
Database query languages

on query rewriting

what logical propeties are usefull for static analysis?



Database query languages

outline

1. logical properties of the algebraic operators (see e.g., notes of
CS245 from Stanford U.)

2. rules for rewriting subqueries

3. containment of conjunctive queries



Database query languages

subqueries

example:
StarsIn[movieTitle,movieYear,starName]
MovieStar[name, address, gender, birthdate]

SELECT movieTitle
FROM StarsIn
WHERE starName IN (
SELECT name FROM MovieStar WHERE birthdate = 1960)



Database query languages

two-argument selection

σ(R,ϕ) = {t ∈ R|ϕ(t) = true}

with

I R is a relation

I ϕ is a complex condition on R



Database query languages

example

πmovieTitle(σ(StarsIn,(StarName IN

πname(σbirthdate = 1960(MovieStar))))



Database query languages

rewriting a two-argument selection

the rewriting depends on

I the condition (IN, NOT IN, EXISTS, etc.)

I the correlation between the outer query and the subquery



Database query languages

uncorrelated IN conditions

rewriting rule:

σ(R,(t IN S))
≡

σC (R × δ(S))

where:

I t stands for a (possibly projected) tuple of R

I C is the condition that equates t to the tuples in S



Database query languages

example

πmovieTitle(σ(StarsIn,(StarName IN

πname(σbirthdate = 1960(MovieStar))))

rewrites
πmovieTitle(StarsIn ./starName=name

πname(σbirthdate = 1960(MovieStar)))

(δ omitted since name is the key for MovieStar)



Database query languages

handling correlated subqueries

problem: subquery involves unknown values defined outside
themselves

principle:

I add extra attributes to the subquery

I relate extra attribute to the inner attributes with selection
condition

I do not forget to project out extra attribute when no longuer
necessary

I do not forget to eliminate duplicates when necessary



Database query languages

example

find the movies where the average age of the stars was at-most 40
when the movie was made

SELECT DISTINCT m1.movieTitle, m1.movieYear
FROM StarsIn m1
WHERE m1.movieYear - 40 <= (

SELECT AVG(birthdate)
FROM StarsIn m2, MovieStar s
WHERE m2.starName = s.name
AND m1.movieTitle = m2.movieTitle
AND m1.movieYear = m2.movieYear)



Database query languages

algebraic formulation with a two-argument selection

δ(πm1.movieTitle,m1.movieYear (
σ(StarsIn m1,(m1.movieYear − 40 <= γAVG(s.birthdate)(
σm2.movieTitle=m1.movieTitle∧m2.movieYear=m1.movieYear (

StarsIn m2 ./m2.starName=s.name MovieStar s))))))

I σm2.movieTitle=m1.movieTitle∧m2.movieYear=m1.movieYear must be
deferred until after the combination with StarsIn m1

I attributes m2.movieTitle,m2.movieYear must be available
after the γ



Database query languages

without two-argument selection

δ(πm1.movieTitle,m1.movieYear (σm1.movieYear−40<=avg (
StarsIn m1 ./m2.movieTitle=m1.movieTitle∧m2.movieYear=m1.movieYear

γm2.movieTitle,m2.movieYear ,AVG(s.birthdate)→avg ((
StarsIn m2 ./m2.starName=s.name MovieStar s))))))

in addition, note that:

I starNames from m1 are projected out

I the join involving m1 gives the same title and year as in m2



Database query languages

after applying other rewriting rules

δ(
|

πm2.movieTitle,m2.movieYear (
|

σm2.movieYear−40<=avg (
|

γm2.movieTitle,m2.movieYear ,AVG(s.birthdate)→avg (
|

StarsIn m2 ./m2.starName=s.name MovieStar s))))))



Database query languages

containement of conjunctive queries

example: let Q1 and Q2 be two conjunctive queries

SELECT R1.B, R1.A SELECT R3.A, R1.A
FROM R R1, R R2 FROM R R1, R R2, R R3
WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

put differently
Q1 = π2,1(σ2=3(R × R))
Q2 = π5,1(σ2=4∧4=5(R × R × R))

or even
Q1(x ,y)← R(y ,x),R(x ,z)
Q2(x ,y)← R(y ,x),R(w ,x),R(x ,u)



Database query languages

examples

are Q1 and Q2 equivalent?

if yes, processing Q1 saves one join

can classical algebraic rewriting rules be used?

no!



Database query languages

query equivalence and query containment

definitions : given 2 queries q and q′ on a schema D

I q ⊂ q′ if for all instance I of D, q(I ) ⊂ q′(I )

I q ≡ q′ if q ⊂ q′ and q′ ⊂ q



Database query languages

substitution

recall that a valuation is

I a function from var(q) to dom

I extended to free tuples

now, for a conjunctive query q, a substitution is

I a function from var(q) to var ∪ dom

I extended to free tuples



Database query languages

example

consider Q2 and substitution θ such that

I θ(x) = x

I θ(y) = y

I θ(u) = z

I θ(w) = y

applying θ to Q2 yields:
Q2(x ,y)← R(y ,x),R(y ,x),R(x ,z) that is Q1



Database query languages

query containment

there exists a substitution that transforms the body of Q2 into the
body of Q1

if I is an instance and t ∈ Q1(I )

there exists a valuation v applied to Q1 that leads to t

therefore v ◦ θ is a valuation that applied to Q2 leads to t

therefore t ∈ Q2(I ) which shows that Q1(I ) ⊂ Q2(I ) and thus Q1

is contained in Q2



Database query languages

example

let I (R) = {(1,2),(2,3)}

consider the valuation v(y) = 1,v(x) = 2,v(z) = 3

thus t = (2,1) ∈ Q1(I )

consider now the valuation θ′ = v ◦ θ

we have
θ′(w) = θ′(y) = v(y) = 1,θ′(x) = v(x) = 2,θ′(u) = v(z) = 3

we have t = (2,1) ∈ Q2(I )



Database query languages

homomorphism

let q and q′ be two rules on the same database schema B

an homomorphism from q′ to q is:

I a substitution θ such that

I θ(body(q′)) ⊆ body(q) and θ(tete(q′)) = tete(q)



Database query languages

the homomorphism theorem

let q and q′ be two queries on the same schema

q ⊆ q′ if there exists an homomorphism from q′ to q

corollary: two queries q and q′ on the same schema are equivalent
if

I there exists an homomorphism from q to q′ and

I there exists an homomorphism from q′ to q



Database query languages

complexity

the test of query equivalence is

I a problem in NPTIME for conjunctive queries

I an undecidable problem for relational queries



Database query languages

practically

How is rewriting taken into account in your favorite RDBMS?


