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Why graph data?

Big graph data sets are ubiquitous

social networks (e.g., LinkedIn, Facebook)

scientific networks (e.g., Uniprot, PubChem)

knowledge graphs (e.g., DBPedia)

...

Focus is on “things” and their relationships
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Why graph databases?

Analytics on big graphs increasingly important

role discovery in social networks

identifying interesting patterns in biological networks

finding important publications in a citation network

...

In response to these trends, the past decade has witnessed an explosion of
graph data management solutions, e.g.,

Graph databases such as Neo4j

Graph analytics platforms such as GraphX

Triple stores such as Virtuoso

Datalog engines such as LogicBlox
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Why graph database benchmarking?

Benchmark = data sets + query workloads

When a field has good benchmarks, we settle debates and the
field makes rapid progress.

D. Patterson (CACM, 2012)

Motivated by success stories in relational and XML engineering e.g., TPC
and XMark, it is clear that good benchmarks are needed for graph DBs
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Graph database benchmarking

LDBC-SNB1 and WatDiv2 are current leaders in graph DBMS
benchmarking

LDBC is a fixed-schema and fixed-queries benchmark targeting
focused stress-testing of query engineering choke-points

§ social network scenario

WatDiv is a schema-driven workload-based benchmark targeting
broad coverage of query features

§ default schema is products and users scenario

1Erling, Averbuch, Larriba-Pey, Chafi, Gubichev, Prat, Pham, and Boncz: The LDBC social
network benchmark: Interactive workload. SIGMOD’15.

2Aluç, Hartig, Özsu, and Daudjee: Diversified stress testing of RDF data management
systems. ISWC’14.

Radu Ciucanu gMark: Schema-Driven Generation of Graphs and Queries JIRC 2017, Orléans 5 / 41



Synthetic graph and workload generation with gMark

We present gMark, an open-source1 framework for generation of synthetic
graphs and workloads.

Given a graph schema, gMark

generates synthetic instances of the schema (of desired size)

generates sophisticated query workloads with targeted structure and
runtime behavior (which holds for all instances of the schema)

1https://github.com/graphMark/gmark
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Why gMark?

We adopt successful aspects of the state of the art

Like WatDiv (and unlike LDBC), gMark is schema-driven,

allowing finely tailored graph instances for specific application
domains; and,

allowing tightly controlled generation of query workloads.

Like LDBC (and unlike WatDiv), gMark supports focused stress-testing of
query engineering choke-points, through fine control of query selectivities.

Radu Ciucanu gMark: Schema-Driven Generation of Graphs and Queries JIRC 2017, Orléans 7 / 41



Why gMark?

Unlike both WatDiv and LDBC, gMark

supports the generation of workloads containing recursive path
queries, which are fundamental for graph analytics;

performs selectivity estimation in a purely instance-independent
schema-driven fashion.

§ hence, more scalable, more predictable, and easier to
explain/understand
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Overview of the gMark workflow

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog
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gMark graph generation

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog
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Graph configurations

The user can specify in the graph configuration (i.e., graph schema):

‚ Size: # of nodes
‚ Node types: finite set of node labels

e.g., author, citation, journal

‚ Edge predicates: finite set of edge labels
e.g., authoredBy, referencedBy

‚ Schema constraints: proportion of nodes/edges of given type
e.g., 20% of all nodes are authors

‚ Degree distributions: on the in- and out-degree of edge predicates
(uniform, normal, zipfian)

e.g., the out-distribution of citation authoredBy
ÝÝÝÝÝÝÝÝÑ

author is Gaussian

with parameters µ “ 3, σ “ 1
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Graph configurations: Uniprot schema

Node type Constr.

gene 35%

protein 31%

author 20%

citation 10%

organism 1%

. . . . . .

Edge predicate Constr.

authoredBy 64%

encodedOn 6%

referencedBy 3%

occursIn 2%

. . . . . .

Node types Edge predicates

source type predicate
ÝÝÝÝÝÝÑ

target type In-distr. Out-distr.

citation authoredBy
ÝÝÝÝÝÝÝÝÑ

author Zipfian Gaussian

. . . . . . . . .
In- and out-degree distributions
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Schema-driven graph generation

We have established the intractability of the generation problem

Theorem

Given a graph configuration G, deciding whether or not there exists a
graph instance satisfying G is NP-complete.

Hence, gMark follows a ‘best-effort’ strategy in instance generation
(Opnq), i.e., it attempts to achieve the exact values of the input
parameters and relaxes them whenever this is not possible.
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Schema-driven graph generation

We adapted the scenarios of popular use cases into meaningful gMark
configurations, while also adding new gMark features:

Bib: our default bibliographical use-case

LSN: LDBC social network benchmark

WD: WatDiv e-commerce benchmark

SP: SP2Bench DBLP benchmark
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Scalability of gMark graph generation

100K 1M 10M 100M

Bib 0m0.057s 0m0.638s 0m8.344s 1m28.725s

LSN 0m0.225s 0m1.451s 0m23.018s 3m11.318s

WD 0m2.163s 0m25.032s 4m10.988s 113m31.078s

SP 0m0.638s 0m7.048s 1m28.831s 15m23.542s

Graph generation times, with varying graph sizes (# nodes)

Generation time depends heavily on density of instances (e.g., WD has 100x
number of edges than Bib)
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gMark query generation

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog
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A query language for graphs

UCRPQ: Unions of Conjunctions of Regular Path Queries
– Core constructs of the W3C’s SPARQL 1.1, Oracle’s PGQL, and and
Neo4j’s openCypher
– Well understood theoretical properties (e.g., polynomial data complexity)

UCRPQ includes recursive queries (via the Kleene star ˚), with
applications in social networks, bioinformatics, etc.

gMark generates UCRPQ Ñ the first synthetic workload generator to
support recursive queries (and their translation in concrete syntaxes).
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A query language for graphs

Example of UCRPQ

for each researcher, select all of the biological entities (i.e., genes
and organisms) relevant to proteins studied in papers authored
by people in the researcher’s coauthorship network
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A query language for graphs

Example of UCRPQ

for each researcher, select all of the biological entities (i.e., genes
and organisms) relevant to proteins studied in papers authored
by people in the researcher’s coauthorship network

p?x , ?zq Ð p?x , pa´ ¨aq˚, ?yq, p?y , pa´ ¨r´ ¨e` a´ ¨r´ ¨oq, ?zq

(a=authoredBy, r=referencedBy, e=encodedOn, o=occursIn)

#rules 1
#conjuncts 2
#disjuncts 1, 2
path lengh 2, 3, 3
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Schema-driven workload generation

The user can specify in the query workload configuration:

‚ Size: #queries, #conjuncts/#disjuncts/path length per query

‚ Selectivity: constant, linear, quadratic.

‚ Recursion: probability to generate Kleene star above a conjunct.

‚ Shape: chain, star, cycle, star-chain.

‚ Arity: arbitrary (including 0 i.e., Boolean).

The graph configuration is also input to the query generator.
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Selectivity estimation quality of gMark

‚ Given a binary query Q and a graph G , we assume that
|QpG q| “ Opβˆ|nodespG q|αq.

‚ α is the selectivity value (0–constant, 1–linear, 2–quadratic).

‚ Assigning selectivities required us to develop a selectivity algebra for
instance-independent reasoning over query behavior.

‚ Experiments confirmed the assumption and the estimation quality.

Constant Linear Quadratic
LSN 0.200˘0.417 1.189˘0.261 2.032˘0.059
Bib 0.003˘0.010 0.921˘0.122 1.405˘0.337
WD 0.016˘0.044 1.427˘0.392 2.004˘0.022
SP 0.074˘0.130 1.064˘0.034 2.034˘0.295
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gMark query translator

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog
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Query translation

UCRPQ: p?x , ?zq Ð p?x , pa´ ¨aq˚, ?yq, p?y , pa´ ¨r´ ¨e` a´ ¨r´ ¨oq, ?zq

SPARQL openCypher‹

PREFIX : <http://example.org/gmark/>

SELECT DISTINCT ?x ?z

WHERE { ?x (^:a/:a)* ?y .

?y ((^:a/^:r/:e)|(^:a/^:r/:o)) ?z .}

MATCH (x)<-[:a]-()-[:a]->(y),

(y)<-[:a]-()<-[:r]-()-[:e]->(z)

RETURN DISTINCT x, z

UNION

MATCH (x)<-[:a]-()-[:a]->(y),

(y)<-[:a]-()<-[:r]-()-[:o]->(z)

RETURN DISTINCT x, z;

Datalog SQL
g0(x,y)<- edge(x1,a,x0),edge(x1,a,x2),

x=x0,y=x2.

g0(x,y)<- g0(x,z),g0(z,y).

g1(x,y)<- edge(x1,a,x0),edge(x2,r,x1),

edge(x2,e,x3),x=x0,y=x3.

g1(x,y)<- edge(x1,a,x0),edge(x2,r,x1),

edge(x2,o,x3),x=x0,y=x3.

query(x,z)<- g0(x,y),g1(y,z).

WITH RECURSIVE c0(src, trg) AS (

SELECT edge.src, edge.src FROM edge

UNION

SELECT edge.trg, edge.trg FROM edge

UNION

SELECT s0.src, s0.trg

FROM (SELECT trg as src, src as trg,

‹ openCypher disallows Kleene star above concatenation or inverses.
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Scalability of gMark workload generation

On a laptop, gMark generates workloads of one thousand queries for Bib
in „ 0.3s; LSN and SP in „ 1.5s; and for the richer WD scenario in „ 10s.

Query translation of the thousand queries into all four supported syntaxes
for each of the four scenarios requires „ 0.1s.
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State-of-the-art graph DBMSs

We studied query evaluation performance of four mainstream graph
DBMSs:

P: PostgreSQL (SQL:1999 recursive views)

S: a popular SPARQL query engine (SPARQL 1.1)

G: a native graph database (openCypher)

D: a modern Datalog engine (Datalog)
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Scalability on non-recursive query workloads

Query execution times for diverse graph sizes and query workloads:
– Len (varying path lengths, 1 disjunct, 1 conjunct)
– Dis (multiple disjuncts, 1 conjunct)
– Con (multiple conjuncts and disjuncts)
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Scalability on recursive query workloads

Query execution times for simple recursive queries on various small graph
sizes (from 2K to 32K nodes):
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Motivation

Graphs are naturally evolving over time e.g.,

Nodes and edges have properties whose values change among
consecutive snapshots

Nodes and edges may exist only during specific time intervals

Idea: use gMark to generate schema-driven graphs and enrich them with
time-evolving properties

gMark + time-evolving properties = EGG1

1Open-source: https://github.com/karimalami7/EGG
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EGG: Evolving Graph Generator

Static graph configuration
‚ Size
‚ Node and edge types
‚ Occurrence constraints
‚ Degree distributions

Evolving graph configuration
‚ # of snapshots
‚ Evolving properties (nodes and edges)
‚ Evolution constraints

gMark
Static graph generator

EGG
Evolving graph generator

RDF annotated
with temporal

information
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Example

Parameter Description

Size B e.g., 10M

Node types B e.g., city, hotel

Edge predicates B e.g., train, contains

Schema constraints B e.g., 10% of all nodes are cities

Degree distributions
B e.g., the # of hotels in a city follows
a Zipfian distribution

Evolving properties:

city: weather, qAir

hotel: star, availableRooms, hotelPrice

train: trainPrice

Each graph snapshot corresponds to a day.
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Example

Type Property Description

city

unordered qualitative, has three possible
weather values tsunny, cloudy, rainyu

successors of sunny: sunny and cloudy.
ordered qualitative, has ten possible values

qAir from 1 to 10; can increment or decrement
by 1 between two consecutive snapshots.

hotel

ordered qualitative, has values from 1 to 5,
star it changes every 365 snapshots with 1%

probability, by one position at most
discrete quantitative, has values in [1,100];

availableRooms the offset is set to [-15,15]

hotelPrice

continuous quantitative, dependent on star for
domain and on availableRooms for evolution
B e.g., for node x of type hotel:
if star(x)=3, then hotelPrice(x)P[50,100]
if availableRooms(x) Ò, then hotelPrice(x) Ó
if availableRooms(x) Ó, then hotelPrice(x) Ò.
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Summary of EGG contributions

Linear-time generation algorithm
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Summary of EGG contributions

Storage format based on RDF named graphs to decouple static and
evolving parts of the graphs e.g.,
ns1:G31 { <hotel:27> ns2:hasProperty <Property:availableRooms> }
ns1:snapshot9 { ns1:G31 ns3:value "57" }

Evaluation of historical reachability queries1 on top of EGG:
– A baseline implementation in SPARQL on top of Apache Jena
– Disjunctive-BFS: dynamic programming approach1
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1K. Semertzidis, K. Lillis, E. Pitoura. TimeReach: Reachability Queries on Evolving
Graphs. EDBT’15.
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Conclusions



Conclusions

gMark1

§ schema-driven graph and query-workload generator
§ finely controlled query workload-centered approach, featuring

instance-independent selectivity estimation
§ translation to SPARQL, openCypher, SQL, Datalog
§ discovery of the poor performance of existing graph DBMS on

evaluating a basic class of graph queries i.e., regular path queries

EGG2

§ evolving graph generator extending the gMark graphs with properties
that evolve over time

§ storage format using RDF named graphs to reduce redundancy
§ easy to use to empirically evaluate evolving graph processing systems

1https://github.com/graphMark/gmark
2https://github.com/karimalami7/EGG
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gMark & EGG papers

Bagan, Bonifati, Ciucanu, Fletcher, Lemay, Advokaat
gMark: Schema-Driven Generation of Graphs and Queries
TKDE’17 full paper
ICDE’17 extended abstract

Bagan, Bonifati, Ciucanu, Fletcher, Lemay, Advokaat
Generating Flexible Workloads for Graph Databases
VLDB’16 demo

Alami, Ciucanu, Mephu Nguifo
EGG: A Framework for Generating Evolving RDF Graphs
ISWC’17 demo

Alami, Ciucanu, Mephu Nguifo
Synthetic Graph Generation from Finely-Tuned Temporal Constraints
TD-LSG @ PKDD/ECML’17
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