
For Review
 O

nly

On Correcting XML Documents With Respect to a Schema

Journal: The Computer Journal

Manuscript ID: COMPJ-2012-01-0058.R3

Manuscript Type: Original Article

Date Submitted by the Author: n/a

Complete List of Authors: Amavi, Joshua; Université d'Orléans, LIFO
Bouchou, Béatrice; Université François Rabelais Tours, Laboratoire
d'Informatique (LI)
Savary, Agata; Université François Rabelais Tours, Laboratoire
d'Informatique (LI)

Key Words: XML Processing, Document-to-Schema Correction, Tree Edit Distance

For Review
 O

nly

On Correcting XML Documents
With Respect to a Schema

Joshua Amavi1, Béatrice Bouchou2 and Agata Savary2

1LIFO - Université d’Orléans, Orléans, France
2 Université François Rabelais Tours, LI, Blois Campus, France

Email: beatrice.bouchou@univ-tours.fr

We present an algorithm for the correction of an XML document with respect to
schema constraints expressed as a DTD. Given a well-formed XML document t
seen as a tree, a schema S and a non negative threshold th, the algorithm finds
every tree t′ valid with respect to S such that the edit distance between t and
t′ is no higher than th. The algorithm is based on a recursive exploration of the
finite-state automata representing structural constraints imposed by the schema,
as well as on the construction of an edit distance matrix storing edit sequences
leading to correction candidate trees. We prove the termination, correctness and
completeness of the algorithm, as well as its exponential time complexity. We also
perform experimental tests on real-life XML data showing the influence of various
input parameters on the execution time and on the number of solutions found.
The algorithm’s implementation demonstrates polynomial rather than exponential
behavior. It has been made public under the GNU LGPL v3 license. As we show
in our in-depth discussion of the related work, this is the first full-fledged study

of the document-to-schema correction problem.

Keywords: XML Processing; Document-to-Schema Correction; Tree Edit Distance

Received 00 January 2012; revised 00 Month 2012

1. INTRODUCTION

The correction of an XML document t w.r.t. a set
of schema constraints S consists in computing new
documents that verify the set of structural specifications
stated in S and that are close to t. Applications of this
problem are important and vary widely, as extensively
shown in [1], and include:

• XML data exchange and integration,
• web service searching and composition,
• adapting an XML document w.r.t. a database

[2, 3],
• performing consistent queries on inconsistent XML

documents [4],
• XML document classification [5], or ranking XML

documents w.r.t. a set of DTDs [6, 7], [8],
• XML document and schema evolution [9, 10], [11],

[12, 13], [14], [15], [16].

The main features of these proposals are presented
in Section 6, and discussed in a contrastive study.
Besides the existing proposals, considering the place
now taken by XML in all information systems, it can
be assumed that all the situations in which tree-to-
language correction will be useful are not known yet.

This article is dedicated to a comprehensive
presentation of an algorithm for correcting XML

documents: principles, algorithms, proofs of properties
and experimental results are provided. The presented
algorithm is unique in its completeness in the sense that,
given a non negative threshold th, the algorithm finds
every tree t′ valid with respect to S such that the edit
distance between t and t′ is no higher than th. As
we show in our deep discussion of related work, this
article is the first case of a full-fledged presentation of a
solution in this important field, even if several proposals
have been published during the last decade.

The resulting tool is available3 under the GNU LGPL
v3 license. This license allows one the use and the
modification of the source codes, in order to adapt them
to a particular application or to extend them so as to
deal with XML Schema (XSD) following the guidelines
that we provide in Section 4.4.

The paper is organized as follows: in Section 2 we
review seminal results in the field of tree-to-tree edit
distance and of word-to-language correction. Then we
present a running example to illustrate our algorithm’s
principles. In Section 3 we introduce all the definitions
that allow the reading of our algorithm, presented and
analyzed in Section 4. We detail experimental results in
Section 5. We end with the discussion of related work
in Section 6 and a conclusion in Section 7.

3on the CODEX project webpage:
http://codex.saclay.inria.fr/deliverables.php

The Computer Journal, Vol. ??, No. ??, ????

Page 1 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

2 J. Amavi, B. Bouchou and A. Savary

2. BACKGROUND AND EXAMPLE

In this section we introduce the results underlying our
XML document correction algorithm, and we provide
some intuitions on its design via a basic example.

2.1. Seminal Results

Our generation of XML document corrections builds
upon two fundamental algorithms. The first one,
concerning trees, is Selkow’s proposal for the tree-to-
tree edit distance [17]. The second one, addressing
strings, is Oflazer’s computation of spelling corrections
[18] based on a dynamic exploration of the finite state
automaton that represents a dictionary.

The tree-to-tree editing problem addressed by [17]
generalizes the problem of computing the edit distance
between two strings [19] to the one of two unranked
labeled trees. Three editing operations are considered:
(i) changing a node label, (ii) deleting a subtree,
(iii) inserting a subtree (the two latter operations can
be decomposed into sequences of node deletions and
insertions, respectively). A cost is assigned to each of
these operations and the problem is to find the minimal
cost of all operation sequences that transform a tree t
into a tree t′. The edit distance between t and t′ is equal
to this minimal cost.

The computation of the edit distance is based on
a matrix H where each cell H [i, j] contains the edit
distance between two partial trees t〈i〉 and t′〈j〉. A
partial tree t〈i〉 of a tree t consists of the root of t and
its subtrees t|0 , . . . , t|i−1

– see Figure 1(a). We denote
by Ci,j the minimal cost of transforming t〈i〉 into t′〈j〉.
Selkow has shown that Ci,j is the minimum cost of
three operation sequences: (1) transforming t〈i〉 into
t′〈j − 1〉 and inserting t′|j , (2) transforming t〈i − 1〉
into t′〈j − 1〉 and transforming t|i into t|j , and (3)
transforming t〈i− 1〉 into t′〈j〉 and deleting t|i .

The matrix H is computed column by column, from
left to right and top down. Thus, each element H [i, j]
is deduced from its three neighbors H [i − 1, j − 1],
H [i− 1, j] and H [i, j − 1], as shown in Figure 1(b). It
contains the minimum value among (1) its left-hand
neighbor’s value plus the minimum cost of inserting
the subtree t′|j (Figure 1(b), edge (1)), (2) its upper-

left-hand neighbor’s value plus the minimum cost of
transforming the subtree t|i into t′|j (Figure 1 (b),

edge (2)), and (3) its upper neighbor’s value plus the
minimum cost of deleting the subtree t|i (Figure 1 (b),
edge (3)).

Example 1. Let t and t′ be the two trees in Figure 2.
Consider the cost of each elementary edit operation
(inserting, deleting or renaming a node) equal to 1. The
edit distance matrix H between t and t′ is given in Figure 3.
Each of its rows and columns is indexed by: (i) −1 when a
tree’s root is concerned, (ii) an integer i when the (i+ 1)-th
child of a root is concerned. The row and column indices
are accompanied by the labels of the corresponding nodes.

The bottom right-hand cell of the matrix contains the edit
distance between t and t′, i.e. the cost of the minimal edit
sequence transforming t into t′. This sequence consists of:
relabeling the root to e, inserting b as the root’s first child,
and relabeling b (d’s parent) to c. 2

It should be noticed that computing the edit distance
between t and t′ implies computing edit distances
between subtrees of t and subtrees of t′. The time
complexity of Selkow’s algorithm is O(Σ

min(dt ,dt′)
i=0 hih

′
i),

where dt and dt′ are the depths of t and t′, and hi and
h′i are the numbers of nodes at height i in t and t′,
respectively.

The computation of Selkow’s tree edit distance
dist(t, t′) is our first background, but we need more:
our aim is to compute minimal operation sequences for
transforming a tree t that is not valid with respect to a
schema S into valid trees. For this purpose, we do not
only compute a distance between the given tree t and
the schema S, we actually compute operation sequences
transforming t into trees that are valid with respect
to S. Moreover, we do not limit the computation to
minimal sequences, instead we search for all valid trees
t′ such that dist(t, t′) ≤ th, where th is a given distance
threshold.

To this aim we follow the same ideas as in Oflazer’s
work [18], where an algorithm is presented that, for
a given input string X not belonging to the language
represented by a given finite state automaton (FSA)
A, looks for all possible corrections (i.e. strings
recognizable by A) whose distance from X is less than
or equal to a distance threshold th.

This algorithm, although not addressed in the
recent state-of-the-art report on the string-to-language
correction by [20], can be classified – according to the
taxonomy proposed in this report – as a direct method
based on a prefix tree implemented as a string trie.
More precisely, it is based on a dynamic exploration of
the FSA representing the language. A partial candidate
Y = a1a2 . . . ak is generated by concatenating labels
of transitions, starting from the initial state q0, until
reaching a final state. Consider that we are in state qm.
In order to extend Y by the label b of an outgoing
transition of qm, it is checked whether the cut-off edit
distance between X and the new word Y = a1a2 . . . akb
does not exceed th. The cut-off edit distance between
X and Y is a measure introduced in [21] that allows
one to cut the FSA exploration as soon as it becomes
impossible that extending Y could reduce the edit
distance between X and Y . If the cut-off edit distance
exceeds th, then the last transition is canceled, the last
character b is removed from the current candidate Y
and the exploration goes on through other outgoing
transitions of qm. When a final state is reached during
the generation of candidate Y , if dist(X,Y) ≤ th, then
Y is a valid candidate for correcting X . The following
example, borrowed from [18], illustrates these ideas.

Example 2. Figure 4 shows the graph G1 representing

The Computer Journal, Vol. ??, No. ??, ????

Page 2 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 3

(b)

jj − 1

−1

−1

i − 1

m

t′〈j〉

Ci−1,j

Ci,jCi,j−1

Ci−1,j−1
(2)

(1)

(3)

Cn,mn

t〈i〉

i

0 0 ji

t′〈j〉t〈i〉

(a)

εε

t t′

Ci,j

t|0 t|i t|n t′|0 t′|j

mn

t′|m

FIGURE 1. (a) Two partial trees t〈i〉 and t′〈j〉. (b) Tree edit distance matrix: computation of H[i, j] = Ci,j .

the finite-state automaton corresponding to the regular
expression E = (aba|bab)∗ and, in G2, the exploration of
this graph while considering the word X = ababa, which
is not in the language L(E). The three paths surrounded
in G2 represent three correct words abaaba, ababab and
bababa. For each node n in G2, the brackets contain the
cut-off value between the incorrect word ababa and the word
corresponding to the path connecting the initial state q0

with the state in node n. If we consider a distance threshold
th = 1, the three surrounded words are valid candidates.
It can be noticed that no continuation of these three paths
can lead to another candidate within the threshold th = 1
because the cut-off turns to 2 for all their following states. 2

a

b

d

t

=⇒

e

b c

d

t
′

FIGURE 2. Compared trees t and t′.

In the same way as in [21], an edit distance
matrix between X and each potential candidate Y is
dynamically computed: H [i, j] contains the distance
between the prefixes of lengths i and j of the two strings

H
-1 0 1
e b c

-1 a 1 2 4
0 b 3 2 3

FIGURE 3. Edit distance matrix between t and t′.

X and Y . The added value of [18] is to make use of the
finite-state representation of the lexicon so that, when a
word is looked up in the lexicon, the initial columns in
the matrix that correspond to the same common prefix
of lexicon words are calculated only once.

To resume, our proposal directly builds on [17] and
[18]. We admit Selkow’s tree-to-tree edit distance
based on three elementary operations (relabeling a
node, inserting or deleting a leaf), and we use
the dynamic programming method to calculate this
distance via a distance matrix. However, we extend
these ideas into correcting a tree with respect to a tree
language similarly to how Oflazer extends a word-to-
word distance calculation into correcting a word with
respect to a word language.

In what follows, we introduce our proposal through
an example: we show how we combine the two previous
approaches in order to compute all tree edit operation
sequences that transform a tree t into valid trees t′ such
that dist(t, t′) ≤ th.

The Computer Journal, Vol. ??, No. ??, ????

Page 3 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

4 J. Amavi, B. Bouchou and A. Savary

[1]

4

3

2

1

q

q

q

q

0q

1q

q0

0q

q3q1

q4

3q

q3

q1 3q

q1 q3

q3

q2

1q

q0

2q

q1

0q

0q
0q

G1 G2

bababa
ababab

abaabaa

b

a

b

a

b

a

b

b

ba

b

a b

a

ba

b

a

[1]

[0]

[0]

[1]

[1]

[0]

[1]

[1]

[1]

[2]
[1]

[1]

[1]

[2][2] [2]
[2]

[2][2]

ba

a

b

a
b

a

a

b
[0]

[0]

[0]

2qq4

FIGURE 4. G1: graph representing the FSA that corresponds to (aba|bab)∗, G2: graph representing exploration paths for
correcting the word ababa with a threshold th = 1

2.2. Running Example

Let Σ = {root, a, b, c, d} be a set of tags, and let t be
the XML tree in Fig. 5. The positions of nodes in t
are represented by sequences of integers such that: (i)
the children of a node are numbered from left to right
by consecutive non-negative integers 0, 1, etc., (ii) the
tree’s root is at position ε, (iii) if node n is at position
p, the position of the (i+1)-th child of n is given by the
concatenation of p and i. For instance, in Fig. 5, the
node at position 1.0 (labeled with c) is the first child
of the node at 1 (labeled b), which on its turn is the
second child of the root at ε. As formally described in
section 3.1, a tree is seen as a mapping from positions
to labels. Thus, the tree in Fig. 5 can be described as
the set {(ε, root), (0, a), (0.0, c), (0.1, d), (1, b), . . .}.

Let S be the structure description in Fig. 6 for
an XML schema. Note in particular the finite-
state automaton associated with the root element and
corresponding to the regular expression b∗|ab∗c. The
tree t is not valid w.r.t. S because the word which is
formed by the tags of the children of the root node, i.e.
abb, does not belong to L(b∗|ab∗c).

root

ε

a

c d

b

c

b

c

0

0.0 0.1

1

1.0

2

2.0

FIGURE 5. An XML tree.

Tag
Regular
Expression

Finite State
Automaton(FSA)

root b∗|ab∗c q0

q1

q2 q3

b

b

a

b

c

a cd q4 q5 q6
c d

b c q7 q8
c

c ε q9

d ε q10

FIGURE 6. An example of a structure description.

We would like to compute the set of valid trees
{t′1, · · · , t′n} whose distance from t is no higher than
a given threshold th, for instance th = 2. Therefore, we
perform a correction of t w.r.t. the schema S using a
tree-to-language edit distance matrix M . This matrix
contains the sets of operation sequences (of cost no
higher than th each) needed to transform partial trees
of t into partial trees of t′i (we can have many possible
corrections). We use M [i][j] or (i, j) to indicate the

The Computer Journal, Vol. ??, No. ??, ????

Page 4 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 5

M
0 1 2 3 4

root b b b b
0 root {nos∅} {〈(add, 0, b), (add, 0.0, c)〉} ∅ ∅ ∅
1 a ∅ {os1=〈(relabel, 0, b), (delete, 0.1, /)〉} ∅ ∅ ∅
2 b ∅ ∅ {os1} ∅ ∅
3 b ∅ ∅ ∅ {os1} ∅

FIGURE 7. Content of the matrix M

cell of the matrix which is at line i and at column j.
The first cell (0, 0) of the matrix contains the operation
sequence needed to transform the root node of t to
the root node of the trees in L(S). Here, t has the
same root node as the root node specified by the XML
schema S so we keep this root intact. Thus, the first
cell (0, 0) of the matrix M contains an empty operation
sequence denoted by nos∅, as shown in Fig. 7. Then for
computing the other cells of M we use the cells which
are already computed. Namely, we concatenate each
sequence taken from a cell above and/or to the left of
the current cell with one of the three following, possibly
complex, operations (provided that the threshold th is
not exceeded):

(i) Inserting subtrees (denoted by →): coming from
the left-hand cell we concatenate its operation
sequences with an insertion of a subtree in the
result tree t′i. Several different subtree insertions
may be possible, which results in several sequences
for each source sequence.

(ii) Correcting a subtree (denoted by ↘): coming
from the upper-left-hand cell we concatenate its
operation sequences with a correction of a subtree
of t into a valid subtree of t′i. The correction
of a subtree of t is performed by a recursive call
so another tree-to-language edit distance matrix is
computed.

(iii) Deleting a subtree (denoted by ↓): coming from the
upper cell we concatenate its operation sequences
with a deletion of a subtree in t.

In Fig. 7 going from cell (0, 0) to cell (1, 0) we consider
deleting the subtree of t rooted at position 0, which has
cost 3. Thus, the threshold is exceeded and cell (1, 0)
becomes empty as well as all other cells below.

The computation of the matrix M is done column
by column. A new column is added after following
a transition in the FSAroot associated with the root
element of S. For instance for the column j = 1 we
may use the transition (q0, b, q1) and this column will
be referred to by the tag b. This means that the subtrees
at position 0 in the correct tree that we are trying to
construct will have a root labeled b. The tags for all
columns (0 < j) in M form a word u. Fig. 7 shows the
contents of the matrix M for the word u = bbbb. We
explain now how we compute each internal cell of the
column, for instance the cell (1, 1):

(i) We consider the left-hand cell M [1][0] = ∅, which

is empty so it cannot yield any operation sequence.
(ii) We consider the upper-left-hand cell

M [0][0] = {nos∅} with cost equal to 0. We
concatenate it with the operation sequence
os1=〈(relabel, 0, b), (delete, 0.1, /)〉 which results
from correcting the subtree {(ε, a), (0, c), (1, d)} at
position 0 in t to a valid subtree with root b. The
subtree that we obtain is {(ε, b), (0, c)}. The cost
of os1 is 2 ≤ th = 2 so we can add the resulting
operation sequence set which contains os1 itself
to the cell (1, 1). The matrix which is computed
for correcting the subtree {(ε, a), (0, c), (1, d)} into
{(ε, b), (0, c)} is shown in Fig. 8. Note that os1

stems from the sequence obtained here in cell
(2, 1), prefixed with position 0.

M’
0 1
b c

0 a {〈(relabel, ε, b)〉} {〈(relabel, ε, b),
(insert, 0, c))〉}

1 c
{〈(relabel, ε, b),
(delete, 0, /))〉} {〈(relabel, ε, b)〉}

2 d ∅ {〈(relabel, ε, b),
(delete, 1, /)〉}

FIGURE 8. New matrix computed by a recursive call

(iii) We consider the upper cell
M [0][1] = {〈(add, 0, b), (add, 0.0, c)〉}
with cost equal to 2. We concatenate this operation
sequence with the operation sequence
os2 = {〈(delete, 0.1, /), (delete,0.0, /), (delete, 0, /)〉}
allowing us to delete the subtree at position 0 in
t. However, the cost of the deletion of this subtree
is 3 and its concatenation with M [0][1] yields a
sequence with cost 5, which exceeds the threshold
2. Thus we don’t have, for the cell (1, 1), any
operation sequence coming from the upper cell.

The computation of the cell (1,1), according to items
(i),(ii),(iii) above, is illustrated in Fig. 9.

For the other cells of the matrix in Fig. 7, we use the
transition (q1, b, q1). If the word formed by the column
tags is in L(FSAroot) (i.e. we reach a final state),
the bottom cell of the current column contains possible
solutions. Since bbb ∈ L(FSAroot), cell (3, 3) contains
an operation sequence capable of transforming t into a
valid tree t′i ∈ L(S). When we apply this operation

The Computer Journal, Vol. ??, No. ??, ????

Page 5 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

6 J. Amavi, B. Bouchou and A. Savary

0

1

0 1

nos∅ {〈(add, 0, b), (add, 0.0, c)〉}

∅ {〈(relabel, 0, b), (delete, 0.1, /)〉}

{os2}, cost=5 [×]

∞[×]

{〈(relabel, 0, b), (delete, 0.1, /)〉}, cost=2 [
√

]

os2 = 〈(delete, 0.1, /), (delete, 0.0, /), (delete, 0, /)〉

FIGURE 9. Computation of the cell (1,1)

sequence, i.e. os1=〈(relabel, 0, b), (delete, 0.1, /)〉, on
the tree t, we obtain the tree t′1 in Fig. 10.

root

ε

b

c

b

c

b

c

0

0.0

1

1.0

2

2.0

t
′

1

root

ε

a

c d

b

c

b

c

c
0

0.0 0.1

1

1.0

2

2.0

3

t
′

2

root

ε

a

c d

b

c

c

0

0.0 0.1

1

1.0

2

t
′

3

FIGURE 10. Three possible corrections t′1, t′2 and t′3 for
the tree t in Fig. 5

.

All the cells of the last column (j = 4) of the matrix
in Fig. 7 are empty, which means that we can not have
an operation sequence with a cost less than th = 2
for a word with the prefix bbbb. In this situation we
backtrack by deleting the last column and try another
transition. In this example we will delete all columns
except the first one. After backtracking to q0 it is pos-
sible to follow the transition (q0, a, q2) for computing
the second column of the matrix in Fig. 11. The other
columns of this matrix are computed by following the

transition (q2, b, q2) until we reach another empty col-
umn. Note that the node operation sequence contained
in cell (3, 4) in Fig. 11 may be expressed as a single
higher level operation on subtrees, namely as inserting
a subtree {(ε, b), (0, c)} at position 3.

We backtrack again and use the transition (q2, c, q3).
The cells of this current column (for j = 4) are shown
in Fig. 12.

The word abbc formed by the tags of the current
columns is in L(FSAroot) and the bottom cell of the
current column contains a sequence with cost no higher
than the threshold. Therefore we obtain a new correc-
tion t′2 depicted in Fig. 10. In the state q3 we don’t
have any outgoing transition so we backtrack, then
we try the word abc. Fig. 13 shows the corresponding
matrix, with a sequence in its bottom-right cell whose
cost is not higher than th. This sequence is obtained
with a new matrix computed by a recursive call in
order to correct the subtree {(ε, b), (0, c)} at position 2
into {(ε, c)}. The resulting correction t′3 is depicted in
Fig. 10. After that, we will have no more possibilities
to find other corrections than t′1, t′2 and t′3 within the
threshold th = 2.

3. PRELIMINARY DEFINITIONS

In this section we provide formal definitions together
with some intuitions concerning the notions and
notations that are useful to present our algorithm and
to discuss its properties in Section 4.

3.1. XML Trees and Tree Languages

We consider an XML document as an ordered
unranked labeled tree, that we call an XML tree,
defined as follows:

Definition 1. - XML tree: an XML tree is a
mapping t from a set of positions Pos(t) to an
alphabet Σ, which represents the set of element
names. For v∈Pos(t), t(v) is the label of the t’s
node at the position v. Positions are sequences of
integers. As usual, ε denotes the empty sequence of
integers, i.e. the root position. The character ”.”

The Computer Journal, Vol. ??, No. ??, ????

Page 6 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 7

M
0 1 2 3 4 5

root a b b b b
0 root {nos∅} ∅ ∅ ∅ ∅ ∅
1 a ∅ {nos∅}

{〈(add, 1, b),
(add, 1.0, c)〉} ∅ ∅ ∅

2 b ∅ {〈(delete, 1.0, /),
(delete, 1, /)〉} {nos∅}

{〈(add, 2, b),
(add, 2.0, c)〉} ∅ ∅

3 b ∅ ∅ {〈(delete, 2.0, /),
(delete, 2, /)〉} {nos∅}

{〈(add, 3, b),
(add, 3.0, c)〉} ∅

FIGURE 11. Content of the matrix M for u = abbbb (after backtracking from state q1 in FSAroot)

M
0 1 2 3 4

root a b b c
0 root {nos∅} ∅ ∅ ∅ ∅
1 a ∅ {nos∅}

{〈(add, 1, b),
(add, 1.0, c)〉} ∅ ∅

2 b ∅ {〈(delete, 1.0, /),
(delete, 1, /)〉} {nos∅}

{〈(add, 2, b),
(add, 2.0, c)〉} ∅

3 b ∅ ∅ {〈(delete, 2.0, /),
(delete, 2, /)〉} {nos∅} {〈(add,3, c)〉}

FIGURE 12. Content of the matrix M after backtracking

M
0 1 2 3

root a b c
0 root {nos∅} ∅ ∅ ∅
1 a ∅ {nos∅}

{〈(add, 1, b),
(add, 1.0, c)〉} ∅

2 b ∅ {〈(delete, 1.0, /),
(delete, 1, /)〉} {nos∅} {〈(add,2, c)〉}

3 b ∅ ∅ {〈(delete, 2.0, /),
(delete, 2, /)〉}

{〈(relabel,2, c),
(delete, 2.0, /)〉}

FIGURE 13. Content of the matrix M after the next backtracking

denotes the concatenation of sequences of integers.
The set Pos(t) is closed under prefixes4 and for each
position in Pos(t) all its left siblings also belong to
Pos(t), which can be formally expressed as follows:
∀i,j∈N∀u∈N∗ [[0≤i≤j, u.j∈Pos(t)] ⇒ u.i∈Pos(t)]. The
set of leaves of t is defined by:
leaves(t) = {u∈Pos(t) |6 ∃i∈N u.i∈Pos(t)}.
We denote by |t| the size of t, i.e. the number of
positions in Pos(t). We denote by t̄ the number of
t’s root’s children. We denote by t∅ an empty tree
(Pos(t∅) = ∅).

Example 3. Fig. 5 represents a sample XML tree t. We
have:

• Σ ⊇ {root, a, b, c, d}
• Pos(t) = {ε, 0, 0.0, 0.1, 1, 1.0, 2, 2.0}

4The prefix relation in N∗, denoted by ≤ is defined by: u ≤ v
iff u.w = v for some w ∈ N∗. Sequence u is a proper prefix of v,
i.e. u < v, if and only if w 6= ε. A set Pos(t) ⊆ N∗ is closed under
prefixes if u ≤ v, v ∈ Pos(t) implies u ∈ Pos(t).

• t = {(ε, root), (0, a), (0.0, c), (0.1, d), (1, b), (1.0, c),
(2, b), (2.0, c)}
• t(ε) = root, t(0) = a, t(0.0) = c, etc.
• leaves(t) = {0.0, 0.1, 1.0, 2.0}
• |t| = 8, t̄ = 3

2

Definition 2. - Relationships on a Tree: Let
p, q ∈ Pos(t). Position p is an ancestor of q and q is a
descendant of p if q is a proper prefix of p, i.e. p < q
(cf. footnote).

Example 4. In Fig. 5 positions ε and 2 are ancestors of
position 2.0.

Definition 3. - Subtree and Partial Tree: Given
a non-empty XML tree t, a position p ∈ N∗ and i ∈ N
s.t. −1 ≤ i ≤ t̄− 1, we denote by:

• t|p , the subtree whose root is at position p ∈
Pos(t), defined as follows:

1. Each node in t under p appears in t|p .

The Computer Journal, Vol. ??, No. ??, ????

Page 7 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

8 J. Amavi, B. Bouchou and A. Savary

Formally:
∀u∈N∗ [[p.u ∈ Pos(t)] ⇒ [u ∈ Pos(t|p) and
t|p(u) = t(p.u)]]

2. Each node in t|p appears in t under p.
Formally:
∀u∈Pos(t|p)p.u ∈ Pos(t)

• t〈i〉, the partial tree that contains the t’s root
and the subtrees rooted at the first i + 1 children
of t’s root, defined as follows:

1. Positions in t〈i〉 are the same as in t’s root
and in its corresponding subtrees. Formally:
Pos(t〈i〉) = {v ∈ Pos(t)|v = ε or
∃0≤k≤i∃u∈N∗v = k.u}

2. Labels in t〈i〉 are the same as in t. Formally:
∀v∈Pos(t〈i〉)t〈i〉(v) = t(v)

Note that each subtree and each partial tree is a tree
in the sense of Definition 1. Note also that for a given
non empty tree t we have t|ε = t, t〈t̄ − 1〉 = t, and
t〈−1〉 = {(ε, t(ε))}. Given a tree t we denote by dt the
depth of t, i.e. the value resulting from applying the
function depth(t) defined as follows:

1. depth(t) = 0 if t = t∅
2. depth(t) = 1 if ∃l∈Σt = {(ε, l)}
3. depth(t) = 1 +maxi∈[0..t̄−1]{depth(t|i)}

Example 5. Fig. 14 shows the subtree t|1 and the partial
tree t〈1〉 related to the tree t in Fig. 5. We have: depth(t|1) =
2 and depth(t〈1〉) = 3. 2

b

ε

c

0

(a)

root

ε

a

c d

b

c

0

0.0 0.1

1

1.0

(b)

FIGURE 14. (a) The subtree t|1 and (b) the partial tree
t〈1〉 related to the tree t in Fig. 5

XML documents are seen in this paper as ordered
unranked labeled trees that should respect some schema
constraints expressed by a set of regular expressions
that we call a structure description. We limit ourselves
to elements, and to the DTD-equivalent case in which
the content of each element name is defined by one
and only one regular expression on Σ. We currently
disregard constraints defined by a given DTD for XML
attributes. We do not consider integrity constraints
that might be expressed within a richer formalism such
as XML Schema (XSD) either.

Definition 4. - Structure Description: A
structure description S is a triple (Σ, root, Rules)
where Σ is an alphabet (element names), root is the root
label, and Rules is a set of pairs (a, FSAa) such that
a∈Σ is a tag and FSAa is the finite state automaton
representing all possible words formed by the labels of
the children of a node labeled by a. Formally:

1. root ∈ Σ
2. Rules = {(a, FSAa) | a ∈ Σ}
3. ∀a∈Σ[FSAa = (Σa, Sa, s

a
0 , Fa,∆a), Σa⊆Σ,

sa0∈Sa, Fa⊆Sa, ∆a⊆Sa×Σa×Sa].

As usual, Σa, Sa, sa0 , Fa and ∆a are, respectively,
the alphabet, the set of states, the initial state, the
set of final states and the transition function of the
finite-state automaton associated with a, respectively.
Alternatively, we denote the transition function ∆a by
FSAa.∆. The word language L(FSAa) defined by
FSAa is the set of all words accepted by FSAa. We
suppose that ∀a∈ΣL(FSAa) 6= ∅.

Example 6. The triple S = (Σ, root, Rules) where Σ =
{root, a, b, c, d} and Rules are depicted in Figure 6 is a
structure description. 2

Definition 5. - Locally Valid Tree: Given a
structure description S = (Σ, root, Rules) a tree t is
said to be locally valid with respect to S if and only
if its labels belong to Σ, and it respects the constraints
defined in Rules. Formally:

1. ∀p∈Pos(t)t(p) ∈ Σ.
2. ∀p∈Pos(t)\leaves(t)t(p.0)t(p.1) . . . t(p.(t̄|p − 1)) ∈
L(FSAt(p)), i.e. the labels of p’s children form a
word accepted by the automaton associated with
p’s label.

3. ∀p∈leaves(t)ε ∈ L(FSAt(p)), i.e. the empty word
is accepted by each automaton associated with a
leaf.

Definition 6. - Valid Tree: Given a structure
description S = (Σ, root, Rules), a tree t is said to be
valid with respect to S if and only if it is locally valid
with respect to S and t(ε) = root.

Definition 7. - Tree Languages 1-2: Given a
structure description S, we introduce the following
notations for the tree languages defined by S:

1. L(S) denotes the set of all trees which are valid
with respect to S.

2. Lloc(S) denotes the set of all trees which are
locally valid with respect to S.

Definition 8. - Partially Valid Tree: Given a
structure description S, a tree t is said to be partially
valid with respect to S if and only if it is a partial tree
for a locally valid tree. Formally:
∃t′∈Lloc(S)∃−1≤i≤t̄′−1t = t′〈i〉.

Example 7. The tree t in Fig. 5 is not valid with respect
to the structure description S in Example 6. All subtrees

The Computer Journal, Vol. ??, No. ??, ????

Page 8 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 9

t|0 , t|1 , t|2 are locally valid w.r.t. S. All partial trees
t〈−1〉, t〈0〉, t〈1〉, t〈2〉 are also partial trees of t′2 in Fig. 10,
thus they are partially valid trees. If the node (0.0, c) is
deleted in t then no partial tree of t is partially valid, except
t〈−1〉. 2

Definition 9. - Tree Languages 3-4: Given a
structure description S = (Σ, root, Rules), a label
c ∈ Σ and a word u being a prefix of a valid word
w ∈ FSAc, we introduce the following notations for the
tree languages defined by S:

1. Lpart(S) denotes the set of all trees which are
partially valid with respect to S.

2. Lcu(S) denotes the set of all trees which are
partially valid with respect to S and have the word
u under the root c. Formally:
Lcu(S) = {t | t ∈ Lpart(S), t(ε) = c and t(0) . . . t(t̄−
1) = u}.

Obviously, given a valid tree t ∈ L(S), t is locally
valid, all its subtrees are locally valid and all its partial
trees are partially valid. As it is shown in Section
2.2 and detailed later on in this paper, correcting a
tree t can be considered as dynamically building sets
of partially valid trees close to t, extending the way
Oflazer [18] dynamically builds words recognized by an
FSA and satisfying the cut-off test with the word to be
corrected (cf. Section 2.1).

Example 8. Disregarding the tree positions, for the
schema S in Example 6 modified in such a way that b is
associated with the regular expression c|ε instead of c, we
have:
Lroot

ab
(S) = { root

a

c d

b

c

, root

a

c d

b

}

2

Note that:

• if u ∈ L(FSAc) then Lcu ⊆ Lloc(S) i.e. all trees in
Lcu are locally valid;

• if u ∈ L(FSAS.root) then LS.rootu ⊆ L(S) i.e. all
trees in LS.rootu are valid;

• ⋃
u∈L(FSAS.root)

LS.rootu = L(S).

3.2. Operations on Trees

A tree may be changed through one or more node-edit
operations, i.e. relabelings, insertions and deletions of
nodes. Given a tree t, a node-edit operation may be
applied to an edit position p provided that p respects
some constraints depending on the type of the node-
edit operation. For instance, an insertion of a new node
in the tree in Fig. 5 is possible at any of its positions
except ε but also at some still nonexistent positions,
e.g. 2.1. A deletion of a node is possible at any leaf
position. While inserting a node some positions may get
shifted to the right, e.g. after an insertion at 2 position 2
becomes 3, 2.0 becomes 3.0, etc. While deleting a node

some nodes get shifted to the left, e.g. after deleting
0.0 position 0.1 becomes 0.0, etc. Therefore, in order to
define node-edit operations, we introduce the following
sets of positions:

Definition 10. - Sets of Tree Positions: Let t be
a tree. Let p be a position such that p ∈ Pos(t) and
p = ε or p = u.i (with u ∈ N∗ and i ∈ N). We define
the following sets of positions in t:

• The insertion frontier of t is the set of all
positions non existing in t on which it is possible
to perform a node insertion. Formally:

1. InsFr(t∅) = {ε}.
2. If t 6= t∅ then InsFr(t) = {v.j /∈ Pos(t) | v ∈

Pos(t) and j ∈ N and [(j = 0) or ((j 6= 0) and
v.(j − 1) ∈ Pos(t))]}.

• The change position set is the set of all
positions that have to be either deleted or shifted
left or right, in case of a node deletion or insertion
at p. Formally:

1. ChangePosε(t) = {ε}
2. If p 6= ε then ChangePosp (t) = {w | w ∈

Pos(t), w = u.k.u′, i≤k<t̄u and u′ ∈ N∗}.
• The shift-right position set is the set of all
target positions resulting from shifting a part of
a tree as a result of inserting a new node at p.
Formally:

1. ShiftRightPosε(t) = ∅.
2. If p 6= ε then ShiftRightPosp(t) = {w | w =

u.(k + 1).u′, u.k.u′ ∈ Pos(t), i≤k< ¯t|u and
u′ ∈ N∗}.

• The shift-left position set is the set of all target
positions resulting from shifting a part of a tree as
a result of deleting a node at p. Formally:

1. ShiftLeftPosε(t) = ∅.
2. If p 6= ε then ShiftLeftPosp(t) = {w | w =

u.(k− 1).u′, u.k.u′ ∈ Pos(t), i+ 1≤k< ¯t|u and
u′ ∈ N∗}.

Example 9. For the tree t in Fig. 5 we have:

• InsFr(t) = {0.0.0, 0.1.0, 0.2, 1.0.0, 1.1, 2.0.0, 2.1, 3}
• ChangePos1(t) = {1, 1.0, 2, 2.0}
• ShiftRightPos1(t) = {2, 2.0, 3, 3.0}
• ShiftLeftPos1(t) = {1, 1.0} 2

Definition 11. - Node-Edit Operations: Given
an alphabet Σ and a special character / /∈ Σ a node-
edit operation ed is a tuple (op, p, l), where op ∈
{relabel, add, delete}, p ∈ N∗ and l ∈ Σ ∪ {/}. Given a
tree t the node-edit operation ed is defined on t if and
only if one of the following conditions holds:

• op = relabel, l ∈ Σ and p ∈ Pos(t)
• op = add, l ∈ Σ and p ∈ Pos(t) \ {ε} ∪ InsFr(t)
• op = delete, l = / (empty label) and p ∈ leaves(t)

Given a node-edit operation ed we define an ed-
derivation Ded as a partial function on all trees on

The Computer Journal, Vol. ??, No. ??, ????

Page 9 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

10 J. Amavi, B. Bouchou and A. Savary

which ed is defined. An ed-derivation transforms a tree
t into another tree t′ (which is denoted by t

Ded−→ t′ or

simply by t
ed−→ t′) if the following holds:

• A relabel operation derivation replaces the label
associated with the given position while leaving
the rest of the tree intact. Formally, if ed =
(relabel, p, l) then:

1. Pos(t′) = Pos(t),
2. t′(p) = l,
3. ∀p′∈Pos(t′)\{p}t′(p′) = t(p′).

• An add operation derivation inserts a single node
at the given position while shifting some positions
to the right and keeping all other positions intact.
Formally, if ed = (add, p, l) then:

1. Pos(t′) = Pos(t) \ ChangePosp(t) ∪
ShiftRightPosp(t) ∪ {p},

2. t′(p) = l,
3. ∀p′∈(Pos(t)\ChangePosp(t))t

′(p′) = t(p′),
4. ∀p′∈ShiftRightPosp (t)[[p = u.i, p′ = u.(k + 1).u′

and i, k ∈ N, u, u′ ∈ N∗]⇒ t′(p′) = t(u.k.u′)].

• A delete operation derivation removes a leaf
while shifting some positions to the left and keeping
all other positions intact. Formally, if ed =
(delete, p, /) then:

1. Pos(t′) = Pos(t) \ ChangePosp(t) ∪
ShiftLeftPosp(t),

2. ∀p′∈(Pos(t)\ChangePosp(t))t
′(p′) = t(p′),

3. ∀p′∈ShiftLeftPosp(t)[[p = u.i, p′ = u.(k − 1).u′

and i, k ∈ N, u, u′ ∈ N∗]⇒ t′(p′) = t(u.k.u′)].

Example 10. Consider the XML tree in Fig. 5 and the
node-edit operation ed = (add, 1, a) defined on t. The ed-
derivation transforms t into t′ shown in Fig. 15. 2

root

ε

a

c d

a b

c

b

c

0

0.0 0.1

1
2

2.0

3

3.0

FIGURE 15. The result of the ed-derivation for ed =
(add, 1, a) over the tree t in Fig. 5.

Definition 12. - Node-Edit Operation Se-
quence: Let t be a tree. Let 0≤n and ed1, ed2, . . . edn
be node-edit operations. The node-edit operation
sequence nos = 〈ed1, ed2, . . . edn〉 is defined on t if
and only if there exists a sequence of trees t0, t1, . . . , tn
such that:

• t0 = t

• ∀0<k≤nedk is defined on tk−1 and tk−1
edk−→ tk

Given a node-edit operation sequence nos we define a
nos-derivation Dnos as a partial function on all trees
on which nos is defined. A nos-derivation transforms a
tree t into another tree t′ (which is denoted by t

Dnos−→ t′

or simply by t
nos−→ t′) if and only if there exists a

sequence of trees t0, t1, . . . , tn defined as above and
tn = t′.
We denote by nos∅ the empty sequence of node-edit
operations. The nos∅-derivation on a tree t leaves t

intact, i.e. t
nos∅−→ t.

Given two node-edit operation sequences nos1 and nos2

we say that nos1 and nos2 are equivalent if and only
if for any tree t on which they are defined the nos1-
derivation and the nos2-derivation on t lead to the same
tree. Formally, nos1 ≡ nos2 if and only if:
∀t[[nos1 and nos2 are defined on t, t

nos1−→ t1 and

t
nos2−→ t2]⇒ t1 = t2] 2

Example 11. Let’s consider the tree t in
Fig. 5 and a node-edit operation sequence nos =
〈(relabel, 0.1, c), (delete, 0.1, /), (relabel, 0, b)〉. Clearly, nos
is defined on t. The nos-derivation on t results in the tree
t′1 depicted in Fig. 10. Notice that we have:
nos ≡ 〈(delete, 0.1, /), (relabel, 0, b)〉 ≡
〈(relabel, 0, b), (delete, 0.1, /)〉. 2

Let t be a tree and NOS = {nos1, . . . , nosn} be a set
of node-edit operation sequences defined on t. For each
1≤i≤n we can perform the nosi-derivation on t in order
to obtain a target tree ti, i.e. t

nosi−→ ti. We will denote

this fact by t
NOS−→ {t1, . . . , tn}.

Some particular sequences of node-edit operations
might be seen as higher-level operations where not only
single nodes but whole subtrees intervene. For instance,
the sequence of additions at positions 1, 1.0 and 1.1 in
the tree in Fig. 5 may be seen as a single operation of
inserting a 3-node subtree at position 1. Similarly, the
sequence of deletions at positions 2.0 and 2 corresponds
to removing the subtree rooted at position 2.

Definition 13. - Tree-Edit Operations: Given
an alphabet Σ a tree-edit operation ted is a tuple
(op, p, τ), where op ∈ {insert, remove}, p ∈ N∗ and τ
is a tree over Σ. Given a tree t the tree-edit operation
ted is defined on t if and only if one of the following
conditions holds:

• op = insert and p ∈ Pos(t) \ {ε} ∪ InsFr(t)
• op = remove, p ∈ Pos(t) and τ = t∅

Given a tree-edit operation ted we define a ted-
derivation Dted as a partial function on all trees on
which ted is defined. A ted-derivation transforms a tree
t into another tree t′ (which is denoted by t

Dted−→ t′ or

simply by t
ted−→ t′) if the following holds:

• An insert operation derivation inserts a new tree
at the given position while shifting some positions
to the right and keeping all other positions intact.

The Computer Journal, Vol. ??, No. ??, ????

Page 10 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 11

Formally, if ted = (insert, p, τ) then:

t = t0
(add,p.v1,τ(v1))−→ t1

(add,p.v2,τ(v2))−→
t2 · · ·

(add,p.vn,τ(vn))−→ tn = t′ where v1, . . . , vn
are the positions of τ reached in its prefix order
traversal.
• A remove operation derivation removes a sub-
tree rooted at the given position. Formally, if
ted = (remove, p, t∅) then:

t = t0
(delete,p.v1 ,/)−→ t1

(delete,p.v2 ,/)−→
t2 · · ·

(delete,p.vn,/)−→ tn = t′ where v1, . . . , vn
are the positions of t|p reached in its inverted
postfix (right-to-left) order traversal.

As shown in Definition 13, each tree-edit operation
ted can be expressed in terms of a certain node-edit
operation sequence nos. We will say in this case that
ted and nos are t-equivalent, which is denoted by
ted ≡t nos. Note that, by Definition 13, for each tree-
edit operation there is exactly one t-equivalent node-
edit operation.

Example 12. Consider the tree t in Fig. 5 and the tree-
edit operation ted = (insert, 3, τ1) with τ1={(ε, b), (0, c)}.
Clearly, ted is defined on t. We have ted ≡t 〈(add, 3, b),
(add, 3.0, c)〉. 2

The fact of applying a node-edit operation (i.e. of
performing the ed-derivation) induces a non-negative
cost. In this paper the cost of each node-edit operation
is fixed to one but that need not be the case in general5.

Definition 14. - Operation Sequence Cost: For
any node-edit operation ed, we define cost(ed) to be
the non-negative cost of performing the ed-derivation
on a tree. Given a node-edit operation sequence
nos = 〈ed1, ed2, . . . , edn〉 the cost of nos is defined
as Cost(nos) = Σn

i=1(cost(edi)). The cost of a tree-
edit operation ted is equal to the cost of the node-edit
operation sequence nos which is t-equivalent to ted, i.e.
Cost(ted) = Cost(nos) for ted ≡t nos. Given a set
of node-edit operation sequences NOS, we define the
minimum cost on NOS as follows: MinCost(NOS) =
minnos ∈ NOS {Cost(nos)}.

3.3. Operators on Sets of Operation Sequences

We now introduce some operators on sets of node-
edit operation sequences that will allow an easy
manipulation of these sequences in both the correction
algorithm and its analysis.

Definition 15. - Minimum-Cost Subset: Let
NOS be a set of node-edit operation sequences. We
denote by MinCostSubset(NOS) the minimum-cost
subset of NOS defined as the set of all sequences
in NOS having no equivalent sequences in NOS with
lower costs. Formally:

5In our tool, operation costs are parameters of the correction
process.

MinCostSubset(NOS) = {nos | nos ∈ NOS and
6 ∃nos′∈NOS [nos′ ≡ nos and Cost(nos′) < Cost(nos)]}.

Definition 16. - Minimum-Cost Union: Let
NOS1 and NOS2 be two sets of node-edit operation
sequences. We denote by NOS1 d NOS2 the
minimum-cost union of NOS1 and NOS2 defined
as follows: NOS1 dNOS2 = MinCostSubset(NOS1 ∪
NOS2).

Let NOS1 and NOS2 be two sets of node-edit
operation sequences. We denote by NOS1.NOS2 the
concatenation of NOS1 and NOS2 such that
NOS1.NOS2 = {nos1.nos2 | nos1 ∈ NOS1, nos2 ∈
NOS2}.

Example 13. Let S1 = {〈(add, 1, c), (delete, 2, /),
(relabel, 0, d)〉, 〈(relabel, 2, c), (delete, 2.0, /)〉}, and
S2 = {〈(relabel, 0, a)〉}.
We have S1.S2 = {〈(add, 1, c), (delete, 2, /), (relabel, 0, d),
(relabel, 0, a)〉, 〈(relabel, 2, c), (delete, 2.0, /), (relabel, 0, a)〉}.
2

Notice that if either NOS1 or NOS2 is the empty set
∅ then NOS1.NOS2 = ∅.

Definition 17. - Threshold-Bound Concatena-
tion: Let NOS1 and NOS2 be two sets of node-edit op-
eration sequences. Let th be a threshold (th ≥ 0). We
define the threshold-bound concatenation of NOS1

and NOS2, denoted by NOS1.thNOS2, as the subset of
the concatenation NOS1.NOS2 in which all sequences
have costs no greater than th. Formally:
NOS1.thNOS2 = {nos1.nos2 | nos1 ∈ NOS1, nos2 ∈
NOS2, Cost(nos1.nos2) ≤ th}. We extend the notion
of the threshold-bound concatenation to sets of tree-
edit operations. Namely, let TED1 and TED2 be sets
of tree-edit operations and NOS be a set of node-edit
operation sequences. Let NOSTEDi (with i ∈ {1, 2})
be the set of node-edit operation sequences which are
t-equivalent to the tree-edit operations in TEDi, i.e.
NOSTEDi = {nos | ∃ted∈TEDi ted ≡t nos}. Then we
assume the following definitions:

• TEDi.thNOS = NOSTEDi .thNOS,
• NOS.thTEDi = NOS.thNOSTEDi ,
• TED1.thTED2 = NOSTED1 .thNOSTED2 .

Example 14. Let τ1 = {(ε, a), (0, b), (1, c)},
τ2 = {(ε, e), (0, f)}, τ3 = {(ε, g), (0, h)},
TED1 = {(insert, 1, τ1), (insert, 3, τ2)},
TED2 = {(insert, 0, τ3)},
NOS = {〈(relabel, ε, root), (add, 2, b)〉, 〈(delete,4, /)〉, nos∅}.
We have:
NOSTED1 = {〈(add, 1, a), (add, 1.0, b), (add, 1.1, c)〉,
〈(add, 3, e), (add, 3.0, f)〉}
NOSTED2 = {〈(add, 0, g), (add, 0.0, h)〉}
TED1.3NOS = {〈(add, 1, a), (add, 1.0, b), (add, 1.1, c)〉,
〈(add, 3, e), (add, 3.0, f), (delete, 4, /)〉,
〈(add, 3, e), (add, 3.0, f)〉}
TED2.3NOS = {〈(add, 0, g), (add, 0.0, h), (delete,4, /)〉,
〈(add, 0, g), (add, 0.0, h)〉}
TED1.3TED2 = ∅. 2

The Computer Journal, Vol. ??, No. ??, ????

Page 11 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

12 J. Amavi, B. Bouchou and A. Savary

Definition 18. - Prefixed Operation Sequence
Set: Let NOS be a set of node-edit operation se-
quences, and u ∈ N∗. We define the prefixed opera-
tion sequence set, denoted by AddPrefix(NOS, u),
as the set resulting from adding the prefix u to all po-
sitions of the node-edit operations in NOS. Formally:
AddPrefix(NOS, u) = {〈ed1, ed2, . . . , edn〉 | edi =
(opi, u.posi, li) for 1≤i≤n and
∃〈ed′1,ed′2,...,ed′n〉∈NOS ed′i = (opi, posi, li)}

3.4. Distances and Corrections

We can now define the notion of distances between two
trees and between a tree and a tree language.

Definition 19. - Tree Distances: Let t and t′ be
trees. Let NOSt→t′ be the set of all node-edit operation
sequences nos such that t

nos−→ t′. The distance between
t and t′ is defined by: dist(t, t′) = MinCost(NOSt→t′).
The distance between a tree t and a tree language L is
defined by: DIST (t, L) = mint′∈L{dist(t, t′)}.

Note that introducing the straightforward correspon-
dence between node-edit and tree-edit operation se-
quences in Definition 13 highlights the equivalence be-
tween our tree distance definition and Selkow’s one [17].

Example 15. Let us consider the tree t in Figure 5 and
the schema S in Example 6. We have
DIST (t, L) = dist(t, t′2) = Cost(〈(add, 3, c)〉) = 1, with t′2
in Fig. 10. 2

Definition 20. - Tree Correction Set: Given a
tree t, a structure description S = (Σ, root, Rules) and
a threshold th (th ≥ 0) we define the correction set of
t with respect to S under th as the set of all valid trees
whose distance from t is no greater than th. Formally:
Ltht (S) = {t′ | t′ ∈ L(S), dist(t, t′) ≤ th}.

The aim of the algorithm presented in Section 4 is
to show how to obtain the correction set of the given
tree t. More precisely, the algorithm provides the set of
all node-edit operation sequences allowing us to obtain
a tree t′ belonging to t’s correction set. Each of such
node-edit operation sequences can be expressed in terms
of operations equivalent to those defined by Selkow
[17] (node relabeling, subtree insertion and subtree
deletion). The conversion between node-edit and tree-
edit operation sequences is straightforwardly deducible
from Definition 13.

Note that with Definition 9 we have:
Ltht (S) = {t′ | t′ ∈ ⋃

u∈L(FSAS.root)
LS.rootu (S) and

dist(t, t′) ≤ th}.

4. ALGORITHM

Having introduced all necessary definitions in the
previous section, we are now going to provide a formal
presentation of our algorithm and prove its properties,

i.e. its completeness, soundness and termination, as
well as its time complexity. The section ends with a
discussion on several direct extensions.

Consider a schema S = (Σ, root, Rules), a tree t
and a natural threshold th. For correcting a tree t
with respect to S under the threshold th, we use a
dynamic programming method which calculates a two
dimensional tree-to-language edit distance matrix M c

u

where c is a tag and u = u1u2 . . . uk is a word (sequence
of tags). Each cell of M c

u contains a set of node-edit
operation sequences. Namely, M c

u[i][j] contains the set
of all node-edit operation sequences transforming the
partial tree t〈i−1〉 into trees t1, . . . , tn each of which:

• is partially valid;
• has the root c and its root’s children form a prefix6

of u of length j;
• its distance from t is no greater than th.

Formally:

∃t1,...,tn [t〈i−1〉 Mc
u[i][j]−→ {t1, . . . , tn} and ∀1≤k≤n[tk ∈

Lcu[1...j](S) and dist(t, tk) ≤ th]].

With c = root, i = t̄ and j = |u| the cell M c
u[i][j]

contains the set of operation sequences capable of
transforming a tree t into a set of trees belonging to
Ltht (S).

4.1. Presentation

Matrix M c
u can be computed by the function correction

presented below. It takes as input parameters the
tree t to be corrected, the structure description S,
the threshold th and the root label intended for t. It
returns the set of all node-edit operation sequences that
transform t into locally valid trees with root c. When
called with c = root the function returns the set of all
operation sequences capable of transforming a tree t
into the whole correction set Ltht (S).

The first instance of the function correction will
usually imply other instances whose results are all
collected in the set Result that is returned at the end.

If the threshold is null while the initial tree t is locally
valid and has the intended root c then the correction
result is the empty sequence of operations (lines 2–3)
since no operation needs to be applied to t. If however
t is not locally valid no solution is possible with a non
positive threshold (lines 5–6), thus the set of solutions
is empty (which is different from the empty sequence
being the only solution). With a positive threshold the
matrix M c

u is initialized with one column corresponding
to u = ε and as many rows as the number of the
root’s subtrees plus one since row 0 corresponds to the
root (lines 8–10). Then the cells of this first column
are calculated (lines 11–19). Namely, the cell M c

u[0][0]
receives the operation necessary to introduce the correct

6For u = u1u2 . . . uj . . . un ∈ Σ∗ we denote by |u| the length
of u, i.e. |u| = n, and by u[1..j] the u’s prefix of length j, i.e.
u[1..j] = u1u2 . . . uj with 1 ≤ j ≤ n.

The Computer Journal, Vol. ??, No. ??, ????

Page 12 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 13

Function correction(t, S, th, c) return Result
Input
t: XML tree (to be corrected)
S: structure description
th: natural (threshold)
c: character (intended root tag of resulting trees)
Output
Result: set of node-edit operation sequences (allowing us to get resulting trees)

1. begin
2. if th = 0 and t ∈ Lloc(S) and t(ε) = c then
3. return {nos∅} //Stop recursion

4. else
5. if th ≤ 0 then
6. return ∅ //Stop recursion

7. else
8. u := ε
9. n := t̄ //n is the number of t’s root’s children

10. Mc
u := newMatrix(n+1, 1) //Initialize the matrix with n+ 1 rows and 1 column

//Compute the first column in the matrix.

11. if t = t∅ then
12. Mc

u[0][0] := {(add, ε, c)}
13. else
14. if c = t(ε) then
15. Mc

u[0][0] := {nos∅}
16. else
17. Mc

u[0][0] := {(relabel, ε, c)}
18. for i := 1 to n do
19. Mc

u[i][0] := {(remove, i−1, t∅)}.thMc
u[i−1][0]

20. Result := ∅
//This call to correctionState begins the correction of t’s root’s children

21. correctionState(t, S, th, c,M c
u, initialState(FSAc), Result)

//Function initialState returns the initial state of the FSA associated with c

22. return Result
23. end

Procedure correctionState(t, S, th, c, M c
u, s, Result)

Input
t: XML tree (to be corrected)
S: structure description
th: natural (threshold)
c: character (intended root tag)
Mc
u: current matrix

s: current state in FSAc
Input/Output
Result: set of node-edit operation sequences, which may be completed with corrections induced by the state s

1. begin
//Check if u ∈ L(FSAc). If so add the bottom right hand side matrix cell to the result.

2. if s ∈ FSAc.F then
3. Result := Result dM c

u[t̄][|u|]
4. for all δ ∈ FSAc.∆ such that δ = (s, a, s′) do
5. correctionTransition(t, S, th, c,M c

u, s
′, a, Result)

6. end

root c, i.e. (i) the addition of c if t is empty (lines
11–12), (ii) the empty sequence if the root is correct
(lines 14–15), (iii) the relabeling operation if the root
is incorrect (line 17). Notice that if t is the empty tree
t∅ then the matrix M c

u has only one line thus only this
first cell is computed.

All cells below M c
u[0][0] are to represent the operation

sequences transforming partial trees t〈i−1〉 into a
tree having only the root c. Therefore, these
sequences contain the previously calculated operation
for correcting the root, concatenated with deletions of
all subtrees of the root (line 19). Note that these
deletions: (i) are performed from right to left in
order to save position shifting, (ii) are expressed –

The Computer Journal, Vol. ??, No. ??, ????

Page 13 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

14 J. Amavi, B. Bouchou and A. Savary

for the sake of simplicity and complexity saving – by
tree-edit operations (remove) reduced into node-edit
operation sequences while performing the threshold-
bound concatenation .th. Finally, the matrix M c

u with
the first initialized column is passed to the function
correctionState (line 21), whose result becomes the
result of the whole correction process (line 22).

Procedure correctionState performs the depth-first
search exploration of the automaton FSAc associated
with the root c of the input tree. If the input state
is final then the word u read until now while traversing
FSAc is valid with respect to FSAc. Thus, all solutions
accumulated in the bottom right-hand side cell of the
current matrix M c

u lead to partially valid trees and can
be added to the set of solutions (lines 2–3). Then
each transition δ outgoing from the current state s is
considered (lines 4–5).

Procedure correctionTransition treats the current
transition δ with its label a in order to correct partial
trees of t into partially valid trees having a as the
root of their last subtrees. This treatment consists
in (i) computing one column, (ii) verifying whether
this exploration path can go on, and if so, (iii) going
on following this path by calling again the procedure
correctionState. It can be noticed from the procedures
correctionState and correctionTransition that the
number of columns computed for the thread of the
correction of the tree t w.r.t. the label c is bounded
by f t̄+thc where fc is the maximum fan-out of all states
in FSAc. This can be verified in the example detailed
in Section 2.2.

Word v is formed by the labels read until now while
traversing FSAc, including the current transition’s
label a (line 3). The matrix M c

v is initialized with
as many columns as v’s length plus 1, and as many
rows as the number of the root’s subtrees plus one
(lines 4–6). The whole contents of M c

v is recopied
from the preceding matrix M c

u (line 7) except the last
column corresponding to the current transition, which
is computed in lines 8–20. Namely, we first compute all
node-edit operation sequences allowing us to transform
an empty tree t∅ into a locally valid tree with root
a (lines 8 and 13). Note that these sequences are t-
equivalent to the tree-edit operations of inserting new
locally valid trees at position m−1 in t. Any of these
operations may potentially intervene only after having
corrected the partial tree t〈i−1〉 (i.e. for i = 0: only
a root) into a partially valid tree t′ ∈ Lcu. Thus, the
threshold allowed for inserting a new tree with root a
at m−1 cannot exceed the general threshold th reduced
by the cost of the previous least costly correction of
t〈i−1〉 into a t′ (th −MinCost(M c

v [i][m−1])). As this
value varies, this call to correction is performed for each
cell of the column.

The first cell of column m in the matrix corresponds
to transforming the partial tree t〈−1〉 into any of the
trees t′′ ∈ Lcv. Thus, its contents is formed by previous
corrections of t〈−1〉 into a t′ ∈ Lcu combined with the

subtree insertions at m−1 prefixed by the insertion
position m−1 (line 9). Each time operation sequences
are combined, the threshold-bound concatenation .th
specified in Definition 17 is applied, in order to keep
only those resulting sequences which do not exceed the
threshold.

All other cells in column m are built by taking
into account the three possibilities issued from Selkow’s
proposal (cf. Section 2):

• First we transform the partial tree t〈i−1〉 into a
t′ ∈ Lcu, then we insert a new locally valid subtree
with root a at position m − 1 (line 15). This
corresponds to the horizontal correction possibility
in the matrix shown in Fig. 1(b) and in Fig. 9.

• First we transform the partial tree t〈i−2〉 into a
t′ ∈ Lcu, then we transform the subtree t|i−1

into
a locally valid subtree with root a (line 16). This
corresponds to the diagonal correction possibility
in the matrix shown in Fig. 1(b) and in Fig. 9.

• First we remove the subtree t|i−1
, then we

transform the partial tree t〈i−2〉 into a t′ ∈ Lcv (line
17). This corresponds to the vertical correction
possibility in the matrix shown in Fig. 1(b) and in
Fig. 9.

All sequences induced by these three possibilities
are stored provided that: (i) they do not exceed
the threshold (this verification is performed by the
threshold-bound concatenation .th), (ii) they have no
equivalent sequences with lower cost (which is guaran-
teed by the the minimum-cost union d). Note that,
here again, the tree-edit operations (tree insertions
and deletions) are never explicitly stored. They are
replaced instead by the t-equivalent node-edit oper-
ation sequences as a result of a recursive correction
(line 8) and of the threshold-bound concatenation (line
15). Some cells of the current column may contain an
empty set after the application of the threshold-bound
concatenation .th. Variable nbSolInColumn counts
the number of cells in the current column m which
contain at least one solution (lines 2, 10–11 and 18–19).
If the current column contains at least one solution
then the recursive correction goes on with the arrival
state of the current transition (line 22). Otherwise this
exploration path is cut off and a backtracking from the
current transition is performed (i.e. the current matrix
with the newly computed column will no more be used).

It is important to notice that the result of
correction(t, S, th, c) is exactly the following set of node
edit operation sequences:
{nos | nos ∈ ⋃u∈L(FSAc)

M c
u[t̄][|u|] and Cost(nos) ≤

th}
That is because lines 4–5 of procedure correctionState
try all possible words in L(FSAc) and line 2 adds
to the result only the operation sequences of the
matrix M c

u[n][|u|] for which u ∈ L(FSAc). Thus,
only those cells M c

u[t̄][|u|] are selected which correspond

The Computer Journal, Vol. ??, No. ??, ????

Page 14 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 15

Procedure correctionTransition(t, S, th, c, M c
u, s, a, Result)

Input
t: XML tree (to be corrected)
S: structure description
th: natural (threshold)
c: character (intended root tag)
Mc
u: current matrix

s: target state of the current transition in FSAc
a: label of the current transition
Input/Output
Result: set of node-edit operation sequences (with corrections induced by previously visited states)

1. begin
2. nbSolInColumn := 0
3. v := u.a
4. m := |v| //m is the length of the current word

5. n := t̄ //n is the number of t’s root’s children

6. Mc
v := newMatrix(n+1, m+1) //Initialize a new matrix with n+1 rows and m+1 columns

7. Mc
v [0..n][0..m−1] := Mc

u[0..n][0..m−1] // Copy all the columns of Mc
u into Mc

v

8. T := correction(t∅, S, th−MinCost(M c
v [0][m−1]), a) //Compute the last column of Mc

v

9. Mc
v [0][m] := Mc

v [0][m−1].thAddPrefix(T,m−1)
10. if Mc

v [0][m] 6= ∅ then
11. nbSolInColumn := nbSolInColumn + 1
12. for i := 1 to n do
13. T := correction(t∅, S, th−MinCost(M c

v [i][m−1]), a)
14. Mc

v [i][m] :=
15. Mc

v [i][m−1].thAddPrefix(T,m−1) d //Horizontal correction

16. Mc
v [i−1][m−1].th correction(t|i−1

, S, th−MinCost(M c
v [i−1][m−1]), a) d//Diagonal correction

17. {(remove, i−1, t∅)}.thMc
v [i−1][m] //Vertical correction

18. if Mc
v [i][m] 6= ∅ then

19. nbSolInColumn := nbSolInColumn + 1
20. end for

//If the last column of Mc
v contains at least one cell with a cost less than th the iteration goes on by calling correctionState

//with the state s. Otherwise the iteration stops.

21. if nbSolInColumn ≥ 1 then
22. correctionState(t, S, th, c,M c

v , s, Result)
23. end

to the operation sequences leading to valid trees.
Moreover, the threshold-bound concatenation operator
(.th) together with the minimum-cost union operator
(d) allow only non redundant operation sequences
whose cost is less than or equal to th to be kept in
M c
u’s cells.

Example 16. It can be verified that the corrections found
for the example given in Section 2.2 are precisely those
computed by the function correction.

4.2. Properties

Let’s focus initially on correcting an empty tree w.r.t.
a schema S. We claim that the function correction
finds out how to transform an empty tree into all locally
valid trees within the threshold. This can be formally
expressed by the following lemma.

Lemma 1. Given a tag c ∈ Σ, a schema S and a
threshold th, let S′ be the schema (Σ, c, S.Rules). A call
to correction(t∅,S,th,c) always terminates and returns
the set Result s.t. the following proposition holds:

t∅
Result−→ Ltht∅ (S′).

Proof. The proof is done by induction on the threshold
th.

• Basis: If th = 0 then the function
correction(t∅, S, 0, c) returns in line 6 (an empty
tree is not locally valid) with Result = ∅. Note

that t∅
∅−→ ∅. Note also that L0

t∅(S
′) = {t′ | t′ ∈

L(S′), dist(t∅, t′) = 0} = ∅ since each t′ in L0
t∅(S

′)
must be equal to t∅ and t∅ is never valid w.r.t. a
schema (it has no root). We can conclude that

t∅
∅−→ L0

t∅(S
′).

• Induction step: Suppose that 0 < th and for each
0 ≤ th′ < th the call correction(t∅, S, th′, c) terminates
and the proposition holds for its result. We will show
that correction(t∅, S, th, c) also terminates and the
proposition holds for its result.

(a) Termination and soundness: We wish to show that
correction(t∅, S, th, c) terminates and each node
operation sequence in Result leads to a tree in

The Computer Journal, Vol. ??, No. ??, ????

Page 15 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

16 J. Amavi, B. Bouchou and A. Savary

Ltht∅ (S′), i.e. a locally valid tree with root c and
whose distance from t∅ is no greater than th.

Note that for 0 < th the call correction(t∅, S, th, c)
constructs a matrix M c

v where M c
v [0][0] =

{(add, ε, c)} and cost((add, ε, c)) = 1 (see function
correction, line 12). The calculation of this first cell
is straightforward so it clearly terminates. Then,
for each 0 < j ≤ |v|, M c

v [0][j] is obtained by
concatenating sequences from M c

v [0][j − 1] with re-
sults of a new correction of t∅ w.r.t. S (see proce-
dure correctionTransition, lines 8–9) with th′′ =
th−MinCost(M c

v [0][j − 1]). Since the correction of
an empty tree induces at least one node insertion we
have th′′ < th. By hypothesis, this new correction
terminates and yields sequences leading to locally
valid trees. Finally, lines 2–3 in correctionState
guarantee that each final concatenation (if any)
added to Result leads to a tree t′ which has a root
c, and whose root’s children form a word valid w.r.t.
FSAc. Thus, t′ is necessarily locally valid, which
proves soundness. Note also that the number of
columns in M c

v cannot exceed th. Thus, the algo-
rithm terminates after at most th recursive calls.

(b) Completeness : The proof is done by contradiction.
Suppose that there exists a locally valid tree t′ with
root c such that the distance between t′ and t∅ is no
greater than th, and t′ cannot be obtained with a
node operation sequence in Result.

Note that if t′ ∈ L(S′) and dist(t∅, t′) ≤ th then:
(i) each subtree t′|i (with 0 ≤ i ≤ t̄′ − 1) is locally

valid, (ii) dist(t∅, t′|i) < th, (iii)
∑

i dist(t∅, t
′
|i) < th,

(iv) the word v formed by t′s root’s children is valid
w.r.t. FSAc. Note that lines 4–5 in correctionState
guarantee that we test all outgoing transitions for
every state reached in FSAc. Thus,

correctionTransition(t∅, S, th−1, c,M c
ε ,

s′, t′(0), Result0)

will have to be called. By hypothesis, the sequence
nos0 leading to the subtree t′|0 must be contained in
the Result of this call. Then,

correctionTransition(t∅, S, th−MinCost, c,M c
t′(0),

s′′, t′(1), Result1)

will have to be called with 0 < MinCost ≤
cost(nos0) < th. By hypothesis, the sequence nos1

leading to subtree t′|1 must again be contained in
the Result1 of this call. The same holds for all
subtrees of t′. Thus, t′ can be obtained from t∅ by
the operation sequence

nos = 〈 (insert, ε, c).thAddPrefix(nos0, 0).th
AddPrefix(nos1, 1).thth
AddPrefix(nost̄′−1, t̄

′ − 1)〉
This sequence will necessarily be created in
correctionTransition, line 9, and further added to
Result in correctionState, line 3.

Let us now admit that th = 0. This case is considered
separately because it leads to no matrix creation.

Lemma 2. Given a tag c ∈ Σ, a schema S, and a
tree t, let S′ be the schema (Σ, c, S.Rules). A call to
correction(t,S,0,c) always terminates and returns the

set Result s.t. t
Result−→ L0

t (S
′).

Proof. Note that L0
t (S
′) = {t′ | t′ ∈ L(S′) and

dist(t, t′) = 0}. This set contains only t if t is locally
valid, and no tree otherwise. Note also that the call
to correction(t, S, 0, c) terminates: (i) in line 3 with
Result = {nos∅} if t is valid, (ii) in line 6 with
Result = ∅ otherwise. In case (i) Result leads from
t to t itself, and in case (ii) to no tree. Thus, the lemma
holds.

Let us now consider any non empty tree t to be
corrected with a positive threshold. We will show
that each cell of the distance matrix computed by our
algorithm transforms partial trees of t into partially
valid trees within the threshold th. This can be formally
expressed by the following lemma.

Lemma 3. Let c ∈ Σ be a tag, S be a schema, t 6= t∅
be a tree, and th > 0 be a threshold. Let u ∈ Σ∗ be a
word such that u ∈ L(FSAS.root) and Lcu(S) 6= ∅. The
call to correction(t, S, th, c) computes the matrix M c

u

such that, for each 0 ≤ i ≤ t̄ and for each 0 ≤ j ≤ |u|,
the following proposition holds:

t〈i−1〉 M
c
u[i][j]−→ {t′ | t′ ∈ Lcu[1..j](S), dist(t〈i−1〉, t′) ≤ th}

Proof. Firstly, note that for a non-empty tree t and
a positive threshold 0 < th a distance matrix is
necessarily created (function correction, line 10) and
filled out.

0 |u|
0

i

t̄

?

h2.2

FIGURE 16. Example of matrix representation for the
proof

Secondly, let’s consider the case of i = 0 and j = 0.
Note that for a non-empty tree t the cell M c

u[0][0] can
only be filled out in the function correction, lines 15
and 17. Each of these 2 actions clearly terminates and
results in an operation sequence transforming t’s root
(i.e. t〈−1〉) into a root-only tree {(ε, c)} with cost no
higher than 1. Note also that Lcu[1..0](S) = Lcε(S) =

{(ε, c)}. Thus, the proposition holds for i = 0 and j = 0.
The proof for the remaining cases is done by induction

on the depth of the tree t, then on the row index i,
and finally on the column index j. We will use the
representation of the distance matrixM c

u as in Figure 16

The Computer Journal, Vol. ??, No. ??, ????

Page 16 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 17

to say that we want to verify the cell which contains
the question mark ’?’ knowing that the cells in gray
are concerned by the hypothesis.
1. Basis (depth(t) = 1): If depth(t) = 1 then t
contains only the root tag, i.e. t = {(ε, x)} and t̄ = 0.
Consequently, there exists only one i s.t. 0 ≤ i ≤ t̄,
namely i = 0. Thus, we only need to show that for each
0 ≤ j ≤ |u|:
t〈−1〉 M

c
u[0][j]−→ {t′ | t′ ∈ Lcu[1..j](S), dist(t〈−1〉, t′) ≤ th}

Further proof is done by induction on column index
j.

0 |u|
0 ?

1.1. Basis (depth(t) = 1, i = 0, j =
0): If j = 0 then we are considering
the same case as above, i.e. i = 0
and j = 0. We have already shown that the proposition
is true for this particular case.

0 |u|
0 h1.2 ?

1.2. Induction step (depth(t) =
1, i = 0, 0 < j): Suppose that the
proposition is true for a 0 ≤ j ′ = j−1
(h1.2), i.e.

t〈−1〉 M
c
u[0][j−1]−→ {t′ | t′ ∈ Lcu[1..(j−1)], dist(t〈−1〉, t′) ≤

th}.
We will prove that it also holds for j.

Note that with 0 < j the cell M c
u[0][j] can only be

filled out in function correctionTransition, line 9. The
contents of this cell stems from the threshold-bound
concatenation of node operation sequences in: (i) the
cell M c

u[0][j − 1], (ii) the result of correcting an empty
tree with an appropriately diminished threshold, and
with target root uj . This situation is depicted in Fig. 17.
By hypothesis h1.2, the calculation of (i) terminates and
each element in (i) transforms t〈−1〉 into a partially
valid tree with word u[1..(j − 1)] formed by the root’s
children. By Lemma 1 the calculation of (ii) terminates
and each element of (ii) creates a locally valid tree with
root uj . Thus, each concatenation of these elements
creates a tree whose:

- root is c,
- root’s children form the word u[1..j]
- all root’s subtrees are locally valid.

In other words this tree is partially valid. The
threshold-bound concatenation guarantees that its
distance from t is no greater than th. That proves
the termination and the soundness of the lemma. The
completeness can be proved similarly to Lemma 1. In
each t′ ∈ Lcu[1..j] all subtrees are locally valid, have the

appropriate distance from t and u[1..j] ∈ FSAc. Thus,
each transition in FSAc labeled with uk (1 ≤ k ≤ j)
has to be followed, and by hypothesis each subtree t′|k
has to be reachable by a sequence stemming from a
call to correctionTransition. The whole tree t′ can be
obtained by concatenating the root correction operation
with all such sequences for 1 ≤ k ≤ j (prefixed by k).

Thus, the proposition holds for any 0 ≤ j with i = 0.

2. Induction step (depth(t) > 1): Suppose that the
proposition is true for any tree t′ with 0 ≤ depth(t′) < d
(h2). We will prove that it also holds for any tree t with
depth(t) = d.

The proof is done by induction on the row index i.
2.1. Basis (depth(t) > 1, i = 0): With i = 0 we need
to show that for each 0 ≤ j ≤ |u|:
t〈−1〉 M

c
u[0][j]−→ {t′ | t′ ∈ Lcu[1..j](S), dist(t〈−1〉, t′) ≤ th}.

The proof is the same as in the case of a tree of depth
1 (see above).
2.2. Induction step (depth(t) > 1, i > 0): Suppose
that the proposition is true for any 0 ≤ i′ < i (h2.2).
We will prove that is also holds for i. The proof is done
by induction on column index j.
2.2.1. Basis (depth(t) > 1, i > 0, j = 0): With j = 0
we need to show that:

t〈i− 1〉 M
c
u[i][0]−→ {t′ | t′ ∈ {(ε, c)}, dist(t〈i− 1〉, t′) ≤ th}

0 |u|
0

i

t̄

?

h2.2

Recall that cell M c
u[0][0] contains

at most one operation leading to
the correct root c. Note also that
all other cells in the first column
can only be filled out in function
correction, line 19. The contents
of each of these cells stems from the threshold-bound
concatenation of: (i) removing a subtree in t, (ii) node
operation sequences in the cell above. Thus, the cell
M c
u[i][0] contains at most one operation sequence which

represents removing all subtrees in t〈i− 1〉 (from right
to left) and possibly relabeling the root, as depicted
in Fig. 18. Obtaining this sequence (if any) clearly
terminates and leads to the root-only tree {(ε, c)},
which proves termination and soundness.

The completeness is straightforward since the only
possible element (if any) in {t′ | t′ ∈ {(ε, c)}, dist(t〈i−
1〉, t′) ≤ th} is the root-only tree {(ε, c)}. This tree can
be obtained precisely by the unique operation sequence
(if any) described above.
2.2.2. Induction step (depth(t) > 1, i > 0, j > 0):
Suppose that the proposition is true for any
0 ≤ j′ = j − 1 (h2.2.2).

0 j |u|
0

i

t̄

h2.2.2 ?

h2.2

We will prove that it also holds for
j. Note that if i > 0 and j > 0 the
cell M c

u[i][j] can only be filled out
in procedure correctionTransition,
lines 14–17. Three cases are to be
examined.

• The horizontal correction (line 15) yields
threshold-bound concatenations of: (i) the cell
M c
u[i][j − 1], (ii) the result of correcting an empty

tree with an appropriately diminished threshold,
and with target root uj . By hypothesis h2.2.2, the
calculation of (i) terminates and each element (if
any) in (i) transforms t〈i− 1〉 into a partially valid

The Computer Journal, Vol. ??, No. ??, ????

Page 17 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

18 J. Amavi, B. Bouchou and A. Savary

x

Mc

u
[0][m−1]
−→

c

u1 uj−1.

AddPrefix(T,j−1)
−→

c

u1 uj−1 uj.

FIGURE 17. Combining operation sequences in case of i = 0

x

• • •.

t〈i− 1〉 =

0 i − 2 i − 1

{(remove,i−1,t∅)}
−→

x

• •.

t〈i− 2〉 =

0 i − 2

Mc

u
[i−1][0]
−→ •

c

FIGURE 18. Combining operation sequences in the first column of the distance matrix

tree with word u[1..j−1] formed by the root’s chil-
dren. By Lemma 1 the calculation of (ii) termi-
nates and each element (if any) of (ii) creates a
locally valid tree with root uj . Thus, each concate-
nation of elements in (i) and (ii), provided that it
does not exceed the threshold, creates a tree whose:

- root is c,
- the root’s children form the word u[1..j]
- all root’s subtrees are locally valid.

In other words this tree is partially valid. The
threshold-bound concatenation guarantees that its
distance from t〈i− 1〉 is no greater than th. That
proves the termination and the soundness of this
case.
• The diagonal correction (line 16) yields threshold-
bound concatenations of: (i) the cellM c

u[i−1][j−1],
(ii) the result of correcting subtree t|i−1

with an
appropriately diminished threshold th′, and with
target root uj . By hypothesis h2.2, the calculation
of (i) terminates and each element (if any) in (i)
transforms t〈i− 2〉 into a partially valid tree with
word u[1..j−1] formed by the root’s children. Note
that for (ii) two cases are possible. Firstly, th may
be equal to 0. In that case, by Lemma 2, the
result of (ii) is either empty (t|i−1

is not locally
valid) or equal to t|i−1

(otherwise). Secondly,
th may be positive. In that case, each element
in the result of (ii) necessarily stems from the
cell M

uj
v [¯t|i−1

][|v|] for a certain v ∈ FSAuj (see
procedure correctionState, line 3). Since the
subtree t|i−1

necessarily has a smaller depth than
t, by hypothesis h2, (ii) terminates and

t|i−1

M
uj
v [¯t|i−1

][|v|]
−→ {t′ | t′ ∈ Lujv (S), dist(t|i−1

, t′) ≤ th}
In other words, each element in (ii) transforms t|i−1

into a locally valid tree with root uj . Thus, each
concatenation of elements in (i) and (ii), provided
that it does not exceed the threshold, again creates
a partially valid tree within the threshold, as

depicted in Fig. 19. That proves the termination
and the soundness of this case.
• The vertical correction (line 17) yields threshold-
bound concatenations of: (i) removing subtree
t|i−1

, (ii) node operation sequences in the cell
M c
u[i−1][j]. Clearly, (i) terminates. By hypothesis

h2.2, the calculation of (ii) terminates and each
element in (ii) transforms t〈i − 2〉 into a partially
valid tree with word u[1..j] formed by the root’s
children. This process, when preceded by deleting
subtree t|i transforms the partial tree t〈i− 1〉 into
a partially valid tree. That proves the termination
and the soundness of this case.

We prove the completeness by contradiction. Let’s
suppose that there exists a tree t′ ∈ Lcu[1..j](S) such

that dist(t〈i − 1〉, t′) ≤ th, and no operation sequence
in M c

u[i][j] leads from t〈i − 1〉 to t′. According to the
tree distance definition in [17], t′ can be obtained from
t〈i− 1〉 by at least one of the three types of corrections
(horizontal, diagonal, or vertical correction).

• In the horizontal correction: (i) the partial tree t〈i−1〉
is transformed into the partial tree t′〈j − 2〉, (ii) the
subtree t′|j−1

is inserted. By hypothesis h2.2.2 the

cell M c
u[i][j − 1] must contain the sequence allowing

to obtain t′〈j − 2〉 since this partial tree is within
the threshold and its root’s children form the word
u[1..j − 1]. Note also that, by Lemma 1, the subtree
t′|j−1

must be reachable by a sequence calculated in

correctionTransition, line 11. Thus, at least one
sequence leading to t′ must be obtained.

• In the diagonal correction the partial tree t〈i − 2〉
is transformed into the partial tree t′〈j − 2〉 and the
subtree t|i−1

is transformed into the subtree t′|j−1
. By

hypotheses h2.2 and h2 at least one corresponding
operation sequence must be obtained.

• In the vertical correction the partial tree 〈i −

The Computer Journal, Vol. ??, No. ??, ????

Page 18 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 19

x

• • y.

t〈i− 1〉 =

0 i-2

c

• • y.0 j-2w

Mc

u
[i−1][j−1]
−→

c

• • uj.0 j-2w
Tc−→

c

• •.0 j-1u
=

FIGURE 19. Combining operation sequences in case of a diagonal correction with w = u1 . . . uj−1

2〉 is transformed into t′ and the subtree t|i−1

is deleted. By hypothesis h2.2, and by line 17
in correctionTransition, at least one corresponding
operation sequence must be obtained.

Theorem 1. Given a tree t, a schema S and a
threshold 0 ≤ th, a call to correction(t, S, th, S.root)
terminates and returns a set Result such that the
following proposition holds:

t
Result−→ Ltht (S).

Proof. If th = 0 then the proposition holds by Lemma 2.
Suppose now that 0 < th.

(a) Termination : The proof is done by induction
on the depth of the tree t. If depth(t) = 0
the tree is empty and, by Lemma 2, the call to
correction(t∅, S, th, S.root) terminates. Suppose now
that the call terminates for each tree t′ s.t. 0 ≤
depth(t′) < d. We will prove that it also terminates
for a tree t with depth d. With 0 < th the set
Result can receive new operation sequences only in the
procedure correctionState, line 3. These corrections
stem from the matrix MS.root

u for some u ∈ FSAS.root.
By Lemma 3, the calculation of each matrix cell
terminates. Note that the recursion is induced in
correctionTransition by lines 8, 13, 16 and 22. The
recursion in lines 8 and 13 terminates by Lemma 1.
The recursion in line 16 terminates by the induction
hypothesis since the subtree t|i−1

has a smaller depth
than t. Moreover the cells filled out in lines 9, 15 and
17 necessarily have a higher cost than the cells they
have been deduced from (M c

v [0][m − 1], M c
v [i][m−1]

and M c
v [i−1][m], respectively) because at least one

node insertion or deletion is concatenated. Only the
concatenation in line 16 can lead to sequences of the
same cost as in the preceding cell M c

v [i−1][m−1]. That
can however happen only for locally valid subtrees,
whose number is bounded by t̄. Thus after at most t̄+
th recursive calls between procedures correctionState
(line 5) and correctionTransition (line 22) all solutions
in the current column must have a cost exceeding th and
the recursion stops.

(b) Soundness : With 0 < th the set Result can
receive new operation sequences only in the procedure
correctionState, line 3. These corrections stem
from the bottom right-hand cell of the matrix, i.e.

MS.root
u [t̄][|u|], for some u ∈ FSAS.root. By Lemma

3 we have:

t〈t̄ − 1〉 MS.root
u [t̄][|u|]−→ {t′ | t′ ∈ LS.rootu (S), dist(t〈t̄ −

1〉, t′) ≤ th}.
Since t〈t̄− 1〉 = t we get:

t
MS.root
u [t̄][|u|]−→ {t′ | t′ ∈ LS.rootu (S), dist(t, t′) ≤ th}

Note that LS.rootu (S) ⊆ L(S), thus each element in
Result leads to a tree that belongs to Ltht (S), which
proves the soundness.

(c) Completeness : The proof is done by contradiction.

Suppose that there exists a tree t′ ∈ Ltht (S) such
that no operation in Result leads from t to t′. Let
v be the word formed by the children of t′s root,
i.e. v = t′(0) . . . t′(t̄′ − 1). Note that t′(ε) = S.root
since t′ is valid. The function correction necessarily
creates a matrix MS.root

ε in line 10, fills out its first
column and the cell MS.root

ε [0][0] contains the node
operation leading from t(ε) to S.root. Further on,
the procedure correctionState necessarily tests the
transition in FSAS.root labeled with t′(0). By Lemma 3
the second column in MS.root

t′(0) necessarily contains
sequences leading from partial trees of t to the partial
tree t′〈0〉. By definition of the tree distance, at least
one of these sequences has a cost no higher than
th. Thus, necessarily the procedure correctionState is
again called by procedure correctionTransition, line
22 and the transition labeled with t′(1) is examined.
These calls continue until t′(t̄′−1) and each new column
contains at least one sequence within the threshold.
After the transition labeled with t′(t̄′ − 1) is examined
the contents of the cell MS.root

v [t̄][t̄′] is added to Result.
By the proof of soundness, this cell leads from t to t′.

4.3. Complexity

In the correction process there are two sources of
recursion: the structure description S on the one hand
and, on the other hand, the input tree t. Both are
traversed in parallel, except for the correction of an
empty tree.

Indeed, the recursion within the structure description
is the only one used by the correction of an empty tree
to a target root label a. It corresponds to the insertion
of a node with label a, this node being the root of a
tree.

The Computer Journal, Vol. ??, No. ??, ????

Page 19 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

20 J. Amavi, B. Bouchou and A. Savary

For inserting a tree with root label a, we consider
the rule for a in S and we try to build correct children
words, i.e. we try to insert children nodes, those nodes
being themselves potential roots of trees. Thus, for each
new child node we consider again the corresponding rule
in S and try to build correct children words, etc.

The process of correcting an empty tree to a target
root label a is bounded by th. Indeed, as the maximum
size of correct trees is th, the process must stop as soon
as th nodes have been inserted (into the empty tree).
Thus, the maximum number of transitions followed in S
(in all relevant automata) is always bounded by (fS)th,
where fS is the maximum fan-out of all states in all
finite state automata in the structure description S.

Notice that the process of correcting an empty tree
to a target root label a may stop much sooner than
this general limit. For instance if FSAa contains only
one state, the final one, the process stops immediately.
It is clear that the shape of schemas, i.e. the form
of automata in S, is an important parameter of
complexity: obviously, the less there are choices, the
lower is fS . Repetitions in the schema (i.e. cycles
in automata in S) imply potentially infinite length of
correct children words. Recursion in the schema also
induces potentially depth-infinite valid trees. These two
latter cases are limited by the threshold th.

The second source of recursion is the input tree t.
Each of its nodes may need to be corrected, thus a
complete recursive traversal is necessary. This is done
with recursive calls to the correction process when
computing correction matrices.

Considering correction matrices, we can fix a general
bound for: (i) the number of their rows, and (ii) the
maximum number of computed columns, for all the
matrices taken together.

For each computed matrix, its number of rows is
bounded by the maximum number of children of all
nodes in the input tree, denoted ft, plus one (for the
root).

The number of columns computed for correcting t
depends on the dynamic exploration of the FSAs in S.

Considering the exploration graph illustrated in
Figure 4, for one input word w the length of all correct
words is less than or equal to |w| plus th. Moreover,
for each node in the exploration graph there is at
most f following nodes to explore, where f denotes
the maximum fan-out of states in the FSA. Thus, the
number of columns computed in Oflazer’s algorithm is
bounded at worst by f |w|+th.

Generalizing this fact to the tree context, the limit
for the length of correct words, |w| + th, becomes
|t| + th, the maximum size of correct trees. Thus,
the maximum number of columns computed in matrices
taken all together is bounded at worst by (fS)|t|+th.

We have the following bound for the number of
computed cells: (ft + 1) × (fS)|t|+th. Now each
cell computation consists in inserting, deleting or
renaming one node. The recursion on the subtree

rooted at this node is taken into account in the global
number of columns times the maximum number of rows.
Nevertheless, as we compute all solutions within the
threshold th, for each cell we concatenate sets of node
operation sequences. Let’s try to bound number of such
concatenations.

The length of each node operation sequence included
in the matrix is always bounded by th. Recall that a
node operation on tree t is a triple (op, p, a) we have:

• For op = delete: p belongs to t.
• For op = relabel: a belongs to Σ; p belongs to t.
• For op = add: a belongs to Σ; p belongs to the set

of positions Pos(t) \ {ε} ∪ InsFr(t), whose size is
equal to 1 for an empty tree, and to 2× |t| − 1 for
a non empty tree7.

Thus, the possible choice for p is always the largest
in case of a sequence containing node additions only.
Note also that when a node addition is performed on
t a new position is created in t. Thus, a new node
addition (if any) can appear in any of the resulting
2 × (|t| + 1) − 1 positions. Yet another node addition
could concern one of the 2 × (|t| + 2) − 1 position,
etc. In total, the number of possible sequences of
positions where node operations intervene is bounded
by (2× (|t|+ th))th. For any of these positions we can
choose among one of at most three operation types, and
one of at most |Σ| target labels. Therefore, the size of
sets of all possible node operation sequences is bounded
by (3× |Σ| × 2× (|t|+ th))th.

We can conclude that the time complexity of our tree
correction algorithm is in
O((ft + 1)× (fS)|t|+th × 6× |Σ| × (|t|+ th))th.

In practice two facts decrease the previous bounds,
which are difficult to formalize in a complexity analysis.
Firstly, the dynamic FSA exploration is fast limited by
the threshold th: we stop adding a new column as soon
as all cells in the current columns are empty (a cell
becomes empty if its corresponding cost is greater than
th). Secondly, as in Oflazer’s proposal for strings, the
computations of partial trees are factorized, i.e. the
initial columns are computed only once for all words
having the same prefix. These may be the reasons
why the experimental results described in the following
section hardly ever show an exponential cost in time,
whether in function of the document size or of the
threshold.

Moreover, some optimizations may be introduced
in the implementation, in order to decrease the
computation time. One of them consists in saving the
intermediate correction results in an auxiliary structure
in such a way that the correction of a subtree of t for
the target root label a and with the threshold th is
performed at most once. It is detailed in Appendix A.
For documents that contain sequences of large subtrees,

7Note that the insertion frontier contains exactly one new child
position for each node existing in the initial tree.

The Computer Journal, Vol. ??, No. ??, ????

Page 20 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 21

with identical structures, this intermediate storage
largely increases the correction performances.

4.4. Adaptations and Extensions

The presented approach to correct an XML document
t w.r.t. a schema S is unique in its completeness in
the sense that, given a non negative threshold th,
the algorithm finds every tree t′ valid with respect
to S such that the edit distance between t and t′

is no higher than th. In this way it offers the
guarantee of getting all solutions verifying a precise
criterion (here: within a given threshold). This allows
us to be sure that the best solution (satisfying the
criterion) is actually in the resulting set. Notice that
features defining what exactly is the best solution highly
depend on application contexts and sometimes may be
rather informal (thus difficult to select automatically).
Nevertheless, providing a potentially large set of
solutions, in particular to an end-user, is generally
counterproductive. For this reason, each application
based on our approach would have to perform post-
processing tasks in order to take advantage of the
computed solutions in a way adapted to the particular
context. Context-dependent pre-processing tasks might
also be useful. The availability of the source code under
an open license allows these kinds of adaptations.

As an example, when a schema update invalidates
several documents (cf Section 6.4), most of them may
be concerned by the same selected corrections. In this
case, an accurate application might use our solution in
order to explore the alternative corrections for a single
document only. Then the application may ask a user
to select the preferred correction, and apply the chosen
edit script to all other documents concerned.

Since the proposed algorithm finds all corrections
within a threshold, the unavoidable question is how
to choose the particular threshold value. On the one
hand, if this value is unnecessarily high, the processing
time might be unacceptable. On the other hand, if it
is not high enough, the algorithm might fail to find the
proper correction (or any correction). Here again, the
answer highly depends on the context of use. For a
given application, a testing scenario such as the one
in Section 5 might be designed in order to estimate
the optimum threshold value for a given document
size. This estimation might start with determining the
edit distance between t and L(S), which is efficiently
computable with one of the algorithms specifically
designed for this problem (cf. Section 6.1).

Our algorithm can also be used for estimating
the optimum th, with the following scenario: if the
document is not valid then the distance is at least 1,
thus search corrections with th = 1; if no correction of
cost 1 is returned then search corrections with th = 2,
etc., until the first non-empty solution set is returned8.

8Our tool uses this scenario when the user asks for the minimal
corrections only.

One good reason for applying this scenario is, again,
that we are sure of what the algorithm computes. One
disadvantage is the theoretical complexity of such a
setting, that remains exponential thus higher than in
other algorithms capable of finding the document-to-
schema distance. However, as shown in the sixth testing
scenario in Section 5, the experimental behavior of such
a solution is polynomial rather than exponential.

Advantages and drawbacks of computing all solutions
satisfying a well defined criterion are a point of
discussion in many other fields, as for instance the
field of strings. Indeed, not far from our concerns,
the recent exciting survey in [20] shows how the
approximate string matching problem has received
attention from many different scientific communities,
which frequently have built comparable algorithms,
sometimes in parallel, for their specific practical
application contexts. Considering the place now
taken by XML in all information systems, it can
be assumed that all the situations in which tree-to-
language correction will be useful9 are not known yet.
Thus, a deliberately application-independent approach,
as the one proposed in this article, although it may
appear too complete, is a valuable contribution.

We now present extensions that are not yet
implemented in the tool associated with this article.
The first one concerns the schema languages that
our algorithm can deal with. We have initially
focused on DTDs, which correspond to Local Tree
Grammars in the taxonomy of [22], but we show that
dealing with Single Type Tree Grammars, i.e. with
schemas expressed using XML Schema (XSD), is a
straightforward extension.

In a schema defining a Local Tree Language (such
as a DTD), each element name is associated with
a unique content definition (or type). In a schema
defining a Single Type Tree Language, it is possible
to have more than one type for the same element
name, provided that the so-called competing types are
never used simultaneously in the same definition type.
In other words, in an XSD schema one can associate
different type definitions with the element name, but
they are distinguished by their context (they can be
seen as local definitions). Thus, the only difference with
respect to the case of DTDs is that one has to resolve
competition of types by using type definitions of parent
nodes.

Our algorithm can easily be adapted to deal with that
class of schemas since the recursion goes top-down. For
the root node, it is guaranteed that competition of types
for a given label never occurs (in an XSD schema, only
globally defined elements can be root nodes and it is
forbidden to define two global elements with the same
name but different types). When correcting a nonroot
node, we already know its parent-node type definition,

9Extended with pre-processing and post-processing tasks
depending on the context.

The Computer Journal, Vol. ??, No. ??, ????

Page 21 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

22 J. Amavi, B. Bouchou and A. Savary

thus we can uniquely determine the schema rule for this
node in this context. As there are several possible root
labels, the initial correction thread should be triggered
for each one but this adds only a multiplicative factor
to the overall complexity.

More precisely, the only changes that are necessary
for dealing with schemas defining Single Type Tree
Languages are the following ones:

• In the schema structure S, we associate each rule
not only with a label a, but with a triple (p, u, a),
where p and u are paths of labels, p.u representing
the context of the definition of a. If there is a
finite number n of non-recursive definitions, we
will have n triples (pi, ε, a), 1 ≤ i ≤ n, where
pi denotes a path of labels from a root node to
the label a. Otherwise, for each infinite set R of
paths sharing a repeated pattern r due to recursive
definitions, we will have one triple (p, r, a), with p
being the common prefix of paths in R and r being
the repeated pattern. In this way, the set Rules in
S becomes a set of pairs ((p, u, a), FSA(p.u,a)).

• The element root in S becomes a set Root ⊆ Σ.
• In the algorithm, we must add p′ (string of labels)

as a parameter of the function correction and
also of each procedure. Similarly to p.u above, p′

contains the path between the root of the XML
document and the current node, which is the root
of the subtree t to be corrected. Using p′, it is then
possible to choose in S the FSA for correcting t.

• The function correction must be iteratively called
for each element of the set of possible root labels.
For each one, it is initially called with p′ = ε.

• In the procedure correctionTransition, every call
to the function correction is done with p′.t(ε).
Thus, the label of the root of t is added to the
path representing the context, for each subtree
correction.

Other extensions concern time and space optimiza-
tions of our algorithm, inspired by related works.
Firstly, recall that each cell in our distance matrix M c

u

(cf Section 4.1) is calculated on the basis of its three
upper-left-hand neighbors. Thus, following the idea re-
ported by [20] and implemented by [4], only two consec-
utive columns have to be stored at a time. Note however
that backtracking might impose recalculating some pre-
viously deleted columns. Secondly, as reported again by
[20], many optimizations have been proposed to speed
up the string-to-language correction implementations.
Since our algorithm extends this problem, some of these
optimizations might apply, as e.g. bit-parallelism (si-
multaneous updates of numbers packed into a single
computer word) or FB-tries (evoked at the end of Sec-
tion 5).

Another interesting perspective would be to enlarge
the diversity of elementary edit operations and their
costs. For instance, we might consider (similarly to
[3], [23] and [2]) the possibility of inserting or deleting

internal tree nodes, not necessarily leaves. We think
that this problem is related to the extended edit distance
on strings [20], in which substitutions of arbitrary
strings rather than single-character edit operations are
allowed. In the context of trees, inserting/deleting an
internal node would correspond to replacing a sequence
of sibling roots by a new node, or vice versa. Also,
exchanging subtrees or moving them within the whole
tree in a single operation might yield a good modeling
of document proximity in various application domains,
as discussed in the tree-to-tree correction literature, e.g.
[24] and [25]. Finally, using operation costs dependent
on the positions where the operations apply might be
worthwhile, as shown in [20].

5. EXPERIMENTAL RESULTS

Several experiments were conducted in order to examine
the performances of our algorithm on real-life data in
function of different parameters: (i) the document size,
(ii) the threshold value, (iii) the number of errors, (iv)
the position of an error, (v) the nature of the DTD.
In this section we describe the settings of six testing
scenarios and we provide their results.

We have used a large XML file, henceforth called
the test file, containing linguistic annotations of named
entities performed within the Polish National Corpus
project [26]. The test file is compliant with the DTD
presented in Fig. 20. This DTD seems rich enough
to cover different phenomena that might influence the
performances of the correction algorithm. Namely,
it defines elements concerned by a varying degree of
flexibility (which potentially yields a varying number of
corrections).

The metadata, i.e. the two first subelements, 〈head〉
and 〈meta〉, as well as their three child nodes 〈schema〉,
〈id〉 and 〈subId〉, correspond to the part of the DTD in
which optionality, alternative or unbounded repetitions
of elements are not admitted (i.e. no ?, |, + and * are
used in the respective regular expressions). Thus, if an
error is introduced in this part of the test file, there can
hardly be any ambiguity about how this error should
be corrected. Henceforth this part of the test file will
be called the nonambiguous part.

The rest of the test file (henceforth the ambiguous
part) is composed of 2638 〈sent〉ences divided into
〈seg〉ments (i.e. roughly words) and named entities
(〈ne〉). Each 〈seg〉ment contains its 〈orth〉ographic
form (i.e. the inflected form appearing in the text,
e.g. domu) and its 〈base〉 form (i.e. the lemma,
e.g. dom). The description of named entities is
more complex and allows for optionality, alternative,
unbounded repetition of elements and recursion. In
particular, the 〈children〉 of an 〈ne〉 are 〈seg〉ments
and/or other named entities (e.g. [ulica [[Kazimierza]
[Pu laskiego]]] ’[[[Kazimierz] [Pu laski]] Street]’). That
allows for theoretically unbound recursive embedding
of named entities. However in practice no more than a

The Computer Journal, Vol. ??, No. ??, ????

Page 22 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 23

<!ELEMENT NKJP_names (head,meta,sent*)>

<!ELEMENT head (schema)>

<!ELEMENT schema EMPTY>

<!ELEMENT meta (id,subId)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT subId (#PCDATA)>

<!ELEMENT sent (seg|ne)+>

<!ELEMENT seg (orth,base)>

<!ELEMENT orth (#PCDATA)>

<!ELEMENT base (#PCDATA)>

<!ELEMENT ne (((orth, base)|(when, orth)),

(derivType, (derivedFrom)?)?,

cert, certComment?, children)>

<!ELEMENT when (#PCDATA)>

<!ELEMENT derivType (#PCDATA)>

<!ELEMENT derivedFrom (#PCDATA)>

<!ELEMENT cert (#PCDATA)>

<!ELEMENT certComment (#PCDATA)>

<!ELEMENT children (seg|ne)+>

FIGURE 20. The DTD of the XML file used for
experiments

few embedding levels appear (3 levels in our file). As
a result, our test XML file has a rather flat structure.
There are many sentences and each sentence contains
many segments and/or named entities (i.e. the root
node has thousands of children and grand children),
while segments and named entities are represented by
relatively shallow structures (i.e. the depth of the
document tree does not exceed 10).

The test file has been transformed in different ways
so as to design different testing scenarios. Four input
parameters have been taken into account:

• the size of the document to be corrected,
• the distance threshold,
• the number of errors introduced,
• the position at which an error has been introduced

(the ambiguous vs. the non ambiguous part, and
the beginning vs. the end of the document to be
corrected).

Two types of results have been examined:

• the CPU times consumed during the correction
process,

• the number of corrections obtained.

The algorithm was implemented in Java 1.6 and the
tests were run on an Intel Core i3-2310M 2.10GHx4
machine under Ubuntu Oneiric Linux 11.10, with a 8
GB RAM and a 500 GB hard disk.

The first scenario was designed so as to test the
correction time and the number of correction candidates
obtained in function of the document size. In this
experiment:

• The test file was repeatedly reduced into files
containing: the metadata, the first and the last

sentence, some sentences following the first one. In
this way we obtain a series of valid files f 1

1 , . . . , f
1
n

such that files f1
i and f1

i+1 differ by about 10–20
nodes.

• One error was introduced in the first sentence of
every file f1

i (a 〈base〉 element was deleted under
a 〈ne〉 element). Thus, the error appeared at the
beginning of each file in its ambiguous part.

• The threshold was th = 2.

Fig. 21 shows the results of this scenario. Note that the
CPU time has a rather polynomial behavior, despite
the theoretical exponential time complexity described
in Section 4. We think that this difference might
result from a rather rough complexity estimation due
to the greatly recursive nature of our algorithm (path
prefix factorizations offered by finite-state automata
are hard to express in worst-case estimations). Note
that the optimization described in Appendix A (storing
results of previously performed corrections in an
auxiliary structure) has some minor influence in the
processing time: this is due to the fact that correcting
subtrees with less that 150-200 nodes is not more time
consuming than managing the auxiliary structure. In
our experimentations, similar subtrees do not have more
than 50 nodes. Note also that the CPU time shows some
irregularities which closely correlate with the number
of corrections found. For instance, for files of sizes 300
through 370 the CPU time grows linearly as long as the
number of results is equal to 26. However the CPU time
grows rapidly when the number of correction candidates
comes up to 30 and 33.

The second scenario was meant to show how the value
of the distance threshold th influences the correction
time. In this experiment:

• The test file was repeatedly reduced into valid files
f2

1 , . . . , f
2
n, as in the previous scenario.

• One error was introduced at the beginning of every
file f2

i in its non ambiguous part (the 〈schema〉
element was deleted under the 〈head〉 element).

• The threshold was fixed to th = 1, th = 2 and
th = 3 for the three stages of the experiment,
respectively.

As shown in Fig. 22 the correction time dramatically
grows for bigger documents and higher thresholds. For
instance, for a document of 193 nodes the time needed
with th = 3 is about 20 and 114 times larger than
with th = 2 and th = 1, respectively. This is clearly
due to the fact that the threshold value is one of the
main factors limiting the search space in the finite
state automata explored during the correction process
(exploration paths are cut off as soon as the aggregated
edit distance of the previously obtained partial solutions
exceeds th).

In the third scenario we examined the influence of the
number of errors introduced in the corrected file on the
CPU time consumed during the correction process. In
this experiment:

The Computer Journal, Vol. ??, No. ??, ????

Page 23 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

24 J. Amavi, B. Bouchou and A. Savary

FIGURE 21. CPU time consumed during correction process and number of candidates found in function of the document
size (number of nodes) with th = 2

FIGURE 22. CPU time consumed during correction process with different values of the distance threshold, in function of
the document size (number of nodes)

• The test file was reduced into a valid file f 3

containing one sentence only and 44 nodes.
• Errors were repeatedly introduced to the file f 3,

starting from the leftmost and ending with the
rightmost nodes. As a result, twenty one files
f3

0 , . . . , f
3
20 were produced so that the file f 3

i+1 had
one error more than f3

i .
• The threshold was fixed to th = 6.

As shown in Fig. 23 the CPU time consumption during
the correction process is high for files with few errors,
and low for files with many errors. This is probably
due to the fact that the correction process can continue
only if the subtrees placed to the left of the current
node could be corrected. Since each partial correction

increases the aggregated edit distance, the search space
reduces quickly if many errors appear (especially close
to the beginning of the file). If more than 6 errors
appear there can be no possible correction so the
correction time reduces dramatically. Note also that
Fig. 23 shows a high correction time for a document
with 0 errors, i.e. a valid document. Clearly, if we are
interested in correcting a file only when it is incorrect,
this result is non relevant. In this case the correction
should be preceded by a validation. Our algorithm
answers however a more general problem: the one of
finding all valid files whose distance from the input file
(regardless of its validity) is no bigger than a threshold.

The hypothesis for the fourth scenario was that the

The Computer Journal, Vol. ??, No. ??, ????

Page 24 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 25

FIGURE 23. CPU time consumed during correction process with th = 6 in function of the number of errors in the corrected
file

FIGURE 24. CPU time consumed during correction process with an error placed at different positions of the test file, and
with th = 2, in function of the document size (number of nodes)

position of the error in the corrected file, as well as the
nature of the DTD, has an influence on the correction
time, and on the number of correction candidates
produced. In this scenario:

• The test file was reduced into a valid file f 4

containing 530 nodes.
• The test file was then repeatedly reduced into valid

files f4
1 , . . . , f

4
n, as in the first scenario.

• An invalid file f4
(i,1) was created by introducing

an error in the metadata of file f 4
i , for each 1 ≤

i ≤ n (the 〈schema〉 element was deleted under
the 〈head〉 element). Thus, this error appeared
at the beginning of the document and was non
ambiguous, i.e. there was only one way to correct

it.
• Two other invalid files f4

(i,2) and f4
(i,3) were created

by introducing an error once in the first sentence,
and once in the last sentence of the file f 4

i (the
〈base〉 element was deleted under the 〈ne〉 element,
i.e. within the file’s ambiguous part). These errors
were ambiguous, i.e. could be corrected is several
ways.

• The threshold was fixed to th = 2.

As shown in Fig. 24 the CPU time needed for
correction stays relatively low when an error appears
at the beginning of the file, while it dramatically grows
if the error appears at the end of the file. This is
most probably due to the fact that left-hand subtrees

The Computer Journal, Vol. ??, No. ??, ????

Page 25 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

26 J. Amavi, B. Bouchou and A. Savary

FIGURE 25. Number of candidates found with an error placed at different positions of the test file, and with th = 2, in
function of the document size (number of nodes)

must be corrected before the current node is examined.
Thus, if errors appear close to the beginning of the file
the aggregated edit distance increases quickly and the
search space gets reduced early. Conversely, if all left-
hand subtrees are valid, the aggregated edit distance is
equal to 0 and the search space remains limited by the
initial threshold only.

Note also (Fig. 25) that the correction for an error
appearing in the non-ambiguous part is several times
faster than in the ambiguous part. Here again, this is
closely correlated with the number of corrections found,
which is twice as low in the first case than in the second
one due to alternatives allowed by the DTD for the 〈ne〉
element.

The fifth scenario allowed us to examine the influence
of the distance threshold on the correction time and the
number of candidates found. In this scenario:

• The document to be corrected was empty.
• The threshold increased from 1 to 15.

As shown in Fig. 26 both the correction time and the
number of candidates found are of polynomial nature
with respect to the threshold value.

The final, sixth, scenario was to show how our
algorithm behaves when used for determining the set
of minimal-cost corrections (for instance in order to
help the user choose the accurate threshold needed for
her application, as explained in Section 4.4). In this
scenario:

• The same set of 21 files (with an increasing number
of errors) was used as in the third scenario.

• The algorithm was run repeatedly with th = 1,
then with th = 2, etc., until the first non empty
solution set was returned.

As shown in Fig. 27, the experimental behavior of such

a scenario is again polynomial rather than exponential.

In conclusion, despite its theoretical exponential time
complexity, our algorithm shows a behavior which is
rather polynomial in function of the threshold value
(Fig. 26), and of the document size (Fig. 21, 22 and
24). Surprisingly enough, the higher the distance of
the corrected document from the schema, the shorter
the correction time (Fig. 23). This is probably due to
the fact that errors appearing close to the beginning
of the document rapidly reduce the correction time
(Fig. 24), which results from the left-to-right processing
of each siblings’ level. A possible optimization might
be achievable from processing each siblings’ word both
from left to right and from right to left, as in forward-
and-backward tries (FB-tries by Mihov and Schulz)
described in [20]. Understandingly, if errors appear in
the ambiguous part of the file (i.e. the part concerned
by optionality, alternative, and unbounded repetitions
of elements in the schema) their correction is more time
consuming than in the non-ambiguous part (Fig. 24).
Finally, the correction time is closely correlated with the
number of correction candidates found (Fig. 21 and Fig.
26), which on its turn directly results from the above-
mentioned factors: the size of the input document, the
threshold value, the position of an error and the nature
of the schema. This correlation between the correction
time and the number of candidates might explain,
at least partly, why the tree-to-language correction
problem, as defined in our approach, is more difficult
to solve than in some other works discussed in Section
6. Namely, this problem is frequently reduced in the
literature to finding the tree-to-language distance only,
without proposing a particular correction sequence, or
to proposing a fixed number of minimal sequences only
(see Table 1). If completeness of the correction set is

The Computer Journal, Vol. ??, No. ??, ????

Page 26 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 27

FIGURE 26. CPU time consumed and number of candidates found during the correction of an empty file, in function of
the distance threshold

FIGURE 27. CPU time consumed when searching for the tree-to-schema distance, in function of the number of errors in
the corrected file

required, the correction time grows accordingly.

6. RELATED WORKS

We resume in this section several definitions of the
tree-to-schema correction problem, as well as various
corresponding algorithm designs, which exist in the
literature. We also provide their contrastive analysis
allowing us to situate our own proposal within the
state of the art. We see three important degrees in
works related to our XML correction algorithm: (i)
measuring a distance between an XML document and a
schema, which is often related to (ii) finding one or all
minimal-cost corrections, and finally the most complex
task of (iii) computing a set of edit operation sequences

for correcting an XML document w.r.t. a schema.
Moreover, revalidation and correction intervening after
updates performed on a document or on a schema may
be seen as a particular instance of the tree-to-schema
correction problem. We address all of these directions
in the following subsections.

6.1. Measuring the Distance Between an XML
Document and a Schema

A comprehensive review study dedicated to the prob-
lem of XML document/grammar comparison, hence the
problem of computing XML document/grammar dis-
tance, or similarities, is presented in [1]. The authors
present also a complete overview of applications for such

The Computer Journal, Vol. ??, No. ??, ????

Page 27 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

28 J. Amavi, B. Bouchou and A. Savary

computations, which are also potential applications of
our work.

In [6, 7] the notion of structural similarity between
an XML document t and a DTD D is defined and an
algorithm to compute this measure is presented. This
structural similarity consists in the maximal value of
a function that evaluates the set of mappings from
t to D. The evaluation relies on computing three
parameters, depending on several requirement settings.
These parameters are (i) c, the amount of common
parts, (ii) p, the amount of extra parts (i.e. not in the
DTD) and (iii) m, the amount of missing parts. The
algorithm designed to compute this similarity is based
on a function Match that computes best mappings,
whose complexity is in O((|t| + |D|) × a2) where |t| is
the document size, |D| is the DTD size and a is the
maximal arity of t. Experimental results show good
performances. The main advantage of such a measure
is its flexibility when a different relative relevance degree
can be assigned to each requirement taken into account
(such as levels at which common and different features
are detected or tag equality versus tag similarity, etc.)
that could be set by users depending on the application
domain. This is not the case for the proposal in [8],
which also measures the structural similarity between
an XML document and a DTD, both being modeled
as ordered labeled trees. To this aim they adapt a
tree-to-tree edit distance measure to the specificity of
the special trees they design to represent DTDs, giving
a polynomial algorithm for finding the minimum cost
sequence of edit operations between the XML tree and
the DTD tree, that can be visualized as an explanation
of the similarity measure.

At first glance, [5] deals with a problem that is
more similar to ours: finding a minimal-cost sequence
of elementary edit operations (relabeling a node, and
deleting or inserting leaves) allowing the transformation
of an XML document into a tree which is valid with
respect to a schema. Their considerations are made
both on DTDs and XML schemas. Contrary to the
initial aim, the algorithm described deals only with
the edit distance between a tree and a schema, and
not with finding the edit sequence to correct the tree.
It is claimed that the algorithm is based on dynamic
programming (as ours) and its time complexity is of
O(n × p × log p), with n and p being the size of
the tree and of the schema respectively. However,
the pseudocode does not allow for verification. An
interesting point of this paper is the description of an
application framework: XML document classification.
Convincing arguments are given in favor of using tree-
to-schema distance rather than tree-to-tree distance for
this application. What is used here however is only the
edit distance alone and not the edit sequence, thus, it
is hard to understand if the correction procedure has
really been studied and implemented.

In [4] the problem of the edit distance between an
XML document d and a DTD D is defined, as in our

approach, as the minimum cost of all edit sequences
transforming d into a D-valid document d′. The
elementary edit operations considered are deletions and
insertions of a leaf. Complex macro-operations defined
over these edit operations are (as in our previous work
[10]): (i) deleting a subtree, (ii) inserting a minimum-
size valid subtree with a given root label, (iii) recursively
repairing a subtree. The algorithm is based on a
restoration graph resembling a matrix with N rows and
M + 1 columns, where N is the number of states in
the finite-state automaton corresponding to the root’s
label (FSAr), and M is the number of the root’s
children. A vertex qji in line i and column j represents
both the current state in FSAr (0 ≤ i < N) and
the current position in the word of the root’s children
(0 ≤ j ≤ M). Each edge of the graph corresponds to
a macro-operation applied on root’s children and has
the weight equal to the cost of this macro-operation.
In particular, establishing the cost of a subtree repair
requires a recursive construction of a restoration graph
for the current subtree. The problem of finding the
document-to-DTD edit distance is thus reduced to
finding the shortest path in the restoration graph from
vertex q0

0 to any vertex representing an accepting state
in the last column. The paper indicates the time
complexity of O(|D|2 × |T |) where |D| and |T | are the
sizes of the DTD and of the document, respectively.
The complexity analysis is however very brief and it
seems unclear how far it takes the recursion issues into
account (the correction of the same node with respect
to the same automaton might be necessary many times
within one tree). The space complexity announced is of
O(|D|2×height(T)) since only two consecutive columns
of the restoration graph need to be stored at a time. It is
mentioned that restoring the correcting edit sequences
from the restoration graph is straightforward as each
sequence stems from one of the minimum-length graph
paths. However, no hints are given on which paths are
to be taken into account (all or just one, and which one).
Moreover, no considerations are present concerning the
position updates in the modified tree. The experimental
results on randomly generated invalid XML documents
show a linear behavior of the algorithm in function
of the document size (with a DTD of size 5) and a
polynomial behavior in function of the DTD size.

In [23] the authors reconsider the problem of the
document-to-DTD edit distance in that they represent a
DTD by a streaming tree automaton (STA), i.e. a single
push-down automaton which operates on an input XML
document seen as a sequence of opening and closing tags
(in the standard document order) rather than as a tree.
Given the STA for a DTD a repair automaton is defined
which resembles again a matrix whose: (i) number of
rows is equal to the number of states in the STA, (ii)
number of columns is equal to the number of opening
and closing tags in the XML document. Transitions in
the repair automaton are weighted and represent edit
operations (and their costs): (i) renaming a node, (ii)

The Computer Journal, Vol. ??, No. ??, ????

Page 28 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 29

inserting a node (not necessarily a leaf), (iii) deleting
a node (not necessarily a leaf). Deleting or inserting
a root is not allowed. Finding the document-to-DTD
distance is, here again, reduced to finding the minimal-
weight accepting run in the repair automaton. This
approach seems promising in that: (i) it considers a
rich set of edit operations (insertions and deletions of
internal nodes are allowed), (ii) the well-formedness
as well as the attribute validity seem to be handled
within the same framework as the structural validity.
The algorithm is described within a more complex
problem of querying sets of (possibly inconsistent) XML
documents, proved EXPTIME-complete. The time
complexity is not given explicitly for the problem of the
document-to-DTD edit distance alone. We regret that
no experimental results accompany this proposal, in
particular with respect to large documents and complex
DTDs.

In [2] the authors also consider streaming XML, thus
they also propose to represent a schema with a push-
down finite state machine called Visibly Pushdown
Automaton (VPA), considering XML documents as
strings with opening and closing symbols. A VPA
can represent extended DTDs (EDTD, also called
specialized DTDs), that define regular tree languages.
The authors introduce Visibly Pushdown Transducers
(VPT), that take as input a document and produce
as output a document or a set of documents. They
present first a VPT Γ designed as a way of computing
an extension E of a given schema S, such that L(E)
contains L(S) plus all documents whose edit distance
from L(S) is up to K. VPT Γ is a combination of
all possible transformations consisting of up to K edit
operations. The considered edit operations are the
same as the ones described in [23]. Both S and E are
represented by VPA, say A and B. VPA B is obtained
by transducing A by Γ. It can be stored and used to
test whether an XML document would fit the schema
S after at most K edit operations. This test consists in
verifying if the document is accepted or not by B, thus
its time complexity depends linearly on the size of the
document, and necessarily it depends also on features
of B, which is non deterministic and which has O(KM)
states and O(KR2M) transitions, where R is the size
of the underlying alphabet, K is the upper bound of
the number of edit operations and M is the size of
A. O(KR2M) is also the state and time complexity
of the processing of B. The authors of [2] also extend
their proposal to another VPT that represents changes
expressed with special edit operations: substitution of
all occurrences of pair (< a >,< /a >) (for instance)
by pairs (< b >,< /b >), deletion of all occurrences
of pair (< a >,< /a >) and insertion any number of
pairs (< a >,< /a >). For these operations, the time
complexity of processing B is O(K3R2K+1M). The
article ends with hints for a VPT that can generate
”repairs” of a document that is already valid w.r.t. the
original schema S.

6.2. Finding One Minimal-Cost Correction, or
All Minimal-Cost Corrections

The reference [27] is frequently cited as it was probably
the first to announce the following challenge: given a
tree T and a tree grammar G such that T /∈ L(G),
L(G) being the tree language defined by G, find another
tree T ′ that is in L(G) and not too far from T .
As in many other frameworks, trees stand for XML
documents and the grammar is a DTD. Nevertheless
in this paper the trees are presented as being ranked,
which is not the case for XML document trees, so one
can guess that the algorithms work on some binary
representation of trees10, that is not presented. The
following elementary edit operations are considered:
relabel of a node, insertion and deletion of a node at any
level of the tree. The authors mention that one of them
has proved in another article the existence of a ”tester”
for tree edit distance with a special edit operation called
move, which allows the movement of a whole subtree
from one node to another node in the tree. This
paper focuses on experimental results performed for an
implementation of (previously published) algorithms,
which are unclearly sketched. These algorithms deal
with classical tree edit distance (without moves). The
first one consists in marking nodes that are parents
of an error during a bottom-up traversal of the tree,
then going top-down for ”modifying the neighborhood”
of each marked node. How these modifications are
performed is not presented. The method is said to be
linear in the size of the tree and exponential in the
number of errors. The aim of the second algorithm
is to avoid the exponential factor but it outputs a
T ′ that may be not optimal. It is said that the key
function in this second algorithm is to compute the
distance between a string and a regular expression but
no hints are given for doing that (there is a reference
to a paper) and it does not seem to be taken into
account in the complexity of the whole algorithm (but
it is said that, for optimizing this computation, it is
necessary to avoid some very common and useful forms
of DTDs). The reported experiments concern only
the second algorithm, for 4 different DTDs. For each
DTD, 5 XML documents are automatically generated
with sizes ranging from 50 nodes to 800 nodes and
with always 10 errors, whose types and places are not
specified. Execution times (for finding T ′) range from
900 to 2400 milliseconds. A web site is given for testing
this implementation, which is no longer maintained.

In [28] and [29] the problem of correcting an XML
tree with respect to a schema is based on our own
definitions from [10] and expands them so as to: (i)
deal with single type tree grammars, i.e. XML schemas,
not only with DTDs, (ii) integrate the correction of
attributes, not only elements. The algorithm adapts
also the idea from [4] of modeling corrections by finding

10This is probably why the implementation uses SAX in order
to build DOM trees.

The Computer Journal, Vol. ??, No. ??, ????

Page 29 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

30 J. Amavi, B. Bouchou and A. Savary

minimal length paths in a correction graph, however not
only does it find the distance between the tree and the
schema but also restores the edit sequences necessary
to obtain the corrected trees. It also uses the idea of
caching previously corrected partial results, as in our
approach. The authors mention experimental results
whose time consumption shows a linear behavior in
function of the document size. However the nature of
the data and the conditions of the experiment are not
described11. It is also suggested that finding all possible
solutions within a given threshold, not only the minimal
ones (which would make this framework even closer to
ours), is possible after some modifications of the original
algorithm. These are however not defined.

6.3. Computing a Set of Edit Operation Se-
quences for Correcting XML Documents
w.r.t. a Schema

Apart from [28] and [29] mentioned above, the proposal
in [3] is the only one we know that computes a set
of edit scripts (i.e. operation sequences) between an
XML document t and a tree grammar (attributes are
not considered). It does not use a threshold th, but
a number K of desired optimum corrections, i.e. it
searches for K least-cost corrections. The first result
of the paper is the proof that this problem is NP-
hard12. The second result is a pseudopolynomial time
algorithm for one-unambiguous XML grammars. The
three edit operations considered, different from ours,
are as follows: ren(ni, a) assigns the label a to the
node ni, add(a, nh, nj) adds a node nh,j labeled by a
as the parent of siblings nh, ,̇nj , and del(ni) deletes
an internal node ni (its children take its place). As
usual, a cost is associated with each edit operation.
To respect the semantics of these edit operations, the
notion of edit script is defined which puts restrictions
on the order of edit operations (moreover only a ren
operation can be applied on the root and no leaf deletion
is allowed). The author first defines a graph HK(t,N)
containing |t| + 1 nodes and about |N | × K × 2 × |t|
edges, N being the set of non-terminals in the grammar.
HK(t,N) represents all changes that might occur on
t. Some paths in this graph correspond to sequences
of siblings, furthermore edges are associated with edit
operations (with their cost). Then the author proposes
to consider the subgraphs corresponding to all children
of the same node n in order to compute the intersections
between these subgraphs and the NFA that represents
production rules associated with n’s label. Finding the
k-th optimum edit script consists in computing the k-th
shortest path in the resulting graph. As it is possible

11The implementation of this approach is downloadable but
the testing data used in the reported experiments are not
provided. For the sake of a comparison, we have tried to run
the implementation on our own testing data, which resulted in a
program crash. We noticed that the form of the schema is non
standard. It seems that recursive definitions are not allowed.

12Finding a solution is exponential in the size of the inputs.

to find K optimum edit-scripts for t provided that
there exist known optimum edit-scripts for each proper
subtree of t, the algorithm runs from lower to higher
edges in HK(t,N), following a specified partial order.

Although it is not always relevant to provide K
optimum edit scripts (how does the algorithm choose
between two edit scripts having exactly the same cost?),
the edit operations used in this proposal are interesting
and the algorithm seems promising, considering that its
complexity is said to be pseudo-polynomial. However
there is no mention of any experiment in the paper
and it is not possible to determine if there has been
an implementation of its ideas since its publication.

6.4. Revalidation and Correction after Docu-
ment or Schema Updates

Some particular instances of the tree-to-schema
correction problem appear in the context of evolving
XML documents and schemas, notably on the web.

On the one hand, XML documents previously
known to be valid may be subject to updates, which
may invalidate them. Two complementary types of
approaches were proposed in order to face this problem:

• One tries to infer new schema constraints from the
document updates, as in [15] or more recently in
[16], where schema evolution is concerned within a
streaming setting.

• One tries to correct the document in order to
restore its validity, however priority is given to
preserving the most recent updates. Our previous
work in [9, 10] offers such a solution within
an incremental framework. Namely, given a
previously valid document t, on which a set of
updates are performed, we target the correction
process on the parts of the document concerned by
the updates. During the incremental revalidation,
a correction routine is activated whenever an
invalid subtree is encountered. At the end of the
revalidation, the corrections generated by each call
to the routine are combined and several versions of
valid documents are proposed to the user.

On the other hand, one may have to perform updates
on a schema. As a result, previously valid documents
may become invalid (although this is not always the
case, as shown in [11]) and may require a correction
with respect to the modified schema. In [12, 13]
the author demonstrates that inferring K optimum
transformations of an XML document from a DTD-
update script is NP-hard (even for K = 1). He
also presents a solution for the particular case of this
problem, i.e. when the DTD-update script is of length
1. More precisely, given a DTD D, an elementary
update u transforming D into D′, and a document t
valid w.r.t. D, the proposed algorithm computes the
list of top-K transformations of t (inferred from u), each
of which transforms t to a document which is valid with

The Computer Journal, Vol. ??, No. ??, ????

Page 30 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 31

respect to D′. The algorithm is shown to be polynomial
in the size of D, t and K. The problem of adapting
previously valid documents after a modification of their
schema is also addressed in [14]: the schema is an XML
Schema (an XSD) and only one heuristically chosen
transformation is computed. No complexity evaluation
is given but experimental results demonstrate a linear
time increase with respect to the document size.

The instances of the document-to-schema correction
problem considered in this subsection are particular
in the sense that documents are known to be initially
valid before updates are applied on a document or on
the schema. It is possible to take advantage of this
knowledge as shown in [12, 13], [9, 10] and [30, 31].
Despite this fact [12, 13] shows that transforming
a document into a defined set of valid documents
(whether K-optimum or all within a given threshold
th) is not a trivial task, even when it is known that the
document was previously valid. One of the difficulties
is precisely to state the properties of the computed
solutions (w.r.t. the not computed ones). Similarly,
in [9, 10] we can avoid revalidating and correcting
substantial parts of the document but the set of the
resulting solutions does not contain all valid documents
within the threshold. Thus, it is impossible to know if
the best solution w.r.t. the user’s goals is contained in
this set.

6.5. Contrastive Study

Table 1 shows a contrastive study of all cited
approaches13 with respect to how they define the
problem of the tree-to-language correction. In most
approaches this problem is expressed in terms of the
tree-to-language edit distance. The distance measure
most often builds upon the tree-to-tree distance, which
in its turn relies on elementary edit operation on tree
nodes. Only in [6, 7] no tree-to-tree distance is used
and a direct mapping between the document and the
schema is searched for.

Actual edit sequences and the resulting corrections
for the invalid input tree are proposed in three
approaches only: in [28, 29] all minimal corrections are
output, [3] offers a fixed number of the closest solutions,
and our own algorithm is the only one to propose a
complete set of corrections within a given threshold14

All approaches deal with the structural validity of
documents but three of them ([8], [23], [28, 29])
propose a more comprehensive framework in which
the correctness of attributes is also accounted for,
sometimes in a rather restricted framework (e.g.
attributes of the same element are seen as sequences
rather than sets).

13Except those of Section 6.4, which are hardly comparable
with the general ones.

14As mentioned before, our tool actually also allows the output
of only all minimal solutions, in which case no threshold is needed
on input.

Different versions of the schema model are used in
the literature. [27] and [8] use a particular restricted
version of a DTD, where operators (?, +, ∗) are
applied to elements only. Correspondingly, in [27] only
ranked (binary) trees are dealt with, while all other
works address unranked trees. Most other approaches
seem to take a DTD without restriction (i.e. a
local tree grammar) on input. As mentioned in [1],
admitting recursive declarations within the schema is
an important issue, however the relevant data are rarely
explicitly available in the literature. Three approaches
([5], [3] and [28, 29]) allow a more general schema model:
the XML Schema (i.e. single type tree grammar), and
one approach ([2]) deals with the most general model
of an extended (or specialized) DTD (i.e. a regular tree
grammar).

There is an interesting correlation between how
different approaches view the XML document, and
which schema model and elementary operations they
select.

• If the XML document is seen as a tree, the schema
must obviously be a tree grammar (local or single-
type), sometimes represented in a particular way,
e.g. as a tree [8, 6, 7] or as a hedge grammar
[5]. The well-formedness is not an issue here since
an ill-formed document is not a tree. In this
case (in [5], [4], [8], [28, 29] and in our proposal),
the most natural elementary operations (except
node relabeling) seem to be those concerning leaves
rather than internal node. An exception to this rule
is [3], and possibly also [27].

• The remaining approaches ([23] and [2]) view an
XML document as a word of opening and closing
tags and the schema is transformed to a pushdown
automaton on words. This view offers a rather
natural framework for well-formedness issues (e.g.
correcting a missing closing tag comes down to
inserting a character in a word). But most
importantly, also elementary edit operations on
internal tree nodes seem to be rather natural in
this context.

Interestingly enough, all elementary operations
mentioned in the state-of-the art are limited to node
relabeling, inserting or deleting. Other potentially
useful operations, proposed within the (simpler)
problem of the tree-to-tree correction [24], are not
yet addressed in the tree-to-language correction. Such
new potential operations might include moving a whole
subtree within a tree15, inverting sibling subtrees16, etc.

In Table 2, we consider again all cited articles
within a contrastive study of their informativeness and
reproducibility. We check if precise information is given

15This operation is defined in [27], but not addressed by their
algorithms.

16Note that inversions of characters were considered as
elementary operations from the very beginning of the word-to-
word and word-to-language correction domain [20].

The Computer Journal, Vol. ??, No. ??, ????

Page 31 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

3
2

J
.

A
m

a
v
i,

B
.

B
o

u
c
h
o

u
a
n
d

A
.

S
a
v
a
r
y

Reference
Elementary

edit
operations

Validity aspects Algorithm’s output
Schema

type
Document

model
Schema
model

Well-
formedness

Structure Attributes
Tree-to-schema
edit distance

Corrections Edit
sequences

minimal k closest
all within

a threshold

Boobna,
de Rougemont
[27]

node relabeling
node insertion
node deletion

X
not always
the minimal
one

restricted
DTDa

ranked
ordered
labeled
tree

set of
reg. exp.

Bertino et al.
[6, 7]

no edit
operation

X X DTD

unranked
ordered
labeled
tree

ordered
labeled
tree

Xing et al.
[5]

node relabeling
leaf insertion
leaf deletion

X X DTD and
XML schema

unranked
ordered
labeled
tree

regular
hedge
grammar

Staworko,
Chomicki
[4]

leaf insertion
leaf deletion

X X DTD

unranked
ordered
labeled
tree

top-down
finite
tree
automaton

Suzuki
[3]

node relabeling
node insertion
node deletion

X X X X DTD and
XML schema

unranked
ordered
labeled
tree

regular
tree
grammar

Tekli et al.
[8]

node relabeling
leaf insertion
leaf deletion

X Xb X X restricted
DTDc

unranked
ordered
labeled
tree

ordered
labeled
tree

Staworko et al.
[23]

node relabeling
node insertion
node deletion
(except a root)

X X X X DTD

serialized
unranked
ordered
labeled
tree

streaming
tree
automaton

Thomo et al.
[2]

node relabeling
node insertion
node deletion
(+ multi operations)

X X X
not exactly

no
but could
serve to
do it

Extended
DTD

serialized
unranked
ordered
labeled
treed

visibly
pushdown
automaton

Svoboda,
Mlýnková
[28, 29]

node relabeling
leaf insertion
leaf deletion

X X X X X XML schema

unranked
ordered
labeled
tree

top-down
finite
tree
automaton

Ours
node relabeling
leaf insertion
leaf deletion

X X X X DTD

unranked
ordered
labeled
tree

set of
reg. exp.

TABLE 1. Components of problem definition in tree-to-language correction approaches

aCalled a unary normal form DTD.
bThe treatment of attributes is limited in this approach. Moreover, attributes of the same element are seen as sequences rather than sets.
cCalled a disjunctive normal form DTD.
dCalled XML formatted word

T
h
e

C
o

m
p
u
t
e
r

J
o

u
r
n
a
l
,

V
o
l.

??
,

N
o
.

??
,

??
??

Page 32 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

C
o

r
r
e
c
t
in

g
X

M
L

D
o

c
u
m

e
n
t
s

3
3

Reference
Complexity estimationa Proofs Nature of data

used in
experiments

Availability

Time Space Correctness Completeness Termination Complexity Executable
Source
code

License
Benchmark

data
Web
page

Boobna,
de Rougemont
[27]

O(|t|) synthetic data,
up to 800 nodes

b

Bertino et al.
[6, 7]

O((|t|+ |S|)
×f2

t)

synthetic and
real life data
11.111 nodes

Xing et al.
[5]

O(|t| × |S|
× log |S|)

Staworko,
Chomicki
[4]

O(|S|2 × |t|) O(|S|2 × h(t))
synthetic data
50 nodes

X X unknown c

Suzuki
[3]

O(k × |Σ| × |t|2
×|S| × R
+k × logk

X

Tekli et al.
[8]

O((max(|t|, |S|)3)
synthetic and
real-life data
for classifying

Staworko et al.
[23]

d X X unknown e

Thomo et al.
[2]

O(th× |S|
×|Σ|2)f

O(th× |S|
×|Σ|2)g X X X

Svoboda,
Mlýnková
[28, 29]

synthetic data,
10,000 nodes

X X unknown h

Ours

O((ft + 1)×
(fS)|t|+th×

6× |Σ|×
(|t|+ th))th

X X X X
real-life data,
450 tree nodes
th=0,. . . ,16

X X LGPL v3 X i

TABLE 2. Properties and results of the tree-to-language correction approaches

a|Σ| = size of the alphabet, |t| = size of the tree, ft = maximum fan-out of the tree, h(t) = height of the tree, |S| size of the schema, fS = maximum fan-out of the schema, th =
threshold, k = number of computed valid documents, R = maximum size of regular expressions in S

bhttp://www.lri.fr/∼mdr/xml.This demo does no longer produce any output.
chttp://researchers.lille.inria.fr/ staworko/research/rhino-0.1.zip. It is unclear if this page contains the software described by this bibliographical reference.
dProofs of exponential complexity are provided for a broader problem – the one of consistent querying of XML documents.
ehttp://researchers.lille.inria.fr/ staworko/research/hippo/index.html. It is unclear if this page contains the software described by this bibliographical reference.
fThis is the time for building a VPA that recognizes all documents that are up to th far from a schema S.
gThis is the space for storing the VPA.
hhttp://www.ksi.mff.cuni.cz/ svoboda/projects/corrector/downloads.php
ihttp://codex.saclay.inria.fr/deliverables.php

T
h
e

C
o

m
p
u
t
e
r

J
o

u
r
n
a
l
,

V
o
l.

??,
N

o
.

??,
????

Page 33 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

34 J. Amavi, B. Bouchou and A. Savary

on their complexity, if necessary proofs are provided,
and if implementations and testing data are available.

It appears, in view of this study, that the time
complexity announced in the corresponding papers
varies widely: from linear ([27] and [5]), through
polynomial ([6, 7], [4], [3], [8], and [2]), through
exponential (ours). Some approaches ([23] and [28,
29]) lack complexity estimation. It seems that the
complexity heavily depends on the problem definition,
in particular on the fact that edit sequences and the
corresponding corrections are generated or not, and
that the correction set is complete. More precisely, the
complexity is estimated for two out of three approaches
where edit sequences are computed:

• [3] announces a polynomial complexity but its
correction set is bounded (the k closest corrections
are found).

• Our approach has an exponential complexity but it
is complete (all corrections within a threshold are
found).

Only two references ([4] and [2]) provide an
estimation of space complexity, only three of them ([3],
[2] and ours) prove the algorithm’s correctness, only
two of them ([2] and ours) prove its completeness and
complexity, and only one (ours) proves its termination.
In one approach [23] proofs are provided for a broader
problem only (consistent querying of XML documents).

Experimental results are provided by six approaches
([27], [6, 7], [4], [8], [28, 29] and ours). A few of
them (including ours) operate on real-life rather than
synthetic data. The sizes of corrected documents vary
from 50 to over 11,000 nodes.

Four approaches offer downloadable implementations
(executables and/or source codes). Two of them ([4]
and [23]) lack any user’s documentation, thus it is
unclear how to run them and if they really address
the tree-to-language correction problem. Another one
([28, 29]), which admits a non standard schema format,
was tested with the DTD in Fig. 20 and worked only
after the schema recursion has been removed. Our
approach seems to be the only one that offers, in
addition to the executable and the source code, also the
user’s guide and the set of testing data used to obtain
the experimental results. Consequently, it seems to be
the only reproducible one. Last but not least, our source
code is the only one to be distributed under a known
license, namely the open license GNU LGPL v3.

In view of the above analysis, we think that our
proposal brings a substantial contribution to the field of
tree-to-language correction. We claim that, relatively
to the state of the art presented, we offer the first
full-fledged solution to this problem. Obviously, many
extensions and enhancements of our algorithm and
implementation are still possible. Some of them have
been discussed in Section 4.4.

7. CONCLUSION

Tree-to-language correction is a theoretical problem
which has a number of interesting existing applications
in the field of XML processing, and certainly many
future applications.

We have presented an algorithm for, given a well-
formed XML document seen as a tree t, a DTD seen
as a schema structure S, and a non negative threshold
th, computing every tree t′ valid with respect to S such
that the edit distance between t and t′ is no higher
than th. The edit distance between trees, inspired by
[17], is based on three elementary node edit operations:
(i) relabeling a node, (ii) adding a leaf, (iii) deleting
a leaf. These operations can be grouped to more
complex tree edit operations: (i) inserting a subtree,
(ii) removing a subtree. The schema is represented as
a set of finite-state automata associated with labels.
The algorithm extends the ideas from [18] in that the
FSA of the current node’s label is traversed in the th-
bound depth-first order and an edit distance matrix is
completed column by column each time a new transition
is followed. However since we correct trees and not
only strings, following each transition may potentially
provoke a recursive correction of a subtree of the current
node. Moreover the edit distance matrix stores the
relevant edit operation sequences allowing us to obtain
the correction tree candidates.

We have proved the correctness and the completeness
of the algorithm. We have shown that its worst-case
time complexity is O((ft + 1) × (fS)|t|+th × (6 × |Σ| ×
(|t| + th))th, where ft is the maximum fan-out in t, fS
is the maximum fan-out of all FSAs in S, |t| is the
number of t’s nodes, Σ is the alphabet of S, and th is
the correction threshold. This theoretical exponential
complexity is related to the fact that edit sequences and
the corresponding corrections are generated and that
the correction set is complete.

We have performed experimental tests on real-
life data focused on the influence of different input
parameters (t’s size, th, number of errors in t, position of
an error in t) on the correction time and on the number
of solutions found. In particular, the experimental CPU
time consumption shows a polynomial rather than an
exponential behavior.

In the light of the detailed related work analysis, the
main contribution of our approach is to offer the first
full-fledged study of the problem of the document-to-
schema correction problem. Not only do we measure
the distance between a document and a schema but also
find the candidate correction trees. We do not limit
ourselves to finding the minimal solution but find all
solutions within a threshold instead. Thus, we consider
the correction as an enumeration problem rather than
a decision problem, contrary to most other approaches.

Some recent approaches such as [3], [23] and [29]
shed new light on the document-to-schema correction
problem in that they introduce edit operations acting on

The Computer Journal, Vol. ??, No. ??, ????

Page 34 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 35

internal nodes and offer optimizations of data structures
via graph-based modeling. One of our perspectives is
to examine how these proposals can be integrated with
ours so as to propose a more universal framework in
which different variants of the correction problem might
be solved most efficiently.

8. FUNDING

This work was supported by the French Research
Agency (ANR) [ANR-08-DEFIS-04], for the CODEX
project: Efficiency, Dynamicity and Composition for
XML – Models, Algorithms and Systems, 2008–2012.

9. ACKNOWLEDGEMENTS

We are deeply indebted to the three anonymous referees
for their thorough reviews of our paper, which greatly
enhanced its quality and readability.

REFERENCES

[1] Tekli, J., Chbeir, R., Traina, A., and Traina, C.
(2011) XML document-grammar comparison: related
problems and applications. Central European Journal
of Computer Science, 1, 117–136.

[2] Thomo, A., Venkatesh, S., and Ye, Y. Y. (2008) Visibly
Pushdown Transducers for Approximate Validation of
Streaming XML. Proceedings of FoIKS 08, Pisa, Italy,
11–15 February, Lecture Notes in Computer Science,
4932, pp. 219–238. Springer.

[3] Suzuki, N. (2007) Finding K Optimum Edit Scripts
between an XML Document and a RegularTree
Grammar. Proceedings of EROW 07, Barcelona, Spain,
13 January. CEUR-WS.org.

[4] Staworko, S. and Chomicki, J. (2006) Validity-Sensitive
Querying of XML Databases. Proceedings of EDBT
06, Munich, Germany, Revised Selected Papers, 26–31
March, Lecture Notes in Computer Science, 4254, pp.
164–177. Springer.

[5] Xing, G., Malla, C. R., Xia, Z., and Venkata,
S. D. (2006) Computing Edit Distances Between an
XML Document and a Schema and its Application
in Document Classification. Proceedings of SAC 06,
Dijon, France, 23–27 April, pp. 831–835. ACM.

[6] Bertino, E., Guerrini, G., and Mesiti, M. (2004)
A Matching algorithm for measuring the structural
similarity between an XML documents and a DTD and
its applications. Information Systems, 29, 23–46.

[7] Bertino, E., Guerrini, G., and Mesiti, M. (2008)
Measuring the structural similarity among XML
documents and DTDs. Journal of Intelligent
Information Systems, 30, 55–92.

[8] Tekli, J., Chbeir, R., and Yétongnon, K. (2007) Struc-
tural Similarity Evaluation Between XML Documents
and DTDs. Proceedings of WISE 07, Nancy, France,
3–7 December, pp. 196–211.

[9] Bouchou, B., Cheriat, A., Halfeld Ferrari Alves, M.,
and Savary, A. (2006) XML Document Correction:
Incremental Approach Activated by Schema Validation.

Proceedings of IDEAS 06, Delhi, India, 11–14
December, pp. 228–238. IEEE Computer Society.

[10] Bouchou, B., Cheriat, A., Halfeld Ferrari Alves, M.,
and Savary, A. (2006) Integrating Correction into
Incremental Validation. Proceeding of BDA 06, Lille,
France, 17–20 October.

[11] Bouchou, B. and Duarte, D. (2007) Assisting XML
Schema Evolution that Preserves Validity. Proceedings
of SBBD 07, João Pessoa, Paráıba, Brasil, 15–19
October, pp. 270–284. SBC.

[12] Suzuki, N. (2008) On Inferring K Optimum Trans-
formations of XML Document from Update Script to
DTD. Proceedings of COMAD 08, Mumbai, India, 17-
19 December, pp. 210–221. Computer Society of India
/ Allied Publishers.

[13] Suzuki, N. (2010) An algorithm for inferring k optimum
transformations of xml document from update script to
dtd. IEICE Transactions, 93-D, 2198–2212.

[14] Guerrini, G., Mesiti, M., and Sorrenti, M. (2007)
XML Schema Evolution: Incremental Validation and
Efficient Document Adaptation. Proceedings of XSym
07, Vienna, Austria, 23–24 September, pp. 92–106.
Springer.

[15] Bouchou, B., Duarte, D., Alves, M. H. F., Laurent,
D., and Musicante, M. A. (2004) Schema Evolution for
XML: A Consistency-Preserving Approach. Proceed-
ings of MFCS 04, Prague, Czech Republic, 22–27 Au-
gust, Lecture Notes in Computer Science, 3153, pp.
876–888. Springer.

[16] Shoaran, M. and Thomo, A. (2011) Evolving schemas
for streaming XML. Theoretical Computer Science,
412, 4545–4557.

[17] Selkow, S. M. (1977) The Tree-to-Tree Editing
Problem. Information Processing Letters, 6, 184–186.

[18] Oflazer, K. (1996) Error-tolerant Finite-state Recogni-
tion with Applications to Morphological Analysis and
Spelling Correction. Computational Linguistics, 22(1),
73–89.

[19] Wagner, R. A. and Fischer, M. J. (1974) The String-
to-String Correction Problem. Journal of the ACM,
21(1), 168–173.

[20] Boytsov, L. (2011) Indexing methods for approximate
dictionary searching: Comparative analysis. ACM
Journal of Experimental Algorithmics, 16.

[21] Du., M. W. and Chang, S. C. (1992) A model and a fast
algorithm for multiple errors spelling correction. Acta
Informatica, 29, 281–302.

[22] Murata, M., Lee, D., Mani, M., and Kawaguchi,
K. (2005) Taxonomy of XML schema languages
using formal language theory. ACM Trans. Internet
Technol., 5, 660–704.

[23] Staworko, S., Filiot, E., and Chomicki, J. (2008) Query-
ing Regular Sets of XML Documents. Proceedings of
LiD 08, Rome, Italy.

[24] D. T. Barnard, G. Clarke and N. Duncan (1995) Tree-
to-tree Correction for Document Trees. Technical Re-
port 95-372. Department of Computing and Informa-
tion Science, Queen’s University, Kingston, Ontario.

[25] Bille, P. (2005) A survey on tree edit distance and
related problems. Theoretical Computer Science, 337,
217–239.

The Computer Journal, Vol. ??, No. ??, ????

Page 35 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

36 J. Amavi, B. Bouchou and A. Savary

[26] Savary, A., Waszczuk, J., and Przepiórkowski, A.
(2010) Towards the Annotation of Named Entities in
the Polish National Corpus. Proceedings of LREC
10, Valletta, Malta, 17-23 May. European Language
Resources Association.

[27] Boobna, U. and de Rougemont, M. (2004) Correctors
for XML Data. Proceedings of XSym 04, Toronto,
Canada, 29–30 August, Lecture Notes in Computer
Science, 3186, pp. 97–111. Springer.

[28] Svoboda, M. (2010) Processing of Incorrect XML Data.
Master’s thesis. Charles University in Prague.

[29] Svoboda, M. and Mlýnková, I. (2011) Correction of
Invalid XML Documents with Respect to Single Type
Tree Grammars. Proceedings of NDT 11, Macau,
China, 11–13 July, Communications in Computer and
Information Science, 136, pp. 179–194. Springer.

[30] Raghavachari, M. and Shmueli, O. (2004) Efficient
Schema-Based Revalidation of XML. Proceedings of
EDBT 04, Heraklion, Crete, Greece, 14–18 March, pp.
639–657.

[31] Raghavachari, M. and Shmueli, O. (2007) Efficient
Revalidation of XML Documents. IEEE Trans. Knowl.
Data Eng., 19, 554–567.

APPENDIX A. OPTIMIZATION STEP

Our main optimization consists in saving the inter-
mediate correction results in an auxiliary structure
in such a way that the correction of a subtree of t
for the target root label a and with the threshold th
is performed at most once. Consequently, if the cor-
rection of a subtree t with a threshold th1 is needed,
and the correction for the same subtree with a bigger
threshold th has already been computed, the needed
computation will not be performed and the result will
be the stored sequences having a cost less or equal to
th1. The auxiliary structure is a table ResultTable
whose items are of type MResult, defined as follows:

struct MResult {
t: XML tree
th: natural (threshold)
c: character (root tag of resulting trees)
Result: set of node-edit operation sequences

}
The type MResult involves the corrected tree, the

root tag of the resulting trees, the threshold for which
the corrections have been calculated, and the node-edit
operation sequences representing the corrections.

The auxiliary structure ResultTable is implemented
with a Hashtable and used as a global variable. It is
managed by two main methods:

• saveResult: for saving the result of a correction.
• getResult: for retrieving the result of a correction.

This function returns ∅, false) if no correction
has been stored yet. It returns (Result, true)
if the corresponding correction has already been
performed.

At the beginning of the function correction below,
the auxiliary structure is accessed via the getResult
function (line 2). Thus, if the current subtree t has
already been corrected with respect to the same root
label c and with a threshold no lower than th, the
corrections with distance no higher than th are retrieved
and do not have to be recalculated (line 3). Otherwise,
the correction is performed and the result is stored in
the auxiliary structure via the saveResult procedure
(line 22), before being returned (line 23).

The Computer Journal, Vol. ??, No. ??, ????

Page 36 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Correcting XML Documents 37

Procedure saveResult(t, th, c, Result)
Input
t: XML tree ; th: natural (threshold)
c: character (root tag) ; Result: set of node-edit operation sequences

1. begin
2. R := ResultTable.getElement(t, c)
3. if R 6= null then
4. if R.th < th then
5. R.th := th
6. R.Result := Result
7. end if
8. else
9. R′ := newMResult(t, th, c, Result)
10. ResultTable.add(R′)
11. end if
12. end

Function getResult(t, th, c) return (Result,b)
Input
t: XML tree ; th: natural (threshold) ; c: character (root tag)
Output
Result: set of node-edit operation sequences
b: boolean (false if no Result exists yet, otherwise true)

1. begin
2. R := ResultTable.getElement(t, c)
3. if R 6= null and th ≤ R.th then

//Function getResultMaxCost returns a set of node-edit

//operation sequences having cost no higher than th

4. return (getResultMaxCost(R.Result, th), true)
5. return (∅, false)
6. end

Function correction(t, S, th, c) return Result
Input
t: XML tree (to be corrected) ; S: structure description
th: natural (threshold) ; c: character (intended root tag of resulting trees)
Output
Result: set of node-edit operation sequences (allowing to get resulting trees)
Local variable
b: boolean (just for optimization)

1. begin
2. (Result,b) := getResult(t, th, c)
3. if b 6= false then return Result
4. else if th = 0 and t ∈ Lloc(S) and t(ε) = c then
5. return {nos∅} //Stop recursion

6. else if th ≤ 0 then
7. return ∅ //Stop recursion

8. else
9. u := ε
10. n := t̄ //n is the number of t’s root’s children

11. Mc
u := newMatrix(n+1, 1) //Initialize the matrix with n+ 1 rows and 1 column

//Compute the first column in the matrix.

12. if t = t∅ then
13. Mc

u[0][0] := {(add, ε, c)}
14. else
15. if c = t(ε) then
16. Mc

u[0][0] := {nos∅}
17. else
18. Mc

u[0][0] := {(relabel, ε, c)}
19. for i := 1 to n do
20. Mc

u[i][0] := {(remove, i−1, t∅)}.thMc
u[i−1][0]

21. correctionState(t, S, th, c,M c
u, initialState(FSAc), Result)

22. saveResult(t, th, c, Result)
23. return Result
24. end

The Computer Journal, Vol. ??, No. ??, ????

Page 37 of 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

