Database query languages

on query rewriting

what logical propeties are usefull for static analysis?

Database query languages

outline

. logical properties of the algebraic operators (see e.g.,
CS245 from Stanford U.)

2. rules for rewriting subqueries

notes of

3. containment of conjunctive queries

u]
o)
I
i
it

e
Database query languages

subqueries

example:
StarsIn[movieTitle,movieYear,starName]
MovieStar[name, address, gender, birthdate]

SELECT movieTitle

FROM Starsin

WHERE starName IN (

SELECT name FROM MovieStar WHERE birthdate = 1960)

Database query languages

two-argument selection

o(R,p) = {t € R|p(t) = true}
with

» R is a relation

» ¢ is a complex condition on R

Database query languages

example

T movieTitle(0(Starsin,(StarName IN

7Tname(0'birthdate = 1960(M0Vi65tar))))

Database query languages

rewriting a two-argument selection

the rewriting depends on

» the condition (IN, NOT IN, EXISTS, etc.)

» the correlation between the outer query and the subquery

Database query languages

uncorrelated IN conditions

rewriting rule:

a(R,(t IN S))

oc(R x 6(S))

where:

» t stands for a (possibly projected) tuple of R

» C is the condition that equates t to the tuples in S

Database query languages

example

T movieTitle(0(Starsin,(StarName IN
rewrites

7Tname(0'birthdate = 1960(M0VieStar))))
T movieTitle (StarsIn XNistarName=name

7"'name(Ubirl'hdate = 1960(M0Vie5tar)))
(0 omitted since name is the key for MovieStar)

Database query languages

handling correlated subqueries

problem: subquery involves unknown values defined outside
themselves

principle:
» add extra attributes to the subquery

> relate extra attribute to the inner attributes with selection
condition

» do not forget to project out extra attribute when no longuer
necessary

» do not forget to eliminate duplicates when necessary

Database query languages

example

find the movies where the average age of the stars was at-most 40
when the movie was made

SELECT DISTINCT ml.movieTitle, m1l.movieYear
FROM Starsln m1
WHERE m1.movieYear - 40 <= (

SELECT AVG(birthdate)

FROM Starsln m2, MovieStar s

WHERE m2.starName = s.name

AND ml.movieTitle = m2.movieTitle

AND m1l.movieYear = m2.movieYear)

Database query languages

algebraic formulation with a two-argument selection

6(7Tm1,movieTit/e,ml.movieYear(
o(Starsin m1,(ml.movieYear — 40 <= Yayq(s.birthdate)(

Um2.movieTitle:ml.movieTitle/\m2.movieYear:m1.movieYear(
Starsln m2 X2 starName=s.name MovieStar s))))))

> O m2.movieTitle=m1.movieTitle Am2.movieYear—=m1.movieYear MUust be
deferred until after the combination with Starsln m1

» attributes m2.movieTitle,m2.movieYear must be available
after the ~

Database query languages

without two-argument selection

(5(7rm1.movieTitIe,ml.movieYear (Uml.movieYear—40<=avg(
Starsin m1 >XIm2. movieTitle=m1.movieTitle Am2.movieYear=m1.movieYear

Ym2.movieTitle,m2.movieYear,AVG (s.birthdate)—avg ((
Starsln m2 ><m2 starName—s.name MovieStar 5))))))

in addition, note that:
» starNames from m1 are projected out
» the join involving m1 gives the same title and year as in m2

Database query languages

after applying other rewriting rules

o
|
T m2.movieTitle,m2.movieYear (
|

Om?2. movieYear—40<=avg(

Ym?2.movieTitle,m2.movieYear,AVG (s.birthdate)—avg (

StarsIn m2 >m2 starName=s.name MovieStar S))))))

Database query languages

containement of conjunctive queries

example: let Q1 and @, be two conjunctive queries

SELECT RL.B, R1.A SELECT R3.A, R1.A
FROM R R1, RR2 FROM RR1, RR2, RR3
WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

put differently
Q1 = m1(02=3(R x R))
Q2 = m5,1(02=4p4=5(R X R x R))

or even
Ql(xa}/) — R(y,X),R(X,Z)
Q2(Xa)/) — R(va)aR(W>X)7R(X’U)

Database query languages

examples

are Q1 and @, equivalent?

if yes, processing Q1 saves one join

can classical algebraic rewriting rules be used?
no!

N

Database query languages

query equivalence and query containment

definitions: given 2 queries g and g’ on a schema D

» g C ¢ if for all instance | of D, q(1) C ¢'(/)
»g=q ifgCcqg and g Cgqg

Database query languages

substitution

recall that a valuation is

» a function from var(q) to dom
» extended to free tuples

now, for a conjunctive query q, a substitution is

» a function from var(q) to var U dom
» extended to free tuples

Database query languages

example

consider > and substitution @ such that

> 0(x) = x
> 0(y) =y
> O(u) ==z

> O(w) =y

applying 6 to @ yields:

@Q2(x,y) < R(y,x),R(y,x),R(x,z) that is @

Database query languages

query containment

there exists a substitution that transforms the body of @, into the
body of @

if I is an instance and t € Q1(/)
there exists a valuation v applied to @ that leads to t
therefore v o 0 is a valuation that applied to @ leads to t

therefore t € @Q,(/) which shows that Q1(/) C Q2(/) and thus @;
is contained in @

Database query languages

example

let I(R) ={(1,2),(2,3)}

consider the valuation v(y) = 1,v(x) = 2,v(z) =3
thus t = (2,1) € Q:(/)

consider now the valuation 6/ = v o6

we have

0/ (w) = 0/(y) = v(y) = LO(x) = v(x) = 20/(u) = v(2) = 3

we have t = (2,1) € @(/)

Database query languages

homomorphism

let g and ¢’ be two rules on the same database schema B
an homomorphism from ¢’ to q is:

» a substitution @ such that

» O(body(q')) C body(q) and O(tete(q’)) = tete(q)

Database query languages

the homomorphism theorem

let g and ¢’ be two queries on the same schema
g C ¢ if there exists an homomorphism from ¢’ to g

corollary: two queries g and g’ on the same schema are equivalent
if

> there exists an homomorphism from g to ¢’ and

» there exists an homomorphism from ¢’ to g

Database query languages

complexity

the test of query equivalence is

» a problem in NPTIME for conjunctive queries

» an undecidable problem for relational queries

Database query languages

practically

How is rewriting taken into account in your favorite RDBMS?

