.) into U’ for each ne (In(0')
El se Insert (neg,7) into U’
I nsert (n,ne) into U’ for each ne Q@ (1)
El se | f mode = sequence- after
| f context I nsert (ng,n) into U’ for each n e (Out(O')
I nsert (n,no) into U’ for each ne Q" (Out(0))
El se Insert (ne,n) into U’ for each neQ (1)
I nsert (r,no) into U’
Update O’ and O, with node n., for each O;> ¢
| f times Insert {ng} into H
E' —reduce(g, H)
Translate E' into E' using x, With y(n.)=¢

Figure 5. Algorithm that implements the insertion operation.

G

- FHBH QOO

H ={{3}{2,3},{0,1,2,3,4}}

e

H ={{5,3}2,3,5},{0,1,2,3,4,5}}

Figure 6. Operation ins(Publication, Conference, 3, false, choice, false) applied
over G, given G/

of

Gio o
O

H ={{3}42,3},{0,1,2,3,4}}

Figure 7. Operation makeOpt(y, c) applied over G,,, (Figure 6).

3.3. Other Primitives

We define the atomic primitive to make optional an elemenigqthpermitting to delete
occurrences of this element in documents while keeping tradid).

Definition 3.2 Let e be an element of a schenda(i.e, e € ¥) and £ be the content
model ofe. Lete’ be a mandatory sub-elementii such that- is its position. LelG be a
Glushkov graph built front'. We denote bynakeOpt (e, T) the atomic primitive, which
makese’ optional. This operation is performed ¢has follows: all predecessors ofwill
have edges to all successors:0fThe orbit where2’ appears is updated if necessary

Example 3.2 Given the regular expressiof, = a(b ¢")*#. For the operation
makeOpt(y, 3) the resulting regular expressidfi is a(b c*)*#.

In order to computd”’, we modify the Glushkov graph associateditoFigure 7 presents
the resulting graply! , after executingnakeOpt(y, 3) over the graplg,,, from Figure 6:
new edges are inserted indQ,,, from the predecessors of nod€node that represents
elementc) to the successors @f Thus, the edgé2, 4) is inserted, rending optional the
node3. Remark again that the regular language describel’bgcludes the regular lan-
guage described b, i.e., L(E) C L(E'). O

Another primitive operation is to extend the cardinalityaof element, frononly
onceto several times

Definition 3.3 Let e be an element of a schenda(i.e, e € ¥) and E be its content
model. Lete’ be a sub-element iR at positionr. LetG be a Glushkov graph built from
E. Let'H be the hierarchy of orbits @.

We denote byFztendCard(e, T) the atomic primitive, which extends the cardinality of
¢’. The operation is performed as follows: a new singletontdrb} is inserted intdH,
respecting the set-inclusion relation. O

Notice that ifr is optional, the reduction process decoratesth a “*”, otherwise
with a “+”,in E’. ThenFE’ is translated intd’ usingy, with x(7) = ¢'.

The last primitive operation allows to build a content modela new element in
the schema. The following definition formalizes it.

Definition 3.4 Let ¢ be an element name arid be the content model of We denote
by createC M (e, E') the atomic primitive to add the rule: E in S (and, if necessary,
e € X). If e € ¥ and has already a content modglin S, then the new rule i will be:
e: E.|E. O

The execution of all the atomic primitives first verifies sosimaple preconditions:
(v) to make an element optional or to extend its cardinality in a given content miotle
¢’ must belong toF, (i7) to create a new rule : E, the rulee : E should not exist
already inS, and ¢i7) to extend the cardinality of an elemenit ¢/ must not be already
decorated with “*” or “”. For each atomic primitive, the time complexity is constas
the Glushkov graph representations are built once (anddtor

We can notice that each of our atomic primitives applied oaremas that con-
forms to Definition 2.1 outputs a scherfathat still conforms to Definition 2.1. More-
over, the following theorem states that the graj built by applying Definitions 3.1,
3.2 and 3.3 can be reduced to a regular expression (the ndentanodel).

Theorem 3.1 LetG be a Glushkov grapl{,,, its graph without orbits and the hierar-
chy of orbits ofG,,. The graphg’ (i.e.,G,,, andH') built from G, and H by applying
Definitions 3.1, 3.2 or 3.3 still be a Glushkov graph, in pautar G/ is reducible by
successive applications of rul&s. O

Proof (Sketch): Our assumption is that is a Glushkov graph (cf. Theorem 2(I) G is

a hammock(2) each maximal orbit g/ is strongly stable and strongly transverse é3)d
the graph without orbit of is reducible). For each atomic primitive, both its definitio
(3.1to 3.3) and its implementation are designed so that a and/or edges are inserted,
in such a way that the reduction conditions are respecter, & , is reducible ie,
RulesR;, R, or R3 can be applied ove¥,). Moreover, the hierarchy of orbifg is also
updated respecting the set-inclusion relation}&astill is strongly stable and strongly
transverse, and’ still is a hammock as neither initial state nor final stateddedd. O

Finally, the following theorem states that the content n®eilt by our atomic
primitives are consistency-preserving, that is, the XMlculments valid with respect to
the original schema are still valid with respect to the nelhesca.

Theorem 3.2 LetS be an XML schema. Let: E, be arule inS. LetT be a position in
E,. Lete’ be an element to be inserted inf) (¢/ € X). Leta : E, be arule notinS.
The operationsns(e, ¢/, T, context, mode, times), makeOpt(e, T), ExtendCard(e, T)
andcreateC M (o, E,,) applied overS build a new schem&’ such thatZ(S) C L(S').0

Proof (Sketch): A content modelF, can be updated as followsi) @ new optional ele-
ment can be insertedi;] a mandatory element can be transformed into an optional one
(727) an element can have its cardinality augmented. By defmitibregular expres-
sions, all these updates performed By outputting E’, verify L(E.) C L(E.), thus
L(S) C L(S'). Moreover, a new content model can be inserted associatau étement

«. Here again, the documents valid with respect tre still valid with respect to the new
schemaS’, because either they do not contaiyor they containx but its original content
model is still a valid one (cf. Definition 3.4). O

High Level Primitives We can propose some high level primitives to express complex
updates in a more compact way. Liete the content model of element

1. Inserting a subexpressioimsSubExp(e, 3, T, context, mode, times), where(s
is a regular expression. This operation insgttsto £ relatively tor or to its
context (depending on thentext parameter), following the way expressed in
mode and with or without repetition (parametgres).

2. Making optionalmakeSubExpOpt(e, 3), § being a subexpression &f.
3. Extending the cardinality®ztendSubExp(e, [3), # being a subexpression &f.

These high level primitives, again inspired from [Mesitaét2006], are also to be
proposed via an intuitive interface to assist the user imesging his/her needs. Instead
of dealing with one node each time, these primitives implytok with a set of nodes
and edges (a subgraph), but they keep the same semantiesasitiic ones.

4. Conclusion

In this paper, we consider a framework in which a user canifypapdates on XML
schemas using an intuitive interface, and asks for thesatapdo be consistency-
preserving (it is not necessary to revalidate the previalis documents). We propose a
method to perform the accurate update, such that the upsieliedna both respects all the
specifications given by the user, and is a conservative sixterof the original schema.
This property is important, specially in a distributed eomiment where documents lo-
cated in different sites have to respect a common schen¥de update o may make
those documents invalid, and a distributed applicatioas tisesS may no more work
properly.

Our method is based on a graph-to-regular-expressiontieduechnique, which
allows to identify the starred sub-expressions of a regekpression. Another way to find
the starred sub-expressions and their behavidér,i@.g, optionality, cardinality, etc., is to
use the functiong’irst, Last, andF ollow [Bruggeman-Klein 1993] that work directly on
the regular expressiofl. Computing these functions is equivalent to build the Ghash
graph, the graph without orbits and the hierarchy of ortsesponding tav.

The set of primitives proposed in this work is not completée Thissing primi-
tives,e.g, deletion or replacement of an element (or a sub-expressiomnoperations that
inevitably make the XML database inconsistent [GuerriraleR005]. Our primitives are
to be used together withon-conservativerimitives in a general framework such as the
one presented in [Mesiti et al. 2006], that contains othastfor limiting revalidation and
changes performed on existing documents when non-coriserugdates are performed.
Such a framework represents a solution to the increasinguérfor tools specially de-
signed for administrators not belonging to the computesrs® community, this demand
been particularly strong in the domain of the Web and XML.

This work is part of a broader project that is exploring altda of valid
XML documents: (incremental) validation [Bouchou and lgadfFerrari 2003,
Bouchou et al. 2003], constraint checking [Abrao etal.400 schema evolu-
tion triggered by updates in documents [Bouchou et al. 20@84rrection of up-
dates [Bouchou et al. 2006] and primitives for schema upddkeés work). A prototype
of each part of this project has been implemented in Java. l&vetp integrate all these
prototypes, while developing a complete and usable humarhime interface.

References

Abrao, M. A., Bouchou, B., Halfeld Ferrari, M., Laurent,,[dand Musicante, M. (2004).
Incremental constraint checking for XML documents. Xi8ym volume 3186 ot.ec-
ture Notes in Computer Sciengeages 112-127. Springer.

Al-Jadir, L. and EI-Moukaddem, F. (2003). Once upon a timd®I@volved into another
DTD... InOOIS volume 2817 otecture Notes in Computer ScienSpringer.

Bouchou, B., Cheriat, A., Halfeld Ferrari, M., and Savary,(2006). XML Document
Correction: Incremental Approach Activated by Schemadélon. INIDEAS’06

Bouchou, B., Duarte, D., Halfeld Ferrari, M., and Laurent,(P003). Extending tree
automata to model XML validation under element and attemanstraints. IhCEIS

Bouchou, B., Duarte, D., Halfeld Ferrari, M., Laurent, IndaMusicante, M. A. (2004).
Schema evolution for XML: A consistency-preserving apptoa In Mathematical
Foundations of Computer Scienceimber 3153 in LNCS, pages 876 — 888.

Bouchou, B. and Halfeld Ferrari, M. (2003). Updates andaneental validation of XML
documents. IImThe 9th DBPL.number 2921 in LNCS.

Bruggeman-Klein, A. (1993). Regular expressions intodiatitomataT heoretical Com-
puter Sciencel20:197-213.

Bruggeman-Klein, A. and Wood, D. (1992). Deterministicutag languages. ISTACS

Caron, P. and Ziadi, D. (2000). Characterization of Glustdatomata. TCS: Theorical
Computer Scien¢c33:75-90.

Costello, R. and Schneider, J. C. (2000). Challenge of XMiestas - schema evolution.
In Proceedings of XML Europe

Guerrini, G., Mesiti, M., and Rossi, D. (2005). Impact of XMthema evolution on valid
documents. I'WIDM, pages 39-44. ACM.

L., D. and Chu, W. W. (2000). Comparative analysis of six XMthema languages.
SIGMOD Record29(3):76-87.

Mesiti, M., Celle, R., Sorrenti, M. A., and Guerrini, G. (Z8)0 X-Evolution: A system
for XML schema evolution and document adaptationEDBT, pages 1143-1146.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. (2005). Tarony of XML schema
language using formal language theo&ACM Transactions on Internet Technology
(TOIT), 5(4):660—704.

Papakonstantinou, Y. and Vianu, V. (2000). DTD inferenaeviews of XML data. In
ACM Symposium on Principles of Database Sysfgges 35—46.

Prashant, B. N. and Kumar, P. S. (2006). Managing XML dath e#lving schema. In
COMAD, pages 168-175. Computer Society of India.

Raghavachari, M. and Shmueli, O. (2004). Efficient scheaseb revalidation of XML.
In EDBT, LNCS, pages 639-657. Springer.

Roddick, J., Al-Jadir, L., Bertossi, L., Dumas, M., EsteelF., Gregersen, H., Hornsby,
K., Lufter, J., Mandreoli, F., Mannisto, T., Mayol, E., dWedemeijer, L. (2000).
Evolution and change in data management - issues and dimec&lGMOD Record
29(1):21-25.

Su, H., Kuno, H., and Rundensteiner, E. A. (2001). Autongathre transformation of
XML documents. I3rd WIDM. ACM.

