
Generation of a Reference Data Set
for Query Personalization

Verónika Peralta

Laboratoire PRiSM, Université de Versailles
45, avenue des Etats-Unis

78035 Versailles Cedex
FRANCE

veronika.peralta@prism.uvsq.fr

Technical Report 1

October 2007

Abstract. This report describes the procedure followed for building a reference data set for
measuring the pertinence of personalization algorithms. The reference data set consists of a set of
queries, a set of user profiles and the query results that are pertinent for the user. In this way, the
results obtained with a personalization algorithm can be compared to reference results in order to
evaluate pertinence of the algorithm.

1. Introduction

Data personalization is one of the main solutions to improve relevance of data in information retrieval and
database systems. Before being executed, user queries are reformulated on the basis of user profile preferences.
This allows targeting user’s center of interest and thus delivering pertinent results and reducing result size.

In order to measure the pertinence of results and then measuring the behaviour of personalisation algorithms, we
need to compare delivered results with those effectively preferred by the user. In other words, we need a
reference data set that contains several queries and the sets of query results that are pertinent for the user. In this
way, the results obtained with a personalization algorithm can be compared to reference results in order to
evaluate the precision and recall of the algorithm. Such a data set also allows the comparison among
personalization algorithms, regarding pertinence, performance, result size or other measures.

In this report we describe the construction of a reference dataset for query personalization, which is the first step
for building a personalization benchmark. There exist several benchmarks among which we can cite the TPC
benchmarks for database server performances [6] or the TREC benchmarks for information retrieval systems [5].
However, as far as we know, there is no benchmark providing a validation framework to query personalization
algorithms. A benchmark for query personalization should also manage different users and their preferences.
Specifically, they should provide a large database, a set of user profiles and user queries as well as the reference
results associated to each profile and query, i.e. they should provide collections of triplets {(profile, query) �
results}.

Our dataset is derived from two public databases, i.e. MovieLens [1] and IMDb [2]. Both databases deal with
data about movies. The IMDb database contains rich information about films, actors, directors, the places where
they are produced, their budgets, their categories and the average rank given by the users who had evaluated
them. IMDb describes more than 850.000 movies at the moment we have extracted its data (October 2006). The
MovieLens database contains very few information about films but provides a huge amount of evaluations given
by users who have seen these films. MovieLens provides a dataset composed of more than 1 million evaluations

1 This research was partially supported by the French Ministry of Research and New Technologies under the ACI program
devoted to Data Masses (ACI-MD), project #MD-33.

Generation of a Reference Data Set for Query Personalization – Technical Report

2

given by 6.040 users on 3.883 films. The two databases are complementary as they almost target the same
movies (actually the set of films referred in MovieLens is a subset of those referred in IMDb). The main
advantage of using these databases is that they provide a large volume of data, which is freely available at
Internet. In addition, cinema data is very easy to understand, use and analyze. However, the join between the two
databases is not easy to perform as there is not a universal identifier for the contained movies. The only common
data is the titles of the movies but, unfortunately, they suffer from many problems such as abbreviation,
translations into different languages and, generally, lack of writing standardization. Locally, each database has
also many dirty data which needs to be cleaned and homogenized. Finally, the two databases, in particular
IMDb, are semi-structured databases; their loading into a relational database necessitates several
transformations. Consequently, using the two databases needs a substantial effort which we have done [4] as this
kind of benchmark is not only useful for our evaluation but can benefit to a wide database community working
on query personalization.

This report describes the procedure followed for building the reference data set from IMDb and MovieLens data.
Section 2 presents and overview of the approach and a motivating example. Section 3 presents the design of the
reference data set; specifically, it describes the procedures for generating user profiles based on MovieLens
users’ ratings, for generating a set of queries over IMDb data, and for obtaining the reference results for each
pair (query, profile). Auxiliary routines and storage issues are also discussed. Section 4 describes the
construction of the reference data set, discussing parameterization and execution of the generation procedures
and presenting results and statistics. Finally, Section 5 concludes and presents future steps in order to complete
the benchmark for query personalization.

2. Overview of the approach

In order to motivate the need of a reference data set, consider the user query of Figure 1, asking for action
movies posterior to 2000. There is a large set of movies that satisfy query criteria. However, if we consider that
user prefers French movies played by Jean Reno, the result size reduces considerably by delivering more
pertinent results. Personalization algorithms take into account the user profile and reformulate the user query by
including additional filtering criteria.

However, the results delivered by the personalization algorithm may exclude pertinent results and include non-
pertinent results. Knowing the set of movies that the user effectively prefers, i.e. the set of results that are really
pertinent, we can compare it with the results proposed by the personalization algorithm and quantitatively
evaluate the behavior of the algorithm.

Action movies
posterior to 2000

Results without
personalization

Results with
personalization

Results preferred
by the user

User
profile

User
query

comparison

Country=France
Actor=Jean Reno

Figure 1 – Example of query personalization and comparison of results

 Verónika Peralta

 3

In the general case, we consider a certain database instance, a user query Qi, a user profile Pj and a
personalization algorithm Ak. Figure 2 illustrates the query results obtained with and without personalization and
their comparison with reference results. Specifically:

− The whole rectangle (grey zone) represents the space of solutions to Qi, i.e. each point represents a tuple
in the query domain;

− Ri (outer yellow oval) represents the set of results of Qi obtained using the database query interface,
without considering user profile;

− Rij (inner red oval) represents the set of results of Qi that are considered as pertinent by the user having
profile Pj. Note that Rij is a subset of Ri.

− R’ ijk (inner green oval) represents the set of results of Qijk, which corresponds to query Qi enriched with
profile Pj by algorithm Ak. As personalization algorithms add restriction predicates to queries, R’ijk is also
a subset of Ri.

Ri

R’ ijk

Rij

Ri

R’ ijk

Rij

Figure 2 – Comparison of personalized results with reference results

The perfect personalization algorithm should returns all pertinent results and exclude all non-pertinent results. In
other words, Rij and R’ijk should coincide. In practice, some pertinent results are discarded (Rij – R’ijk) and some
non-pertinent results are returned (R’ijk – Rij). Precision and recall measures indicate such deviations from the
reference result.

In order to provide a test platform for personalization algorithms, we need to build: a set of user profiles, a set of
queries and the reference results for each pair (query, profile).

In order to generate user profiles, we use movie ratings provided by MovieLens. In fact, instead of asking certain
users to manually build their profiles and classify query results according to their pertinence, we reuse movie
ratings already expressed by real users. Specifically, each tuple of the I_UserRatings table of the integrated
database (illustrated in Figure 3) corresponds to a user evaluation, registering the user identifier, the movie
identifier, the rating (in a 1-5 star scale) and a timestamp (unused). See [4] for details on the extraction of
MovieLens data and the feeding of the I_UserRatings table.

Figure 3 – Part of the instance of the I_UserRatings table

Generation of a Reference Data Set for Query Personalization – Technical Report

4

User profiles are generated by joining the I_UserRatings table with other tables of the integrated database (which
describe movie features) and extracting the common features of the movies with higher evaluation. These
common features constitute the user profile. Tables describing movie features were extracted from IMDb
database. See [4] for details on the extraction of IMDb data and their integration with MovieLens data.

Actually, we partition the I_UserRatings table in two subsets:

− Training set, from which user profile is generated, and

− Test set, which is proposed as source database for performing queries and measuring personalization
results.

This partitioning assures that the obtained measures are not biased. Furthermore, considering different
partitioning strategies we can obtain more precise measures.

Figure 4 illustrates the partitioning of the set of movies evaluated by user j in training and test sets, highlighting
the set of preferred movies. User profile is extracted from the preferred portion of the training set.

test set j

preferred set j

training set j

Figure 4 – Extraction of user profiles from the preferred training set

In order to define user queries, we consider as space of solutions, some of the movies that the user has already
evaluated (those of the test set), and we generate queries asking for movies that satisfy different criteria
(predicates on movie features obtained from IMDb). To this end, we join the I_UserRatings table with some
tables describing movie features and we add some filtering conditions on such features. Both, joining tables and
filtering conditions are randomly generated.

As we know the rating of each movie, we can easily build the set of reference results, i.e. those movies in the
query result that have a good rating. In other words, the grey zone of Figure 2 consists of the tuples of the
training set of a given user, the yellow zone consists of the tuples that satisfy a certain query and the red zone
consists of the subset of tuples that have a good rating.

Next section describes the mechanisms for generating user profiles, user queries and reference results.

3. Design of the reference database

The reference database consists in a set of user profiles, a set of user queries and the corresponding “good”
results for each couple (profile, query). In this section we present the design of the reference database, i.e. we
describe the procedures for generating user profiles and user queries, the procedures for calculating reference
results and the database structures for storing user profiles, user queries and reference results. This section only
describes the design of such procedures; the setting of the appropriate parameters and the obtained results are
presented in next section.

3.1. Generation of user profiles

User profiles are sets of predicates that state user preferences on movie features. Profile predicates have the form
feature=value, where value ranges in the domain of the movie feature. For example, a certain user may prefer
movies spoken in French or action movies; which is expressed by the predicates: Language = French, Genre =
Action.

In order to extract a user profile from a set of user evaluations, we look for common features of the evaluated
movies, for example, if most of the movies the user has assigned a great rating are filmed in France, we deduce
that the user prefers movies filmed in France, and we propose the predicate LocationCountry=France.

 Verónika Peralta

 5

In this section we describe the generation of a large set of predicates. Query personalization algorithms may
choose among the generated predicates and build different user profiles. To this end, we associate a weight to
each extracted predicate, which represents the percentage of the evaluated films that satisfy the predicate.
Weights allow conforming more or less restrictive user profiles by choosing the predicates with higher weights
or accepting predicates with lower weights.

Weighted predicates have the form <table.attribute operator value (weight)> where: table and attribute refer to
an attribute of a table of the integrated schema (referencing a movie feature), value is an element of the attribute
domain, operator ∈ {=,<,≤,>,≥} and weight represents the percentage of the evaluated films that satisfy the
predicate.

Some examples of weighted predicates are:

− I_MovieLanguages.language = English (80)

− I_Countries.continent = Europe (25)

− I_MovieGenres.genre = Comedy (40)

− I_MovieYears.year ≥ 2000 (90)

− I_MovieBusiness.budgetusd ≥ 10.000.000 (60)

These examples can be interpreted as among the films the user has evaluated, 80% are spoken in English, 25%
have been filmed in Europe, 40% are comedies, 90% are posterior to year 2000 and 60% have reported more
than 10 million dollars.

The generation of predicates consists of three main steps:

1) Partitioning user evaluations in order to determine training, test and preferred sets

2) Extracting predicates for the evaluations on the preferred training set

3) Computing weights for the extracted predicates (eliminating predicates with low weights)

The following sub-sections describe each step:

3.1.1. Partitioning of user evaluations

In order to partition user evaluations, we define a set of conditions (training, test and preferred conditions) that
allow delimiting the training, test and preferred sets. We test different partitioning strategies, i.e. different ways
of partitioning user evaluations.

Training conditions have the form attribute < value, where attribute is a numeric attribute of the I_UserRatings
table and value is a value of the attribute domain. In order to define conditions, we added five attributes (named
C1, C2, C3, C4 and C5) to the I_UserRatings table, all of them taking random values between 0 and 9. Test
conditions are the negations of training conditions, i.e. they have the form attribute ≥ value. Preferred conditions
have the form I_UserRatings.rating ≥ value, where value is a number between 1 and 5.

Training, test and preferred sets are defined as views on the I_UserRatings table according to these conditions:

− TrainingSet:
 SELECT * FROM I_UserRatings WHERE TrainingConditio n;

− TestSet:
 SELECT * FROM I_UserRatings WHERE TestCondition;

− PreferredSet:
 SELECT * FROM I_UserRatings WHERE PreferredConditi on;

Preferred training and preferred test sets are defined as conjunction of the corresponding conditions:

− PreferredTrainingSet:
 SELECT * FROM I_UserRatings WHERE TrainingConditio n AND PreferredCondition;

− PreferredTestSet:
 SELECT * FROM I_UserRatings WHERE TestCondition AN D PreferredCondition;

Additional parameters are used in the generation of predicates. They allow generating meaningful predicates, i.e.
discarding predicates having a small weight (MinWeight threshold) and predicates appearing in too few
evaluations (MinEval threshold).

Generation of a Reference Data Set for Query Personalization – Technical Report

6

The Ref_strategies table encloses all these parameters (see Table 1). Each tuple of this table corresponds to a
different strategy. A strategy id allows identifying strategies.

3.1.2. Extraction of predicates

We generate different types of predicates, each one corresponding to a movie feature (e.g. language, country,
actor or genre). In order to generate predicates for a given feature, we join user evaluations with the table storing
such feature and we count the movies that correspond to each feature value. For example, if we consider the
language feature, we count how many movies correspond to English, Spanish, etc. We parameterized the
features to look for in the Ref_PredicateTypes table (see Table 1).

We used two algorithms for generating predicates, which consider equality and inequality of values respectively.
The former computes the number of films ‘having a certain feature value’ and the latter computes the number of
films ‘having more than a certain feature value’. The approach can be extended with other predicate-extracting
methods, for example, clustering algorithms. Both algorithms are implemented as PL-SQL procedures; they are
sketched as follows:

− Ref_ExtractEqualityPred: This procedure computes the feature values describing evaluated movies and
counts the number of evaluations corresponding to each feature value. This is done for each user and each
strategy, storing the computed predicates in a temporal table (Ref_Aux2, described later in Table 1).

− Ref_ExtractInequalityPred: This procedure computes the feature values describing evaluated movies and
counts the number of evaluations corresponding to greater values than each feature value. This is done for
each user and each strategy, also storing the computed predicates in the temporal table (Ref_Aux2).

Both algorithms discard predicates having a small support, i.e. being present in few tuples. The MinEval
parameter of the Ref_Strategies table set such threshold.

An additional procedure is used for discarding predicates corresponding to Null or dummy values (e.g.
AttributeValue=’_unknown’):

− Ref_DiscardDummyPred: This procedure eliminates (from the Ref_Aux2 table) the predicates
corresponding to Null or dummy values.

The implementation of these procedures is described in Annex 1.

3.1.3. Computation of predicate weights

In order to compute predicate weights, we divide the number of user evaluations corresponding to each predicate
(e.g. the number of evaluated movies having language=’English’) by the total of user evaluations. The former
value is registered in the Ref_Aux2 table, the latter value has to be computed. We propose 2 PL-SQL procedures
for computing the total of user evaluations and calculating weights respectively:

− Ref_CountEvaluations: This procedure computes the number of evaluations in the preferred training set
for each user and each strategy. It stocks the computed results in a temporal table (Ref_Aux1, described
later in Table 1).

− Ref_ComputePredWeights: This procedure computes predicate weights. Basically, it divides the number
of evaluations corresponding to each predicate (those stored in Ref_Aux2) by the total of evaluations of
the corresponding user and strategy (those stored in Ref_Aux1). The predicates having low weight
(according to the MinWeight parameter of the Ref_Strategies table) are discarded. The generated
predicates are stored in the Ref_Predicates table, which is described in next sub-section.

The PL-SQL code of these procedures is listed in Annex 1.

3.1.4. Storage issues

Table 1 describes the tables used in the generation of predicates.

Generation parameters are stored in the Ref_Strategies and Ref_PredicateTypes tables. They store partitioning
strategies and predicate types respectively. A view (Ref_GenerationParameters) computes the Cartesian product
of strategies and predicate types, i.e. it indicates the combinations of parameters for generating all predicate
types for all strategies.

 Verónika Peralta

 7

CREATE OR REPLACE VIEW Ref_GenerationParameters AS
SELECT S.strategyid, S.minweight, S.minrating, S.m ineval,
 S.trainingcondition, P.execid, P.lookupview, P.att ributename,
 P.function, P.param1, P.param2, P.param3
FROM Ref_Strategies S, Ref_PredicateTypes P;

The temporal tables Ref_Aux1 and Ref_Aux2 store the number of evaluations per user and strategy and the
generated predicates per user and strategy respectively. Both tables are used for computing predicate weights and
eliminating the predicates having low weights. The remaining predicates (and their weights) are stored in the
Ref_Predicates table.

Table Attributes Constraints

Ref_Strategies
Description of
partitioning strategies

− StrategyId: Numeric(2)
− TrainingCondition: String(50)
− TestCondition: String(50)
− PreferredCondition: String(10)
− MinRating: Numeric(1); the threshold of the

preferred condition
− MinWeight: Numeric(5,3)
− MinEval: Numeric(5)

Primary key: StrategyId
Not null: StrategyId, MinWeight,

MinRating, MinEval,
TrainingCondition,
TestCondition,
PreferredCondition

Ref_PredicateTypes
Description of
predicate types

− PTypeId: Numeric(3)
− LookupView: String(40); an auxiliary view

that relates movies with predicate feature
− TableName: String(40); the table that stores

the feature
− AttributeName: String(30); the attribute that

stores the feature value
− Function: String(20); the algorithm to be

used for generating predicates of this type
− Param1: String(40); extra parameter for such

function
− Param2: String(40); extra parameter for such

function
− Param3: String(40); extra parameter for such

function

Primary key: PTypeId
Not null: PTypeId, LookupView,

TableName, AttributeName,
Function

Ref_Aux1
Temporal table used for
storing the number
evaluations of each
user for each strategy
(in the preferred
training set)

− StrategyId: Numeric(2)
− UserId: Numeric(4)
− MovieCount: Numeric (5); the number of

evaluated movies

Primary key: StrategyId, UserId
Not null: StrategyId, UserId,

MovieCount

Ref_Aux2
Temporal table used for
storing predicates for
each user and each
strategy (in the
preferred training set)

− StrategyId: Numeric(2)
− PTypeId: Numeric(3)
− UserId: Numeric(4)
− AttributeValue: String(256)
− Operator: String(5)
− MovieCount: Numeric (5); the number of

evaluated movies satisfying the predicate

Primary key: StrategyId, PTypeId,
UserId, AttributeValue,
Operator

Not null: StrategyId, PTypeId,
UserId, AttributeValue,
Operator, MovieCount

Index: StrategyId, UserId

Ref_Predicates
Generated predicates
per user and strategy

− StrategyId: Numeric(2)
− PTypeId: Numeric(3)
− UserId: Numeric(4)
− TableName: String(40)
− AttributeName: String(30)
− AttributeValue: String(256)
− Operator: String(5)
− Weight: Numeric

Primary key: StrategyId, PTypeId,
UserId, AttributeValue,
Operator

Not null: StrategyId, PTypeId,
UserId, TableName,
AttributeName, AttributeValue,
Operator, Weight

Index: StrategyId, UserId

Table 1 – Tables used for the generation of profile predicates

Generation of a Reference Data Set for Query Personalization – Technical Report

8

3.2. Generation of queries

In order to generate a large set of queries, we proceed as follows:

− We depart from the query: SELECT I_UserRatings.movieid FROM I_UserRatings

− We randomly generate a set of predicates and we add them in the WHERE clause

− We add all tables referenced in predicates to the FROM clause

− We complete the WHERE clause with the necessary join predicates for relating all tables of the FROM
clause. We eventually add new tables to the FROM clause if they are necessaries for joining other tables.

As an example, consider the predicates of Figure 5a. We add them to the WHERE clause of the query (Figure
5b, in green and italics), and we add predicate tables (I_MovieLanguages, I_Countries and I_MovieGenres) to
the FROM clause (Figure 5b, in bleu and bold). Figure 5d shows a portion of the database schema containing
predicate tables. Note that I_MovieLanguages and I_MovieGenres join with I_UserRatings by movieid, but they
have no common attributes for joining with I_Countries. The last join is carried out using the I_MovieCountries
table. The added tables and predicates are shown in Figure 5c (in red and italics).

(a)
I_MovieLanguages.language = English
I_Countries.continent = Europe
I_MovieGenres.genre = Comedy

(b)
SELECT I_UserRatings.movieid
FROM I_UserRatings, I_MovieLanguages,

I_Countries, I_MovieGenres
WHERE I_MovieLanguages.language = ‘English’
AND I_Countries.continent = ‘Europe’
AND I_MovieGenres.genre = ‘Comedy’

(c)
SELECT I_UserRatings.movieid
FROM I_UserRatings, I_MovieLanguages, I_Countries,

I_MovieGenres, I_MovieCountries
WHERE I_MovieLanguages.language = ‘English’
AND I_Countries.continent = ‘Europe’
AND I_MovieGenres.genre = ‘Comedy’
AND I_MovieGenres.movieid = I_Movies.movieid
AND I_MovieLanguages.movieid = I_Movies.movieid
AND I_MovieCountries.movieid = I_Movies.movieid
AND I_Countries.country = I_MovieCountries.country
(d)

I_Countries
Country
Continent
…

I_MovieLanguages
MovieId
Language
LanguageInfo

I_MovieGenres
MovieId
Genre

I_UserRatings
UserId
MovieId
Rating
Timestamp

MovieId

I_MovieCountries
MovieId
Country

Country MovieId

MovieId

Figure 5 – Example of query generation

Starting from a set of predicates, the construction of SQL queries is quite straight-forward. The point is how to
generate the predicates. In order to carry out such generation, we follow the same approach used for generating
profile predicates, i.e. we extract common attribute values describing the evaluated movies of each user.

However, the generation process has some important differences: (i) we consider all user evaluations, not only
those having high ratings, (ii) we also extract predicates having low weights, and (iii) we randomly choose a
small number of predicates. These differences allow generating queries that considerably differentiate from user
profiles. Concretely, while user profiles contain all high-weight predicates, queries contain few randomly chosen
predicates, which rarely represent user preferences. In addition, movie features that are irrelevant for users may
be chosen for query predicates. These three differences also allow the generation of typical queries but returning
result sets of varied sizes. Specifically, the selection of a small number of predicates (from 1 to 5) avoids
generating monster queries that returns no data. However, the randomness of the selection allows obtaining
result sets of different sizes, ranging from almost empty sets when queries have several restrictive predicates (of
low weight) to almost all data when queries have few non-restrictive predicates (of high weight).

Sub-section 3.2.1 describes the generation of query predicates and Sub-section 3.2.2 describes the construction
of SQL queries.

 Verónika Peralta

 9

3.2.1. Extraction of query predicates

The extraction of query predicates follows the same procedures explained for extracting profile predicates (see
Sub-section 3.1). Actually, we define a special strategy (with StrategyId=0) that defines the preferred training set
as containing all user evaluations. Then, we generate one query per user.

Among the generated predicates, we randomly select a small number of predicates (between 1 and 5). This is
carried out by 4 algorithms, implemented as PL-SQL procedures:

− Ref_SetQueryPredNumber: This procedure randomly set a desired number of predicates (between 1 and
5) for each query. It stocks the computed results in a temporal table (Ref_AuxQ1).

− Ref_SetPredRandomWeight: This procedure computes candidate predicates for each query and assigns a
random weight to each predicate. Candidate predicates are taken from the Ref_Predicates table, selecting
the strategy 0. The random weights will be used later for selecting a small number of predicates per query
(according to the desired number of predicates stored in the Ref_AuxQ1 table). The procedure stocks the
generated predicates in a temporal table (Ref_AuxQ2).

− Ref_SelectQueryPred: This procedure selects, among the candidate predicates of each query (stored in the
Ref_AuxQ2 table), the ones having higher random weight. The number of predicates to select is taken
from the Ref_AuxQ1 table. A sub-procedure (Ref_SelectQueryPred_aux) is used for carrying out the
selection for each query. The selected predicates are stored in a temporal table (Ref_AuxQ3).

− Ref_DeleteQueryConflictivePred: This procedure eliminates the conflictive predicates of the Ref_AuxQ3
table, i.e. when several predicates reference a same attribute (e.g. language=’English’ and
language=’Spanish’), the one having a higher random weight is kept. To this end, the procedure first
computes the maximum random weight for each attribute (which are stored in the Ref_AuxQ4 temporal
table) and then, proceeds to the selection. The obtained predicates are stored in the Ref_QueryPredicates
table.

The PL-SQL code of these procedures is listed in Annex 2. The table that stores the generated predicates as well
as the temporal tables used in the generation are described in Table 2.

Table Attributes Constraints
Ref_AuxQ1 Temporal table
used for storing the number
of predicates to select per
query

− QueryId: Numeric(4)
− PredNumber: Numeric(2); the number of

predicates to select

Primary key: QueryId
Not null: QueryId, PredNumber

Ref_AuxQ2
Temporal table used for
storing candidate
predicates per query (with
random weights)

− PTypeId : Numeric (3)
− QueryId: Numeric (4)
− TableName: String(40)
− AttributeName: String(30)
− AttributeValue: String(256)
− Operator: String(5)
− Weight: Numeric
− Rnd : Numeric; random weight used for

random selection

Primary key: PTypeId, QueryId,
AttributeValue, Operator

Not null: PTypeId, QueryId,
TableName, AttributeName,
AttributeValue, Operator,
Weight, Rnd

Index: QueryId

Ref_AuxQ3
Temporal table used for
storing randomly selected
predicates per query

− PTypeId : Numeric (3)
− QueryId: Numeric (4)
− TableName: String(40)
− AttributeName: String(30)
− AttributeValue: String(256)
− Operator: String(5)
− Weight: Numeric
− Rnd : Numeric; random weight used for

random selection

Primary key: PTypeId, QueryId,
AttributeValue, Operator

Not null: PTypeId, QueryId,
TableName, AttributeName,
AttributeValue, Operator,
Weight, Rnd

Index: QueryId

Generation of a Reference Data Set for Query Personalization – Technical Report

10

Ref_AuxQ4
Temporal table used for
storing the maximum
random weight for
conflictive predicates (those
referencing a same
attribute)

− PTypeId : Numeric (3)
− QueryId: Numeric (4)
− Rnd : Numeric; random weight

Primary key: PTypeId, QueryId
Not null: PTypeId, QueryId, Rnd

Ref_QueryPredicates
Generated predicates per
query

− PTypeId : Numeric (3)
− QueryId: Numeric (4)
− TableName: String(40)
− AttributeName: String(30)
− AttributeValue: String(256)
− Operator: String(5)

Primary key: PTypeId, QueryId
Not null: PTypeId, QueryId,

TableName, AttributeName,
AttributeValue, Operator

Table 2 – Tables used for the generation of query predicates

3.2.2. Construction of SQL queries

As previously explained, we depart from a query selecting movie ids (SELECT I_UserRatings.movieid FROM
I_UserRatings), we add query predicates to the WHERE clause and we add predicate tables to the FROM clause.
In addition, we add extra conditions to the WHERE join in order to join predicate tables to the I_UserRatings
table, possibly adding transitive tables to the FROM clause.

Each type of predicate determines the join conditions and extra tables necessaries for the join, which are derived
from the database schema. They are stored in 2 tables (Ref_PTypeJoinConditions and Ref_PTypeJoinTables),
which are described in Table 3.

The procedures for generating SQL queries from those tables are implemented in Java. The obtained queries are
stored in the Ref_Queries table, also described in Table 3.

Table Attributes Constraints

Ref_PTypeJoinConditions
Generated predicates per
query

− PTypeId : Numeric (3)
− LookupView: String(40)
− AttributeName: String(30)
− JoinCondition: String(40)

Primary key: PTypeId,
JoinCondition

Not null: PTypeId, TableName,
AttributeName, JoinCondition

Ref_PTypeJoinTables
Generated predicates per
query

− PTypeId : Numeric (3)
− LookupView: String(40)
− AttributeName: String(30)
− JoinTable: String(40)

Primary key: PTypeId, JoinTable
Not null: PTypeId, TableName,

AttributeName, JoinTable

Ref_Queries
Reference queries

− QueryId: Numeric (4)
− QueryText: String(2000)
− RelationsNumber: Numeric(2); the

number of tables in the where clause

Primary key: QueryId
Not null: QueryId, QueryText

Table 3 – Tables used in the generation of SQL queries

3.3. Computation of Reference Results

Given a query Q, a user U and a strategy S, the query should be executed on the user test set corresponding to the
strategy. The test set is computed as a view on user evaluations, as follows:

− TestSet: SELECT * FROM I_UserRatings WHERE TestCondition AND userid=U

Replacing the I_UserRatings table by this view, corresponds to add the test condition and the condition on user
id to query expression. For example, the query

SELECT I_UserRatings.movieid
FROM I_UserRatings, I_MovieCountries
WHERE I_UserRatings.movieid = I_MovieCountries.movi eid
AND I_MovieCountries.country = ‘France’

 Verónika Peralta

 11

is unfolded to:

SELECT I_UserRatings.movieid
FROM I_UserRatings, I_MovieCountries
WHERE I_UserRatings.movieid = I_MovieCountries.movi eid
AND I_MovieCountries.country = ‘France’
AND TestCondition AND userid=U;

The reference results are computed in the same way, also adding the preferred condition to the query.

Next section describes the execution of the procedures and the analysis of the obtained results.

4. Construction of the Reference Database

In this section we describe the results and statistics obtained from the execution of the previously described
procedures, i.e. those for generating user profiles and user queries. We firstly describe the setting of strategies
and the selection of relevant movie features. Then, we present the number of extracted predicates, analyzed by
several factors and the number of generated queries, also analyzed by several factors. Finally, we present
statistics on result sizes for pairs <query, profile>.

4.1. Setting of strategy parameters

As previously argued, we aim at generating different partitioning strategies in order to obtain unbiased
experimental results.

In order to set appropriate partitioning sizes we tested different parameters. Firstly, five random attributes were
added to the I_UserRatings table (namely, C1, C2, C3, C4 and C5), each one ramdomly filled with an integer
between 0 and 9. Therefore, training conditions were expressed in the form Ci < N, 1 ≤ i ≤ 5, 0 ≤ N ≤ 9. We
defined two training sizes, with 50% of tuples (i.e. Ci < 5) and 30% of tuples (i.e. Ci < 3) respectively. Secondly,
we defined three preferred set sizes, with rating ≥ 3, rating ≥ 4 and rating ≥ 5 respectively. This leads to 6
combinations of parameters.

Table 4 shows the average number of ratings in the preferred training set for each type of strategy and Table 5
shows the average number of ratings in the preferred training set per user and type of strategy.

Training size All ratings Rating ≥ 3 Rating ≥ 4 Rating ≥ 5
100 % 1.000.194 836.464 575.272 226.307
50 % 500.217 418.294 287.788 113.189
30 % 299.825 250.627 172.594 67.804

Table 4 – Average number of ratings in the preferred training set per type of strategy

Training size All ratings Rating ≥ 3 Rating ≥ 4 Rating ≥ 5
100 % 166 138 95 37
50 % 83 69 48 19
30 % 50 42 29 11

Table 5 –Average number of ratings in the preferred training set per user and type of strategy

Note that the number of ratings in the preferred training set is too small when considering rating ≥ 5. So, we did
not consider such setting. We kept a total of 21 strategies, which are shown in Table 6; strategy 0 is used later for
query generation; the remaining strategies are packed by 5, for 1 ≤ i ≤ 5.

Strategy id Training condition Test condition Preferred condition
0 Ci < 10 Rating ≥ 0

1-5 Ci < 5 Ci ≥ 5 Rating ≥ 3
6-10 Ci < 5 Ci ≥ 5 Rating ≥ 4
11-15 Ci < 3 Ci ≥ 3 Rating ≥ 3
16-20 Ci < 3 Ci ≥ 3 Rating ≥ 4

Table 6 – Parameters of strategies

Generation of a Reference Data Set for Query Personalization – Technical Report

12

Further parameters are the minimum weight (MinWeight) and the minimum number of evaluations (MinEval)
were set to 10 and 5 respectively for all strategies. We preferred generating a great number of predicates even
having low weights because they can be filtered thereafter.

4.2. Set of predicate types

We considered a set of 35 attributes containing relevant movie features, which are listed in Table 7. Some of
them were implemented (those needing an equality or inequality comparison function), the remaining ones
(which are shadowed) were kept as future work.

NºAtt Table Attribute Comparison function
2 I_MovieGenres genre equality
3 I_MovieCountries country equality
4 IV_MovieCountries continent equality
5 I_MovieYears year equality
6 IV_MovieYears decade equality
7 I_MovieYears year clustering
8 I_MovieRatings rating equality
9 I_MovieRatings rating inequality
10 I_MovieRatings votes inequality
11 I_MovieKeywords keyword equality
12 I_MovieLanguages language equality
13 I_MovieProductionCompanies companyname equality
14 IV_MovieProductionCompanies country equality
15 IV_MovieProductionCompanies continent equality
16 I_MovieProductionCompanies companyname reconciliation
17 I_MovieColors color equality
18 I_MovieSounds soundmix equality
19 I_MovieSounds soundmix reconciliation
20 I_MovieBusiness budgetusd inequality
21 I_MovieBusiness revenueusd inequality
22 I_MovieLocations zone equality
23 IV_MovieLocations country equality
24 IV_MovieLocations continent equality
25 I_MovieRunningTimes country equality
26 IV_MovieRunningTimes continent equality
27 I_MovieRunningTimes durationinterval equality
28 I_MovieRunningTimes duration clustering
29 I_MovieDirectors director equality
30 I_MovieWriters writer equality
31 I_MovieProducers producer equality
32 I_MovieCostumeDesigners costumedesigner equality
33 I_MovieProductionDesigners productiondesigner equality
34 I_MovieActresses actress equality
35 I_MovieActors actor equality
36 I_MovieLinks linktype equality

Table 7 – Candidate attributes describing movie features

4.3. Obtained profile predicates

Having defined strategy parameters and types of predicates, we proceeded to execute the profile generation
procedures described in Sub-section 3.1. We obtained 8.779.207 predicates for all users and all strategies. The
following figures analyze the number of obtained predicates per strategy, weight, user and attribute.

 Verónika Peralta

 13

Figure 6 shows the number of predicates extracted for each strategy. As expected, the number of predicates
decreases for more restrictive strategies.

Number of predicates by strategy

0

100000

200000

300000

400000

500000

600000

1-5 6-10 11-15 16-20

Stratégies

N
om

br
e

de
 p

ré
di

ca
ts

Figure 6 – Average number of predicates per type of strategy

Figure 7 also considers predicate weights; it shows the number of predicates having a weight greater or equal to
a given value. Note that the distribution is similar for all types of strategies.

Cumulative number of predicates by weights

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

10 20 30 40 50 60 70 80 90 100

Weights

N
um

be
r

of
 p

re
di

ca
te

s

1-5

6-10

11-15

16-20

Figure 7 – Cumulative number of predicates by weights

Figures 8, 9, 10 and 11 incorporate a new dimension: the number of users having a certain profile size. By
profile size we mean the number of predicates generated for the user. Figure 8 shows that the number of
predicates generated for each user varies largely, from 1 to more than 160. As special cases, we note that there is
nearly a hundred users having a small number of predicates (close to 20) and nearly a hundred users having close
to 80 predicates. This distribution is very different when only considering weights greater or equal to 30 (Figure
9) or 50 (Figure 10). In the former, most users have profile sizes between 20 and 30 predicates, and in the latter,
most users have profile sizes between 15 and 20 predicates. Figure 11 illustrates the case of predicate weights
greater or equal to 90. In this case, all users have a few number of predicates. Note that in all figures, the
distributions are quite independent of the type of strategy.

Generation of a Reference Data Set for Query Personalization – Technical Report

14

Number of users by number of predicates (w=10)

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 >160

Number of predicates

N
um

be
r o

f
us

er
s

1-5

6-10

11-15

16-20

Figure 8 – Number of users having a certain profile size (with predicate weight ≥≥≥≥10)

Number of users by number of predicates (w=30)

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45

Number of predicates

N
u

m
b

er
 o

f u
se

rs

1-5

6-10

11-15

16-20

Figure 9 – Number of users having a certain profile size (with predicate weight ≥≥≥≥30)

Number of users by number of predicates (w=50)

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 >30

Number of predicates

N
u

m
b

er
 o

f u
se

rs

1-5

6-10

11-15

16-20

Figure 10 – Number of users having a certain profile size (with predicate weight ≥≥≥≥50)

 Verónika Peralta

 15

Number of users by number of predicates (w=90)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of predicates

N
um

be
r o

f u
se

rs

1-5

6-10

11-15

16-20

Figure 11 – Number of users having a certain profile size (with predicate weight ≥≥≥≥90)

Finally, Figure 12 shows the number of predicates per type of predicate, highlighting the most generated
predicates concerns keywords (type 11), IMDb global rating (type 9), genre (type 1) and link type (type 36).
Conversely, there are too few predicates concerning running year (type 8), and casting (types 29 to 35).

Number of predicates by type

0

20000

40000

60000

80000

100000

120000

140000

2 3 4 5 6 8 9 10 11 12 13 14 15 17 18 20 21 22 23 24 25 26 27 29 30 31 32 33 34 35 36

Type of predicate

N
um

be
r

of
 p

re
di

ca
te

s

Figure 12 – Number of predicates per type (for all strategies)

4.4. Obtained queries

After generating user profiles, we proceeded to execute the query generation procedures. We firstly generated
query predicates, using the same procedures than for profile generation, but fixing the strategy 0 (special strategy
that extracts predicates from the whole set of ratings). Therefore, we obtained 6040 queries, one per user. We
obtained an initial set of 622.061 predicates for all queries, from which we randomly selected 18.142. We kept
15.996 predicates after eliminating contradictory ones. The following figures show the number of predicates of
each query at each generation stage.

Figure 13 shows the number of queries having a certain number of generated predicates. Note that most queries
have between 80 and 130 predicates but there are some queries with an enormous number of predicates. In all
cases, the random selection of a small number of predicates assures that the query does not represent the user
profile.

Generation of a Reference Data Set for Query Personalization – Technical Report

16

Histograme of queries by number of predicates

0

20

40

60

80

100

120

140

160

<40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5
>19

0

Number of generated query predicates

N
um

be
r

of
 q

ue
rie

s

Figure 13 – Number of queries having a certain number of predicates (initial generation)

Figure 14 also shows the number of queries having a certain number of predicates, but after random selection
and after elimination of contradictory predicates. The former is quite uniformly distributed but in the latter, there
are less queries having 4 and 5 predicates (because they contained more contradictory predicates).

Histograme of queries by number of predicates

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5

Number of (randomly) selected query predicates
Number of (non-contradictory) selected query predic ates

N
um

be
r

of
 q

ue
rie

s

Figure 14 – Number of queries having a certain number of predicates (���� after random selection and ���� after elimination of

contradictory predicates)

After fixing query predicates, the algorithm presented in Sub-section 3.2.2 was executed in order to generate
SQL queries. Finally, we added a special query, with query id = 0, that has no predicates.

4.5. Execution of queries

After generating queries, we executed them over the several test sets (for all users and all strategies) and we
measured the size of the obtained results. The following figures illustrate this fact for one particular strategy.

Figure 15 shows the number of queries having at least a certain result size. By result size we mean the number of
tuples returned by the query. We took two measures: the average of result sizes for all users, and the maximum
result size for a user (the user for whom the query returns the most of results). Note that most queries returns less
than 20 tuples in average but they return more results for some users.

 Verónika Peralta

 17

Cumulative number of queries by result size (strate gy 11)

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Number of results

N
um

be
r

of
 q

ue
rie

s

max

avg

Figure 15 – Number of queries having a certain result size or greater

Figure 16 shows the number of users for whom we obtained at least a certain result size. We also took two
measures: the average of result sizes for all queries, and the maximum result size for a query (the query that
returns the larger result for the user). Note that most users receive less than 20 tuples in average but they receive
more results for some queries.

Cumulative number of users by result size (strategy 11)

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Number of results

N
um

be
r

of
 u

se
rs

max

avg

Figure 16 – Number of users for whom we obtained a certain result size or greater

Result sizes are larger for strategies 1 to 10 and smaller for strategies 16 to 20, but distributions of previous
figures are conserved.

5. Conclusion

In this report we described the procedure followed for generating a reference data set for query personalization.
Specifically, we described the generation of user profiles, the generation of queries and the computation of
reference results. We also executed those procedures and showed statistics on the obtained profile predicates,
query predicates and result sizes.

This reference data set is large enough to support the definition of several personalization benchmarks, either by
limiting the number of predicates in each user profiles or by selecting subsets of users or queries. A first
benchmark built over this reference data set is described in [3].

Generation of a Reference Data Set for Query Personalization – Technical Report

18

As future work, we aim at considering communities of users having similar profiles and defining community
profiles. The queries of the data set may be executed on the test set of a community (the union of the test sets of
all users in the community) obtaining queries with larger result sizes. Additional tests may compare the results
obtained with the user profile with the results obtained with the community result.

6. References

[1] GroupLens Research: “movielens: helping you to find the right movies”. Web site, ULR:
http://movielens.umn.edu, last accessed on July 9th, 2006.

[2] Intenet Movie Database, Inc.: “The Intenet Movie Database”, Web site, URL: http://www.imdb.com/, last
accessed on July 9th, 2007.

[3] Kostadinov D. : “Personnalisation de l’information : une approche de gestion de profils et de reformulation
de requêtes”. PhD thesis, Université de Versailles Saint-Quentin en Yvelines, December 2007.

[4] Peralta, V.: “Extraction and Integration of MovieLens and IMDb Data”. Technical Report, Laboratoire
PRiSM, Université de Versailles, Versailles, France, July 2007.

[5] Text REtrival Conference (TREC). URL: http://trec.nist.gov/, last accessed on September 2007.

[6] Transaction Processing Performance Council. URL: http://www.tpc.org/, last accessed on September 2007.

 Verónika Peralta

 19

7. Annexes

7.1. Annex 1 – Procedures for generating profile predicates

Ref_ProfileGeneration

CREATE OR REPLACE PROCEDURE Ref_ProfileGeneration

AS
BEGIN

 DELETE from Ref_Aux1;
 COMMIT;

 DELETE from Ref_Aux2;
 COMMIT;

 DELETE from Ref_Predicates;
 COMMIT;

 Ref_ExtractEqualityPred;
 Ref_ExtractInequalityPred;
 Ref_DiscardDummyPred;
 Ref_CountEvaluations;
 Ref_ComputePredWeights;

 COMMIT;

END Ref_ProfileGeneration;
/

Generation of a Reference Data Set for Query Personalization – Technical Report

20

Ref_ExtractEqualityPred

CREATE OR REPLACE PROCEDURE Ref_ExtractEqualityPred

AS
 stmt VARCHAR2(5000);

 parameters Ref_GenerationParameters%rowtype;

 CURSOR cursor_parameters is
 SELECT *
 FROM Ref_GenerationParameters
 WHERE function = 'Equality';

BEGIN

 FOR parameters IN cursor_parameters LOOP

 stmt:= 'INSERT INTO Ref_Aux2 (
 SELECT ' || parameters.strategyid || ',' ||
 parameters.ptypeid ||',
 U.userid,
 T.' || parameters.attributename || ',
 =,
 count(distinct U.movieid)
 FROM I_USERRATINGS U, ' || parameters.lookupvie w || ' T
 WHERE T.movieid = U.movieid
 AND U.rating >= ' || parameters.minrating || '
 AND U.' || parameters.trainingcondition || '
 GROUP BY U.userid, T.' || parameters.attributena me || '
 HAVING count(distinct U.movieid) >= ' || paramet ers.mineval || '
)';

 EXECUTE IMMEDIATE stmt;

 COMMIT;

 END LOOP;

END Ref_ExtractEqualityPred;
/

 Verónika Peralta

 21

Ref_ExtractInequalityPred

CREATE OR REPLACE PROCEDURE Ref_ExtractInequalityPr ed

AS
 stmt VARCHAR2(5000);

 parameters Ref_GenerationParameters%rowtype;

 CURSOR cursor_parameters is
 SELECT *
 FROM Ref_GenerationParameters
 WHERE function = 'Inequality';

BEGIN

 FOR parameters IN cursor_parameters LOOP

 stmt:= 'INSERT INTO Ref_Aux2 (
 SELECT ' || parameters.strategyid || ',' ||
 parameters.ptypeid ||',
 U.userid,
 P.' || parameters.attributename || ',
 >=,
 count(distinct U.movieid)
 FROM I_USERRATINGS U, ' || parameters.lookupvie w || ' T, ' ||
 parameters.param1 || ' P
 WHERE U.movieid = T.movieid
 AND T.' || parameters.attributename || ' >=
 P.' || parameters.attributename || '
 AND U.rating >= ' || parameters.minrating || '
 AND U.' || parameters.trainingcondition || '
 GROUP BY U.userid, P.' || parameters.attributena me || '
 HAVING count(distinct U.movieid) >= ' || paramet ers.mineval || '
)';

 EXECUTE IMMEDIATE stmt;

 COMMIT;

 END LOOP;

END Ref_ExtractInequalityPred;
/

Ref_DiscardDummyPred

CREATE OR REPLACE PROCEDURE Ref_DiscardDummyPred

AS
BEGIN

 DELETE FROM Ref_Aux2
 WHERE attributevalue = 'NULL';

 DELETE FROM Ref_Aux2
 WHERE attributevalue = '_unknown';

 DELETE FROM Ref_Aux2
 WHERE attributevalue = '_multiple';

 COMMIT;

END Ref_DiscardDummyPred;
/

Generation of a Reference Data Set for Query Personalization – Technical Report

22

Ref_CountEvaluations

CREATE OR REPLACE PROCEDURE Ref_CountEvaluations

AS
 stmt varchar2(5000);

 parameters Ref_Strategies%rowtype;

 CURSOR cursor_parameters is
 SELECT *
 FROM Ref_Strategies;

BEGIN

 FOR parameters IN cursor_parameters LOOP

 stmt:= 'INSERT INTO Ref_Aux1 (
 SELECT ' || parameters.strategyid || ',
 U.userid,
 count(*)
 FROM I_UserRatings U
 WHERE U.rating >= ' || parameters.minrating || '
 AND U.' || parameters.trainingcondition || '
 GROUP BY U.userid
)';

 EXECUTE IMMEDIATE stmt;

 COMMIT;

 END LOOP;

END Ref_CountEvaluations;
/

Ref_ComputePredWeights

CREATE OR REPLACE PROCEDURE Ref_ComputePredWeights

AS
BEGIN

 INSERT INTO Ref_Predicates (
 SELECT X1.strategyid,
 X2.ptypeid,
 X1.userid,
 A.tablename,
 A.attributename,
 to_char(X2.attributevalue),
 X2.operator,
 (X2.moviecount/X1.moviecount)*100
 FROM Ref_Aux2 X2, Ref_Aux1 X1, Ref_PredicateTypes A, Ref_Strategies S
 WHERE X2.strategyid = X1.strategyid
 AND X2.userid = X1.userid
 AND X2.ptypeid = A.ptypeid
 AND X1.strategyid = S.strategyid
 AND (X2.moviecount/X1.moviecount)*100 >= S.minwei ght
);

 COMMIT;

END Ref_ComputePredWeights;
/

 Verónika Peralta

 23

7.2. Annex 2 – Procedures for generating query predicates

Ref_QueryGeneration

CREATE OR REPLACE PROCEDURE Ref_QueryGeneration

AS
BEGIN

 DELETE from Ref_AuxQ1;
 COMMIT;

 DELETE from Ref_AuxQ2;
 COMMIT;

 DELETE from Ref_AuxQ3;
 COMMIT;

 DELETE from Ref_AuxQ4;
 COMMIT;

 DELETE from Ref_QueryPredicates;
 COMMIT;

 Ref_SetQueryPredNumber;
 Ref_SetPredRandomWeight;
 Ref_SelectQueryPred;
 Ref_DeleteQueryConflictivePred;

 COMMIT;

END Ref_QueryGeneration;
/

Ref_SetQueryPredNumber

CREATE OR REPLACE PROCEDURE Ref_SetQueryPredNumber

AS
BEGIN

 random.rndinit();

 INSERT INTO Ref_AuxQ1 (
 SELECT U.userid, random.rndint(5)+1
 FROM I_UserRatings U
 GROUP BY U.userid
);

 COMMIT;

END Ref_SetQueryPredNumber;
/

Generation of a Reference Data Set for Query Personalization – Technical Report

24

Ref_SetPredRandomWeight

CREATE OR REPLACE PROCEDURE Ref_SetPredRandomWeight

AS
BEGIN

 random.rndinit();

 INSERT INTO Ref_AuxQ2 (
 SELECT X.ptypeid,
 X.userid,
 X.tablename,
 X.attributename,
 X.attributevalue,
 X.operator,
 X.weight,
 random.rndflt()
 FROM Ref_Predicates X
 WHERE X.strategyid=0
);

 COMMIT;

END Ref_SetPredRandomWeight;
/

Ref_SelectQueryPred

CREATE OR REPLACE PROCEDURE Ref_SelectQueryPred

AS

 preds Test_RuleNumber%rowtype;

 CURSOR cursor_preds is
 SELECT *
 FROM Ref_AuxQ1;

BEGIN

 FOR preds IN cursor_preds LOOP

 Ref_SelectQueryPred_aux (preds.queryid, preds.pre dnumber);

 END LOOP;

END Ref_SelectQueryPred;
/

 Verónika Peralta

 25

Ref_SelectQueryPred_aux

CREATE OR REPLACE PROCEDURE Ref_SelectQueryPred_aux (
 query in NUMBER,
 predcount in NUMBER)

AS

 i NUMBER;

 rules Ref_AuxQ2%rowtype;

 CURSOR cursor_rules is
 SELECT *
 FROM Ref_AuxQ2 T
 WHERE T.queryid = query
 ORDER BY T.rnd DESC;

BEGIN

 i:=0;

 OPEN cursor_rules;

 WHILE i < predcount LOOP

 FETCH cursor_rules into
 rules.ptypeid,
 rules.queryid,
 rules.tablename,
 rules.attributename,
 rules.attributevalue,
 rules.operator,
 rules.weight,
 rules.rnd;
 EXIT WHEN cursor_rules%notfound;

 INSERT INTO Ref_AuxQ3 VALUES (
 rules.ptypeid,
 rules.queryid,
 rules.tablename,
 rules.attributename,
 rules.attributevalue,
 rules.operator,
 rules.weight,
 rules.rnd
);

 i:= i+1;

 END LOOP;
 CLOSE cursor_rules;

 COMMIT;

END Ref_SelectQueryPred_aux;
/

Generation of a Reference Data Set for Query Personalization – Technical Report

26

Ref_DeleteQueryConflictivePred

CREATE OR REPLACE PROCEDURE Ref_DeleteQueryConflict ivePred

AS

BEGIN

 INSERT INTO Ref_AuxQ4 (
 SELECT ptypeid, queryid, max(rnd)
 FROM Ref_AuxQ3
 GROUP BY ptypeid, queryid
);

 INSERT INTO Ref_QueryPredicates (
 SELECT X.ptypeid, X.queryid, X.tablename, X.attri butename,
 X.attributevalue, X.operator
 FROM Ref_AuxQ3 X, Ref_AuxQ4 Y
 WHERE X.ptypeid = Y.ptypeid
 AND X.queryid = Y.queryid
 AND X.rnd = Y.rnd
);

 COMMIT;

END Ref_DeleteQueryConflictivePred;
/

