
Recommending Multidimensional Queries

Arnaud Giacometti, Patrick Marcel, and Elsa Negre

Université François Rabelais Tours
Laboratoire d’Informatique

France
{arnaud.giacometti, patrick.marcel, elsa.negre}@univ-tours.fr

Abstract. Interactive analysis of datacube, in which a user navigates a
cube by launching a sequence of queries is often tedious since the user
may have no idea of what the forthcoming query should be in his current
analysis. To better support this process we propose in this paper to apply
a Collaborative Work approach that leverages former explorations of the
cube to recommend OLAP queries. The system that we have developed
adapts Approximate String Matching, a technique popular in Informa-
tion Retrieval, to match the current analysis with the former explorations
and help suggesting a query to the user. Our approach has been im-
plemented with the open source Mondrian OLAP server to recommend
MDX queries and we have carried out some preliminary experiments that
show its efficiency for generating effective query recommendations.

1 Introduction
Traditional OLAP users interactively navigate a cube by launching a sequence
of queries over a datawarehouse, which we call an analysis session (or session
for short) in the following. This process is often tedious since the user may have
no idea of what the forthcoming query should be [1]. This difficulty might be
related to the decline of interactive analysis pointed out in [2].

To better support this process, we proposed in [3] a framework for recom-
mending OLAP queries. The idea is to leverage what the other users did during
their former navigations on the cube, and to use this information as a basis for
recommending to the user what his forthcoming query could be.

In this paper, we present a significant extension of this work that results
in a system for recommending multidimensional queries expressed with MDX
[4], the de facto standard. Namely we have changed the core of the framework,
that is the distance between queries and the distance between sessions, to better
handle the peculiarities of OLAP data. We have adapted our system to deal with
real-case cubes and MDX queries. More precisely, our contribution include:

– A measurement of the distance of two MDX queries that leverages the pe-
culiarities of OLAP data,

– A measurement of the distance of two sequences of MDX queries by us-
ing Approximate String Matching [5], a technique popular in Information
Retrieval,

– A framework for using these measures to search the log of an OLAP server
to find a set of sessions matching the current session and generate recom-
mendations,

2

– An implementation of this approach into a recommender system that fully
integrates with the open source Mondrian OLAP engine [6] to recommend
MDX queries on the fly during an interactive analysis session,

– Experiments conducted to assess the efficiency and effectiveness of our ap-
proach.

The paper is organized as follows: Section 2 briefly reviews related work. A
motivating simple example is given in Section 3. Section 4 introduces the dis-
tance for comparing two MDX queries, and Section 5 introduces the distance for
comparing two analysis sessions. Finally Section 6 completes the description of
the recommender system by detailing the algorithm for computing recommen-
dations. Section 7 presents our experimental results. We conclude and discuss
future work in Section 8. The proofs of the properties are omitted due to lack of
space.

2 Related work

The only other work we know that proposes to recommend queries for supporting
database exploration is that of [7]. Although this work shares some common
features with ours, it differs on two important aspects: First it deals only with
SQL Select-Project-Join queries and second, the fact that a session is a sequence
of queries is not taken into account. To the best of our knowledge, our work
is the first work dealing with the problem of recommending multidimensional,
especially MDX, queries.

The only work that proposed a framework for anticipating an OLAP query
is the work of [8, 9]. However the main concern of this work is to prefetch data,
not to guide the user based on what other users did. In addition, [8, 9] does not
deal with MDX queries, and the similarity between queries only relies on the
schema of the query (i.e., dimensions and levels) whereas the distance that we
use takes the members into account. Finally, a Markov Model is used to predict
the forthcoming query, whereas our approach is based on Approximate String
Matching [5], a technique popular in Information Retrieval.

To support interactive analysis of multidimensional data, Sarawagi et al.
introduced discovery driven analysis of OLAP cube in [10]. This and subsequent
work [11, 12, 1] resulted in the definition of various OLAP operators to guide the
user towards unexpected data in the cube or to propose to explain an unexpected
result. The main difference with our work is that these operators are applied only
on query results and they do not take into account what other users might have
discovered.

Computing distances between queries logged by a database server has al-
ready been investigated by [13]. In this work, language modeling is used to
detect sessions within OLTP query logs. With a different goal (recommending
query instead of detecting sessions) our work also proposes a way of calculating
a distance between queries where the distance computation takes advantage of
the particularities of OLAP queries, like the possibility of navigating multidi-
mensional data by changing the level of detail.

Our work can be seen as a way to integrate OLAP and Information Retrieval
(IR) a domain where it is very popular to leverage what the other users did to

3

generate recommendations [14]. Note that there is a recent interest for trying
to combine IR and OLAP. For instance, in [15] the authors propose to query
a datacube with only a set of keywords. Among the potential answers to the
query, only the subcubes that are the most surprising are presented to the user.

3 Example

In this section we illustrate with a simple example the basic idea under our
recommender system. Consider an OLAP server used by several users navigating
a datacube. In what follows, this cube is a simplified version of the FoodMart
datacube (the demo example coming with the open source Mondrian OLAP
engine [6]) that is composed of four dimension tables and the Sales fact table,
having respectively the following schemas:

– sch(Product) = {p id,Name,Brand, SubCateg, Category, Family,
AllProducts},

– sch(Time) = {t id,Day,Month,Quarter, Y ear,AllY ears},
– sch(Customer) = {c id,Name,City, State, Country,AllCustomers},
– sch(Store) = {s id,Name,City, State, Country,AllStores},
– sch(Sales) = {p id, t id, c id, s id, Unit Sales}

Each user can open a session on the server to navigate the cube by launching
a sequence of queries. The server logs these sessions, i.e., the sequences of queries
launched during each analysis session. Suppose the log contains the three sessions
detailed in the appendix. Session s1 analyzes the sales of alcoholic beverages
in the USA, Session s2 analyzes the sales of milk of the brand “Gorilla” in
California, and Session s3 analyzes the sales of milk and cereals in San Francisco.

Imagine now a new session, called the current session (or sc), is performed
by a user. Suppose the user issues the three following queries on the cube, named
respectively q1, q2 and q3, to analyze the sales of milk in San Francisco:

SELECT {[Store].[All Stores].Children} ON COLUMNS,
{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}

SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,
{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}

SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,
{[Product].[All Products].[Drink].[Dairy].[Milk]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}

The recommender system computes the distance between the current session
and each session of the log in order to find those candidate sessions that resemble
the current session the most. In our example, suppose that sessions s2 and s3
are found the closest to the current session. Intuitively this is because each ith

query of sc is close to the ith of the session s2 (resp. s3) and, in the case of s3,
having one more query does not increase the distance a lot.

Among the queries composing these candidate sessions, one must be recom-
mended to the user. Considering that the outcome of a session is very often the
result of the last query of this session, the recommender system will compute
the distance between the last query of the current session and each last query of

4

the candidate sessions. It will then select as the first recommendation the query
that is the closest to the last query of the current session. In our example, this
query is q6 since it is closer to q3 than q5.

4 Comparing MDX queries

In this section, we present our approach for computing a distance between MDX
queries. We first begin by giving basic definitions.

4.1 Basic definitions (Cube, references, queries)

An n-dimensional cube C = 〈D1, . . . , Dn, F 〉 is defined as the classical n + 1
relation instances of a star schema, with one relation instance for each of the
n dimensions and one relation instance for the fact table. Given a particular
dimension table Di, the members of the dimension are the values in this table1.
These members are arranged into a graph Hi (traditionally a hierarchy)2.

Given an n-dimensional cube C = 〈D1, . . . , Dn, F 〉, a cell is a tuple of the
fact table F . A cell reference (or reference for short) is an n-tuple 〈r1, . . . , rn〉
where ri is a member of dimension Di for all i ∈ [1, n].

MDX queries are modeled in the following way: Considering that the SE-
LECT and WHERE clauses of an MDX expression define the set of references
that the user wants to extract from the cube, we propose to see MDX queries as
sets of references, for a given instance of a cube.

Formally, let C = 〈D1, . . . , Dn, F 〉 be an n-dimensional cube, M be an MDX
expression and for all i ∈ [1, n], let Ri be the set of members of dimension Di

that is deduced from the SELECT and WHERE clause. The query over C that
corresponds to M is the set of references R1 × . . .×Rn. In what follows, if q is
a query we note r ∈ q to denote that r is a reference of q.
Example 1. The query q2 of section 3 corresponds to the following set of refer-
ences: {〈Drink, alltime, allcustomer, San Francisco〉, 〈Food, alltime, allcustomer,
San Francisco〉}

4.2 Distance between references

Given a dimension D with its hierarchy H, the distance between two members
m,m′ in this dimension is the shortest path [16] from m to m′ in H. It is noted:
dmembers(m,m′). The distance between references is then defined in the following
way from dmembers.

Definition 1. (Distance between references) Given two references r1 = 〈r11, ..., rn1 〉
and r2 = 〈r12, ..., rn2 〉 of an n-dimensional cube, the distance between r1 and r2
is: dreferences(r1, r2) =

∑n
i=1 dmembers(r

i
1, r

i
2)

1 Note that this definition is done without loss of generality w.r.t the calculated mem-
bers defined in MDX by the optional WITH MEMBER clause. Indeed, a calculated
member is associated with a particular dimension, at a particular level of a hierarchy,
and thus it is treated in the following as a regular member.

2 Flat dimensions (like e.g., a measure dimension) are considered as arranged in a
hierarchy as well, where all the members have as common ancestor the root of the
hierarchy.

5

Example 2. As an example, consider the two references of query q2 given in the
previous example. These references only differ on the Product dimension. As
membersDrink and Food have the same parent in the hierarchy of the dimension
Product, then dmembers(Drink, Food) = 2. Thus the distance between these two
references is 2+0+0+0=2.

4.3 Distance between queries
As MDX queries are modeled as sets of references, comparing two MDX queries
boils down to comparing two sets of references. In our approach we use the
classical Hausdorff distance [17] for comparing two sets based on a distance
between the elements of the sets. Informally, two sets are close if every element
of either set is close to some element of the other set.
Definition 2. (Hausdorff distance) Given two queries q1, q2, the distance be-
tween q1 and q2 is:

dh(q1, q2) = max{maxr1∈q1 minr2∈q2 dreferences(r1, r2),
maxr2∈q2 minr1∈q1 dreferences(r1, r2) }

This distance dh is combined with the distance ddim(q1, q2) that gives the
number of dimensions where q1 and q2 differ (if q1 = R1

1 × . . . × R1
n and q2 =

R2
1 × . . . × R2

n, Di is a dimension where q1 and q2 differ if R1
i 6= R2

i). Thus
the distance between queries is defined as the following function of these two
distances.

Definition 3. (Distance between queries) Given two queries q1, q2, the distance
between q1 and q2 is : dγqueries(q1, q2) = γ × ddim(q1, q2) + (1 − γ) × dh(q1, q2)
where γ ∈ [0, 1].

Example 3. Consider query q2 described above and the queries given in the
appendix. q2 = {r1 = 〈Drink, alltime, allcustomer, San Francisco〉, r2 =
〈Food, alltime, allcustomer, San Francisco〉} and q22 = {r3 = 〈Drink,
alltime, allcustomer, USA〉, r4 = 〈Food, alltime, allcustomer, USA〉}. Note
that q22 rolls up q2 from the city level to the country level. Their distance is
computed as follows. dreferences is used to compare r1 to r3 and r4. We have
dreferences(r1, r3) = 2 and dreferences(r1, r4) = 4. The minimum is 2. r2 is also
compared to r3 and r4, the minimum being also 2. Thus the maximum of these
two rounds of comparison is 2. Now r3 is compared to r1 and r2 and so is r4. In
both cases the minimum is 2. Therefore d0

queries(q2, q
2
2) = 2.

The following property indicates the range of possible values for the distance
dγqueries. The maximal value for this distance is denoted dmaxqueries.

Property 1. Given an n-dimensional cube C, the distance dγqueries ranges from 0
to dmaxqueries = γ×n+(1−γ)×2×

∑n
i=1 hi where hi is the height of the hierarchy

of dimension i.

5 Comparing analysis sessions
In this section, we present our approach for comparing two sessions. The basic
idea stems from Approximate String Matching [5], which we introduce briefly in
the following definitions.

6

5.1 Definitions (Edit distance, session, log)
Given two sequences s1, s2, Approximate String Matching is the problem of
matching the sequences allowing errors. The matching relies on the computation
of a distance between the sequences, which is the minimal cost of the sequences
of operations transforming s1 into s2. The classical Levenshtein (or edit) dis-
tance [18] is commonly used. It allows the following operations: insertions, dele-
tions, substitutions. If the cost associated with each of these operations is 1, this
distance can be thought of as the minimal number of insertions, deletions or
substitutions to make the two sequences equal.

In our approach, the sequences we consider are sequences of MDX queries
which we call analysis sessions (or sessions for short). A log is a set of sessions.
Example 4. Session sc of Section 3 is the sequence 〈q1, q2, q3〉. The log given
in appendix is the set {s1, s2, s3} and session s3 = 〈q1, q22 , q3, q6〉. If insertions,
deletions and substitutions are operations allowed on sessions, a sequence of
operations that transforms sc into s3 is: substitute q2 by q22 and insert q6 at the
end. If all operations have the same cost 1, then this sequence costs 2. Another
sequence that transforms sc into s3 is: delete all queries from sc and insert
respectively queries q1, q22 , q3 and q6. Obviously the cost of this sequence is not
minimal.

5.2 Distance between sessions
To compare two analysis sessions s1 and s2, we compute a distance that is the
minimal cost of a sequence of operations (called an edit sequence) to transform
s1 into s2. As in the edit distance the operations permitted are:

– The substitution of a query q1 by a query q2. The cost of this operation is the
distance between q1 and q2 as defined in Definition 2, that is dγqueries(q1, q2).

– The insertion (resp. deletion) of a query in a sequence. The cost of these
operation is a constant α.

An intuitive reason for a fixed cost for insertion (or deletion) is the following.
Suppose we want to compute a distance between session 〈a〉 and session 〈a, b〉
on the one hand and session 〈a〉 and session 〈a, b′〉 on the other hand. There is
no reason for distinguishing or favoring the adding of b from the adding of b′. In
both cases, a user found these two particular queries of interest, and the sessions
are distant from 〈a〉 only in that a query has been added.

Now, the value for α can range from 0 to dmaxqueries. Low values for e.g., insertion
allow not to discriminate longer sessions too much. On the other hand, the value
should be high enough since it should be more expensive to delete and then
insert instead of substituting. Adjusting the value for this cost is part of the
experiments described section 7.
Definition 4. (Distance between sessions) The distance between two sessions s
and s′ is the minimal cost of all edit sequences transforming s into s′. It is noted
dsessions.

The following property states that dsessions is a metric in the mathematical
sense.
Property 2. dsessions is a metric in that it satisfies the following properties: non-
negativity, symmetry, triangle inequality.

7

Example 5. Consider the sessions sc presented in Section 3, and the sessions
given in the appendix. Suppose γ = 0 and α (the cost for inserting or deleting)
is dmaxqueries/2 = 14. The sequence having minimal cost for transforming sc into
s1 is: substitute q2 by q22 and then substitute q3 by q4. Substituting q2 by q22
costs d0

queries(q2, q
2
2) = 2 and substituting q3 by q4 costs d0

queries(q3, q4) = 6 (cf.
Example 3). Thus dsessions(sc, s1) = 8. The sequence having minimal cost for
transforming sc into s2 is: substitute q2 by q23 and then substitute q3 by q5. Its
cost is: dsessions(sc, s2) = 4 (for substituting q2 by q23) +3 (for substituting q3
by q5). The sequence having minimal cost for transforming sc into s3 is the first
one given in Example 4. Its cost is: dsessions(sc, s3) = 2 (for substituting q2 by
q22) +14 (for inserting q6).

6 The recommender system

In this section, we present how we use the distances defined above to recommend
MDX queries. The principle is the following: The log is searched for candidate
sessions matching the current session. From these candidate sessions a set of
recommended queries is obtained. These recommended queries are ranked and
presented to the user as recommendations in the resulting order. The best ranked
queries are called the best recommendations.

Before detailing the algorithm we introduce the following definitions. The
candidate sessions are the closest to the current session in the sense of the dis-
tance between sessions.

Definition 5. (Candidate sessions) Given a set L of sessions and a session sc,
the set of candidate sessions is defined by Candsessions(sc, L) = {s ∈ L|@s′ ∈
S, dsessions(s′, sc) < dsessions(s, sc)}

To define the recommended queries, we use an analogy with Web search,
where it has been shown that what is seen at the end of a session can be used
to enhance further searches [19]. Indeed, even in our case, it makes sense to
consider that if the session ended on this particular query, it is because the
user found something of interest. We adopt this point of view and simply define
a recommended query to be the last query of a candidate session. The best
recommendations are the recommended queries that are the closest to the last
query of the current session, in the sense of the distance between queries.

Definition 6. (Recommended queries and best recommendations) Given a set
L of sessions and a session sc, the set of recommended queries is defined by
Recoqueries(sc, L) = {last(s)|s ∈ Candsessions(sc, L)} where last(s) is the last
query of session s. Given a set C of recommended queries and a session sc, the
best recommendations are: best(sc, C) = {q ∈ C|@q′ ∈ C, dγqueries(q′, last(sc)) <
dγqueries(q, last(sc))}

Note that changing these definitions can have an important impact on the
subjective quality of the recommendations. Assessing this is part of our long-
term goal as discussed in conclusion.

Finally the algorithm for recommending MDX queries is:
Input: A current session sc and a log L
Output: A sequence of recommendations

8

1. Generate the set C of recommended queries C = Recoqueries(sc, L)
2. Let Output be the empty sequence
3. Repeat until C empty

(a) Generate the best recommendations best(sc, C)
(b) Append best(sc, C) to Output
(c) Remove best(sc, C) from C

Example 6. Consider the distances computed in Example 5. There is only one
candidate session which is s2 since it is the closest to sc. Thus there is only one
candidate query q5 which is then the recommendation. Suppose now the cost
of the insertion operation used to compute the distance between sessions is 5.
This means that there are now two candidate sessions s2 and s3. The candidate
queries are q5 and q6. The query recommended first is q6 since it is closer to q3
than q5.

7 Experiments
In this section, we present the results of the experiments we have conducted to
assess the capabilities of our framework. We used synthetic data produced with
our own data generator. Both our prototype for recommending queries and our
generator are developed in Java using JRE 1.6.0 13. All tests are conducted with
a Core 2 Duo - E4600 with 4GB of RAM using Linux CentOS5.

7.1 Data set
We generated a set of sessions over the test database FoodMart supplied with
the Mondrian OLAP engine [6]. Each session is generated in the following way:
The first query of the session is selected by random among the 15 example
queries supplied by Mondrian. Each subsequent queries is generated by choosing
randomly one dimension and applying on the preceding query an OLAP oper-
ation (rollup, drilldown, changing the set of members) on this dimension. Our
generator uses the following parameters: A number (X) of sessions in the log, a
maximum number (Y) of queries per session. In our tests, we fixed the maximum
number of references at 100 since it is reasonable to consider that users will very
seldom produce a cross table larger than 10×10 as the answer to an MDX query.

7.2 Results
Note that, due to lack of space we have not included all the results of the
experiments we have conducted.
7.2.1 Performance analysis
Our first experiment assesses the time taken to generate the best recommenda-
tion for various log sizes. The performance is presented in Figure 1 according
to various log sizes. These log sizes are obtained by multiplying parameters X
(number of sessions) and Y (maximum number of queries per session). X ranges
from 25 to 500 and Y ranges from 20 to 50. We thus obtain logs of size varying
between 150 and 25000 queries. The best recommendation is computed for each
of these logs, for current sessions of various sizes, generated with the session
generator.

Figure 1 shows that the time taken to generate one recommendation increases
linearly with the log size but remains highly acceptable and is slightly influenced

9

Fig. 1. Performance analysis Fig. 2. Precision for various α (cost of in-
sertion or deletion)

by the current session size. Indeed, to recommend a query for a session s, the
system only compares last(s) to each query of the log and uses the distances
previously computed for s \ last(s).
7.2.2 Precision/recall analysis
We use a 10-fold cross validation to assess our framework in the spirit of the
experimental validation done in [7]. The generated set of sessions is partitioned
in 10 equally sized subsets and in each run 9 subsets are used as log and each
session of the remaining subset is used as a basis for the current session. More
precisely for each such session sc of size n, we use the sequence of the first n− 1
queries as the current session, and we compute the recommendations for the
n-th query. The n-th query of sc is called the expected query and is noted qex.

We evaluate the precision and recall [20] of the recommendations using the
following metrics: precision=|members(qex) ∩ members(qrec)|/|members(qrec)|
and recall=|members(qex)∩members(qrec)|/|members(qex)|, where members(q)
is the set of members of query q, qrec is a recommended query and qex is the
expected query. For each session, we report the maximum recall over all the
recommended queries and the precision for the query achieving this maximum
recall.The log generated for these tests has size 5877 queries (750 sessions).

Figures 3 and 4 show the inverse cumulative frequency distribution (inverse
CFD) of the recorded precision, recall and/or F-measure3 for the sessions. A
point (x, y) in these graphes signifie that x% of sessions had precision or recall
or F-measure ≥ y.

The first experiments allow us to tune our system in order to choose for α and
γ the values that achieve best precision and recall. Precision is computed for α
which is the cost of the insertion (or deletion) operation (see Section 5). Figure
2 shows that a precision above 0.9 is obtain for α ∈ [1, 5]. In the subsequent
experiment, the value for α is 2. Precision and recall are computed for γ = 0, 0.5
or 1. Figure 3(a) and Figure 3(b) show that the worse results are obtained
for γ = 1 i.e., when the distance between queries only counts the number of
dimensions that differ (see Section 4). For 0 and 0.5 the curves are confounded.
This shows that for α = 0.5 ddim, ranging only from 0 to n (see Property 1),
contributes for nothing to the distance between queries. Thus in what follows,
γ = 0.

Figure 4 shows the inverse CFD of precision, recall and F-measure of the
recommendations computed with our system for α = 2 and γ = 0. The results
3 The F-measure, F = 2.(precision · recall)/(precision + recall), is a measure of a test’s

accuracy.

10

(a) Precision for various γ (b) Recall for various γ

Fig. 3. Precision and Recall of the recommendations (for various γ)

Fig. 4. Precision, Recall and F-Mesure of
the recommendations (α = 2, γ = 0)

Fig. 5. F-Mesure of the recommendations
(α = 2, γ = 0) for the 3 possible methodes

demonstrate the effectiveness of our method since for around 80 % of the sessions,
precision and recall are above 0.8. These good results can be explained by the
density of the log generated, considering the relatively small number of queries
(15) in the pool we used for seeding the generation.

Figure 5 displays the inverse CFD of the recorded F-measure for the ses-
sions for various methods for recommending MDX queries. The first method,
called ClusterH, is the one proposed in [3] that uses a k-medoid clustering al-
gorithm with a simple Hamming distance to compare references. The second
method, called EdSP (Edit Distance with Shortest Path), is the one proposed
in the present paper for α = 2 and γ = 0. Finally the last method called EdH
combines the Edit distance with the simple Hamming distance for comparing
references. First we note that all methods achieve good results for our dense log.
The method using a clustering algorithm performs slightly bad compared to the
two others. It can also be seen that EdSP and EdH perform similarily, which
may seem surprising at first since the Hamming distance for comparing refer-
ences is coarse compared to the Shortest Path. However, it is to be noted that
the way we compute precision and recall (inspired by [7]) favors EdH. Indeed, if
EdH recommends a query close (in the sense of the Hamming distance) to the
expected query it will have good precision and recall. But if EdSP recommends
a query close (in the sense of the Shortest Path) to the expected query it can
have bad precision and recall. Therefore it turns out that EdSP performs as well
as EdH even though it is not favored by the computation of precision and recall.

8 Conclusion and future work

In this paper, we present a system for recommending MDX queries that is an
evolution of the framework presented in [3]. Our framework leverages former
navigations on a datacube and is based on two distances that we propose to
compare MDX queries and analysis sessions. Our approach is implemented in a
system that integrates with the open source Mondrian OLAP engine to recom-

11

mend MDX queries on the fly. The experiments we have conducted show that
recommendations can be computed on the fly efficiently and that our system
can be tuned to obtain objectively good recommendations.

Our long term goal is to design a platform for generating MDX recommender
systems by giving the user the possibility to adapt the approach to his/her
needs. This can be done by proposing to the user various methods for computing
candidate sessions and/or candidate queries. We are working on the definition
of a new method that takes into account the measures’ values and not only the
references of the cells. A combination of the recommender system with techniques
for OLAP query personalization [21] is also under consideration.

To fulfill this goal, we need to undertake experiments on real data sets with
feedback from users. This will allow not only to improve the overall quality of
the recommended queries but also to determine to which context a particular
approach for computing candidate recommendations is adapted.

On the technical side, we need to propose an indexing method for organizing
the log in order to make the search in the log even more efficient, and thus
making it possible to search very large log files on the fly.

References

1. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: VLDB.
(2000) 307–316

2. Pedersen, T.B.: How is BI used in industry?: Report from a knowledge exchange
network. In: DaWaK. (2004) 179–188

3. Giacometti, A., Marcel, P., Negre, E.: A framework for recommending olap queries.
In: DOLAP. (2008) 73–80

4. Microsoft Corporation: Multidimensional expressions (MDX) reference. Available
at http://msdn.microsoft.com/en-us/library/ms145506.aspx (2008)

5. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1) (2001) 31–88

6. Pentaho Corporation: Mondrian open source OLAP engine. Available at
http://mondrian.pentaho.org/ (2009)

7. Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query recommendations for inter-
active database exploration. In: SSDBM. (2009) 3–18

8. Sapia, C.: On modeling and predicting query behavior in OLAP systems. In:
DMDW. (1999) 2.1–2.10

9. Sapia, C.: Promise: Predicting query behavior to enable predictive caching strate-
gies for OLAP systems. In: DaWaK. (2000) 224–233

10. Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-driven exploration of OLAP
data cubes. In: EDBT. (1998) 168–182

11. Sarawagi, S.: Explaining differences in multidimensional aggregates. In: VLDB.
(1999) 42–53

12. Sathe, G., Sarawagi, S.: Intelligent rollups in multidimensional OLAP data. In:
VLDB. (2001) 531–540

13. Huang, X., Yao, Q., An, A.: Applying language modeling to session identification
from database trace logs. Knowl. Inf. Syst. 10(4) (2006) 473–504

14. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6) (2005) 734–749

12

15. Wu, P., Sismanis, Y., Reinwald, B.: Towards keyword-driven analytical processing.
In: SIGMOD Conference. (2007) 617–628

16. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

17. Hausdorff, F.: Grundzge der Mengenlehre. von Veit (1914)
18. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and

reversals. Technical Report 8 (1966)
19. White, R.W., Bilenko, M., Cucerzan, S.: Studying the use of popular destinations

to enhance web search interaction. In: SIGIR. (2007) 159–166
20. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press

/ Addison-Wesley (1999)
21. Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A person-

alization framework for olap queries. In: DOLAP. (2005) 9–18

A Appendix: A toy query log
Session s1 = 〈q1, q2

2, q4〉: Sales of alcoholic beverages in the USA
SELECT {[Store].[All Stores].Children} ON COLUMNS,

{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS
FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA]} ON COLUMNS,

{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS
FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].Children} ON COLUMNS,

{[Product].[All Products].[Drink].[Alcoholic Beverages]} ON ROWS
FROM [Sales]
WHERE {[Measures].[Unit Sales]}

Session s2 = 〈q1, q2
3, q5〉: Sales of milk of the brand ”Gorilla” in California

SELECT {[Store].[All Stores].Children} ON COLUMNS,
{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,

{[Product].[All Products].[Drink].[Dairy].[Milk].[Gorilla].Children,
[Product].[All Products].[Drink].[Dairy].[Milk].[Gorilla]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].[CA],

[Store].[All Stores].[USA].[CA].Children} ON COLUMNS,
{[Product].[All Products].[Drink].[Dairy].[Milk].[Gorilla].Children,
[Product].[All Products].[Drink].[Dairy].[Milk].[Gorilla]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}

Session s3 = 〈q1, q2
2, q3, q6〉: Sales of milk and cereals in San Francisco

SELECT {[Store].[All Stores].Children} ON COLUMNS,
{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA]} ON COLUMNS,

{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS
FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,

{[Product].[All Products].[Drink].[Dairy].[Milk]} ON ROWS
FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,

{[Product].[All Products].[Drink].[Dairy].[Milk],
[Product].[All Products].[Food].[Breakfast Foods].[Breakfast Foods].[Cereal]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}

