
Extraction and Integration of MovieLens and IMDb Data

Verónika Peralta

Laboratoire PRiSM, Université de Versailles
45, avenue des Etats-Unis
78035 Versailles Cedex

FRANCE

veronika.peralta@prism.uvsq.fr

Technical Report 1

July 2007

Abstract. This report describes the procedure followed for extracting and integrating MovieLens

and IMDb data. We firstly focus on data extraction, describing source schemas, target schemas

and the algorithms that perform data extraction, data cleaning and data transformation. We then

describe data integration, describing the integrated schema, the algorithm that match movie titles

and the construction of the integrated database. Finally, we present some statistics of the extracted

and integrated data.

1. Introduction

This report describes the procedure followed for extracting and integrating IMDb and MovieLens data.

IMDb, the Internet Movie Database, is a huge collection of movie information (auto-claimed to be the earth’s

biggest movie database). It started as a hobby project by an international group of movie fans and currently

belongs to the Amazon.com Company. IMDb tries to catalog every pertinent detail about a movie, from who was

in it, to who made it, to trivia about it, to filming locations, and even where you can find reviews and fan sites on

the web. The IMDb web site (http://www.imdb.com/ [4]) provides 49 text files in ad-hoc format (called lists)

containing different characteristics about movies (e.g. actors.list or running-times.list). Lists content is

continually updated and enlarged; at October 5
th
 2006, the movie list included more than 858.000 movies.

MovieLens is a movie recommender project, developed by the Department of Computer Science and

Engineering at the University of Minnesota. MovieLens is a typical collaborative filtering system that collects

movie preferences from users and then groups users with similar tastes. Based on the movie ratings expressed by

all the users in a group it attempts to predict for each individual their opinion on movies they have not yet seen.

Two data sets are available at the MovieLens web site (http://movielens.umn.edu/ [2]). The first one consists of

100,000 ratings for 1682 movies by 943 users. The second one consists of approximately 1 million ratings for

3883 movies by 6040 users.

Our goal is to build a relational database about movies, which includes movie descriptions and user ratings. To

this end, we extract, transform and integrate data provided by IMDb and MovieLens sites. This database will be

used, in future works, to evaluate the performance and pertinence of different techniques and algorithms for

query large data sets taking into account user preferences and data quality.

The extraction and integration procedure has 4 main steps: (i) extraction of MovieLens data, (ii) extraction and

transformation of IMDb data, (iii) matching of MovieLens and IMDb movie titles, and (iv) construction of the

integrated database. Figure 1 shows an overview of these steps.

1
 This research was partially supported by the French Ministry of Research and New Technologies under the ACI program

devoted to Data Masses (ACI-MD), project #MD-33.

Extraction and Integration of MovieLens and IMDb Data – Technical Report

2

Extraction of
MovieLens data

MovieLens

data

IMDb data

Extraction of
IMDb data

Matching of
movie titles

Construction of
the integrated
database

Figure 1 – Extraction and integration steps

Data extraction and integration processes were executed in a Microsoft Access database and then migrated to an

Oracle database. In the remaining of the report we describe each step: Sections 2 and 3 present the extraction of

MovieLens and IMDb data respectively, describing source schemas, target schemas and the algorithms that

perform data extraction, data cleaning and data transformation. Section 4 presents data integration, describing the

integrated schema, the algorithm that matches movie titles and the construction of the integrated database.

Matching details are subject of a more detailed report [Peralta 2007a]. Finally, Section 7 concludes.

2. MovieLens data extraction

MovieLens data sets are provided in the form of tabular text files (comma separated text). Data extraction

consisted in the loading of text data to a relational database, normalization of data and duplicates elimination.

The following sub-sections describe source files, target schemas, extraction processes and cleaning processes.

2.1. MovieLens source schemas

MovieLens data sets were collected by the GroupLens Research Project at the University of Minnesota. They

provide two data sets (with 100.000 and 1.000.209 evaluations respectively). Data was collected through the

MovieLens web site [3] and was cleaned up, i.e. users who had less than 20 ratings or did not have complete

demographic information were removed from data sets.

We concentrated in the largest one, however, the smallest one is helpful in for the matching of movie titles

(because it provides the IMDb URL of each movie) so it was extracted too. The following sub-sections describe

both schemas.

2.1.1. Source files of the large data set

The large data set consists in 3 text files, with tabular format, describing 1000209 anonymous ratings of 3883

movies made by 6040 MovieLens users who joined MovieLens in 2000. In the following, we describe the

contents of each text file.

Ratings.dat

This file contains data about 1000209 ratings (1 evaluation, corresponding to 1 user and 1 movie, in each line) in

the format: UserID::MovieID::Rating::Timestamp where:

− UserID is an integer, ranging from 1 to 6040, that identifies a user. Each user has rated at least 20 movies.

− MovieID is an integer, ranging from 1 to 3952, that identifies a movie.

− Rating is an integer, ranging from 1 to 5, made on a 5-star scale (whole-star ratings only).

− Timestamp is represented in seconds since 1/1/1970 UTC

Figure 2 shows an extract of the file corresponding to 5 ratings.

 Verónika Peralta

 3

1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291

Figure 2 – Extract of the Ratings.dat file

Movies.dat

This file contains data about 3883 movies (1 movie in each line) in the format: MovieID::Title::Genres where:

− MovieID is an integer, ranging from 1 to 3952, that identifies a movie.

− Title is a String that concatenates movie title and year of release (between brackets).

− Genres is a pipe-separated list of genres. Provided genres are: Action, Adventure, Animation, Children's,
Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi,

Thriller, War, Western.

Figure 3 shows an extract of the file corresponding to 5 movies.

1::Toy Story (1995)::Animation|Children's|Comedy
2::Jumanji (1995)::Adventure|Children's|Fantasy
3::Grumpier Old Men (1995)::Comedy|Romance
4::Waiting to Exhale (1995)::Comedy|Drama
5::Father of the Bride Part II (1995)::Comedy

Figure 3 – Extract of the Movies.dat file

Users.dat

This file contains data about 6040 users (1 user in each line) in the format:

UserID::Gender::Age::Occupation::Zip-code where:

− UserID is an integer, ranging from 1 to 6040, that identifies a user.

− Gender is denoted by a "M" for male and "F" for female

− Age is an integer identifying a range (the minimum age in the range). Provided ranges are: under 18, 18-
24, 25-34, 35-44, 45-49, 50-55, over 56.

− Occupation is an integer, ranging from 0 to 20, indicating the following choices: 0: other or not
specified, 1: academic/educator, 2: artist, 3: clerical/admin, 4: college/grad student, 5: customer service,

6: doctor/health care, 7: executive/managerial, 8: farmer, 9: homemaker, 10: K-12 student, 11: lawyer, 12:

programmer, 13: retired, 14: sales/marketing, 15: scientist, 16: self-employed, 17: technician/engineer,

18: tradesman/craftsman, 19: unemployed, 20: writer

− Zip-code is a five-digits integer indicating user ZIP-code.

All demographic information was provided voluntarily by the users and was not checked for accuracy. Only

users who have provided some demographic information are included in this data set. Figure 4 shows an extract

of the file corresponding to 5 users.

1::F::1::10::48067
2::M::56::16::70072
3::M::25::15::55117
4::M::45::7::02460
5::M::25::20::55455

Figure 4 – Extract of the Users.dat file

Extraction and Integration of MovieLens and IMDb Data – Technical Report

4

2.1.2. Source files of the small data set

The small data set consists in 5 text files, with tabular format, describing 100000 anonymous ratings of 1682

movies made by 943 users during the seven-month period from September 19th, 1997 through April 22nd, 1998.
In the following, we describe the contents of each text file.

u.data

This file contains data about 100000 ratings (1 evaluation, corresponding to 1 user and 1 movie, in each line). It

is a tab-separated list of UserID, MovieID, Rating and Timestamp, where:

− UserID is an integer, ranging from 1 to 943, that identifies a user. Each user has rated at least 20 movies.

− MovieID is an integer, ranging from 1 to 1682, that identifies a movie.

− Rating is an integer, ranging from 1 to 5, made on a 5-star scale (whole-star ratings only).

− Timestamp is represented in seconds since 1/1/1970 UTC

Data is randomly ordered. Figure 5 shows an extract of the file corresponding to 5 ratings.

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
166 346 1 886397596

Figure 5 – Extract of the u.data file

u.item

This file contains data about 1682 movies (1 movie in each line). This is a pipe-separated list of MovieID,

MovieTitle, ReleaseDate, VideoReleaseDate, IMDbURL, unknown, Action, Adventure, Animation, Children’s,

Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi,

Thriller, War and Western, where

− MovieID is an integer, ranging from 1 to 1682, that identifies a movie.

− MovieTitle is a String that concatenates movie title and year of release (between brackets).

− ReleaseDate is a DD-Mon-YYYY date indicating movie release date

− VideoReleaseDate was destinated to video release date but it is always NULL

− IMDbURL indicates the URL of the movie in the IMDb site.

− The last 19 fields correspond to genres; a 1 indicates the movie is of that genre, a 0 indicates it is not;

movies can be in several genres at once.

Figure 6 shows an extract of the file corresponding to 5 movies.

1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|
0|0|0|0|0|0|0|0|0|0|0
2|GoldenEye (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?GoldenEye%20(1995)|0|1|1|0|0|0|0|0|0|
0|0|0|0|0|0|0|1|0|0
3|Four Rooms (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Four%20Rooms%20(1995)|0|0|0|0|0|0|0|
0|0|0|0|0|0|0|0|0|1|0|0
4|Get Shorty (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Get%20Shorty%20(1995)|0|1|0|0|0|1|0|
0|1|0|0|0|0|0|0|0|0|0|0
5|Copycat (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Copycat%20(1995)|0|0|0|0|0|0|1|0|1|0|0|
0|0|0|0|0|1|0|0

Figure 6 – Extract of the u.item file

 Verónika Peralta

 5

u.genre

This file contains data about 19 movie genres (1 genre in each line). This is a pipe-separated list of GenreID and

GenreName, where

− GenreID is an integer, ranging from 0 to 18, that identifies a genre.

− GenreName is a String describing the genre. Genre names corresponds to genre columns of the u.item
file.

Figure 7 shows an extract of the file corresponding to 5 genres.

unknown|0
Action|1
Adventure|2
Animation|3
Children's|4

Figure 7 – Extract of the u.genre file

u.user

This file contains data about 943 users (1 user in each line). This is a pipe-separated list of UserID, Age, Gender,

Occupation and Zip-code, where:

− UserID is an integer, ranging from 1 to 943, that identifies a user

− Age is an integer indicating user’s age

− Gender is denoted by a "M" for male and "F" for female

− Occupation is an String indicating user occupation.

− Zip-code is a five-digits integer indicating user ZIP-code.

All demographic information was provided voluntarily by the users and was not checked for accuracy. Only

users who have provided some demographic information are included in this data set. Figure 8 shows an extract

of the file corresponding to 5 users.

1|24|M|technician|85711
2|53|F|other|94043
3|23|M|writer|32067
4|24|M|technician|43537
5|33|F|other|15213

Figure 8 – Extract of the u.user file

u.occupation

This file lists 21 user occupations (1 occupation in each line). Figure 9 shows an extract of the file corresponding

to 5 occupations.

administrator
artist
doctor
educator
engineer

Figure 9 – Extract of the u.occupations file

2.2. MovieLens target schemas

Both MovieLens data set were extracted to a Microsoft Access® database. The following sub-sections describe

the target schemas for both data sets.

Extraction and Integration of MovieLens and IMDb Data – Technical Report

6

2.2.1. Target tables of the large data set

The target schema for the large data set consists in 6 tables describing movies, users and ratings. Figure 10

shows the tables of the target schema, their primary keys (attributes in bold) and foreign keys (lines between

tables). Table 1 describes each target table, its attributes and constraints.

Figure 10 – MovieLens schema (large data set)

Table Attributes Constraints

ML_Users

Demographic information

about users

− UserId: Numeric(4)

− Gender: Char(1); value in {M,F}

− AgeId: Numeric(2)

− OccupationId: Numeric(2)

− ZipCode: String(10)

Primary key: UserId

Foreign keys:

− Age: ref. ML_Ages

− Occupation: ref. ML_Occupation

ML_Movies

Titles of movies
− MovieId: Numeric(4)

− MovieTitle: String(100)

Primary key: MovieId

Unique: MovieTitle

ML_Ratings

User ratings on movies

− UserId: Numeric(4)

− MovieId: Numeric(4)

− Rating: Number(1), value in {1,2,3,4,5}

− Timestamp: Numeric(9); represents

milliseconds from an initial time

Primary key: UserId, MovieId

Foreign keys:

− UserId: ref. ML_Users

− MovieId: ref. ML_Movies

ML_MovieGenres

Genres of movies
− MovieId: Numeric(4)

− Genre: String(12)

Primary key: MovieId, Genre

Foreign keys:

− MovieId: ref. SML_Movies

ML_Ages

Age intervals

− AgeId: Numeric(2)

− MinAge: Numeric(2)

− MaxAge: Numeric(2)

Primary key: AgeId

ML_Occupations

Occupations

− OccupationId: Numeric(2)

− Occupation: String (25)
Primary key: OccupationId

Table 1 – MovieLens schema (large data set)

2.2.2. Target tables of the small data set

The target schema for the small data set consists in 5 tables describing movies, movie genres, users and ratings.

Figure 11 shows the tables of the target schema, their primary keys (attributes in bold) and foreign keys (lines

between tables). Table 2 describes each target table, its attributes and constraints.

Figure 11 – MovieLens schema (small data set)

 Verónika Peralta

 7

Table Attributes Constraints

SML_Users

Demographic information

about users

− UserId: Numeric(4)

− Age: Numeric(2)

− Gender: Char(1); value in {M,F}

− Occupation: String(15); finite set

− ZipCode: String(5)

Primary key: UserId

SML_Movies

Information about movies

− MovieId: Numeric(4)

− MovieTitle: String(100)

− ReleaseYear: Numeric(4)

− Imdb: String(150); represents the URL of an

IMDb page

Primary key: MovieId

Unique: MovieTitle

SML_Ratings

User ratings on movies

− UserId: Numeric(4)

− MovieId: Numeric(4)

− Rating: Number(1), value in {1,2,3,4,5}

− Timestamp: Numeric(9); represents

milliseconds from an initial time

Primary key: UserId, MovieId

Foreign keys:

− UserId: ref. SML_Users

− MovieId: ref. SML_Movies

SML_Genres

Description of genres
− Genre: String(12)

− GenreId: Numeric(2)
Primary key: GenreId

SML_MovieGenres

Genres of movies
− MovieId: Numeric(4)

− GenreId: Numeric(2)

Primary key: MovieId, GenreId

Foreign keys:

− MovieId: ref. SML_Movies

− GenreId: ref. SML_Genres

Table 2 – MovieLens schema (small data set)

2.3. MovieLens extraction, cleaning and transformation processes

Both data sets were quite consistent; however, we detected and solved some kinds of anomalies:

− Multi-valued attributes: Some source attributes are provided as comma-separated (or pipe-separated) lists
of values. As a solution, we normalise tables.

− Null or dummy values in mandatory attributes: Some mandatory attributes (especially key attributes)
contains Null or dummy values (e.g. MovieTitle = 'Unknown'). As a solution, such tuples are eliminated.

− Duplicates: Some tuples (or tuple keys) are duplicated. As a solution, we keep a unique tuple, reconciling
values of further attributes if necessary.

− Orphans: Some tuples do not satisfy referential constraints, i.e. their values are not included in a foreign
table. As a solution, we eliminate orphan tuples.

In order to solve such anomalies we implemented an ETL process for extracting, cleaning and transforming data

of each source file. ETL workflows consist of five major tasks as illustrated in Figure 12 (rectangles represent

extraction

P.txt

referenciationcleaning

P-source

unduplication

P-cleaning

P-duplicates P-orphans

exportation

P

P’P-ref

referential

P-group

Figure 12 – High-level ETL process

Extraction and Integration of MovieLens and IMDb Data – Technical Report

8

tasks; continuous arrows represent control flow; dotted arrows represent data flow, indicating the tables that are

input or output of tasks. ETL inputs are a text file containing the data to extract (P.txt in Figure 12) and

(possibly) some referential tables (referential in Figure 12). ETL output is a relational table containing the

extracted data (P in Figure 12) and (possibly) some aggregation tables (P’ in Figure 12). Two additional tables

keep trace of the anomalies found (P-duplicates and P-orphans in Figure 12). We stored the result of each task in

a temporal table (white tables in Figure 12) in order to ease traceability and maintainability. For certain specific

files, ETL workflows can be simpler car not all the tasks are necessary for loading and cleaning all tables. In the

following, we describe the semantics of each task (details are illustrated in Figure 13).

Bulk copy tasks load data from text files to relational tables. We used Microsoft Access® loading interface,

indicating file format and column format.

Cleaning tasks perform different data cleaning transformations, for example, elimination of Null values,

denormalisation, calculation of derived attributes and so on. Specific cleaning tasks are described later for each

table.

Unduplication tasks eliminate duplicate data. Several sub-tasks are performed, distinguishing normal flow

(when there are no duplicates) and error flow (when there are duplicates):

− Duplicate check tasks verify the existence of duplicate values of key (or unique) attributes. Note that key
(or unique) constraints are not defined yet; unduplication is needed in order to define the appropriate

constraints. Duplicate tuples are inserted into temporal tables (P-duplicates in Figure 13), registering the

key (or unique) value, the number of times the key (or unique) value is repeated, and the conflicting

values of other attributes (minimum and maximum values). Tasks are implemented as SQL operations of

the form:

INSERT INTO P-duplicates (key_attribute1,... key_attributeM, quantity,
 min_column1, max_column1,... min_columnN, max_columnN)
SELECT key_attribute1,... key_attributeM, COUNT(*), MIN(column1),
 MAX(column1),... MIN(columnN), MAX(columnN)
FROM P-cleaning
GROUP BY key_attribute1,... key_attributeM
HAVING COUNT(*)>1;

− Reconciliation tasks are executed only when some duplicates where found (in the corresponding duplicate
check task). Inconsistencies are generally solved by arbitrarily selecting one of the values of conflictive

attributes (e.g. the minimum one) or filling with Null values. Additional columns are added to the

cleaning

unduplication

copy

duplicate

check

P-cleaning

P-duplicates

ok

error
reconciliation

P-group

duplicate

cleaning

referential

referentiation

copy

referential

check

P-group

P-orphans

ok

error

P-ref

orphan

elimination

exportation

copy

P

aggregation

P’

validation

P-ref

cleaning

P-source P-cleaning

extraction

bulk copy

P.txt P-source

grouping

Figure 13 – Details of ETL tasks

 Verónika Peralta

 9

temporal table storing duplicates (P-duplicates in Figure 13) in order to store reconciled values. Tasks are

implemented as a sequence of SQL operations, each one solving one inconsistency. The following

operations are examples of reconciliation operations:

UPDATE P-duplicates
SET column1 = min_column1;

UPDATE P-duplicates
SET column2 = NULL
WHERE min_column2 <> max_column2;

− Duplicate cleaning tasks set a unique value for each non-key attribute (those indicated during
reconciliation task) in duplicated tuples. Tasks are implemented as SQL operations of the form:

UPDATE P-cleaning
SET column1 = P-duplicates.column1,...
 columnN = P-duplicates.columnN
WHERE P-cleaning.key_attribute1 = P-duplicates.key_attribute1 ...
AND P-cleaning.key_attributeM = P-duplicates.key_attributeM

− Grouping tasks keep a unique tuple for each key value. Note that there are conflicting values anymore, so
grouping by all attributes is analogous to grouping by key attributes. Tasks are implemented as SQL

operations of the form:

INSERT INTO grouped_table (key_attribute1,... key_attributeM, column1,...
 columnN)
SELECT key_attribute1,... key_attributeM, column1,... columnN
FROM cleaning_table
GROUP BY key_attribute1,... key_attributeM, column1,... column;

− Copy tasks duplicate tables in order to provide traceability in the case no duplicates were found. Tasks are
implemented as SQL operations of the form:

INSERT INTO P-group (
SELECT *
FROM P-cleaning;

Referentiation tasks eliminate data not satisfying referential constraints. Several sub-tasks are performed,

distinguishing normal and error flow:

− Referential check tasks verify the satisfaction of referential constraints. Orphan tuples (which do not
match tuples of the referenced table) are stored in a temporal table (P-orphans in Figure 13). Tasks are

implemented as SQL operations of the form:

INSERT INTO P-orphans (
SELECT *
FROM P-group
WHERE NOT EXISTS (
 SELECCT * FROM referential
 WHERE reference_attribute1 = foreign_attribute1 AND...
 reference_attributeN = foreign_attributeN));

− Orphan elimination tasks deletes tuples not satisfying referential constraints (those found by the
corresponding referential check task). In other words, tasks keep only tuples that join referential tables.

Tasks are implemented as SQL operations of the form:

INSERT INTO P-ref (
SELECT P-group.*
FROM P-group, referential
WHERE reference_attribute1 = foreign_attribute1 ...
AND reference_attributeN = foreign_attributeN));

− Copy tasks are analogous to those described for unduplication.

Exportation tasks create result tables. Several sub-tasks are performed:

− Validate tasks perform manual user validations (e.g. control of some sampled tuples) or modifications
(e.g. the insertion of new tuples). Specific validation tasks are described later for each table.

− Copy tasks are analogous to those described for unduplication.

Extraction and Integration of MovieLens and IMDb Data – Technical Report

10

− Aggregate tasks build aggregations (P’ in Figure 13) for storing existing values of a specific attribute, i.e.
master tables (e.g. movie genres). Tasks are implemented as SQL operations of the form:

INSERT INTO P’ (
SELECT column1,... columnK
FROM P-ref
GROUP BY column1,... columnK;

The following sub-sections describe the specific tasks of each data set.

2.3.1. ETL process for the large data set

The large data set was quite consistent: no duplicates were found, no violations to referential constraints were

detected. However, we detected and solved some minor anomalies:

− Genres were represented as multi-valued attributes (pipe-separated lists) in source files. Normalization

routines were performed.

− ZIP codes contained letters and ZIP intervals. We ignored such errors and stored values as Strings.

− Master tables for ages and occupations were created from scratch in order to associate descriptions to age

ranges and occupation ids.

Figure 14 shows the extraction workflow. Note that not all the tasks presented in previous section were

necessary for extracting data from all text files. For ease of understanding, we omitted representing some data

flows and temporary tables; copy tasks were also omitted.

bulk copy

users.dat

ratings.dat

movies.dat

bulk copy

bulk copy

ML_Ages

ML_MovieGenres

ML_Movies

ML_Ratings

ML_Users

referential

check

genre

denormalisation

referential

check

ML_Occupations

manual

insert

manual

insert

duplicate

check

duplicate

check

duplicate

chech

Figure 14 – ETL workflow for the large data set

The semantics of the bulk copy, duplicate check and reference check tasks was described previously; the

semantics of specific validation and aggregation tasks is the following:

− Genre denormalisation task builds a normalized table expressing the relationship among movies and
genres. Each tuple, which has a list of genres, is decomposed in several tuples, one per genre. For

example, from the tuple <1,‘Toy Story (1995)’,‘Animation|Children’s|Comedy’> (see Figure 3) we create

3 tuples <1,‘Animation’>, <1,‘Children’s’> and <1,‘Comedy’>. The task is implemented as a sequence of

SQL operations that split the genre list according to the token ‘|’.

 Verónika Peralta

 11

− Manual insert tasks create new tables by executing a list of manually-entered insert operations, for
example:

INSERT INTO ML_Ages (AgeId, MinAge, MaxAge)
VALUES (18, 18, 24);

2.3.2. ETL process for the small data set

We detected and solved several anomalies in the small data set:

− We found 18 duplicate titles (with different MovieId). These tuples would cause duplicates when

matching (by title) IMDb movies. We kept, arbitrarily, the smaller MovieId of each duplicate title.

− There was a movie with title='Unknown' and null values for ReleaseYear and IMDbURL. The movie was

eliminated.

− Ratings of eliminated movies were also eliminated. Substituting their MovieId for those of the kept

movies would carry to duplicates with contradictory ratings.

− Genres were denormalized in source files (one Boolean attribute for each genre). Normalization routines

were performed.

Figure 15 shows the extraction workflow.

bulk copy

u.genre

u.occupation

u.user

u.data

u.item

bulk copy

bulk copy

bulk copy

bulk copy

SML_Genres

SML_MovieGenres

SML_Movies

SML_Ratings

SML_Users

referential

check

referential

check

duplicate

cleaning

year

calculation

referential

check

duplicate

check

duplicate

check

duplicate

check

orphan

elimination

null-values

elimination

genre

denormalization

movie id

reconciliation
grouping

Figure 15 – ETL workflow for the small data set

The semantics of the bulk copy, duplicate check, duplicate cleaning, grouping, reference check and orphan

elimination tasks was described previously; the semantics of specific cleaning, reconciliation and aggregation

tasks is the following:

− Null-values elimination task deletes tuples having null or dummy values. Specifically, we deleted tuples
having ‘Unknown’ as title. Task is implemented as follows:

INSERT INTO movies-cleaning (MovieId, MovieTitle, ReleaseDate, IMDb)
SELECT * FROM movies-source
WHERE MovieTitle <> ‘Unknown’;

Extraction and Integration of MovieLens and IMDb Data – Technical Report

12

− Year calculation task calculates movie release year from movie release date. A typical truncate function is
used. The task is implemented as follows:

UPDATE movies-cleaning
SET ReleaseYear = Mid(ReleaseDate,8,4);

− MovieId reconciliation task keeps the smaller movie id when there are duplicated movid titles (supposed
to be unique). The task is implemented as follows:

UPDATE movie-duplicates
SET MovieId = MinMovieId;

− Genre denormalisation task builds a normalized table expressing the relationship among movies and
genres. Each tuple, which has several Boolean values each one corresponding to a genre, is decomposed

in several tuples, one for each True value. For example, from the tuple <1,‘Toy Story

(1995)’,…,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0> (see Figure 6) we create 3 tuples <1,3>, <1,4> and <1,5>

indicating that genres 3, 4 and 5 correspond to the movie. The task is implemented as a sequence of SQL

operations, one for each genre; for example, the query for Adventure movies (genre 2) is:

INSERT INTO SML_MovieGenres (MovieId, GenreId)
SELECT MovieId, 2
FROM Movies-ref
WHERE Adventure=1;

2.3.3. Summary and statistics

As summary of ETL tasks, the following tables show the number of extracted tuples, the number of anomalies,

duplicates and orphans found, and the number of exported tuples for both data sets.

Source file
Extracted

tuples

Cleaning

anomalies
Duplicates Orphans

Exported

tuples
Resulting table

3883 ML_Movies
Movies.dat 3883 0 0 0

6407 ML_MovieGenres

Ratings.dat 1000209 0 0 0 1000209 ML_Ratings

6040 ML_Users

7 ML_Ages Users.dat 6040 0 0 0

21 ML_Occupations

Table 3 – Statistics of data extraction, cleaning and transformation of the large data set

Source file
Extracted

tuples

Cleaning

anomalies
Duplicates Orphans

Exported

tuples
Resulting table

u.genre 19 0 0 0 19 SML_Genres

1663 SML_Movies
u.item 1682 1 18 0

2906 SML_MovieGenres

u.data 100000 0 0 617 99383 SML_Ratings

u.user 943 0 0 0 943 SML_Users

u.occupation 21

Table 4 – Statistics of data extraction, cleaning and transformation of the small data set

3. IMDb data extraction

IMDb data set consists in ad-hoc text files, having different formats, including tabular lists, tagged text and

hierarchical-organized text. Data extraction consisted in the loading of text data to a relational database,

normalization of data and duplicates elimination. The following sub-sections describe source files, target

schemas, extraction processes and cleaning processes.

3.1. IMDb source schemas

IMDb data set [5] consists of 49 lists that catalog different details about movies. At October 5
th
 2006, list sizes

varied from 25000 to 5000000 tuples. Each list has a list manager, who is responsible for updating, maintaining

and publishing it (http://www.imdb.com/helpdesk/contact). List managers rely on users of IMDb to submit

 Verónika Peralta

 13

corrections and additions to keep lists accurate and complete as possible. List updates are mostly submitted via

the movie mail-server's central collection service, following specific submission protocols

(http://www.imdb.com/mailing_lists).

We extracted data from 23 lists, representing the most relevant tabular features about movies. We discarded lists

providing textual data (10 lists), such as movie plots or trivia, because it was useless for our database-oriented

goals. The remaining 16 lists will be possibly extracted in near future.

We treated four file formats:

Fixed-length columned files present data in several columns, each one starting at a fixed position. They are very

simple to treat with a database loading interface like the one used for extracting MovieLens data sets. Figure 16

shows an extract of the ratings.list file. It is the unique file having this format:

− ratings.list has 4 columns (rating distribution, number of votes, average rating, movie title).

 0000000015 178183 9.1 Godfather, The (1972)
 0000000115 214539 9.1 Shawshank Redemption, The (1994)
 0000000124 101253 9.0 Godfather: Part II, The (1974)
 0000000015 161827 8.9 Lord of the Rings: The Return of the King, The (2003)
 0000000124 87270 8.8 Casablanca (1942)
 0000000124 129696 8.8 Schindler's List (1993)

Figure 16 – Extract of the ratings.list file

Tab-separated columned files also present data in several columns, but columns are separated by tabulations.

The number of tabulations between two consecutive columns is variable (responding to visual presentation)

which unables the direct use of database loading interfaces. Files need to be pre-processed in order to substitute

several tabulations by a unique one. In addition, as some values can be omitted (null values), in some cases, a

double tabulation is expected. In particular, most lists contain optional comments. As anomalies, we found

occurrences of double spaces instead of a tabulation. Figure 17 shows an extract of the genres.list file, which

presents movie titles and their genres separated by several tabulations. The files having this format are:

− color-info.list has 3 columns (movie title, color, comments).

− countries.list has 2 columns (movie title, country).

− genres.list has 2 columns (movie title, genre).

− keywords.list has 2 parts. The former contains a list of keywords (with the number of films including such
keywords between brackets), organized in several tab-separated columns. The latter contains two columns

(movie title, keyword).

− language.list has 3 columns (movie title, language, comments).

− locations.list has 2 columns (movie title, location, comments), where location is a comma-separated list
of geographical names, for example: “Sevilla, Andalucía, Spain”.

− movies.list has 3 columns (movie title, release year, comments).

− production-companies.list has 3 columns (movie title, production company, comments), where
production company may contain the code of one or several countries (between square brackets), for

example: “Taxi Films [uy]”

− release-dates.list has 3 columns (movie title, release date, comments), where release date embeds release
country.

− running-times.list has 2 columns (movie title, running time, comments), where running time may embed
the running country.

− sound-mix.list has 2 columns (movie title, sound mix).

Walking with the Dead (1998) Short
Walking with Walken (2001) Short
Walkin' on Sunshine: The Movie (1997) Comedy
Walkin' on Sunshine: The Movie (1997) Sci-Fi
Walk in the Clouds, A (1995) Drama
Walk in the Clouds, A (1995) Romance

Figure 17 – Extract of the genres.list file

Extraction and Integration of MovieLens and IMDb Data – Technical Report

14

Tagged files precedes data with tags, which indicates the nature of data. Figure 18 shows an extract of the

biographies.list file; tags are placed at the start of each line, indicating for example, an artist name (NM), his real

name (RN), his date and place of birth (DB), etc. Tags are prefixed for each list but some tags are not explained.

This type of file needs ad-hoc parsing. The files having this format are:

− biographies.list includes as tags: artist name, real name, birth (date and place), decease (date, place and
cause) and height. Other tags are ignored.

− business.list includes as tags: movie title, budget (currency and amount), and revenue (currency, amount
and country). Other tags are ignored.

NM: Noth, Chris

RN: Noth, Christopher David

DB: 13 November 1954, Madison, Wisconsin, USA

BG: Chris Noth was born in Madison, Wisconsin on 13 November 1954.

In his

BG: youth he travelled and lived in England, Yugoslavia and Spain…

Figure 18 – Extract of the biographies.list file

Hierarchical-structured files organize data into two hierarchical levels: the outside level describes a movie

feature (e.g. an actor or a director) and the inside level lists all movies corresponding to such feature. Figure 19

shows an extract of the actors.list file, presenting the list of movies played by an actor. Some files contains other

attributes and comments, which follow movie titles (in the same line) separated by one or more tabulations. This

type of file is the most difficult to extract; it needs ad-hoc extractors to iterate between hierarchical levels, and

pre-processing for solving tabulations problems (see tab-separated columned files). The files having this format

are:

− actors.list lists actors and 4 columns (movie title, role, casting position, comments). Columns (excepting
movie title) are optional.

− actresses.list lists actresses and 4 columns (movie title, role, casting position, comments). Columns
(excepting movie title) are optional.

− costume-designers.list lists costume designers and 2 columns (movie title, comments).

− directors.list lists directors and 2 columns (movie title, comments).

− distributors.list lists movie titles and 2 columns (distribution company, comments), where distribution
company may contain acronyms (between brackets) and the code of one or several countries (between

square brackets), for example: “France 2 (FR 2) [fr]”

− movie-links.list lists movie titles and 1 columns (link to another movie title), which embeds the link type
(e.g. “featured in”, “alternate language version of”, “referenced in”, etc).

− producers.list lists producers and 2 columns (movie title, comments).

− production-designers.list lists producion designers and 2 columns (movie title, comments).

− writers.list lists custome designers and 2 columns (movie title, comments).

Outstanding Supporting Actor in a Comedy Series]
Abducted: A Father's Love (1996) (TV) [Larry Coster] <1>
Acting Class, The (2000) [Martin Ballsac] <8>
Apology (1986) (TV) [Roy Burnette] <12>
At Mother's Request (1987) (TV) [Steve Klein]
Baby Boom (1987) (as Christopher Noth) [Yuppie Husband] <44>
Bad Apple (2004) (TV) [Tozzi] <1>

Noth, Chris
Outstanding Supporting Actor in a Comedy Series]

Abducted: A Father's Love (1996) (TV) [Larry Coster] <1>
Acting Class, The (2000) [Martin Ballsac] <8>
Apology (1986) (TV) [Roy Burnette] <12>
At Mother's Request (1987) (TV) [Steve Klein]
Baby Boom (1987) (as Christopher Noth) [Yuppie Husband] <44>
Bad Apple (2004) (TV) [Tozzi] <1>

Noth, Chris

Figure 19 – Extract of the actors.list file

Table 5 summarizes file formats, optional attributes and other particularities.

 Verónika Peralta

 15

File Format Optional att. Particularities

movies.list Tab-separated columned

actors.list Hierarchical-structured
comments,

role, casting

actresses.list Hierarchical-structured
comments,

role, casting

biographies.list Tagged
Columns birth and decease are comma-

separated lists of dates and places.

business.list Tagged
Columns budget and revenue embed

currencies, amounts and countries.

color-info.list Tab-separated columned comments

costume-designers.list Hierarchical-structured comments

countries.list Tab-separated columned

directors.list Hierarchical-structured comments

distributors.list Hierarchical-structured comments
Column distribution company embeds

company acronyms and country code

genres.list Tab-separated columned

keywords.list Tab-separated columned
Contains two lists: (i) list of keywords,

(ii) lists of movies and their keywords.

language.list Tab-separated columned comments

locations.list Tab-separated columned comments
Column location is a comma-separated

list of geographical places.

movie-links.list Hierarchical-structured Column link embeds link type.

producers.list Hierarchical-structured comments

production-companies.list Tab-separated columned comments
Column production company embeds

country code

production-designers.list Hierarchical-structured comments

ratings.list Fixed-length columned

release-dates.list Tab-separated columned comments Column release date embeds country.

running-times.list Tab-separated columned comments Column running time embeds country.

sound-mix.list Tab-separated columned

writers.list Hierarchical-structured comments

Table 5 – List formats and particularities

Movies correspond to one of 6 types: cinema film, series episode, mini-series, TV series, video and video game.

Movie identifiers (MovieTitle columns) are Strings that concatenates different data depending on movie types:

− Cinema film identifiers concatenate movie title and release year (between brackets). E.g.: Walk in the
Clouds, A (1995)

− Series episode identifiers concatenate movie title (quoted), release year (between brackets) and episode
identification (between braces). The latter may include episode name, episode number (between

brackets), or both. E.g.: "Sex and the City" (1998) {All or Nothing (#3.10)}

− Mini-series identifiers concatenate movie title (quoted), release year (between brackets) and the word
mini (between brackets). E.g.: "Bon Voyage" (2006) (mini)

− TV series identifiers concatenate movie title, release year (between brackets) and the word TV (between

brackets). E.g.: Aladdin on Ice (1995) (TV)

− Video identifiers concatenate movie title, release year (between brackets) and the letter V (between
brackets). E.g.: Elton John: Live in Barcelona (1992) (V)

− Video game identifiers concatenate movie title, release year (between brackets) and the word VG
(between brackets). E.g.: Harry Potter: Quidditch World Cup (2003) (VG)

3.2. IMDb target schema

The target schema for the IMDb data set consists in 24 tables describing movies and companies or persons

related to movies. Figure 20 shows the tables of the target schema, their primary keys (underlined attributes) and

foreign keys (arrows between tables). Additional dotted lines indicate is-a relationships among some tables and a

(not implemented) relation describing persons. Table 6 describes each target table, its attributes and constraints.

E
x
tractio

n
 a
n
d
 In
teg

ratio
n
 o
f M

o
v
ieL

e
n
s an

d
 IM

D
b
 D
ata –

 T
ech

n
ical R

ep
o
rt

1
6

Figure 20 – IMDb schema

IMDb_Movies

MovieNum

MovieTitle

Type

Year

FurtherInfo

IMDb_Ratings

MovieNum

MovieTitle

Distribution

Votes

Rating

IMDb_Genres

MovieNum

MovieTitle

Genre

MovieNum

MovieNum

IMDb_Countries

MovieNum

MovieTitle

Country

MovieNum

IMDb_ReleaseDates

MovieNum

MovieTitle

Country

ReleaseDate

ReleaseYear

ReleaseInfo

MovieNum

IMDb_Keywords

Keyword

MovieQuantity

IMDb_MovieKeywords

MovieNum

MovieTitle

Keyword

Keyword

MovieNum

MovieNum

IMDb_Languages

MovieNum

MovieTitle

Language

LanguageInfo

IMDb_ProductionCompanies

MovieNum

MovieTitle

CompanyName

CountryCode

CompanyInfo

MovieNum

MovieNum

IMDb_Colors

MovieNum

MovieTitle

Color

ColorInfo

MovieNum

LinkMovieNum=MovieNum

IMDb_MovieLinks

MovieNum

LinkMovieNum

MovieTitle

LinkMovieTitle

LinkType

2
MovieNum

IMDb_Business

MovieNum

MovieTitle

BudgetCurrency

Budget

RevenueCurrency

Revenue

IMDb_Distributors

MovieNum

MovieTitle

DistributionCompany

CountryCode

DistributionInfo

MovieNum

IMDb_Locations

MovieNum

MovieTitle

Location

Zone

LocationInfo

MovieNum

IMDb_RunningTimes

MovieNum

MovieTitle

Country

Duration

RunningInfo

MovieNum

MovieNum

IMDb_Sounds

MovieNum

MovieTitle

SoundMix

IMDb_Directors

MovieNum

MovieTitle

Director

DirectorAlias

DirectorInfo

MovieNum

IMDb_Writers

MovieNum

MovieTitle

Writer

WriterInfo
MovieNum

IMDb_Producers

MovieNum

MovieTitle

Producer

ProducerInfo

MovieNum

IMDb_CostumeDesigners

MovieNum

MovieTitle

CostumeDesigner

CostumeInfo

MovieNum

IMDb_ProductionDesigners

MovieNum

MovieTitle

ProductionDesigner

DesignerInfo

MovieNum

IMDb_Actresses

MovieNum

MovieTitle

Actress

PlayInfo

Role

Casting

MovieNum

IMDb_Actors

MovieNum

MovieTitle

Actor

PlayInfo

Role

Casting

MovieNum

IMDb_Biographies

Name

RealName

Birth

Decease

Height

IMDb_Person

Name

Director

Writer

Producer

Actress

Actor

CostumeDesigner

ProductionDesigner

Name

IMDb_Movies

MovieNum

MovieTitle

Type

Year

FurtherInfo

IMDb_Ratings

MovieNum

MovieTitle

Distribution

Votes

Rating

IMDb_Genres

MovieNum

MovieTitle

Genre

MovieNum

MovieNum

IMDb_Countries

MovieNum

MovieTitle

Country

MovieNum

IMDb_ReleaseDates

MovieNum

MovieTitle

Country

ReleaseDate

ReleaseYear

ReleaseInfo

MovieNum

IMDb_Keywords

Keyword

MovieQuantity

IMDb_MovieKeywords

MovieNum

MovieTitle

Keyword

Keyword

MovieNum

MovieNum

IMDb_Languages

MovieNum

MovieTitle

Language

LanguageInfo

IMDb_ProductionCompanies

MovieNum

MovieTitle

CompanyName

CountryCode

CompanyInfo

MovieNum

MovieNum

IMDb_Colors

MovieNum

MovieTitle

Color

ColorInfo

MovieNum

LinkMovieNum=MovieNum

IMDb_MovieLinks

MovieNum

LinkMovieNum

MovieTitle

LinkMovieTitle

LinkType

2
MovieNum

IMDb_Business

MovieNum

MovieTitle

BudgetCurrency

Budget

RevenueCurrency

Revenue

IMDb_Distributors

MovieNum

MovieTitle

DistributionCompany

CountryCode

DistributionInfo

MovieNum

IMDb_Locations

MovieNum

MovieTitle

Location

Zone

LocationInfo

MovieNum

IMDb_RunningTimes

MovieNum

MovieTitle

Country

Duration

RunningInfo

MovieNum

MovieNum

IMDb_Sounds

MovieNum

MovieTitle

SoundMix

IMDb_Directors

MovieNum

MovieTitle

Director

DirectorAlias

DirectorInfo

MovieNum

IMDb_Writers

MovieNum

MovieTitle

Writer

WriterInfo
MovieNum

IMDb_Producers

MovieNum

MovieTitle

Producer

ProducerInfo

MovieNum

IMDb_CostumeDesigners

MovieNum

MovieTitle

CostumeDesigner

CostumeInfo

MovieNum

IMDb_ProductionDesigners

MovieNum

MovieTitle

ProductionDesigner

DesignerInfo

MovieNum

IMDb_Actresses

MovieNum

MovieTitle

Actress

PlayInfo

Role

Casting

MovieNum

IMDb_Actors

MovieNum

MovieTitle

Actor

PlayInfo

Role

Casting

MovieNum

IMDb_Biographies

Name

RealName

Birth

Decease

Height

IMDb_Person

Name

Director

Writer

Producer

Actress

Actor

CostumeDesigner

ProductionDesigner

Name

 Verónika Peralta

 17

Table Attributes Constraints

IMDb_Movies

Information about

movies

− MovieNum: Numeric(7); autogenerated id

− MovieTitle: String(250)

− Type: String(2); {C=cinema, TV=television,

V=video, VG=video game, S=serie,

M=miniserie}

− Year: String(45); an year, a range or a list of

years

− FurtherInfo: String(30)

Primary key: MovieNum

Alternative key: MovieTitle

IMDb_Actors

Actors of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Actor: String(75)

− PlayInfo: String(110); further info

(uncredited, alias, special roles…)

− Role: String(256); role name and/or

description

− Casting: Numeric(3); casting position

Primary key: MovieNum, Actor

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Actresses

Actresses of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Actress: String(75)

− PlayInfo: String(110); further info

(uncredited, alias, special roles…)

− Role: String(256); role name and/or

description

− Casting: Numeric(3); casting position

Primary key: MovieNum, Actress

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Biographies

Personal data about

actors, actresses,

directors, producers

and other people

involved in movies

− Name: String(70)

− RealName: String(220)

− Birth: String(130); date and place of birth

− Decease: String(160); date, place and cause

of decease

− Height: String(15)

Primary key: Name

IMDb_Business

Budget and revenue of

movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− BudgetCurrency: String(3)

− Budget: Numeric(15,2)

− RevenueCurrency: String(3)

− Revenue: Numeric(15,2)

Primary key: MovieNum

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Colors

Colors of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Color: String(20)

− ColorInfo: String(50); further info (versions)

Primary key: MovieNum, Color

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Costume-

Designers

Costume designers of

movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− CostumeDesigner: String(50)

− CostumeInfo: String(100); further info

(roles, alias, …)

Primary key: MovieNum,

CostumeDesigner

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Countries

Countries of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Country: String(30)

Primary key: MovieNum, Country

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Directors

Directors of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Director: String(40)

− DirectorAlias: String(80); director’s

appearing name in the movie

− DirectorInfo: String(100); further info e.g.

uncredited movies, co-direction, direction of

episodes, segments or videos…

Primary key: MovieNum, Director

Foreign keys:

− MovieNum: ref. IMDb_Movies

Extraction and Integration of MovieLens and IMDb Data – Technical Report

18

IMDb_Distributors

Companies that

distributed movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− DistributionCompany: String(110)

− CountryCode: String(15)

− DistributorInfo: String(140); further info

(years, countries, media, …)

Primary key: MovieNum,

DistributionCompany,

CountryCode

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Genres

Genres of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Genre: String(12)

Primary key: MovieNum, Genre

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Keywords

Master of keywords

− Keyword: String(60)

− MovieQuantity: Numeric(5); the number of

movies having the keyword

Primary key: Keyword

IMDb_Languages

Languages of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Language: String(30)

− LanguageInfo: String(70); further info

(versions)

Primary key: MovieNum,

Language

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Locations

Running locations of

movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Location: String(170)

− Zone: String(50)

− LocationInfo: String(256); further info

(years, countries, media, …)

Primary key: MovieNum, Location

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_MovieKeywords

Keywords of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Keyword: String(60)

Primary key: MovieNum, Keyword

Foreign keys:

− MovieNum: ref. IMDb_Movies

− Keyword: ref. IMDb_Keywords

IMDb_MovieLinks

Links between movies

− MovieNum: Numeric(7)

− LinkMovieNum: Numeric(7); linked movie

− MovieTitle: String(250)

− LinkMovieTitle: String(250); linked movie

− LinkType: String(30); references, remakes,

etc.

Primary key: MovieNum,

LinkMovieNum, LinkType

Foreign keys:

− MovieNum: ref. IMDb_Movies

− LinkMovieNum: ref.

IMDb_Movies

IMDb_Producers

Producers of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Producer: String(60)

− ProducerInfo: String(90); further info (role,

awards, …)

Primary key: MovieNum, Producer

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Production-

Companies

Companies that

produced movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− CompanyName: String(170)

− CountryCode: String(15)

− CompanyInfo: String(140); further info

(years, places, participations, …)

Primary key: MovieNum,

CompanyName, CountryCode

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Production-

Designers

Production designers of

movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− ProductionDesginer: String(35)

− DesignerInfo: String(140); further info (co-

productions, roles, …)

Primary key: MovieNum,

ProductionDesginer

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Ratings

Global ratings on

movies (not

differentiated par user)

− Distribution: String(10); unknown meaning

− Votes: Numeric(8,2); quantity of votes

(decimals are always zero)

− Rating: Number(4,2), value between 0 and

10

− MovieNum: Numeric(7)

− MovieTitle: String(250)

Primary key: MovieNum

Foreign keys:

− MovieNum: ref. IMDb_Movies

 Verónika Peralta

 19

IMDb_ReleaseDates

Dates of movie releases

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Country: String(40)

− ReleaseDate: String(20)

− ReleaseYear: Numeric(4)

− ReleaseInfo: String(90); further info (release

city/festival)

Primary key: MovieNum, Country,

ReleaseDate

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_RunningTimes

Running times of

movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Country: String(40)

− Duration: Numeric(5)

− RunningInfo: String(75); further info

(version, episodes, media, …)

Primary key: MovieNum, Country

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Sounds

Sound mix of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− SoundMix: String(40)

Primary key: MovieNum,

SoundMix

Foreign keys:

− MovieNum: ref. IMDb_Movies

IMDb_Writers

Writers of movies

− MovieNum: Numeric(7)

− MovieTitle: String(250)

− Writer: String(45)

− WriterInfo: String(110); further info (role,

awards, …)

Primary key: MovieNum, Writer

Foreign keys:

− MovieNum: ref. IMDb_Movies

 Table 6 – IMDb schema

3.3. IMDb extraction processes

Contrarily to MovieLens data sets, the IMDb data set was very hard to extract and load in a relational database.

The reason is that the data set is not conceived to be manipulated by DBMSs but by research engines. As a

consequence, data is not presented in a tabular way and it is necessary to develop ad-hoc data extractors for

loading tagged and hierarchical data and pre-processors for formatting data when it is presented in a pseudo-

tabular format. This sub-section describes data extraction processes and next sub-section presents data cleaning

and data transformation processes.

Data extraction includes pre-processing tasks for: (i) normalizing hierarchical structures, (ii) substituting

multiple tabulations and blanks, and (iii) normalizing tagged structures. Then, pre-processed files are loaded into

a relational database. We describe each task as follows:

3.3.1. Normalization of hierarchical structures

Many files organize data into two hierarchical levels. The outside level describes a movie feature (e.g. an actor)

and the inside level lists all movies corresponding to such feature (see Figure 19). Consequently, only the first

line corresponding to a movie feature contains it explicitly; the following lines only contain movie titles (and

possible optional attributes). In order to store data in a tabular way, we need to iterate among the list of movies

corresponding to each feature and insert it at each line. We do so in a pre-processing stage.

Pre-processing program is written in Java (jdk 1.4). It takes as input a list file, processes the file line per line and

stores resulting lines in an output text file. We recognize lines containing a new feature from those containing

movies of a previous feature because the formers start by a String (the feature value) and the latter start by a

tabulation mark. A variable, storing the current feature value, is updated for each new feature found. White lines

are ignored.

Table 7 (column hierarchies) indicates which source files need pre-processing for normalizing hierarchical

structures.

3.3.2. Substitution of multiple tabulations and blanks

An important problem, present in most source files, is the use of a variable number of tabulations for separating

columns. This disconcerts database loading programs and causes the storage of data at inappropriate attributes.

Extraction and Integration of MovieLens and IMDb Data – Technical Report

20

In order to prepare source files for being read by database loading programs, we pre-processed files, substituting

multiple tabulations and blanks by a unique tabulation.

Pre-processing programs are written in Java (jdk 1.4). They take as input a list file, process the file line per line

and store resulting lines in an output text file. The substitution function is quite simple; it searches for multiple

occurrences of tabulations and/or blanks and substitutes them by a single tabulation.

Optional attributes need more attention. When there is a unique optional attribute and it is placed at the end of

the line, the database loading interface fills null values automatically. However, when there are several optional

attributes, we need to analyze to which attribute corresponds each value and (possibly) insert additional

tabulations in order to signal the presence of a null value. Most files only contained comments as optional

attributes, which were placed at the end of the line, so no further processing was needed. Conversely, actors.list

and actresses.list files present three optional attributes: comments, role and casting position. We recognized their

values because of special characters enclosing them. Specifically, comments, roles and casting positions are

enclosed by brackets, square brackets and angle brackets respectively (see Figure 19). In all cases (including

files having only comments), we did not eliminate enclosing characters; we deferred it to data cleaning steps.

Table 7 indicates which source files needed pre-processing for substituting multiple tabulations or blanks

(column tabulations) and which ones needed the treatment of enclosing characters (we indicate attribute names

enclosed by the corresponding special characters).

3.3.3. Normalization of tagged structures

Two files utilize tags for organizing data: biographies.list and business.list. Both files start each line with a two-

letters tag that indicates the meaning of the line (the attribute to which it corresponds).

Biographies.list starts describing a new person by presenting a line with person name (tag NM). Subsequent lines

describe different characteristics of a person. We extract real names (tag RN), date and place of birth (tag DB),

date, place and cause of decease (tag DD) and height (tag HT). We ignore other tags and white lines.

Analogously, business.list starts describing a new movie by presenting a line with its title (tag MV). Subsequent

lines describe different characteristics of a movie. We extract budget currency and amount (tag BT), revenue

currency and amount (tag RT). We ignore other tags and white lines.

File Hierarchies Tabulations Enclosing characters Tags

movies.list no yes no

actors.list yes yes (comments), [role], <casting> no

actresses.list yes yes (comments), [role], <casting> no

biographies.list no no yes

business.list no no yes

color-info.list no yes (comments) no

costume-designers.list yes yes (comments) no

countries.list no yes no

directors.list yes yes (comments) no

distributors.list yes yes (comments) no

genres.list no yes no

keywords.list no yes no

language.list no yes (comments) no

locations.list no yes (comments) no

movie-links.list yes yes no

producers.list yes yes (comments) no

Production-companies.list no yes (comments) no

Production-designers.list yes yes (comments) no

ratings.list no no no

release-dates.list no yes (comments) no

running-times.list no yes (comments) no

sound-mix.list No yes no

writers.list Yes yes (comments) no

Table 7 – Pre-processing of source files

 Verónika Peralta

 21

In order to store data in a tabular way, we need to iterate among lines corresponding to each person/movie and

write a unique line with all available characteristics. We do so in a pre-processing stage.

Pre-processing program was written in Java (jdk 1.4). It takes as input a list file, processes the file line per line

and stores resulting lines in an output text file. We store extracted data (corresponding to desired tags) in local

variables. In both files, the desired tags are contained in a single line (other ignored tags are split in several

lines). When we recognize a new person/movie (because of reading the corresponding tags), we store the line

corresponding to the previous one.

Table 7 (column tags) indicates which source files needed pre-processing for normalizing tagged structures.

3.3.4. Loading into a relational database

After pre-processing tasks, files have a tabular form and can be treated by a database loading interface. We used

Microsoft Access
®
 loading interface, indicating file format and column format.

Note that the only file that did not need pre-processing is ratings.list, which is structured as fixed-length

columns.

3.4. IMDb cleaning and transformation processes

Contrarily to MovieLens data sets, the IMDb data set presented a great number of anomalies and consequently

needed the execution of several data cleaning and data transformation processes. The types of anomalies that we

detected and solved are:

− We found 6 duplicate titles in movies.list. We keep only one occurrence.

− There were a great number of duplicate pairs of the form <movie, feature> for most features (specific

quantities for each source file are shown in Table 11). In most cases, duplicates tuples had inconsistent

values for remaining attributes. Our police was to substitute inconsistent values by null values (especially

for comments), i.e. we considered inconsistent data as unknown. We did special treatment to some

feature: in the case of budget and revenues (business.list) we summed inconsistent values (they were

consider as partial data) and in the case of personal data (biographies.list) we kept the maximum value (in

all inconsistencies, one of the values was null).

− There were a great number of violations to referential constraints (specific quantities for each source file

are shown in Table 11). We eliminated such tuples.

− Some columns embedded multiple attributes. For example, the value “Taxi Films [uy]” of the production-

companies.list embeds a production company (“Taxi Films”) and the code of its country (“Uruguay”).

Eight files contained this type of anomalies (see Table 5). We solved them by splitting columns.

− Optional columns are delimited by special characters, e.g. square brackets or braces (specific enclosing

characters are listed in Table 7). We eliminated enclosing characters in most cases. Exceptions were the

occurrences of multiple comments, for example “(1963-1964) (USA) (TV) (original airing)”; we kept

brackets because they delimitate each comment.

− Country names and codes, appearing in different source files (distributors.list, production-companies.list,

running-times.list, locations.list, countries.list and release-dates.list) were not consistent (for example, we

found the names ‘U.K.’ and ‘United Kindom’ for referring to the same country). We deferred the problem

to data integration stage.

− As we did not extract all tags in business.list and biographies.list, we found an important number of tuples

having null values for all columns excepting key (specific quantities for each source file are shown in

Table 11). We filtered such tuples.

− The type of a movie (film, series episode, etc.) was not explicitly provided, however, IMDb site explains

how titles are build (see Section 3.1). We calculated movie type following such explanations.

− Release year was calculated from release date (release-dates.list) by using typical date manipulation

functions.

− The list of keyword included at the start of the keywords.list file, which is split in several columns, was

hard to extract. We calculated the same information by grouping keywords of all movies and counting the

number of movies that references each one.

Extraction and Integration of MovieLens and IMDb Data – Technical Report

22

ETL workflows consisted in the same tasks presented for the MovieLens data set but providing different

implementations for specific cleaning and reconciliation tasks. The general workflow is illustrated in Figure 21

(P.txt represents either one of the text files obtained after pre-processing source files or ratings.list, which does

not need pre-processing). However, for certain files some tasks were not necessary, specifically, if there were no

transformations to do, or no duplications nor orphans were detected. Table 8 shows the tasks that are omitted for

each file; bulk copy and duplicate check tasks are executed for all files.

In addition, as indexes by movie titles consumed much space and were less efficient, we auto generated new

integer identifiers for movies. We included a new column (MovieNum), of auto-numeric type to the movies-

group table (which stores the results of the grouping task). Each tuple inserted by the grouping task is set with a

new sequential identifier generated automatically. We also maintained movie titles in tables referencing movies,

letting users the possibility of choosing the identifier that is best adapted to their applications.

bulk copy

P.txt

IMDb_Movies IMDb_P

duplicate

cleaning

referential

check

duplicate

check

orphan

elimination

reconciliation groupingcleaning

aggregation

IMDb_P’

Figure 21 – ETL workflow for IMDb files

Source file Cleaning
Reconc., dupl. cleaning

and grouping
Ref. check

Orphan

elimination
Aggregation

movies.txt X X X
actors.txt X X
actresses.txt X X
biographies.txt X X X
business.txt X
color-info.txt X X
costume-designers.txt X X
countries.txt X X
directors.txt X X
distributors.txt X
genres.txt X X
keywords.txt X

language.txt X X
locations.txt X
movie-links.txt X X
producers.txt X X
production-companies.txt X
production-designers.txt X X
ratings.list X X X
release-dates.txt X
running-times.txt X
sound-mix.txt X X
writers.txt X X

Table 8 – ETL tasks that where not necessary to execute

In the following we describe such specific cleaning and reconciliation tasks, as well as special remarks:

 Verónika Peralta

 23

− Movie type calculation task (cleaning for movies.txt) calculates movie types as derived attributes by
looking for some special characters in the movie title (see Table 9). The task is implemented as a

sequence of SQL operations (one for each movie type) that update the Type attribute according to Table

9, for example:

UPDATE movies-cleaning
SET Type=M
WHERE Mid(MovieTitle, 1, 2) = ’”’
AND Mid(MovieTitle, Len(MovieTitle)-5, 6) = ’(mini)’

Movie type Title is quoted Special ending word Generated attribute

Cinema film No none C

Series episode Yes (mini) S

Mini-series Yes none M

TV series No (TV) TV

Video No (V) V

Video game No (VG) VG

Table 9 – Movie type identification

− Null values elimination tasks (initial cleaning for biographies.txt and business.txt) eliminate tuples having
null values for all attributes (excepting keys). Tasks are implemented as SQL operations like:

INSERT INTO business-cleaning (MovieTitle, Budget, Revenue)
SELECT *
FROM business-source
WHERE Bugnet IS NOT NULL OR Revenue IS NOT NULL;

The implementation for biographies.txt is analogous.

− Splitting tasks (cleaning for several tasks) update several attributes from one concatenating several
concepts. For example, the ProductionCompany column of the productioncompanies.txt file embeds

company names and country codes. The tasks search for special characters (e.g. brackets, square brackets,

braces) and split attribute values according to such characters. Tasks are implemented as a sequence of

SQL operations, for example:

INSERT INTO productioncompanies-cleaning
 (MovieTitle, ProductionCompany, CompanyInfo, Aux1)
SELECT MovieTitle, ProductionCompany, Comments,
 InStr(1,ProductionCompany,’[‘)
FROM productioncompanies-source;

UPDATE productioncompanies-cleaning
SET CompanyName = Mid(ProductionCompany, 1, Aux1-2),
 CountryCode = Mid(ProductionCompany,Aux1+1,Len(ProductionCompany)-Aux1-1)
WHERE Aux1 > 0;

UPDATE productioncompanies-cleaning
SET CompanyName = ProductionCompany
WHERE Aux1 = 0;

The first operation calculates the position of the special character and stores it in the Aux1 attribute. The

second operation performs the split. The third operation is necessary when some values are optional (in

the example, if country code can be omitted). It sets the first attribute and less the second as Null.

The implementation of splitting tasks for business.txt, distributors.txt, releasedates.txt and

runningtimes.txt is similar. Table 10 lists attributes to split and special characters for those files. Columns

of biographies.txt were not split because of their format diversity.

As a special case, the splitting of movielinks.txt is performed by table look-up, i.e. the first attribute

(movie type) is looked up in a table; the remaining of the text corresponds to the second attribute. The

look-up table contains the fifteen link types, namely: “alternate language version of”, “edited from”,

“edited into”, “featured in”, “features”, “followed by”, “follows”, “referenced in”, “references”, “remade

as”, “remake of”, “spin off”, “spoofed in”, “spoofs”, “version of”. The tasks is implemented as follows:

Extraction and Integration of MovieLens and IMDb Data – Technical Report

24

INSERT INTO movielinks-cleaning
 (MovieTitle, LinkMovieTitle, LinkType)
SELECT MovieTitle, Mid(Link, Len(LinkType), Len(Link)), LinkType
FROM movielinks-source X, MovieTypes Y
WHERE Mid(Link, 1, Len(LinkType)) = LinkType;

File
Multi-purpose

column
First attribute Second attribute Separator

business.txt Budget BudgetCurrency Budget first blank

 Revenue RevenueCurrency Revenue first blank

distributors.txt DistributionCompany DistributionCompany CountryCode [

movielinks.txt Link LinkType LinkMovieTitle look up

productioncompanies.txt ProductionCompany CompanyName CountryCode(opt.) [

releasedates.txt ReleaseDate Country ReleaseDate colon

runningtimes.txt RunningTime Country (optional) Duration colon

Table 10 – Splitting attributes

− Enclosing character elimination tasks (cleaning for several tables, listed in Table 7) deletes initial and
ending character of a column, which enclose the value. The task is implemented as follows:

INSERT INTO languages-cleaning
 (MovieTitle, Language, LanguageInfo)
SELECT MovieTitle, Language, Mid(LanguageInfo,2,Len(LanguageInfo)-2)
FROM languages-source;

The implementation for other files is analogous.

− Zone calculation task (cleaning for location.txt) extracts zone from location attribute. Specifically,
location values are comma-separated lists of geographic places, from most precise to largest (e.g.

“Toronto, Ontario, Canada” and “Biltmore Hotel - 506 S. Grand Ave., Downtown, Los Angeles,

California, USA”). The number of items in each location value is variable. The Zone attribute will store

the last item of a location, which is generally a country name. In order to calculate it, we need to iterate in

the location value, searching the position of a comma and splitting the location value as described for

previous task.

The task is implemented as a sequence of SQL operations, as follows:

INSERT INTO locations-cleaning
 (MovieTitle, Location, Zone, LocationInfo)
SELECT MovieTitle, Location, Location, Comments
FROM locations-source;

UPDATE locations-cleaning
SET Zone = Mid(Zone, InStr(1,Zone,’,’)+2, Len(Zone))
WHERE InStr(1,Zone,’,’) > 0;

The first operation sets zone as the complete location. The second operation splits zone according to the

position of the first comma, storing the second part. Note that only tuples containing a comma are

updated. The second operation is repeated until no tuple is updated.

− Release year calculation task (further cleaning for releasedates.txt) calculates release year from release
date. A typical truncate function is used. The implementation of the task was presented in Section 2.3.2.

− Reconciliation tasks set conflictive values to Null. The task is implementation was discussed in Section
 2.3.

− Orphan elimination tasks keep tuples joining the IMDb_Movies table, as described in Section 2.3. At this

moment, we copy the auto-generated movie identifier (MovieNum) obtained from the IMDb_Movies

table. The implementation for the genres.txt file is:

INSERT INTO genres-ref (MovieNum, MovieTitle, Genre)
SELECT Y.MovieNum, X.MovieTitle, X.Genre
FROM genres-group X, IMDb_Movies Y
WHERE X.MovieTitle = Y.MovieTitle;

 Verónika Peralta

 25

The implementation for other files is analogous. Note that we execute the task even if no orphans were

found, in order to obtain movie identifiers.

− Referential check task (for movielinks.txt) is executed twice in order to check that both, movie titles and
link movie titles, are included in the IMDb_Movies table, generating two orphan tables. Implementation

was described in Section 2.3.

− Orphan elimination task (for movielinks.txt) also considers that both, movie titles and link movie titles,
are included in the IMDb_Movies table, i.e. it joins twice the IMDb_Movies table. The task is

implemented as follows:

INSERT INTO movielinks-ref (MovieNum, LinkMovieNum, MovieTitle,
 LinkMovieTitle, LinkType)
SELECT X.MovieNum, Y.MovieNum, M.MovieTitle, M.LinkMovieTitle, M.LinkType
FROM movielinks-group M, IMDb_Movies X, IMDb_Movies Y
WHERE M.MovieTitle = X.MovieTitle
AND M.LinkMovieTitle = Y.MovieTitle;

− Aggregation task (for keywords.txt) stores the list of existing keywords and the number of movies related
to each keyword. It is implemented as follows:

INSERT INTO IMDb_Keywords (Keyword, MovieQuantity)
SELECT Keyword, count(*)
FROM IMDb_MovieKeywords
GROUP BY Keyword;

As a summary of ETL tasks, Table 11 shows the number of extracted tuples, the number of anomalies, duplicates

and orphans found, and the number of exported tuples.

Source file
Extracted

tuples

Cleaning

anomalies
Duplicates Orphans

Exported

tuples
Resulting table

movies.list 858.967 0 6 858.961 IMDb_Movies

actors.list 5.014.897 0 40 486.875 4.527.982 IMDb_Actors

actresses.list 2.743.802 0 35 327.935 2415832 IMDb_Actresses

biographies.list 312.837 54.011 8 258818 IMDb_Biographies

business.list 57.364 31.847 1 0 25516 IMDb_Business

color-info.list 433.117 0 846 44.541 387730 IMDb_Colors

costume-designers.list 99.192 0 35 7.644 91513 IMDb_CostumeDesigners
countries.list 530.295 0 681 0 529614 IMDb_Countries

directors.list 513.344 0 295 34 513015 IMDb_Directors

distributors.list 403.271 0 15.023 0 388248 IMDb_Distributors

genres.list 637.976 0 606 57.519 579851 IMDb_Genres

32704 IMDb_Keywords
keywords.list 1.124.778 0 507 330

1123941 IMDb_MovieKeywords

language.list 445.840 0 1.355 0 444485 IMDb_Languages

locations.list 216.951 0 45 0 216906 IMDb_Locations

movie-links.list 533.428 0 0 36.572 496856 IMDb_MovieLinks

producers.list 1.038.128 0 422.088 172.775 443265 IMDb_Producers

production-companies.list 478.346 0 831 0 477515 IMDb_ProductionCompanies

production-designers.list 103.347 0 12 7509 95826 IMDb_ProductionDesigners

ratings.list 159.957 0 0 66 159891 IMDb_Ratings

release-dates.list 830.416 0 2.007 53.556 774853 IMDb_ReleaseDates

running-times.list 327.312 0 4.405 49.901 273006 IMDb_RunningTimes

sound-mix.list 231.318 0 496 8.512 222310 IMDb_Sounds

writers.list 775.660 0 25.260 130.812 619588 IMDb_Writers

Table 11 – Statistics of data extraction, cleaning and transformation

Extraction and Integration of MovieLens and IMDb Data – Technical Report

26

4. Data integration

This section describes the construction of an integrated database from the extracted data. We start describing the

difficulty of matching movie identifiers and describing the matching process. We then describe the integrated

schema and its construction.

4.1. Matching processes

We extracted 858.961 movies from IMDb and 3.883 movies from MovieLens. After integration, we constated

that all MovieLens movies were included in the IMDb data set. However, matching titles was not trivial.

Furthermore, only 79% of matches had identical movie titles in both data sets. Other matching strategies were

implemented, including manual look-up, in order to match the remaining titles. This section presents an

overview of the matching process; details can be found in [Peralta 2007a].

Both, MovieLens and IMDb identify movies by ad-hoc identifiers (called movie titles) that concatenate title and

running year (see Sections 2.1.1and 3.1). Note that we do not consider series episodes, mini-series, TV series,

videos or video games (which have different identifiers) because MovieLens data set only includes cinema

movies. But even identifiers are built in the same manner, we found discrepancies in titles. Most typical causes

are inclusion of special characters, typing errors, transposition or omission of articles, use of different running

years, translation of foreign titles and use of alternative titles. Table 12 illustrates differences in movie titles.

IMDb titles MovieLens titles Causes

¡Three Amigos! (1986) Three Amigos! (1986) Special characters

Shall We Dance (1937) Shall We Dance? (1937)

8 ½ Women (1999) 8 1/2 Women (1999)

One Hundred and One Dalmatians (1961) 101 Dalmatians (1961)

Two Moon Junction (1988) Two Moon Juction (1988) Typing errors

La Bamba (1987) Bamba, La (1987) Transposed articles

El Dorado (1966) Dorado, El (1967)

Three Ages (1923) Three Ages, The (1923) Omitted articles

Story of G.I. Joe (1945) Story of G.I. Joe, The (1945)

Tarantella (1996) Tarantella (1995) Different years

Supernova (2000/I) Supernova (2000)

Abre los ojos (1997) Open Your Eyes (Abre los ojos) (1997) English titles

Caro diario (1994) Dear Diary (Caro Diario) (1994)

Huitième jour, Le (1996) Eighth Day, The (Le Huitième jour) (1996)

Historia oficial, La (1985) Official Story, The (La Historia Oficial) (1985)

Cité des enfants perdus, La (1995) City of Lost Children, The (1995)

Star Wars (1977) Star Wars: Episode IV - A New Hope (1977) Alternative titles

Santa Claus (1985) Santa Claus: The Movie (1985)

Sunset Blvd. (1950) Sunset Blvd. (a.k.a. Sunset Boulevard) (1950)

Sugar Hill (1994) Harlem (1993)

Table 12 – Examples of movies having different titles

In order to match MovieLens titles with IMDb titles (included in ML_Movies and IMDb_Movies tables), we

followed several matching strategies. Each strategy tries to match MovieLens titles not matched by previous

strategies as shown in Figure 22. To this end, each strategy considers a different heuristic for building candidate

(alternative) titles for unmatched movies and compares them with IMDb titles. We implemented the following

strategies:

− Join by movie title: This strategy computes the exact match. We joined IMDb_Movies and ML_Movies

tables by the MovieTitle attribute. We obtained 3086 matches (79%).

− Match using the MovieLens small data set: This strategy uses the SML_Movies table (small data set) as a

mapping table between unmatched MovieLens titles and IMDb titles. Specifically, the SML_Movies table

contains the URL of the IMDb web page corresponding to each movie. We formatted the URL and

replaced special characters (e.g. %20 represents a blank) obtaining a candidate title. We joined this table

with unmatched MovieLens movies (by the MovieTitle attribute) and with IMDb_Movies (by the just

 Verónika Peralta

 27

IMDb_Movies

ML_Movies

SML_Movies

match1

I_Movies

match2

unmatched
ok (insert)

unmatched

match3

unmatched

match4

unmatched

match5

unmatched

match6

unmatched

match7

unmatched

match8

ok

ok

ok

ok

ok

ok

ok

Figure 22 – Matching process

built candidate title). We had several difficulties: First, the intersection of both MovieLens collections is

not very large. Second, we cannot replace all special characters. As a result, we obtained 83 new matches,

totalizing 3169 matches (82%).

− Match extracting foreign title: Some MovieLens titles are translated to English but include, between

brackets, the original title (see examples in Table 12). We extracted original titles (text between brackets)

of unmatched MovieLens movies obtaining a candidate title. Then, we joined them with IMDb_Movies.

We obtained 92 new matches, totalizing 3261 matches (84%).

− Match ignoring running year: Sometimes, movie titles embeds running years, sometimes they embed
diffusion years and sometimes they include additional characters (e.g. ‘1999/I’). This strategy consists in

ignoring years for joining movie titles and manually verifying the obtained matches. We removed years

from movie titles of unmatched MovieLens movies and IMDb_Movies. Then, we joined these auxiliary

titles storing matches in a temporal table. A human validated matches (e.g. those differentiating in only

one year) and eliminated erroneous ones. As a result, we obtained 295 new matches, totalizing 3556

matches (92%).

− Matching of 20 first characters: This strategy consists in truncating titles to 20 characters, joining them
and manually verifying the obtained matches. We tried to solve some kinds of alternative titles (e.g.

“Friday the 13th Part III (1982)” and “Friday the 13th Part 3: 3D (1982)”) or special characters or

truncations (e.g. “Why Do Fools Fall In Love? (1998)” and “Why Do Fools Fall In Love (1998)”). We

truncated titles of unmatched MovieLens movies and IMDb_Movies. Then, we joined these auxiliary

titles storing matches in a temporal table. A human validated matches by comparing whole titles and

eliminated erroneous matches. As a result, we obtained 34 new matches, totalizing 3590 matches (92%).

− Matching of 10 first characters: This strategy repeats the previous one, but truncating titles to 10
characters. We obtained 46 new matches, totalizing 3636 matches (94%).

− Manual look-up: This strategy consists in manually examining unmatched MovieLens titles looking for

possible matches in the IMDb_Movies table. We used intuition for finding titles in the huge IMDb

collection (e.g. transposing words for “La Bamba (1987)” and “Bamba, La (1987)”) and knowledge of

foreign languages (e.g. “Cité des enfants perdus, La (1995)” and “City of Lost Children, The (1995)”).

We obtained 116 new matches, totalizing 3752 matches (97%).

− Web look-up: The last strategy uses the search engine of MovieLens web site to find unmatched movies.

Then, we used the link provided by MovieLens site to access the movie page at IMDb and we copied its

title. We matched the remaining 131 movie titles.

After matching titles, we found that 2 movies had the same corresponding movie at IMDb, i.e. we detected 2

additional duplicates. Tuples with original title were kept; those with foreign title were removed.

E
x
tractio

n
 a
n
d
 In
teg

ratio
n
 o
f M

o
v
ieL

e
n
s an

d
 IM

D
b
 D
ata –

 T
ech

n
ical R

ep
o
rt

2
8

Figure 23 – Integrated schema

I_Movies

MovieId

TitleMovieLens

TitleIMDB

I_MovieRatings

MovieId

Distribution

Votes

Rating

I_Genres

Genre

I_MovieGenres

MovieId

Genre

MovieId

MovieId
Genre

I_Countries

Country

LongName

DomainCode

ISO2Code

ISO3Code

UNnumericalCode

IsCurrent

IsSovereign

Sovereign

Continent

SecondaryContinent

Area

Inhabitants

I_MovieCountries

MovieId

Country

MovieId

Country

I_Years

Year

Decade

I_MovieYears

MovieId

Year

YearInfo

Year

MovieId

I_MovieReleaseDates

MovieId

Country

ReleaseDate

ReleaseYear

ReleaseInfo

Year=

ReleaseYear

Country

MovieId

I_Keywords

Keyword

MovieQuantities

I_MovieKeywords

MovieId

Keyword

Keyword

MovieId

Language

MovieId

I_Languages

Language

I_MovieLanguages

MovieId

Language

LanguageInfo

I_CountryCodes

CountryCode

Country

Description

I_MovieProductionCompanies

MovieId

CompanyName

CountryCode

CompanyInfo

CountryCode

MovieId

Type

MovieId

I_Types

Type

TypeDescription

I_MovieTypes

MovieId

Type

Color

MovieId

I_Colors

Color

I_MovieColors

MovieId

Color

ColorInfo

LinkType

MovieId

LinkMovieId=MovieId

I_LinkTypes

LinkType

I_MovieLinks

MovieId

LinkMovieId

LinkType

2

BudgetCurrency=Currency /

RevenueCurrency=Currency

MovieId

I_Currencies

Currency

ConversionUSD

I_MovieBusiness

MovieId

BudgetCurrency

Budget

BudgetUSD

RevenueCurrency

Revenue

RevenueUSD

2

I_MovieDistributors

MovieId

DistributionCompany

CountryCode

DistributionInfo

CountryCode

MovieId

I_Distributors

DistributionCompany

DistributionCompany

I_Zones

Zone

Country

Country

I_MovieLocations

MovieId

Location

Zone

LocationInfo

Zone

MovieId

I_MovieRunningTimes

MovieId

Country

Duration

RunningInfo

Country

MovieId

SoundMix

MovieId

I_Sounds

SoundMix

I_MovieSounds

MovieId

SoundMix

I_Directors

Director

MovieQuantity

I_MovieDirectors

MovieId

Director

DirectorAlias

DirectorInfo

MovieId

Director

I_Writers

Writer

MovieQuantity

I_MovieWriters

MovieId

Writer

WriterInfo
MovieId

Writer

I_Producers

Producer

MovieQuantity

I_MovieProducers

MovieId

Producer

ProducerInfo

MovieId
Producer

I_MovieCostumeDesigners

MovieId

CostumeDesigner

CostumeInfo

MovieId

I_MovieProductionDesigners

MovieId

ProductionDesigner

DesignerInfo

MovieId

I_Actresses

Actress

MovieQuantity

I_MovieActresses

MovieId

Actress

PlayInfo

Role

Casting

MovieId Actress

I_Actors

Actor

MovieQuantity

I_MovieActors

MovieId

Actor

PlayInfo

Role

Casting

MovieId

Actor

I_Biographies

Name

RealName

Birth

Decease

Height

I_Ages

AgeId

MinAge

MaxAge

I_Durations

DurationMin

DurationMax

DurationInterval

DurationMin ≤ Duration

≤ DurationMax

Country

I_Occupations

OccupationId

Occupation

I_UserRatings

UserId

MovieId

Rating

Timestamp

I_Users

UserId

Gender

AgeId

OccupationId

ZipCode

UserId

MovieId

AgeId OccupationId

I_Person

Name

Director

Writer

Producer

Actress

Actor

CostumeDesigner

ProductionDesigner
Name

I_Votes

Votes

I_Ratings

Ratings

Votes

Rating

I_Revenues

RevenueUSD

I_Budgets

BudgetUSD

RevenueUSDBudgetUSD

I_Movies

MovieId

TitleMovieLens

TitleIMDB

I_MovieRatings

MovieId

Distribution

Votes

Rating

I_Genres

Genre

I_MovieGenres

MovieId

Genre

MovieId

MovieId
Genre

I_Countries

Country

LongName

DomainCode

ISO2Code

ISO3Code

UNnumericalCode

IsCurrent

IsSovereign

Sovereign

Continent

SecondaryContinent

Area

Inhabitants

I_MovieCountries

MovieId

Country

MovieId

Country

I_Years

Year

Decade

I_MovieYears

MovieId

Year

YearInfo

Year

MovieId

I_MovieReleaseDates

MovieId

Country

ReleaseDate

ReleaseYear

ReleaseInfo

Year=

ReleaseYear

Country

MovieId

I_Keywords

Keyword

MovieQuantities

I_MovieKeywords

MovieId

Keyword

Keyword

MovieId

Language

MovieId

I_Languages

Language

I_MovieLanguages

MovieId

Language

LanguageInfo

I_CountryCodes

CountryCode

Country

Description

I_MovieProductionCompanies

MovieId

CompanyName

CountryCode

CompanyInfo

CountryCode

MovieId

Type

MovieId

I_Types

Type

TypeDescription

I_MovieTypes

MovieId

Type

Color

MovieId

I_Colors

Color

I_MovieColors

MovieId

Color

ColorInfo

LinkType

MovieId

LinkMovieId=MovieId

I_LinkTypes

LinkType

I_MovieLinks

MovieId

LinkMovieId

LinkType

2

BudgetCurrency=Currency /

RevenueCurrency=Currency

MovieId

I_Currencies

Currency

ConversionUSD

I_MovieBusiness

MovieId

BudgetCurrency

Budget

BudgetUSD

RevenueCurrency

Revenue

RevenueUSD

2

I_MovieDistributors

MovieId

DistributionCompany

CountryCode

DistributionInfo

CountryCode

MovieId

I_Distributors

DistributionCompany

DistributionCompany

I_Zones

Zone

Country

Country

I_MovieLocations

MovieId

Location

Zone

LocationInfo

Zone

MovieId

I_MovieRunningTimes

MovieId

Country

Duration

RunningInfo

Country

MovieId

SoundMix

MovieId

I_Sounds

SoundMix

I_MovieSounds

MovieId

SoundMix

I_Directors

Director

MovieQuantity

I_MovieDirectors

MovieId

Director

DirectorAlias

DirectorInfo

MovieId

Director

I_Writers

Writer

MovieQuantity

I_MovieWriters

MovieId

Writer

WriterInfo
MovieId

Writer

I_Producers

Producer

MovieQuantity

I_MovieProducers

MovieId

Producer

ProducerInfo

MovieId
Producer

I_MovieCostumeDesigners

MovieId

CostumeDesigner

CostumeInfo

MovieId

I_MovieProductionDesigners

MovieId

ProductionDesigner

DesignerInfo

MovieId

I_Actresses

Actress

MovieQuantity

I_MovieActresses

MovieId

Actress

PlayInfo

Role

Casting

MovieId Actress

I_Actors

Actor

MovieQuantity

I_MovieActors

MovieId

Actor

PlayInfo

Role

Casting

MovieId

Actor

I_Biographies

Name

RealName

Birth

Decease

Height

I_Ages

AgeId

MinAge

MaxAge

I_Durations

DurationMin

DurationMax

DurationInterval

DurationMin ≤ Duration

≤ DurationMax

Country

I_Occupations

OccupationId

Occupation

I_UserRatings

UserId

MovieId

Rating

Timestamp

I_Users

UserId

Gender

AgeId

OccupationId

ZipCode

UserId

MovieId

AgeId OccupationId

I_Person

Name

Director

Writer

Producer

Actress

Actor

CostumeDesigner

ProductionDesigner
Name

I_Votes

Votes

I_Ratings

Ratings

Votes

Rating

I_Revenues

RevenueUSD

I_Budgets

BudgetUSD

RevenueUSDBudgetUSD

 Verónika Peralta

 29

4.2. Integrated schema

The integrated schema consists in 52 tables describing movies, companies and persons related to movies and the

users that evaluated movies. Figure 23 shows the tables of the integrated schema, their primary keys (underlined

attributes) and foreign keys (arrows between tables). Additional dotted lines relate some tables to a fictitious (not

implemented) relation, describing persons. Shadow tables were used for the construction of the referential but

are not visible for making queries. Table 13 describes each table, its attributes and constraints.

Table Attributes Constraints
I_Movies

Join between IMDb and

MovieLens

− MovieId: Numeric(4); MovieLens’ id

− TitleMovieLens: String(100)

− TitleImdb: String(250)

Primary key: MovieId

Unique: TitleImdb

I_Actors

Master of actors

− Actor: String(75)

− MovieQuantity: Numeric(3); the number

of played movies

Primary key: Actor

I_Actresses

Master of actresses

− Actress: String(75)

− MovieQuantity: Numeric(3); the number

of played movies

Primary key: Actress

I_Ages

Age intervals

− AgeId: Numeric(2)

− MinAge: Numeric(2)

− MaxAge: Numeric(2)

Primary key: AgeId

I_Biographies

Biographies of actors,

actresses, directors,

producers and other

people involved in movies

− Name: String(70)

− RealName: String(220)

− Birth: String(130); date and place of birth

− Decease: String(160); date, place and

cause of decease

− Height: String(15)

Primary key: Name

I_Budgets

Master of budget

intervals

− BudgetUSD: Numeric(15,2); start of an

interval (internal use)
Primary key: BudgetUSD

I_Colors

Master of colors − Color: String(20) Primary key: Color

I_Countries

Master of countries,

providing several

aggregation criteria and

international country

codes

− Country: String(40)

− LongName: String(110)

− DomainCode: String(2); internet domain

− ISO2Code: String(2); ISO3166-1-alpha2

code

− ISO3Code: String(3); ISO3166-1-alpha2

code

− UNnumericalCode: Numeric(3); united

nations country code

− IsCurrent: Numeric(1); 1 for current

countries, 0 for old ones

− IsSovereign: Numeric(1); 1 for sovereign

UN nations, 2 for sovereign non-UN nations,

3 for sovereign non-recognized nations, 4 for

dependent territories and 5 for areas of

special sovereignty

− Sovereign: String(40); name of sovereign

nation (current country in the case of old

countries)

− Continent: String(20)

− SecondaryContinent: String(20); for

countries having territories in two continents

(the one with the highest are is taken as main

continent)

− Area: Numeric(8)

− Inhabitants: Numeric(10)

Primary key: Country

Extraction and Integration of MovieLens and IMDb Data – Technical Report

30

I_CountryCodes

Codes of countries

− CountryCode: String(15)

− Country: String(40)

− Description: String(50); further info

(regions, deprecations...)

Primary key: CountryCode

Foreign keys:

− Country: ref. I_Countries

I_Currencies

Master of currencies

− Currency: String(3)

− ConversionUSD: Numeric(12,10); at

October 2006

Primary key: Currency

I_Directors

Master of directors

− Director: String(40)

− MovieQuantity: Numeric(3); the number

of directed movies

Primary key: Director

I_Distributors

Master of distribution

companies
− DistributionCompany: String(70)

Primary key:

DistributionCompany

I_Durations

Master of duration

intervales

− DurationMin: Numeric(5)

− DurationMin: Numeric(5)

− DurationInterval: Numeric(5)

Primary key: DurationMin

I_Genres

Master of genres − Genre: String(12) Primary key: Genre

I_Keywords

Master of keywords

− Keyword: String(60)

− MovieQuantity: Numeric(5); the number

of movies having the keyword

Primary key: Keyword

I_Languages

Master of languages − Language: String(30) Primary key: Language

I_LinkTypes

Types of links between

movies

− LinkType: String(30); references,

remakes, etc.
Primary key: LinkType

I_MovieActors

Actors of movies

− MovieId: Numeric(4)

− Actor: String(75)

− PlayInfo: String(110); further info

(uncredited, alias, special roles…)

− Role: String(256); role name and/or

description

− Casting: Numeric(3); casting position

Primary key: MovieId, Actor

Foreign keys:

− MovieId: ref. I_Movies

− Actor: ref. I_Actors

I_MovieActresses

Actresses of movies

− MovieId: Numeric(4)

− Actress: String(75)

− PlayInfo: String(110); further info

(uncredited, alias, special roles…)

− Role: String(256); role name and/or

description

− Casting: Numeric(3); casting position

Primary key: MovieId, Actress

Foreign keys:

− MovieId: ref. I_Movies

− Actress: ref. I_Actresses

I_MovieBusiness

Budget and revenue of

movies

− MovieId: Numeric(4)

− BudgetCurrency: String(3)

− Budget: Numeric(15,2)

− BudgetUSD: Numeric(15,2)

− RevenueCurrency: String(3)

− Revenue: Numeric(15,2)

− RevenueUSD: Numeric(15,2)

Primary key: MovieId

Foreign keys:

− MovieId: ref. I_Movies

− BudgetCurrency: ref.

I_Currencies

− RevenueCurrency: ref.

I_Currencies

I_MovieColors

Colors of movies

− MovieId: Numeric(4)

− Color: String(20)

− ColorInfo: String(50); further info

(versions)

Primary key: MovieId, Color

Foreign keys:

− MovieId: ref. I_Movies

− Color: ref. I_Colors
I_MovieCostume-

Designers

Costume designers of

movies

− MovieId: Numeric(4)

− CostumeDesigner: String(50)

− CostumeInfo: String(100); further info

(roles, alias, …)

Primary key: MovieId,

CostumeDesigner

Foreign keys:

− MovieId: ref. I_Movies

 Verónika Peralta

 31

I_MovieCountries

Countries of movies
− MovieId: Numeric(4)

− Country: String(40)

Primary key: MovieId, Country

Foreign keys:

− MovieId: ref. I_Movies

− Country: ref. I_Countries

I_MovieDirectors

Countries of movies

− MovieId: Numeric(4)

− Director: String(40)

− DirectorAlias: String(40); director’s

appearing name in the movie

− DirectorInfo: String(70); further info e.g.

uncredited movies, co-direction, direction of

episodes, segments or videos…

Primary key: MovieId, Director

Foreign keys:

− MovieId: ref. I_Movies

− Director: ref. I_Directors

I_MovieDistributors

Companies that

distributed movies

− MovieId: Numeric(4)

− DistributionCompany: String(70)

− CountryCode: String(15)

− DistributorInfo: String(100); further info

(years, countries, media, …)

Primary key: MovieId,

DistributionCompany,

CountryCode

Foreign keys:

− MovieId: ref. I_Movies

− DistributionCompany: ref.

I_Distributors

− CountryCode: ref.

I_CountryCodes

I_MovieGenres

Genres of movies
− MovieId: Numeric(4)

− Genre: String(12)

Primary key: MovieId, Genre

Foreign keys:

− MovieId: ref. I_Movies

− Genre: ref. I_Genres

I_MovieKeywords

Keywords of movies
− MovieId: Numeric(4)

− Keyword: String(60)

Primary key: MovieId, Keyword

Foreign keys:

− MovieId: ref. I_Movies

− Keyword: ref. I_Keywords

I_MovieLanguages

Languages of movies

− MovieId: Numeric(4)

− Language: String(30)

− LanguageInfo: String(70); further info

(versions)

Primary key: MovieId, Language

Foreign keys:

− MovieId: ref. I_Movies

− Language: ref. I_Languages

I_MovieLinks

Links between movies

− MovieId: Numeric(4)

− LinkMovieId: Numeric(4)

− LinkType: String(30); references,

remakes, etc.

Primary key: MovieId,

LinkMovieId, LinkType

Foreign keys:

− MovieId: ref. I_Movies

− Link MovieId: ref. I_Movies

− LinkType: ref. I_LinkTypes

I_MovieLocations

Running locations of

movies

− MovieId: Numeric(4)

− Location: String(140)

− Zone: String(30)

− LocationInfo: String(256); further info

(years, countries, media, …)

Primary key: MovieId, Location

Foreign keys:

− MovieId: ref. I_Movies

− Zone: ref. I_Zones

I_MovieProducers

Producers of movies

− MovieId: Numeric(4)

− Producer: String(60)

− ProducerInfo: String(90); further info

(role, awards, …)

Primary key: MovieId, Producer

Foreign keys:

− MovieId: ref. I_Movies

− Producer: ref. I_Producers

I_MovieProduction-

Companies

Companies that produced

movies

− MovieId: Numeric(4)

− CompanyName: String(120)

− CountryCode: String(15)

− CompanyInfo: String(140); further info

(years, places, participations, …)

Primary key: MovieId,

CompanyName, CountryCode

Foreign keys:

− MovieId: ref. I_Movies

− CountryCode: ref.

I_CountryCodes
I_MovieProduction-

Designers

Production designers of

movies

− MovieId: Numeric(4)

− ProductionDesginer: String(35)

− DesignerInfo: String(140); further info

(co-productions, roles, …)

Primary key: MovieId,

ProductionDesginer

Foreign keys:

− MovieId: ref. I_Movies

Extraction and Integration of MovieLens and IMDb Data – Technical Report

32

I_MovieRatings

Global ratings on movies

(not differentiated par

user)

− MovieId: Numeric(4)

− Distribution: String(10); unknown

meaning

− Votes: Numeric(8,2); quantity of votes

(decimals are always zero)

− Rating: Number(4,2), value between 0

and 10

Primary key: MovieId

Foreign keys:

− MovieId: ref. I_Movies

I_MovieReleaseDates

Dates of different releases

− MovieId: Numeric(4)

− Country: String(40)

− ReleaseDate: String(20)

− ReleaseYear: Numeric(4)

− ReleaseInfo: String(90); further info

(release city/festival)

Primary key: MovieId, Country,

ReleaseDate

Foreign keys:

− MovieId: ref. I_Movies

− ReleaseYear: ref. I_Years

− Country: ref. I_Countries

I_MovieRunningTimes

Running times of movies

− MovieId: Numeric(4)

− Country: String(40)

− Duration: Numeric(5)

− RunningInfo: String(75); further info

(version, episodes, media, …)

Primary key: MovieId, Country

Foreign keys:

− MovieId: ref. I_Movies

− Country: ref. I_Countries

I_MovieSounds

Sound mix of movies
− MovieId: Numeric(4)

− SoundMix: String(40)

Primary key: MovieId, SoundMix

Foreign keys:

− MovieId: ref. I_Movies

− SoundMix: ref. I_Sounds

I_MovieTypes

Types of movies

− MovieId: Numeric(4)

− Type: String(2); {C=cinema,

TV=television, V=video, VG=video game,

S=serie, M=miniserie}

Primary key: MovieId

Foreign keys:

− MovieId: ref. I_Movies

− Type: ref. I_Types

I_MovieWriters

Writers of movies

− MovieId: Numeric(4)

− Writer: String(45)

− WriterInfo: String(110); further info

(role, awards, …)

Primary key: MovieId, Writer

Foreign keys:

− MovieId: ref. I_Movies

− Writer: ref.: I_Writers

I_MovieYears

Years of movies

− MovieId: Numeric(4)

− Year: Numeric(4)

− YearInfo: String(30); further info (shot

years)

Primary key: MovieId, Year

Foreign keys:

− MovieId: ref. I_Movies

− Year: ref. I_Years
I_Occupations

User occupations
− OccupationId: Numeric(2)

− Occupation: String (25)
Primary key: OccupationId

I_Producers

Master of producers

− Producer: String(60)

− MovieQuantity: Numeric(3); the number

of produced movies

Primary key: Producer

I_Ratings

Master of ratings
− Rating: Number(4,2), value between 0

and 10 (internal use, for classifying ratings)
Primary key: Rating

I_Revenues

Master of revenue

intervals

− RevenueUSD: Numeric(15,2); start of an

interval (internal use)
Primary key: RevenueUSD

I_Sounds

Master of sounds − SoundMix: String(40) Primary key: SoundMix

I_Types

Types of movies

− Type: String(2); {C=cinema,

TV=television, V=video, VG=video game,

S=serie, M=miniserie}

− TypeDescription: String(10)

Primary key: Type

I_UserRatings

User ratings on movies

− UserId: Numeric(4)

− MovieId: Numeric(4)

− Rating: Number(1), value in {1,2,3,4,5}

− Timestamp: Numeric(9); represents

milliseconds from an initial time

Primary key: UserId, MovieId

Foreign keys:

− UserId: ref. I_Users

− MovieId: ref. I_Movies

 Verónika Peralta

 33

I_Users

Descriptive information

about users

− UserId: Numeric(4)

− Gender: Char(1); value in {M,F}

− Age: Numeric(2)

− Occupation: Numeric(2)

− ZipCode: String(10)

Primary key: UserId

Foreign keys:

− Age: ref. I_Ages

− Occupation: ref. I_Occupation

I_Votes

Master of votes

− Votes: Numeric(8,2); indicates the start

of a voting interval (internal use, for

classifying votes)

Primary key: Votes

I_Writers

Master of writers

− Writer: String(45)

− MovieQuantity: Numeric(3); the number

of written movies

Primary key: Writer

I_Years

Master of years
− Year: Numeric(4)

− Decade: Numeric(4)
Primary key: Year

I_Zones

Master of geographical

zones

− Zone: String(30); a country, region, sea,

…

− Country: String(40)

Primary key: Zone

Foreign keys:

− Country: ref. I_Countries

 Table 13 – Integrated schema

4.3. Construction of the integrated database

Matching MovieLens and IMDb movie titles was the most difficult task in the construction of the integrating

database. The remaining tasks basically consist in joining the I_Movies table (the master of movies resulting

from the matching process) in order to keep movie features of movies included in the master (i.e. assuring

referential integrity). This allowed the creation of the appropriate foreign keys. In addition, we created master

tables for most movie features. This section describes these tasks.

Figure 24 shows an overview of the process for building tables of the integrated database. In order to filter

features of movies non-included in the master of movies, we use the orphan elimination task described in Sub-

section 2.3, which simply joins the IMDb feature table (IMDb_P in Figure 24) with the I_Movies table. Then,

some master tables were aggregated using the aggregation task, also described in Sub-section 2.3, which group

tuples according to a feature attribute. The aggregation task was not executed for some feature tables

(I_MovieCostumeDesigners, I_MovieProductionDesigners) because they have too few repetitive values (for

example, each entry of the I_MovieCustomeDesigners table describes a different costume designer). The master

tables generated for each table can be deduced from Figure 23, because they coincide with referential constraints

(excepting those referencing the I_Movies table).

I_Movies

I_MovieP

orphan

elimination

aggregation

I_P

IMDb_P

Figure 24 – Construction of tables of the integrated database

Three special data reconciliation tasks were performed for years, currencies and countries. For years, we

performed the union of years appearing in I_MovieYears and I_MovieReleaseDates tables and then, we

calculated decade as a derived attribute, using typical date manipulation functions (similar to the year

calculation task described in Sub-section 2.3.2). For currencies, we obtained budget and revenue currencies from

the I_MovieBusiness table. We obtained dollar exchange (at October 2006) for such currencies from different

Internet sites, e.g. [1] (a better exchange should be obtained by considering currencies at movie running time; we

refer this to future work). For countries, we had country names in the I_MovieCountries and

I_MovieReleaseDates tables, in addition to some zones of the I_MovieLocations table and we had country codes

in the I_MovieDistributors and I_MovieProductionCompanies tables. It was a big mess! Country names were

written in different manners (e.g. ‘UK’ and ‘United Kingdom’) and sometimes referenced non-sovereign

territories (e.g. French Polynesia) or non-current countries (e.g. ‘URSS’), country codes were also ambiguous.

Extraction and Integration of MovieLens and IMDb Data – Technical Report

34

In order to build the master of countries (I_Countries) we downloaded United Nations official country list [10],

which includes sovereignty status of countries (UN member sovereign states, non-UN member sovereign states,

no general international recognition sovereign states, dependent territories and areas of special sovereignty).

Sovereign countries of non-sovereign territories were consulted at Wikipedia [11]. We obtained different country

codes (ISO3166-1 alpha 2 code, ISO3166-1 alpha 3 code, UN numerical code and internet domain code) and

further descriptive data (continent, area and inhabitants) from the Schmidt lists of countries [8] and continents

 [9]. As a country can have territory in two continents, we defined as primary continent, the one in which the

country has the biggest area. There were inconsistencies between UN official country names and those obtained

from Wikipedia and Schmidt lists, but they were manually solved without major problems.

We created mapping tables in order to join the master with I_MovieCountries and I_MovieReleaseDates tables.

Country names included in such tables but not in the master were manually disambiguated and related to one of

the existing countries (when it was an alternative name of such country) or added as non-current country (when

it was an old country name). I_MovieCountries and I_MovieReleaseDates tables were updated setting country

names according to the mapping tables. Two special country names were created: (i) ‘_unknown’ for Null

values, and (ii) and _multiple for special cases, such as ‘Korea’, ‘Serbia and Montenegro’ or ‘Soviet Union’ that

correspond to multiple current countries.

The master of country codes was created from the master of countries, selecting attributes country name and

domain code. Mapping tables were created analogously in order to join the master with I_MovieDistributors and

I_MovieProductionCompanies. We manually disambiguated country codes in an analogous way. We found

several cases of far territories (e.g. ‘French Guiana’) which were associated to the corresponding sovereign

country, multiple countries (e.g. ‘us/ca’ referencing United States and Canada) which were associated to the

‘_multiple’ special country name and unknown countries codes (e.g. ‘cshh’ and ‘ddde’) which were associated to

the ‘_unknown’ special country name.

The master of zones was also created from the I_MovieLocations table, adding an attribute for storing a country

name when the zone coincides with a country. The table was joined with the master of countries, and non-

referenced zones were manually examined in order to determine if they correspond to a country (setting the

country attribute with the appropriate value) or other types of zones, e.g. ‘Persian Gulf’ (setting the country

attribute with the ‘_multiple’ value).

As summary, the construction of the integrated database basically consisted in intersection integrated movie

titles with IMDb tables describing movie features. In addition, we built master tables (sometimes integrating

several IMDb tables) and integrating external data sources (country lists and currencies). For recapitulating,

Table 14 shows the tables of the integrated database and their number of tuples.

5. Conclusion

In this report we described the procedure followed for extracting and integrating MovieLens and IMDb data.

Specifically, we described source and target schemas and the algorithms that perform data extraction, data

cleaning and data transformation and data integration.

Major difficulties were found at:

− IMDb data extraction. We needed to develop ad-hoc pre-processing routines in order to normalize

hierarchical and tagged structures and substitute multiple tabulations and blanks.

− IMDb data transformation and cleaning. We found a lot of anomalies in extracted data, ranging from

duplicate and orphan tuples to multiple attributes embedded in single columns. We needed to develop

several cleaning and transformation tasks.

− Matching of MovieLens and IMDb titles. We implemented 8 different matching strategies, some of them

including human interaction. This was the most time-consuming task.

− Aggregation of some master tables, especially, the master of countries. We extracted external data in

order to solve conflictive country names and codes and lead with non-sovereign and non-current

countries.

Data extracted from MovieLens and IMDb sites, as well as the integrated database are available at the APMD

project web site [7].

In this report we do not dealt with maintenance issues but we would like to treat some issues as future work.

Specifically, as IMDb lists are continually updated, it may be interesting to adapt extraction, cleaning and

 Verónika Peralta

 35

integration processes to incorporate new data. The problem seams to be more difficult for updates of MovieLens

data (which are not announced by the moment) because manual reconciliation tasks will probably be necessary.

Master tables Tuples Relationship tables Tuples Auxiliary tables Tuples

I_Movies 3881

I_Actors 63207 I_MovieActors 110548 I_Ages 7

I_Actresses 31720 I_MovieActresses 48423 I_Budgets 6

I_Biographies 258818 I_Occupations 21

 I_MovieBusiness 1740 I_Ratings 10

I_Colors 2 I_MovieColors 3898 I_Revenues 6

 I_MovieCostumeDesigners 3373 I_UserRatings 1000194

I_Countries 256 I_MovieCountries 4993 I_Users 6040

I_CountryCodes 265 I_Votes 8

I_Currencies 95

I_Directors 2170 I_MovieDirectors 4141

I_Distributors 2391 I_MovieDistributors 23060

I_Durations 6

I_Genres 25 I_MovieGenres 9288

I_Keywords 14974 I_MovieKeywords 105128

I_Languages 85 I_MovieLanguages 4796

I_LinkTypes 15 I_MovieLinks 18160

 I_MovieLocations 14345

I_Producers 8142 I_MovieProducers 16749

 I_MovieProductionCompanies 9517

 I_MovieProductionDesigners 3152

 I_MovieRatings 3861

 I_MovieReleaseDates 46554

 I_MovieRunningTimes 4839

I_Sounds 28 I_MovieSounds 4928

I_Types 6 I_MovieTypes 3881

I_Writers 5458 I_MovieWriters 8766

I_Years 90 I_MovieYears 3881

I_Zones 133

 Table 14 – Statistics of data integration

6. References

[1] European Commision: “List of countries, territories and currencies”, Web Report, March 2007. URL:

http://publications.europa.eu/code/en/en-5000500.htm, last accessed on April 5
th
, 2007.

[2] GroupLens Research: “movielens: helping you to find the right movies”. Web site, ULR:

http://movielens.umn.edu, last accessed on July 9
th
, 2006.

[3] GroupLens Research: “MovieLens Data Sets”. Web site, ULR: http://grouplens.org/node/12#attachments,

last accessed on October 5
th
, 2006.

[4] Intenet Movie Database, Inc.: “The Intenet Movie Database”, Web site, URL: http://www.imdb.com/, last

accessed on July 9
th
, 2007.

[5] Intenet Movie Database, Inc.: “Alternate interfaces”, Web Page, URL: http://www.imdb.com/interfaces,

last accessed on October 5
th
, 2006.

[6] Peralta, V.: “Matching of MovieLens and IMDb Movie Titles”. Technical Report, Laboratoire PRiSM,

Université de Versailles, Versailles, France, March 2007.

[7] Peralta, V.: “APMD Test Platform”. URL: http://apmd.prism.uvsq.fr/TestPlatform/, last accessed on May

30
th
, 2007.

[8] Schmidt M.: “List of countries and territories”. Web page, URL:

http://schmidt.devlib.org/data/countries.html, last accessed on April, 10
th
, 2007.

Extraction and Integration of MovieLens and IMDb Data – Technical Report

36

[9] Schmidt M.: “Continents”. Web page, URL: http://schmidt.devlib.org/data/continents.html, last accessed on

April, 10
th
, 2007.

[10] United Nations Cartographic Section: “List of Territories”. PDF file, 2004. URL:

http://www.un.org/Depts/Cartographic/english/geoname.pdf, last accessed on April 10
th
, 2007.

[11] Wikipedia: “List of countries”. Web page, URL: http://en.wikipedia.org/wiki/List_of_countries, last

accessed on April 10
th
, 2007.

