Incremental Constraint Checking for XML Documents

Maria AdrianaABRAO*, BéatriceBoucHoU', Mirian HALFELD FERRARI!,
DominiqueL AURENT?, and Martin A.MUSICANTE? **

! Universig Frangois Rabelais - LI/Antenne de Blois, France
adriana.abrao@etu.univ-tours.fr , {bouchou, mirian }@univ-tours.fr
2 Universié de Cergy-Pontoise - LIPC, France
dominique.laurent@dept-info.u-cergy.fr
3 Universidade Federal do PagnDepartamento de Inforatica, Brazil
mam@inf.ufpr.br

Abstract. We introduce a method for building an XML constraint validator from

a given set of schema, key and foreign key constraints. The XML constraint val-
idator obtained by our method is a bottom-up tree transducer that is used not only
for checking, in only one pass, the correctness of an XML document but also for
incrementally validating updates over this document. In this way, both the veri-
fication from scratch and the update verification are based on regular (finite and
tree) automata, making the whole process efficient.

1 Introduction

We address the problem of incremental validation of updates performed on an XML
document that respects a set of schema and integrity constriagntsr a valid XML
document). Given a set of schema and integrity constrdnte/e present a method
that translate® into a bottom-up tree transduckfr capable of verifying the validity
of the document. We only address meaningful specifications [EL]ones in which
integrity constraints are consistent with respect to the schema. The aim of this work
is the construction of a transdudgrthat allows incremental validation of updates. In
this paper, we deal mostly with the verification of key and foreign key constraints. The
validation of updates taking into account schema constraints (DTD) is perfoih by
exactly as proposed in [5].
The main contributions of the paper are:
e A method for generating a validator from a given specification containing schema,
key and foreign key constraints.
e An unranked bottom-up tree transducer, which represents the validator, where syn-
tactic and semantic aspects are well separated.
e Anincremental schema, key and foreign key validation method.
e Anindex tree that allows incremental updates on XML document. This key index
can also be used for efficiently evaluating queries based on key values.

* Supported by CAPES (Brazil) BEX0706/02-7
** This work was done while the author was on leave at Univesiaincois Rabelais. Supported
by CAPES (Brazil) BEX1851/02-0.

Section 2 gives an overview of the incremental constraint checking framework. Sec-
tion 3 presents our method to build a tree transducer from a given specification con-
taining a DTD and a set of keys and foreign keys. We also show how the transducer is
used to efficiently verify all the imposed constraints. Section 4 shows how incremental
validation is performed on updates. Section 5 concludes with our further research.

2 General Overview

An XML document is a structuré composed by an unranked labeled ttead func-
tionstypeandvalue The functiontypeindicates the type of a nodelémentattribute

or data). The functionvaluegives the value associated with a leaf (a data node). Fig. 1
shows part of the labeled tree representing the document used in our examples. It de-
scribes menus and combinations in some French restaurants. Differently frénfethe
carte style, a combination is a grouping of dishes and drinks, reducing both the choice
and the price for clients. Each node in the tree has a position and a label. Elements and
attributes associated with arbitrary text have a child labdkgd Attribute labels are
depicted with a preceding @.

root

0 1
restaurant restaurant

01 02 03

0 Q/7\ .
@name @address menu combinations
ooo‘ 010‘ 020 021 022 ’039\
data data drinks meals desserts combination

0200/\201 0300 0301 \302 0303

wine wine wineName wineYear mealName price
0200 200 02002 02019/%11\ 02012 ‘03000 ‘ 03010 103020 03030
name year price name year price data da

ta data data
(Sancerre) (2000) (Grilled Fish) (30.00)
020001 020010‘ 020020‘ 020100, 020110 02012

data data data data data data
(Sancerre) (2000) (21.00) (Cahors) (2002) (25.00)

Fig. 1. Labeled tree¢ of an XML document.

Definition 1. Key and foreign key syntax [8} A key is represented b§P, (P’, { P!,
..., P™})). A foreign key is represented ky>, (P, {P3,...,Pi"})) € K where
K = (P,(P', {P,...,P™}))is akey such thaP = P,. In a key, pathP is called the
context path P’ thetarget pathand P!, ..., P™ thekey pathsThe same applies for a
foreign key (4, . .., P} are theforeign key paths O

Context and target paths should reach element nodes. Key (or foreign key) paths are
required to end at a node associated to a valeeattribute nodes or elements having
just one child of typelata The next example gives the intuition of the semantics of key
and foreign key constraints over the document of Fig. 1.

Example 1.Let K; = (/restaurant(./menudrinks'wine, {./name ./year})) be a key constraint
indicating that, in the context of a restaurant, a wine (the target node) can be uniquely identified

by its name and its year. L&t K, = (/restaurant (./combinationfcombination {./wineName
JwineYea})) C K be aforeign key constraint indicating that, for each restaurant, a combination
is composed by a wine that should appear in the menu of the restaurant. a

Definition 2. Key and foreign key semanticsAn XML tree 7 satisfies a keyP, (P’,
{P',...,P™})) if for each context positiop defined byP the following two con-
ditions hold: (¢) For each target positiop’ reachable fronp via P’ there exists a
unique positionp,, from p’, for eachP"(1 < h < m). (#4) For any target positions
p’ andp”, reachable fronp via P’, whenever the values reached frgmandp” via
P"(1 < h < m) are equal, thep’ andp’”” must be the same position. Similarly, an XML
tree7 satisfies a foreign keyP, (P}, {Ps, ..., P"})) C K if: (i) it satisfies its asso-
ciated keyK and(ii) each tupler of values, built following paths/ P}/ P}, ..., P/
P} /P (in this order), can also be obtained by following the patha®’ /P!, ...,
P/P’'/P™ (in this order). O

In the following, we assume the existence of an XML tEand a set of schema
and integrity constraint® and we survey(i) the validation of7 from scratch which
is performed in only one pass on the XML tree gid the incremental validation of
updates over .

2.1 Validation from scratch

Our method consists in building a tree transducer capable of expressing all the con-
straints of a given specificatidd. The tree transducer is composed by a bottom-up tree
automata (to verify the syntactic restrictions) and a set of actions defined for each key
and foreign key. These actions manipulate values and are used to verify the semantic
aspects of constraints. The execution of the tree transducer consists in visiting the tree
in a bottom-up mannéy performing, at each level:

A) The verification of schema constraintSchema constraints are satisfied if all posi-
tions of a tree can be associated to a state and if the root is bound to a final state
(defined by the specification). A stajds assigned to a positignif the children
of p in ¢ verify the element and attribute constraints established by the specifica-
tion. Roughly, a schema constraint establishes, for a position labekbe type,
the number and (for the sub-elements) the ordersothildren. We assume that the
XML document in Fig. 1 is valid wrt schema constraints (see [5] for details).

B) The verification of key and foreign key constrainits.order to validate key and
foreign key constraints we need to manipulate data values. To this end, we define
the values to be carried up from children to parents in an XML tree. The following
example illustrates how the transducer treats values being carried up for each node.
This treatment depends on the role of the node’s label in the key or foreign key.

Example 2.We assume a tree transducer obtained from specificdignontaining a given
DTD together withK;, F K, of Example 1) and we analyze its execution ove(Fig. 1):

1. The tree transducer computes the values associated to all nodes ldhtled/e consider
valug020000) = valug03000) = Sancerreandvalug020010) = valug03001) = 2000
as some of the values computed in this step.

4 Notice that it is very easy to perform a bottom-up visit even using SAX [13](with a stack).

2. The tree transducer analyzes the parents ofitita nodes. If they are key or foreign key
nodes, they receive the values computed in 1. Otherwise, no value is carried up. In our case,
the valueSancerreis passed to key nod#&000 and to foreign key nodé300. The value
2000 is passed to key nod2001 and to foreign key nod@301.

3. The tree transducer passes the values from children to parent until it finds a target node. At
this level the values for each key or foreign key are grouped in a list. l@de is target
for K1, and as the key is composed by two items, the list contains the tuple (Zdneerre
2000. Similarly, node030 (target node fo" K) is associated t¢Sancerre 2000 .

4. The transducer carries up the lists of values obtained in 3 until finding a context. At a context
node of a key, the transducer tests if all the lists are distinct, returning a boolean value.
Similarly, at a context of a foreign key, the transducer tests if all the tuples exist as values
of the referenced key. In our cagestaurantis the context node for both’; and F K. As
context node foly, it receives several lists, each containing a tuple with the wine name and
year. The test verifies the uniqueness of those tuples. As context nofldgrit receives
several lists, each containing a tuple with the name and year of a wine of a combination.
The test verifies if each tuple is also a tuple for K€y. For instance{Sancerre2000) that
represents a wine in a combination, appears as a wine in the menu of the restaurant.

5. The boolean values computed in 4 are carried up to the fopand F K, are satisfied if the
conjunction of the boolean values resultgrine. a

2.2 Incremental validation of updates
Let us now consider updates over valid XML trees. To this end, we suppose that:

— Updates are seen as changes to be performed on the XM tree

— Only updates that preserve the validity of the document (with respect to schema,
key and foreign key constraints) are accepted. If the update violates a constraint,
then it is rejected and the XML document remains unchanged.

— The acceptance of an update reliesrmremental validationiests.e., only the va-
lidity of the part of the original document directly affected by the update is checked.

We deal with two kinds of update operations. The insertion of a sulftfes po-
sition p of 7 and the deletion of the subtree rootedpah 7. To verify if an update
should be accepted, we perform incremental tests, summarized as follows:

1. Schema constraintdMe consider the run of the tree transducer on the subtree of
7T composed just by the updated positjgrits siblings and their father. If the state
assigned t@’s father does not change due to the updaée, the tree transducer
maintains the state assignmenpt®father as it was before the update, then schema
constraints are not violated (see [5] for details).

2. Key and foreign key constraint3o facilitate the validation of keys and foreign
keys for an update operation, we keep an index tree of those tupledéfined by
each key. For each tuple that is referenced by a foreign key, a reference counter is
used in order to know how many times the tuple is used as a foreign key.

The verification of key and foreign key constraints changes according to the update
operation being performed. Firstly we have to find (for each key and foreign key)
the corresponding context nogle concerned by the insertion or the deletion. Then,

in order to insert a subtreg’ at positionp of 7 we should perform the following
tests:(i) verify whetherZ”’ does not contain duplicate key values for conjéxtii)

verify whether7’ does not contain key values already appearing ifor context

p’ and(ii7) for each key tuple in context being referenced by a foreign key i,

increase its reference counter. Similarly, to delete a sulfifeeooted at position

p, from an XML tree7 we should perform the following tests, for each context

p': (i) verify if 7' contains only key values that are not referenced by foreign keys

(not being deleted) and:) for each key tuple in context being referenced by a

foreign key in7’, decrease its reference counter.

The acceptance of an update over an XML tfeart keys and foreign keys requires
information about key values ifi. Given an XML tree7, the tree transducer is used
once to verify its validity (from scratch). During this first execution of the tree trans-
ducer an index tree, calldceyTreeis built for each key constraink that should be
respected by7. EachkeyTreg is a tree structure that stores the position of each con-
text and target node together with the values associated to each key rbd€im 2
describes this index structure using the notation of DTDs and Fig. 3 sh&egTaee
for key K; of Example 1. The next example illustrates the validation of updates.

<IDOCTYPE keyTree[

<IELEMENT K(context*)>

<IATTLIST K nameKeyConst CDATA #REQUIRED>

<IELEMENT context(target+)>

<IATTLIST context pos CDATA #REQUIRED>

<IELEMENT target(key+)>

<IATTLIST target pos CDATA #REQUIRED refCount CDATA #REQUIRED>
<IELEMENT key #PCDATA>]

Fig. 2. DTD specifying structur&eyTree

keyTree
)
@nmmt// context
(Ki) @pos target arget

(C‘J) @pos@r%ntkey\key @rm@)refomm
| | | \ \ | \ \

(0200) (1) (Sancerre) (2000) (0201) (3) (Cahors) (2002)
Fig. 3. KeyTregc, built over the document of Fig. 1

Example 3.Given the XML tree of Fig. 1, we show its incremental verification due to the
insertion of a new wine in the menu of a restaurdre.,(the insertion of a labeled tre at
positionp = 0200 of ¢). Moreover, we consider a specification stating that a posttitabeled
drinks should respect the following schema constrairfi$:for each childpos of p we have
type(t, pos) # attribute and (i) the concatenation of the labels associated withchildren
composes a word that corresponds to the regular expregsion”.

The verification of the update with respect to schema constraints consigts donsidering that

the update is performed (without performing it yet) &g verifying if the stategg,inks can still

be associated with positi@i20 (0200’s father) by analyzing the schema constraint imposed over
nodes labeledrinks To this end, we build the sequence of states associated)@th children.

The insertion consists of shifting to the right the right siblingg.ofhus, we consider statg,n.
associated to positiort01 and0202 and we only calculate the state associated with the update
position 0200. As the root oft’ (at position0200) is associated to the staig .., we obtain

the Wordquwine quine quine- This word matches the regular expression.. . Thus, the update
respects the schema constraints [5].

Now we verify whetherK; andF' K> (Example 1) are preserved by the insertion. As the inserted
subtree contains only one key value, it contains no key violation by itself (no duplicate of key
values). Then we assume that the update is performed (without performing it yet) and we verify
whether the key value being inserted is not in contradiction with those already existing in the
original document. In our case, we suppose that the wine being inserted is identified by the key
tuple (Bordeaux1990). Comparing this value to those stored in KegTree, (Fig. 3), we notice

that no violation exists. The inserted subtree does not contain foreign key values and, thus, we
can conclude that the update is possible with respect to key and foreign key constraints.

As the above tests succeed, the insertion can be performed. The performance of an update implies
changes not only on the XML tree but also on index tleasTres. a

3 Tree Transducers for XML

We first present the definition of our tree transducer. This transducer combines a tree
automaton (expressing schema constraints) with a set of output functions (defining key
and foreign key constraints).

Definition 3. Output function: Let D be an infinite (recursively enumerable) domain
and letD* denote the set of all lists of items . Let 7 = (¢, type value) be an XML
tree. Anoutput functionf takes as argumentsi) a tree positiorp € dom(t); (ii) a
sets of pairs(att,/,,) whereatt is a tag associated to a list € D* and (iii) a list!
of items inD. The result of applyingf(p, s,1) is a list of items inD. In other words,
f:dom(t) x P(X x D*) x D* — D*. O

We recall the process in Example 2: at each node, data values are collected from
children nodes and can be used to perform tests. Output functions are defined to perform
these actions: for the node at positipneach of them takes as parameters thesset
containing data values coming from attribute children, and thé b$tvalues coming
from element children. One output function is defined for each key and foreign key.

Definition 4. Unranked bottom-up tree transducer (UTT): AUTT over X andD is
atupled = (Q,¥,D,Qy, A, I') whereQ is a set of states); C @ is a set of final
states A is a set of transition rules and = { f1, ..., f } is a set of output functions.
Each transition rule imA has the formu, S, E — g where(i) a € X; (ii) Sis a tuple
of two disjoint sets of stategge., S = (Scompulsorys Soptionai) (WIth Scompuisory € Q
andS,prionar € Q); (iii) E is a regular expression ovey and(iv) ¢ € Q. Each output
function inI" has the formy;(p, s, 1) = I’ as in Definition 3. O

Key and foreign key constraints are expressed by the output functidnsAs the
tree is to be processed bottom-up, the basic task of output functions is to define the
values that have to be passed to the parent position, during the run.

3.1 Generating constraint validators

Given a specificatiorD = (D,K) whereD is a set of schema constraints alds
composed by the set of keys and foreign keys, we propose a method to trdnslate
into a UTT. In this sense, we present an algorithm to generate a validator from a given
specification. This validator is executed to check the constrairidsfor any XML tree.

Leti = (Q,2,D,Qy,A,I') be a UTT whose transition rules i are obtained
from the translation of a non-ambiguous DTD(part of D). The domairD is formed
by pairs containing an (identified) finite state automaton state and a list of values [1].

To define the output functions we need to construct finite state automata for the paths
appearing in the keys and foreign keys. Notice that context, target and key nodes in each
key K; or foreign keyF K ; are defined in a top-down fashion. In order to identify these
nodes using a bottom-up tree automaton, we must traverse the paths stated by each key
K or foreign keyF' K in reverse.

Given a key constraink’; (1 < j < k) or a foreign key constraint' K; (k + 1 <
j < n) of the form (P;, (P}, {P}, ..., P;"’})), the following automata recognize the
paths in reverse. For path;, we haveM; = (0, X, ;, e;, F;). For pathP}, M} =
(@5, %,6}, ¢}, Fj). For patth1 | ...] ijj, M = (07,07, €, F'). Additionally,
we defineMr = ({eo,er}, {root}, {d(eo,root,es)}, eo, {es}) as the finite state au-
tomaton recognizing the path formed just by the symbol. Figure 4 illustrates the
finite state automata for the pathsify andF K, of Example 1 in reverse.

Remark We denote byl .e the current state of the finite state automatal/, and we
call it aconfiguration

M -

&
6=

restaurant|

=
3
(V)
B —

combination restaurant

@
®©

drinks

47647
fonl
-,

ombinations

—®

menu

Fig. 4. Automata corresponding to the pathsif and F K> in reverse.

Algorithm 1 - Key constraints as output functions:

Input A set ofk keysK = {K; = (P;,(P},{P},..,P;"})) | 1 < j < k}, a set of
(n — k) foreign keysFK = {FK; = (P;, (P}, {P},..,P["})) C K | (k+1) <

j <n; K; € K}, and the finite state automald;, M}, M, Mr, (1 < j < n) that
recognize keyK; and foreign keyF' K; paths in reverse.

Output A set of output functiong™ = {f1,..., f.}.

<
-

Algorithm
For each key K; or foreign keyF K ; (1 < j < n) the output functiory; is defined as:
function f;(p: position,s: set of pairg(att, [,,), {: list of items inD)
begin
Lett(p)=a //ais the label of positiom

(1) If a = datathen return [(M.€7, [value(p)])]

(2) If ais atarget label fok; or F K
then return [(M}.0% (e}, a), checkArity(concat(filteriey (coy---r¢2-1))))]
wherez is the number of children of positign [co, . . ., ¢;—1] = order ByName(s)
and[c;, ..., c,—1] = l. The functionorder By N ame sorts, in the lexicographic or-
der, attribute tags of the paiatt, /,,) coming from attribute children.
Function filteriey leaves in the key lists only the values associated to key positions
of K; (or F'Kj). It selects the lists of values whose configuration corresponds to
a final state of\/}. Functionconcat returns the concatenation of all its argument
lists into one list. If the length of the list does not correspond to the lengtlof
K, then functioncheck Arity replaces it by an empty list. For foreign keys the
length is not tested.

(3) If a is a context label for a ke ;
then return [(M;.0;(e;, a), check:Key(filterfarget(l))]

[true] if v1...vn, are all nonempty distinct lists.

wherecheckKey([vi ... vm]) = { falsd otherwise

(4) If a is a context label for a foreign kely K ;
then return [(M.5;(e;, a), checkForeign(filteri,, ,.;(1))]
[trug] if vy ...v,, are lists whose values appear

in the keyK; (the one taking part in the
definition of FK;).

[falsg otherwise.

Remark: In cases (3) and (4) above, functigmter{mget rejects all the values not
belonging to target lists of ke(; (or foreign keyF' K ;).
(5) If ais the root labethen return [(Mp.ey, (filter? ON]

context

Functionfilter? ... rejects all the values not belonging to context lists.
(6) In all other cases

(i.e., whena # dataanda is not a target label, nor a context label, nor the root)

wherecheckForeign([v1 . ..vm]) =

return carryUp’ ([co, - - ., C2—1])
where[co, . .., c,—1] is the list of pairs obtained from the childrengfsuch that
[co,-..,ci—1] = order ByName(s) andc;, ..., c;_1] = .

FunctioncarryUp’ is defined as follows:
function carryUp’® (L : list of pairs)
var result :list of pairs
begin
result— []
foreach ¢ = (M.e,v) in L //* M stands forM;, M; or M’
if §(e, a) = €’ is a transition inM then result— concat(resultj(M.e’, v)])
return result
end

end // end of functionf; O

Each output function returns a list composed by pairs. For instgn@20000, 0, []) =

[(M{] .eq, [Sancerr@)]. In cases (1) to (5) the list contains only one pair. In all cases, a
pair is composed by:

(A) A configurationM.e where M is one of the finite automata representing paths in
keys, and: is a state ojM. For example, in case (21 is M; the target automaton
for K; or FK;. This configuration is obtained by performing the first transition at
automatonl/;, using the symbat as input. Notice thaf’ (¢, a) is a state of\/.
Other cases are similar.

(B) A list of values. From data nodes to context nodes, these values represent those
composing a key (or foreign key). From context nodes to the root they are boolean
values indicating that within a given conteXt; or F'K; holds or not.

Notice that the result obtained at context level (case (3)) is a singleton list that
contains a pair, formed by a configuration/df; and a list containing a boolean value
(the result of checking the validity of the key for each specific context). For foreign key
context level (case (4)f' K; andK; have the same context and the tuples representing
key K; are computed before those that represent foreign/kgy (since: < j). At
root level (case (5)), we have the boolean values that were obtained for each subtree
rooted at the context level. In case 6, values are carried up by funetienUp’. This
function selects pairs from children nodes belonging to key and foreign key paths, by
checking configurations in these pairs. The resulting lists of these output functions can
contain more than one pair. If nodes are not concerned by any key or foreign key, the
functioncarryUp’ does not transmit any value.

3.2 Validating XML documents

The verification of keys and foreign keys are performed simultaneously, in one pass,
during the execution of the UTT over an XML tree. Example 4 illustrates such an exe-
cution. A tree index, necessary to perform incremental updates on XML documents, is
dynamically built during this validation process. This index, cakegTree similar to

the one proposed in [9], is a tree structure containing levels for the key nhame, context,
target, key nodes and data (in this order) as defined in Fig. 2.

Example 4.We consider a specificatidn containingK; andF' K> (Example 1). The finite state
automata associated 16, and F' K, are the ones given in Fig. 4. To verify if the XML tr&e of
Fig. 1 satisfied<; andF K> we run the transducéf (from D) over7 (recall that/ contains two
output functionsf, and f» defined fromK; and F K> (respectively), following Algorithm 1):

1. Forthe data nodes, each output function returns a singleton list that contains a pair: the initial
configuration of the key (or foreign key) automatbfi’, and the value of the node. Positions
020000 and03000 are data nodes, then we have:

£1(020000,0,[]) = [(M{.eo, [Sancerrg)]; f2(03000,0,[]) = [(M3 .eo, [Sancerrg)].

2. The fathers of data nodes which are key (or foreign key) nodes should carry up the values
received from their children. Thus, each of them executes a first transitiofi'insing each
key (or foreign key) label as input. For each father of a data node which is not a key (or a
foreign key) node, the output function returns an empty list.
For instance, positiof2000 is a key node forK'; and position0300 is a foreign key node
for FK,. Then, reading the labamefrom statee, of M;’, we reach state;, and we carry
up the valueSancerre We obtain a similar result foF K> when reading labelineName
£1(02000, 0, [(M{ .eq,[Sancerr)]) = [(M7 .e1, [Sancerrd)];
12(0300, 0, [(M3 .eo, [Sancerrg)]) = [(M3 .e1, [Sancerrd)].
At this stage the construction &kyTreg, starts by taking into account the information
associated to each key node (el@yTree, [t,02000] is the subtree rooted &eyand asso-
ciated with the valu&ancerren Fig. 3).

3. For node0200, wineis a target label of; and for noded30, combinationis a target label
of FFK>. In order to transmit only key (or foreign key) values, the output function of a target
label () selects those that are preceded by a final state of the key autoMtpfii) joins
them in a new list, andiii) executes the first transition of the target automatéh In this
way, at a target position the tuple value of a key (or foreign key) is built:

£1(0200, 0, [(M{".e1, [Sancerr§), (M7 .ez, [2000])]) = [(M].e4, [Sancerre2000])];
12(030, 0, [(M3 .e1, [Sancerrg), (M3 .e2, [2000])]) = [(M3.ea, [Sancerre2000])].
The construction okeyTree, continues anékeyTree, [¢,0200] is obtained taking into ac-
count the information available at positio200. (See subtree rooted t@rgetin Fig. 3).

4. The computation continues up to the context, verifying whether the labels visited are rec-
ognized by the target automaton or not and carrying up the key (or foreign key) values. For
instance, we reach statg in M by reading the labeldrinks’ (Fig. 4):

£1(020, 0, [(M].e4, [Sancerre2000])]) = [(M].es, [Sancerre2000])];

5. For the nodé), the labelrestaurantis a context label of bottk; and F' K. For K (respec-
tively F'K>) the output function selects the sublists associated to a final state of the target
automatonM (respectivelyM3). The output function ofK; checks if all the selected sub-
lists are distinct. The output function éfK, verifies if the selected sublists correspond to
lists of values obtained foK;. In both cases, the output functions return a boolean value
that will be carried up to the root:

£1(0,0, [(M] .es, [Sancerre2000]), (M .es, [Cahors 2002])]) = [(M .es, [true])];

£2(0,0, [(M.es, [Sancerre2000])]) =[(Mo.e7, [true])].
At this point, we havkeyTreg, [t, 0] represented by the subtree rootedattextin Fig. 3.
Notice that the attributeefCount for tuple (Sancerre 2000 has valuel because at this
context node, the tupléSancerre 2000 exists for foreign key" K». Indeed, at the context
level we increment theefCount of each key tuple that corresponds to a foreign key tuple
obtained at this level. Supposing that the tuf@ahors 2002 appears in three different
combinations (not presented in Figure 1), we would h@/€ount = 3 for it.

6. At the root position the last output function selects the sublists that are preceded by a fi-
nal state of the context automatdd and returns all boolean values in these sublists. The
construction okeyTreg, finishes by a label indicating the name of the key (Fig. 3). O

Definition 5. A run of U/ on a finite tree t: Let ¢t be aX-valued tree and/ =
(Q,%2,D,Qf,A, I') be a UTT. Given the key&, . .., K}, and foreign keys K11,
..., FK, arun of Y ontis: (i) atreer : dom(r) — @ such thadom(r) = dom(t);
(ii) afunctionf : dom(r) — (D*)™ and(iii) k index trees: in eackeyTreg, the leaves
contain the values that compo&g.

For each positiom whose children are those at positiéns), . .., p(z — 1) (with
z > 0), we haver(p) = g and£(p) = [if and only if all the following conditions hold:

1 tlp)=ac .

2. There exists a transitiom, S, E — ¢ in A.

3. There exists an integér< : < (z—1) such that the children ¢f(i.e. the positions
p0,...,p(z — 1)) can be classified according to the following rules:

o the position0, ..., p(i — 1) are members of a spbsAtt(possibly empty)
e the positiongi, ..., p(z — 1) are members of a spbsEle(possibly empty)
e every child ofp is a member oposAttor of posElebut no position is in both sets.

® The notatiorp(z — 1) indicates the position resulting from the concatenation of the pogition
and the integet — 1. If z = 0 the positionp has no children.

4. The treer and the functiorf are already defined for positiops, ..., p(z — 1).

We assume(p0) = qo, ..., r(p(z—1)) = g.—1 andE(p0) = lo, ..., E(p(z—1)) =
l,—1 where eachi; = (I},... 1) is a n-tuple.

5. The treeskeyTreg, [t,p0], ..., keyTreg [t,p(z — 1)] are already computedg.,
the construction okeyTreefor each keyK; has already taken into account the
information associated to positiop8. .. p(z — 1).

6. The wordg; . . . ¢._1, composed by the concatenation of the states associated to the
positions inposEle belongs to the language generatediy

7. The sets 0fS (Scompuisory @NASoptionar) respect the following properties:
Scompulsory - {QO, <. aQi—l} and({QOa s Qi—l} \ S(:()’rerulSO'r’y) c Soptional-

8. The outputE(p) associated to positiomis then-tuple:

I =£(p) = (fi(p,s1,concatll,1k 1)), ..., fu(p, sn,concatl?, ... 17 1))
where eaclhy; = {(t(ph),l{b) |0 < h < (i—1)}is the set of all pairgattName
listOfValueg coming from the attribute children gf for eachk; or F K.

Moreover, for each positiop, thekeyTres are constructed as follows:
(a) If t(p) is a key label ofK’;, thenkeyTreg, [t, p| is the tree:
<key> t(p) = valugt, p0)</key>
(b) If t(p) is a target label oK’;, thenkeyTreg, [t, p] is:
<target pos=p refCount=0> keyTree, [t, p0] .. .keyTreg, [t, p(z—1)] </target>
(c) If t(p) is a context label ofS;, thenkeyTreg, [t, p| is:
<context pos=p> keyTreg, [t, p0] ...keyTreg,[t, p(z — 1)] </context>
(d) If t(p) is a context label of"K;, then increment the attributefCount in the
correspondindceyTreg, .
(e) If t(p) is the root label thekeyTreg, [t, p] is the tree:
<root> keyTree,[t,p0] ...keyTreg, [t, p(z — 1)] </root>
(f) Inall other cases, for each kéy;, we definekeyTreg, [, p| as the forest composed
by all the treekeyTreg [t, p0] . . . keyTreg [t,p(z —1)].

Notice that, although thkeyTres are defined in general as forests, for the special
labels mentioned in cases (a) to (d) above, we build a single tree. |

Definition 6. Validity : An XML tree t is said to be valid with respect to schema con-
straints if there is a successful runi.e., r(e) € Q5. An XML treet is said to be valid
with respect to key and foreign key constraints if the listE(e contain only the value
true for each key and foreign key. a

Notice that, in step 8 of Definition 5, the output for each position the XML tree
is a tuple composed by one list for each key (or foreign key) being verified. Each list
in the tuple is the result of applying the output functify defined for thejth key or
foreign key, over the following arguments:
— p: the position in dom(t).
— s;: the set of pairsd(t, 1) whereatt is the attribute name of thieth child of p and
1] is a nonempty list containing the value associated to this attribute.
- concatlf, e li_l): the list formed by the information carried up from the element
children ofp, concerning thegth key.

At the end of the run over an XML tree, each kiy is associated to keyTreek ;
that respects the general schema given by Fig. 2. Attripate stores the target and
context positions for a given key and attribuedCount indicates when a ke is
referenced by a foreign key.

4 Incremental Validation of Updates

We consider two update operations, denotedhisert(T, p, 7’) anddeletep, T), where
T and7’ are XML trees ang is a position. Fig. 5 illustrates these operations ofi-a
valued tree. Only updates that preserve validity wrt the constraints are accepted.

a a a a
VAN VAN ISZ/A N VAN
b c b c d b m c¢c d b m d
|20 10| ‘30 10‘ 20‘
e o] e e
(0] (ii) (iii) (iv)

Fig. 5. (z) Initial X-valued treef having labels: (positione), b (position 0) and: (position 1).
(#t) Insertion ap = 2. (ii¢) Insertion atp = 1. (tv) Deletion atp = 2.

4.1 Incremental key and foreign key validation

Let 7 = (t, type,value) be a valid XML tree,.e., one satisfying a collection of keys
K; (1 < j < k)andforeignkeyd K; ((k+1) < j < n).Letl = (Q,X,D,Qy, A, I
be a UTT specifying all the constraints that should be respectéd. bye should con-
sider the execution @ over a subtred”’ being inserted or deleted.

Given a subtred”’ = (', type, value), the execution of/ over7”’ gives a tuple:

(@' Iy, ... 1), (keyTreg [t', pl, ... keyTreg., [t',p])) Q)
whereq’ is the state associated to the roottQf(l,,...,1,) is a n-tuple of lists and
(keyTreg [t',p], ..., keyTreg, [t', p]) is a k-tuple containing thkeyTreefor each key.
Notice that the n-tuple of lists has two distinct parts. Lists .., [, represent keys
and listsly11,...,l, represent foreign keys. Ea¢h(1 < j < n) is a list of pairs,
i.e, eachi; has the formey, . . ., ¢,,] Where eachy, is a pair containing an automaton
configuration and a list of values.

When performing an insertion, we want to ensure tiahas no “internal” validity
problems (as, for instance, duplicated values £gj). Thus, we defin&Z” aslocally
valid if the tuple (1) respects the following conditions: (K)is a state inQ and the ID
attributes are unique iti (see details in [5]); (B) for each ligf (1 < j < k) we have:

(i) if the root of ¢’ is a target position fof; then the list/; has lengthm; (i.e., its
length equals the number of elements composing a key tuple fior
(i) if the root oft’ is a context position fok; then the list; is [(M; e, [true])];
(iii) if the root oft’ is a position above the context positions #6} then the list; is
[c1, ..., cm], where each pair;, does not contaifif alse] as its list of values.

Notice that no condition is imposed on foreign keys. A subfféean contain tuple
values referring to a key value appearingfirand not in7").

In the following, we assume that subtrees being inserted in a valid XML tree are
locally valid and we address the problem of evaluating whether an update should be
accepted with respect to key and foreign key constraints. Before accepting an update,
we incrementally verify whether it does not cause any constraint violation. To perform
these tests, we need the context node of a key or foreign key. To this end, we define
procedurdindContexthat computes:

— The context positiop’ for a key K; (or a foreign keyF' K ;) which is an ancestor
of the update positiop in the treet.
— Alist I’ containing the key (or foreign key) values carried up from the subtree being
inserted or deletefl.
The tests performed for insertion operatiosert(Z,p, 7’) are presented next. Recall
that7 is valid and7” is locally valid.

Algorithm 2 - Incremental tests for update operationinsert(T ,p, T')
1. For each list; # [] (1 < j < k) obtained in the execution & over7” for each
key K; do
(a) If pis under a context node @f; then
i. Call findContextg, /;), that returns a context positighand!’ = [vy, ..., v,].
ii. For each listv in I’ do
If there exists a tuplkvalin keyTreg(j [t,p] such thakval = v
then the insertion violateg(; and must be rejected
else the insertion respects;.
(b) If p is the context position or it is between the root and a context nodg; of
then the insertion respects’;.
2. Foreachl; # [] ((k+ 1) < j < n) obtained in the execution of over7’ do
(a) CallfindContextg, /;), that returns a context positighandl’ = [v1, ..., v,].
(b) For each listv in I’ do:
If there exists a tuplkvalin thekeyTreg.. such thakval= v
then the insertion respects the foreign kéys;. The reference counter that
corresponds tdval will be incremented at the end of the procedure, if the
insertion is accepted.
else the insertion does not respect the foreign k& ; and must be rejected.
3. If all keys and foreign keys, together with schema constraints [5], are respected
then accept the update and perform the modificatiorn tand allkeyTres.
else reject the update. |

Before performing an insertion, Algorithm 2 tests if we are not adding key dupli-
cates or” and if the new foreign key values correspond to key values. When we refer to
atuple in akeyTreethis tuple is obtained by concatenating the key values found inside
target tags of thikeyTreetaking into account a context positiph. The next example
illustrates an insertion operation with respect to key and foreign key constraints.

b Let I; be the list of pairs obtained fak; or F'K; by the local validity check. Procedure
findContextexecutes the automatd (composition ofA/;’ and Mj) starting from the con-
figurations inl; and using the labels associated to the ancestors of pogifijn

Example 5.We consider the updaigasert(7", 0200, 7") presented in Example 3. The execution
of U overT" gives the tuple{quine, ([(M1.e4, [Bordeaux1990])], []), (keyTreg. [t', €])).

We see thaf’ is locally valid and that the update affects oty . ProcedurdindContexreturns
the context positiop’ = 0 and the list’ = [(Bordeaux1990)]. We compare the tuples i
with those inkeyTree,, (Figure 3) for contexp’ = 0. All these tuples are distinct and thus the
insertion is possible fof(;. As no other key is affected, the insertion is accepted. o

In a similar way, we define incremental tests for the operatieletep, 7). These
tests check if the deletion of a subtree rooted at a positibwes not violate constraints,
before actually removing the subtree. The details are given in [1].

5 Conclusions

This paper extends and merges our previous proposals [5, 6]. In [5], we propose an
incremental validation method, but only with respect to schema constraints. The valida-
tion of updates is also treated in [10, 16], and in [5] these approaches are compared to
ours. In [6] we just consider the validation from scratch of an XML document associ-
ated to only one key constraint. In the current paper, we deal with incremental validation
of updates taking into account schema constraints together with several key and foreign
key constraints. Our verification algorithm uses only synthesized valigesv@lues
communicated from the children to the parents of a tree), making the algorithms suit-
able for implementation in any parser generator, or even using SAX [13] or DOM [18].

The algorithms presented here have been implemented using the ASF+SDF meta-
environment [7]. The verification of keys and foreign keys usegTrees, which can
also be used for efficiently evaluating queries based on key values.

Validity verification methods for schema constraints have been addressed by [5, 10,
14-17]. Key constraints for XML have been recently considered in the literature (for
instance, in [2, 4, 6, 8, 9]) and some of their aspects are adopted in XML Schema. In our
paper, the definition of integrity constraints follows the key specification introduced
in [8]. As shown in [11], it is easy to produce examples of integrity constraints that
no XML document (valid wrt a schema) can verify. In our work, we assume key and
foreign key constraints consistent with respect to a given DTD.

In [9] a key validator which works in asymptotic linear time in the size of the docu-
ment is proposed. Our algorithm also has this property. In contrast to our work, in [3, 9]
schema constraints are not considered and foreign keys are not treated in details. In [4]
both schema and integrity constraints are considered in the process of generating XML
documents from relational databases. Although some similar aspects with our approach
can be observed, we place our work in a different context. In fact, we consider the evo-
lution of XML data independently from any other database sources (in this context both
validation and re-validation of XML documents can be required).

We are currently considering the following lines of reseaf¢hAn extension of our
method to deal with other schema specification, for instance XML-Schema and special-
ized DTDs.(i7) An implementation of an XML update language such as UpdateX [12]
in which incremental constraint checking will be integrated. To this end, we shall con-
sider a sequence of updates as one unique transaction and check validity of its result.
We also shall take into accoulieyTres for efficiently locating update positions.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. A. Abrao, B. Bouchou, M. Halfeld-Ferrari, D. Laurent, and M. A. Musicante. Update
validation for XML in the presence of schema, key and foreign key constraints. Technical
report, Universié Francois Rabelais Blois-Tours-Chinon, 2004 (to appear).

. M. Arenas, W. Fan, and L. Libkin. On verifying consistency of XML specificationsA@M

Symposium on Principles of Database Syst2002.

. M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Automated update management for

XML integrity constraints. InProgramming Language Technologies for XML (PLANX02)
2002.

. M. Benedikt, C-Y Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both types and con-

straints in data integration. In ACM Press, edi®iGMOD, San Diego, CA003.

. B. Bouchou and M. Halfeld Ferrari Alves. Updates and incremental validation of XML

documents. In Springer, editarhe 9th International Workshop on Database Programming
Languages (DBPL)umber 2921 in LNCS, 2003.

. B. Bouchou, M. Halfeld Ferrari Alves, and M. A. Musicante. Tree automata to verify key

constraints. In'Web and Databases (WebDEan Diego, CA, USA, June 2003.

. M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling rewrite systems:

The ASF+SDF compilerACM, Transactions on Programming Languages and Syst2fs
2002.

. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. C. Tan. Keys for XMIWWW10, May

2-5,2001.

. Y. Chen, S. B. Davidson, and Y. Zheng. XKvalidator: a constraint validator for XML. In

ACM Press, editorProceedings of the 11th International Conference on Information and
Knowledge Managememiages 446—452, 2002.

B. Chidlovskii. Using regular tree automata as XML schemasPrisc. IEEE Advances in
Digital Libraries ConferenceMay 2000.

W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDgurnal of

the ACM 49(3):368-406, 2002.

G. M. Gargi, J. Hammer, and J. Simeon. An XQuery-based language for processing updates
in XML. In Programming Language Technologies for XML (PLANXQ4PDA4.

W. S. Means and M. A. BodieThe Book of SAX: The Simple API for XMllo Starch Press,
2002.

T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers.AGM Symposium

on Principles of Database Systepages 11-22, 2000.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema language using formal lan-
guage theory. IfExtreme Markup Language, Montreal, Cana@01.

Y. Papakonstantinou and V. Vianu. Incremental validation of XML documentBrdoneed-
ings of the International Conference on Database Theory (ICRT)3.

L. Segoufin and V. Vianu. Validating streaming XML documents.AlBM Symposium on
Principles of Database Syste2002.

L. Wood, A. Le Hors, V. Apparao, S. Byrne, M. Champion, S. Issacs, |. Jacobs, G. Nicol,
J. Robie, R. Sutor, and C. Wilsorbocument Object Model (DOM) Level 1 Specification
W3C Recommendation, http://www.w3.org/XML, 2000.

