Matching of MovieLens and IMDb Movie Titles

Verdnika Peralta

Laboratoire PRiSM, Université de Versailles
45, avenue des Etats-Unis
78035 Versailles Cedex
FRANCE

veronika.peralta@prism.uvst.fr

Technical Report *
March 2007

Abstract. This report describes the procedure followed fanifgg MovieLens and IMDb
databases. Even if both databases identify movi¢itley unfortunately, they suffer from many
problems such as abbreviation, translations infferéint languages and, generally, lack of writing
standardization, which makes difficult their joln.order to match movie titles we propose a suite
of approximate matches that consider different tiatgheuristics.

1. Introduction

This report describes the procedure followed fanijgg MovieLens [1] and IMDb [2] databases. Bothiatmses
deal with data about movies. The IMDb databaseatostrich information about films, actors, direstothe
places where they are produced, their budgets, th&tgories and the average rank given by theswgleo had
evaluated them. IMDb describes more than 850.000iesat the moment we have extracted its data (@cto
2006). The MovieLens database contains very fewrimétion about films but provides a huge amount of
evaluations given by users who have seen these.fiMovieLens provides two datasets. The bigger isne
composed of more than 1 million evaluations givgr6®40 users on 3.883 films; the smaller one impused
of 100.000 evaluations given by 943 users on 1f88%. MovieLens and IMDb databases are complemgnta
as they almost target the same movies (actuallyséteof films referred in MovieLens is a subsettlobse
referred in IMDb). However, the join between thetdatabases is not easy to perform as there ia npiversal
identifier for the contained movies. The only cormmdata is the titles of the movies but, unfortuhatthey
suffer from many problems such as abbreviatiomsiegions into different languages and, generddlgk of
writing standardization.

In order to match movie titles we propose a sufteagproximate matches that consider different niatgh
heuristics. This report describes the matchinggss@nd presents statistics on matching results.

The remaining sections are organized as followsti@e 2 presents an overview of the matching proeesl
Section 3 describes matching algorithms. Finalggt®n 3 concludes.

! This research was partially supported by the Frevictistry of Research and New Technolologies urtterACI program
devoted to Data Masses (ACI-MD), project #MD-33.

Matching of MovieLens and IMDb movie titles

2. Overview of the matching process

We extracted 858.961 movies from IMDb and 3.883 iem¥rom the larger data set of MovieLens (se€ef¢8]
details about data extraction). After extractiom, stated that all MovieLens movies were includethaIMDb
data set. However, matching titles was not triialrthermore, only 79% of matches had identical imditles
in both data sets. Other matching strategies weptemented, including manual look-up, in order tatch the
remaining titles. This section presents an ovendéthe matching process; next section describegtbposed
algorithms.

Both, MovieLens and IMDb identify movies by ad-hidentifiers (called movie titles) that concatentiie and
running year (between brackétsBut even identifiers are built in the same manmer found discrepancies in
titles. Most typical causes are inclusion of splecieracters, typing errors, transposition or oiis®f articles,
use of different running years, translation of fgretitles and use of alternative titles. Tablelllistrates
differences in movie titles.

IMDb titles MovielLens titles Causes
iThree Amigos! (1986) Three Amigos! (1986)
Shall We Dance (1937) Shall We Dance? (1937) Special characters
8 ¥2 Women (1999) 8 1/2 Women (1999)
One Hundred and One Dalmatians (1961) 101 Dalma{i&®61)
Two Moon Junction (1988) Two Moon Juction (1988) pihg errors
La Bamba (1987) Bamba, La (1987) Transposed articles
El Dorado (1966) Dorado, El (1967)
Three Ages (1923) Three Ages, The (1923) . .
Story of G.I. Joe (1945) Story of G.I. Joe, TheAdp Omitted articles
Tarantella (1996) Tarantella (1995) Different years
Supernova (2000/1) Supernova (2000)
Abre los ojos (1997) Open Your Eyes (Abre los 0{d§97)
Caro diario (1994) Dear Diary (Caro Diario) (1994)
Huitieme jour, Le (1996) Eighth Day, The (Le Huitié jour) (1996) English titles
Historia oficial, La (1985) Official Story, The (Ldistoria Oficial) (1985)
Cité des enfants perdus, La (1995) City of LostidThn, The (1995)
Star Wars (1977) Star Wars: Episode IV - A New H@#77)
Santa Claus (1985) Santa Claus: The Movie (1985) Alternative titles
Sunset Blvd. (1950) Sunset Blvd. (a.k.a. Sunsetd@ud) (1950)
Sugar Hill (1994) Harlem (1993)

Table 1 — Examples of movies having different titke

In order to match MovielLens titles with IMDb titl¢gcluded in ML_Movies and IMDb_Movies tables), we
followed several matching strategies. Each strateigg to match MovielLens titles not matched byvimes
strategies as shown in Figure 1. To this end, stetlegy considers a different heuristic for buitdcandidate
(alternative) titles for unmatched movies and comapahem with IMDb titles. We implemented the follag
strategies:

— Join by movie title: This strategy computes the exact match. We joilld®b_Movies and
ML_Movies tables by the MovieTitle attribute. Wetaimed 3086 matches (79%).

— Matching using the MovieLens small data set: This strategy uses the SML_Movies table (smathda
set) as a mapping table between unmatched Movielidas and IMDb titles. Specifically, the
SML_Movies table contains the URL of the IMDb wehgp corresponding to each movie. We
formatted the URL and replaced special characters §620 represents a blank) obtaining candidate
tittes. We joined this table with unmatched Moviekemovies (by the MovieTitle attribute) and with
IMDb_Movies (by the just built candidate title). Wiad several difficulties: First, the intersectioin
both MovieLens collections is not very large. Satome cannot replace all special characters. As a
result, we obtained 83 new matches, totalizing 3h&&ches (82%).

2 Additionally to movies, IMDb also describes sergggsodes, mini-series, TV series, videos and vigieroes
(which have different identifiers). We omit them tinis report because they do not match Moviel ethssfi
which only includes cinema movies.

Veroénika Peralta

— Matching extracting foreign titlee Some MovielLens titles are translated to English imclude,
between brackets, the original title (see examphe3able 1). We extracted original titles (text
between brackets) of unmatched MovieLens moviesioioly candidate titles. Then, we joined them
with IMDb_Movies. We obtained 92 new matches, iatal) 3261 matches (84%).

— Matching ignoring running year: Sometimes, movie titles embeds running years,esiomes they
embed diffusion years and sometimes they includktiadal characters (e.g. ‘1999/I'). This strategy
consists in ignoring years for joining movie titleasd manually verifying the obtained matches. We
removed years from movie titles of unmatched Moweied movies and IMDb_Movies. Then, we
joined these auxiliary titles storing matches itemporal table. A human validated matches (e.qg.
those differentiating in only one year) and elint@therroneous ones. As a result, we obtained 295
new matches, totalizing 3556 matches (92%).

— Matching of 20 first characters: This strategy consists in truncating titles to @&taracters, joining
them and manually verifying the obtained matches. tiéed to solve some kinds of alternative titles
(e.g. “Friday the 13th Part 11l (1982)" and “Fridélye 13th Part 3: 3D (1982)") or special characters
or truncations (e.g. “Why Do Fools Fall In Love®98B)” and “Why Do Fools Fall In Love (1998)").
We truncated titles of unmatched MovieLens movied &Db_Movies. Then, we joined these
auxiliary titles storing matches in a temporal éabA human validated matches by comparing whole
tittes and eliminated erroneous matches. As a tiesal obtained 34 new matches, totalizing 3590
matches (92%).

— Matching of 10 first characters: This strategy repeats the previous one, but #timg titles to 10
characters. We obtained 46 new matches, total2@3$ matches (94%).

— Manual look-up: This strategy consists in manually examining uttimed MovielLens titles looking
for possible matches in the IMDb_Movies table. Vgediintuition for finding titles in the huge IMDb
collection (e.g. transposing words for “La Bamb@8§1)” and “Bamba, La (1987)") and knowledge of
foreign languages (e.g. “Cité des enfants perdag,lR95)" and “City of Lost Children, The (1995)").
We obtained 116 new matches, totalizing 3752 mat(&e%).

— Web look-up: The last strategy uses the search engine of Nlewi& web site to find unmatched
movies. Then, we used the link provided by Movied aite to access the movie page at IMDb and we
copied its title. We matched the remaining 131 radities.

ML_Movies

ﬂ
SML_Movi
ch4
tched

IMDb_Mowig
°] |
match5 -
ok

Figure 1 — Matching process

Movies

After matching titles, we found that 2 movies hhd same corresponding movie at IMDDb, i.e. we dete&
duplicates. Tuples with original title were kegtpse with translated title were removed.

Matching of MovieLens and IMDb movie titles

3. Description of matching algorithms
This section details the matching procedures, d#agrtheir behaviors, inputs and outputs. Procesluvere
implemented as SQL sentences.
The inputs of the matching process are the follgwables:
- IMDb_Movies (MovieTitle, Year): table containing IMDb movigdentified by MovieTitle.

- ML_Movies (Movield, MovieTitle, Genres): table containing MeLens movies, identified by
Movield. Titles differ from those of IMDDb.

- SML_Movies (Movield, MovieTitle, URLimdb): table containingsmall set of MovieLens movies,
identified by Movield and referencing the URL o&thorresponding movie in IMDb. Movie ids differ
form those from ML_Movies

The following sub-sections describe each one ofitaiching strategies.

3.1. Join by movie title

This strategy implements the exact match. It camgiBtwo procedures, who compute the join and agmphe
unsolved movies, respectively:

O Join_1 movietitle
— Overview: Joins movies from MovieLens and IMDDb fite

— Input: ML_Movies, IMDb_Movies

Output: Movies (creation); copied to table join_1

- Query:
CREATE TABLE Movies AS
SELECT ML_Movies.Movield, ML_Movies.MovieTitle AS TitleMovieLens,
IMDb_Movies.MovieTitle AS TitleIMDb_Movies, "title "AS Type

FROMIMDb_Movies INNER JOIN ML_Movies
ON IMDb_Movies.MovieTitle = ML_Movies.MovieTitle;

Result: 3086 tuples

U Diff_1_movietitle

Overview: Computes the difference between moviesifMovieLens and movies already joined

— Input: ML_Movies, Movies

Output: diff1 (creation)

- Query:

CREATE TABLE diff 1 AS
SELECT ML_Movies.Movield, ML_Movies.MovieTitle AS TitleMovieLens
FROMML_Movies
WHERE ML_Movies.MovieTitle NOT IN
(SELECT TitleMovieLens FROM Movies);

Result: 797 tuples

3.2. Matching using the MovielLens small data set

This strategy uses the SML_Movies table (small d&t} as a mapping table between unmatched MovieLen
tittes and IMDDb titles. It consists of nine proceat! the former joins the small data set with urcimati movies
of the large data set, the following five extractandidate movie title from the URL of the smaltalaet

Veroénika Peralta

substituting some special characters, the followong computes the join with IMDb titles and the tlatter
register solved movies and compute unsolved mokéspectively.

U Aux 21
— Overview: Intersects SML_Movies with movies not y@hed. Adds auxiliary attributes.
- Input: SML_Movies, diff_1

— Output: auxiliar_2_1 (creation)

- Query:
CREATE TABLE auxiliar_2_1 AS
SELECT diff_1.Movield, diff_1.TitleMovieLens, SML_ Movies.URLimdb,

" AS exprl, " AS type
FROMSML_Movies INNER JOIN diff 1
ON SML_Movies.MovieTitle = diff_1.TitleMovieLens;

Result: 268 tuples

O Aux 2 2
— Overview: Extracts the movie title form the URL $eal: exact title)
- Input: auxiliar_2_1
— Output: auxiliar_2_1 (update)

- Query:

UPDATE auxiliar_2_1

SET auxiliar_2_1.exprl = Mid(URLimdb,34,500),
auxiliar_2_1.type = "url-1"

WHERE Mid(URLimdb,25,1)="[";

Result: 239 tuples updated (268 tuples)

U Aux_ 2 3
— Overview: Extracts the movie title form the URL ¢ea2: approximate title)
— Input: auxiliar_2_1
— Output: auxiliar_2_1 (update)

- Query:

UPDATE auxiliar_2_1

SET auxiliar_2_1.exprl = Mid(URLimdb,26,100),
auxiliar_2_1.type = "url-2"

WHERE Mid(URLimdb,25,1)<>"I";

Result: 29 tuples updated (268 tuples)

U Aux 2 4
— Overview: Substitutes special characters in theaete¢d movie title (case 1: character %20 “)
— Input: auxiliar_2_1

— Output: auxiliar_2_1 (update)

- Query:
UPDATE auxiliar_2_1
SET auxiliar_2_1.exprl = Replace([exprl],"%20"," " ,1,500,1);

— Result: 268 tuples updated (268 tuples)

Matching of MovieLens and IMDb movie titles

Q

Aux 2 5

Overview: Substitutes special characters in theaeted movie title (case 2: characte+*)
Input: auxiliar_2_1

Output: auxiliar_2_1 (update)

Query:
UPDATE auxiliar_2_1
SET auxiliar_2_1.exprl = Replace([exprl],"+"," ",1, 500,1);

Result: 268 tuples updated (268 tuples)

Aux 2 6

Overview: Substitutes special characters in theaeted movie title (case 3: character %B%)
Input: auxiliar_2_1

Output: auxiliar_2_1 (update)

Query:
UPDATE auxiliar_2_1
SET auxiliar_2_1.exprl = Replace([exprl],"%E9","é", 1,500,1);

Result: 268 tuples updated (268 tuples)

Aux 2 7

Overview: Joins titles obtained from URLs with IMDiovies
Input: auxiliar_2_1, IMDb_Movies
Output: auxiliar_2_7 (creation)

Query:

CREATE TABLE auxiliar_2_7 AS
SELECT auxiliar_2_1.Movield, auxiliar_2_1.TitleMov ieLens,
IMDb_Movies.MovieTitle AS TitleIMDb,
auxiliar_2_1.type
FROM auxiliar_2_1 INNER JOIN IMDb_Movies
ON auxiliar_2_1.exprl = IMDb_Movies.MovieTitle;

Result: 80 tuples

Join_2_url

Overview: Adds new joined tuples to movies table
Input: auxiliar_2_7, Movies

Output: movies (insert); copied to table join_2

Query:
INSERT INTO Movies (Movield, TitleMovieLens, Title IMDb, Type)
SELECT auxiliar_2_7.Movield, auxiliar_2_7.TitleMovi elLens,

auxiliar_2_7.TitleIMDDb, auxiliar_2_7.type
FROMauxiliar_2_7;

Result: 83 additional tuples (3169 tuples)

Veroénika Peralta

Q Diff_2_url
— Overview: Computes the difference between moviesfMovieLens and movies already joined
— Input: diff1, auxiliar_2_7
— Output: diff_2 (creation)

- Query:

CREATE TABLE diff 2 AS

SELECT diff_1.Movield, diff_1.TitleMovieLens

FROMdiff_1

WHERE diff_1.TitleMovieLens NOT IN
(SELECT TitleMovieLens FROM auxiliar_2_7);

Result: 714 tuples

3.3. Matching stracting foreign title

This strategy uses the original title of a movigcluded between brackets in some MovieLens titldsgch were
translated to English) for joining with IMDb titleslt consists of eight procedures: the five forregtracts the
original title from unmatched movies of MovieLengbstituting some special characters, the followamg
computes the join with IMDDb titles, and the twotéatregister solved movies and compute unsolvediespv
respectively.

U Aux 31
— Overview: Adds auxiliary attributes to the moviext get joined
- Input: diff_2

Output: auxiliar_3_1 (creation)

- Query:
CREATE TABLE auxiliar_3_1 AS
SELECT diff_2.Movield, diff_2.TitleMovieLens, 0 AS position1,

0 AS position2, " AS original
FROMdiff_2;

Result: 714 tuples

0 Aux 32
— Overview: Computes positions of brackets (whichl@se original title)
— Input: auxiliar_3_1

— Output: auxiliar_3_1 (update)

- Query:
UPDATE auxiliar_3 1
SET auxiliar_3_1.position1 = InStr(1,[TitleMovieLen s],"(",1),
auxiliar_3_1.position2 = InStr(1,[TitleMovieLens], "1);

— Result: 714 tuples updated (714 tuples)

Matching of MovieLens and IMDb movie titles

0 Aux 3 3

Overview: Extracts the original title (between tkais)

Input: auxiliar_3_1

Output: auxiliar_3_1 (update)

Query:
UPDATE auxiliar_3 1
SET auxiliar_3_1.original =
Mid([TitleMovieLens],[Position1]+1,[Position2]-[Pos ition1]-1)

+Mid([TitleMovieLens],[Position2]+1,1000);

Result: 714 tuples updated (714 tuples)

U Aux 34

Overview: Substitutes special characters in theaeted original title (case 1: double space)
Input: auxiliar_3_1

Output: auxiliar_3_1 (update)

Query:
UPDATE auxiliar_3_1
SET auxiliar_3_1.original = Replace(origianl," (" ' (",1,500,1);

Result: 714 tuples updated (714 tuples)

0 Aux 35

Overview: Substitutes special characters in theaeied original title (case 2: a.k.a.)
Input: auxiliar_3_1

Output: auxiliar_3_1 (update)

Query:
UPDATE auxiliar_3_1
SET auxiliar_3_1.original = Replace(origianl,"a.k. a.","",1,500,1);

Result: 714 tuples updated (714 tuples)

U Aux_3 6

Overview: Joins titles obtained from URLs with IMDiovies
Input: auxiliar_3_1, IMDb_Movies

Output: auxiliar_3_6 (creation)

Query:
CREATE TABLE auxiliar_3_6 AS
SELECT auxiliar_3_1.Movield, auxiliar_3_1.TitleMov ieLens,
IMDb_Movies.MovieTitle AS TitleIMDB, "orig" AS Typ e

FROM auxiliar_3_1 INNER JOIN IMDb_Movies
ON auxiliar_3_1.original = IMDb_Movies.MovieTitle;

Result: 92 tuples

Veroénika Peralta

Q Join_3 original

Overview: Adds new joined tuples to movies table
Input: auxiliary_2_6

Output: movies (insert); copied to table join_3

Query:
INSERT INTO Movies (Movield, TitleMovieLens, Title IMDb, Type)
SELECT auxiliar_3_6.Movield, auxiliar_3_6.TitleMov ieLens,

auxiliar_3_6.TitleIMDB, auxiliar_3_6.Type
FROM auxiliar_3_6;

Result: 92 additional tuples (3261 tuples)

U Diff_3 original

Overview: Computes the difference between moviesfMovieLens and movies already joined
Input: diff2, auxiliar_3_6
Output: diff_3 (creation)

Query:

CREATE TABLE diff_3 AS

SELECT diff_2.Movield, diff_2.TitleMovieLens

FROMdiff_2

WHERE diff_2.TitleMovieLens NOT IN
(SELECT TitleMovieLens FROM auxiliar_3_6);

Result: 622 tuples

3.4. Matching ignoring running year

This strategy consists in ignoring years for jognimovie titles and manually verifying the obtaimadtches. It
consists of nine procedures: the five former remsgrgars from both, the unmatched MovielLens tithes IMDb

titles, the following one computes the join amohgm, the following one is a manual procedure fonielating

erroneous matches, and the two latter registeedaivovies and compute unsolved movies, respectively

0 Aux 41

Overview: Adds auxiliary attributes to the moviet get joined

Input: diff_3
Output: auxiliar_4_1 (creation)
Query:
CREATE TABLE auxiliar_4_1 AS
SELECT diff_3.Movield, diff_3.TitleMovieLens, 0 AS [position],
" AS prefix
FROM diff_3;

Result: 622 tuples

Matching of MovieLens and IMDb movie titles

U Aux 4 2
— Overview: Computes positions of brackets (beginmhgear in most cases)
— Input: auxiliar_4_1

— Output: auxiliar_4_1 (update)

- Query:
UPDATE auxiliar_4 1
SET auxiliar_4_1.[position] = InStr(1,[TitleMovieL ens],"(",1);

Result: 622 tuples updated (622 tuples)

0 Aux 4 3
— Overview: Extracts the prefix ignoring year (beftrackets)
- Input: auxiliar_4_1

— Output: auxiliar_4_1 (update)

- Query:
UPDATE auxiliar_4_1
SET auxiliar_4_1.prefix = Mid([TitleMovieLens],1,[Position]-1);

Result: 622 tuples updated (622 tuples)

U Aux 4 4

— Overview: Computes positions of brackets (beginmhgear in most cases) for IMDb movies. Adds
auxiliary attributes.

- Input: IMDb_Movies
— Output: auxiliar_4_4 (creation)

- Query:

CREATE TABLE auxiliar_4_4 AS

SELECT IMDb_Movies.MovieTitle AS TitleIMDDb,
InStr(1,[IMDb_Movies].[MovieTitle],"(",1) AS posit ion, "™ AS prefix

FROM IMDb_Movies;

Result: 858961 tuples

U Aux 45
— Overview: Extracts the prefix ignoring year (beftrackets)
— Input: auxiliar_4_4

— Output: auxiliar_4_4 (update)

- Query:
UPDATE auxiliar_4_4
SET auxiliar_4_4.prefix = Mid([TitleIMDb],1,[Posit ion]-1);

— Result: 858961 tuples updated (858961 tuples)

10

Veroénika Peralta

Aux_4 6
— Overview: Joins both tables by prefix
— Input: auxiliar_4_1, auxiliar_4_4

— Output: auxiliar_4_6 (creation)

- Query:
CREATE TABLE auxiliar_4_6 AS
SELECT auxiliar_4_1.Movield, auxiliar_4_1.TitleMovi elLens,
auxiliar_4_4.TitleIMDb, auxiliar_4_1.prefix, "year "AS Type

FROM auxiliar_4_4 INNER JOIN auxiliar_4_1
ON auxiliar_4_4.prefix = auxiliar_4_1.prefix;

— Result: 930 tuples

Manual_4

— Overview: Manual filtering of auxiliar_4_6 tabldirainating erroneous joins
— Input: auxiliar_4_6

— Output: manual_4 (creation)

— Query: Manual filtering, copying result to table mal _4

— Result: 295 tuples

Join_4 year
— Overview: Adds new joined tuples to movies table
- Input: manual_4

— Output: movies (insert); copied to table join_4

- Query:
INSERT INTO Movies (Movield, TitleMovieLens, Title IMDb, Type)
SELECT manual_4.Movield, manual_4.TitleMovieLens, manual_4.TitleIMDB,

manual_4.Type
FROM manual_4;

Result: 295 additional tuples (3556 tuples)

Diff_4 year

— Overview: Computes the difference between moviesfMovieLens and movies already joined
- Input: diff3, manual_4

— Output: diff_4 (creation)

- Query:

CREATE TABLE diff 4 AS

SELECT diff_3.Movield, diff_3.TitleMovieLens

FROMdiff_3

WHERE diff_3.TitleMovieLens NOT IN
(SELECT TitleMovieLens FROM manual_4);

- Result: 327 tuples

11

Matching of MovieLens and IMDb movie titles

3.5.

This strategy consists in truncating titles to 2@uracters, joining them and manually verifying thigtained
matches. It consists of six procedures: the twenéarextracts the first characters of the both, uhmatched
MovielLens titles and IMDb titles, the following or@mputes the join among them, the following one is
manual procedure for eliminating erroneous matches, the two latter register solved movies and agmp

Matching of 20 first characters

unsolved movies, respectively.

a

12

Aux 51

— Overview: Extracts a 20-character prefix of mowies yet joined
- Input: diff_4

— Output: auxiliar_5_1 (creation)

- Query:

CREATE TABLE auxiliar_5_1 AS

SELECT diff_4.Movield, diff_4.TitleMovieLens,
Mid([TitleMovieLens],1,20) AS Extr20

FROM diff_4;

— Result: 327 tuples

Aux 5 2

— Overview: Extracts a 20-character prefix of IMDbvies
— Input: IMDb_Movies

— Output: auxiliar_5_2 (creation)

- Query:

CREATE TABLE auxiliar_ 5 2 AS

SELECT IMDb_Movies.MovieTitle AS TitleIMDb,
Mid([MovieTitle],1,20) AS Extr20

FROM IMDb_Movies;

Result: 858961 tuples

Aux_5 3

— Overview: Joins both tables by prefix
— Input: auxiliar_5_1, auxiliar_5_2

— Output: auxiliar_5_3 (creation)

- Query:

CREATE TABLE auxiliar_5_3 AS

SELECT auxiliar_5_1.Movield, auxiliar_5_1.TitleMov ieLens,
auxiliar_5_2.TitleIMDb, auxiliar_5_1.Extr20

FROMauxiliar_5_1 INNER JOIN auxiliar_ 5 2
ON auxiliar_5_1.Extr20 = auxiliar_5_2.Extr20;

— Result: 160 tuples

Manual_5

— Overview: Manual filtering of auxiliar_5_3 tabldirmainating erroneous joins
- Input: auxiliar_5_3

— Output: manual_5 (creation)

— Query: Manual filtering, copying result to table mal _5

— Result: 34 tuples

Veroénika Peralta

3.6.

Join_5 extr20

Overview: Adds new joined tuples to movies table
Input: manual_5

Output: movies (insert); copied to table join_5

Query:
INSERT INTO Movies (Movield, TitleMovieLens, Title IMDb, Type)
SELECT manual_5.Movield, manual_5.TitleMovieLens, manual_5.TitleIMDB,

manual_5.Type
FROM manual_5;

Result: 34 additional tuples (3590 tuples)

Diff 5 extr20

Overview: Computes the difference between moviesifMovieLens and movies already joined
Input: diff4, manual_5

Output: diff_5 (creation)

Query:

CREATE TABLE diff 5 AS

SELECT diff_4.Movield, diff_4.TitleMovieLens

FROM diff_4

WHERE diff_4.TitleMovieLens NOT IN
(SELECT TitleMovieLens FROM manual_5);

Result: 293 tuples

Matching of 10 first characters

This strategy repeats the previous one, but trimgétles to 10 characters.

a

Aux_6 1

Overview: Extracts a 10-character prefix of mowies yet joined
Input: diff 5

Output: auxiliar_6_1 (creation)

Query:

CREATE TABLE auxiliar_6_1 AS

SELECT diff_5.Movield, diff_5.TitleMovieLens,
Mid([TitleMovieLens],1,10) AS Extr10

FROM diff_5;

Result: 293 tuples

Aux_6 2

Overview: Extracts a 10-character prefix of IMDb vies
Input: IMDb_Movies

Output: auxiliar_6_2 (creation)

Query:

CREATE TABLE auxiliar_6_2 AS

SELECT IMDb_Movies.MovieTitle AS TitleIMDb,
Mid([MovieTitle],1,10) AS Extr10

FROM IMDb_Movies;

Result: 858961 tuples

13

Matching of MovieLens and IMDb movie titles

Q

3.7.

Aux_6 3

— Overview: Joins both tables by prefix
— Input: auxiliar_6_1, auxiliar_6_2

— Output: auxiliar_6_3 (creation)

- Query:

CREATE TABLE auxiliar_6_3 AS

SELECT auxiliar_6_1.Movield, auxiliar_6_1.TitleMov ieLens,
auxiliar_6_2.TitleIMDb, auxiliar_6_1.Extr10

FROMauxiliar_6_1 INNER JOIN auxiliar_6_2
ON auxiliar_6_1.Extr10 = auxiliar_6_2.Extr10;

— Result: 2488 tuples

Manual_6

- Overview: Manual filtering of auxiliar_5_3 tabldirmainating erroneous joins
- Input: auxiliar_5_3

— Output: manual_5 (creation)

— Query: Manual filtering, copying result to table mal _5

— Result: 46 tuples

Join_6_extr10
— Overview: Adds new joined tuples to movies table
— Input: manual_6

— Output: movies (insert); copied to table join_6

- Query:
INSERT INTO Movies (Movield, TitleMovieLens, Title IMDb, Type)
SELECT manual_6.Movield, manual_6.TitleMovieLens, manual_6.TitleIMDB,

manual_6.Type
FROM manual_6;

Result: 46 additional tuples (3636 tuples)

Diff_6_extr10

— Overview: Computes the difference between moviesfMovieLens and movies already joined
- Input: diff5, manual_6

— Output: diff_6 (creation)

- Query:

CREATE TABLE diff 6 AS

SELECT diff_5.Movield, diff_5.TitleMovieLens

FROMdiff_5

WHERE diff_5.TitleMovieLens NOT IN
(SELECT TitleMovieLens FROM manual_6);

Result: 247 tuples

Manual look-up

This strategy consists in manually examining unimadcMovielLens titles looking for possible matchegtie
IMDb_Movies table. It consists of three procedurtee former is a manual procedure for finding matchnd
the two latter register solved movies and compuasolved movies, respectively.

14

Veroénika Peralta

Uu Manual_7

Overview: Manual join

Input: diff_6, IMDb_Movies

Output: manual_7 (creation)

Query: Manual join, copying result to table manual

Result: 116 tuples

4 Join_7 _manual

Overview: Adds new joined tuples to movies table
Input: manual_7

Output: movies (insert); copied to table join_7

Query:
INSERT INTO Movies (Movield, TitleMovieLens, Title IMDb, Type)
SELECT manual_7.Movield, manual_7.TitleMovieLens, manual_7.TitleIMDB,

"manual" AS Type
FROM manual_7;

Result: 116 additional tuples (3752 tuples)

4 Diff_7_manual

Overview: Computes the difference between moviesfMovieLens and movies already joined
Input: diffé, manual_7
Output: diff_7 (creation)

Query:

CREATE TABLE diff 7 AS

SELECT diff_6.Movield, diff_6.TitleMovieLens

FROM diff_6

WHERE diff_6.TitleMovieLens NOT IN
(SELECT TitleMovieLens FROM manual_7);

Result: 131 tuples

3.8. Web look-up

This strategy uses the search engine of MovieLeats site to find unmatched movies, uses the linkigiea by
MovielLens site to access the movie page at thustfia IMDb title. It consists of two procedurese flormer is
a manual procedure for finding matches throughitbk interface and the latter registers solved n®vie

d Manual_8

Overview: Manual join

Input: diff_7, IMDb_Movies

Output: manual_8 (creation)

Query: Manual join, copying result to table manugl

Result: 131 tuples

15

Matching of MovieLens and IMDb movie titles

4 Join_8 manual
— Overview: Adds new joined tuples to movies table
— Input: manual_8

— Output: movies (insert); copied to table join_8

- Query:
INSERT INTO Movies (Movield, TitleMovieLens, Title IMDb, Type)
SELECT manual_8.Movield, manual_8.TitleMovieLens, manual_8.TitleIMDB,
"web" AS Type

FROM manual_8;
Result: 131 additional tuples (3883 tuples)

3.9. Delete duplicate movies

After matching titles, we found that 2 movies hhd same corresponding movie at IMDDb, i.e. we dete&
duplicates. The remaining two procedures compudichte movies and eliminate them.

U Dupl_9
— Overview: Computes duplicate movies (those reférgnthe same IMDb movie)
— Input: movies
— Output: duplicates_9 (creation)

- Query:

CREATE TABLE [Movies-duplicates] AS
SELECT Movies.TitleIMDb, Count(*) AS Quantity,
Min(Movies.Movield) AS MinDeMovield, Max(Movies.Mo vield) AS MaxDeMovield
FROM Movies
GROUP BY Movies.TitleIMDb
HAVING Count(*)>1;

— Result: 2 tuples

4 Join_9 duplicates
— Overview: Eliminates duplicates deleting (giveropity to movies joined by movietitle)
— Input: movies, duplicates_9

— Output: movies (deletion); copied to table join_9

- Query:
INSERT INTO Movies (Movield, TitleMovieLens, Title IMDb, Type)
SELECT manual_8.Movield, manual_8.TitleMovieLens, manual_8.TitleIMDB,
"web" AS Type

FROM manual_8;

DELETE FROM Movies

WHERE Movies.Movield IN (select MinDeMovield from d uplicates_9)
AND Movies.Type)<>"title"
OR Movies.Movield IN (select MaxDeMovield from dupl icates_9)

AND Movies.Type)<>"title";
— Result: 2 deleted tuples (3881 tuples)

The whole matching process was executed in a Mifrosccess database and then migrated to an Oracle
database.

16

Veroénika Peralta

4. Conclusion

In this report we described the process followed fatching MovieLens and IMDDb titles. It consistied8
strategies, which alternate automatic processing muanual verification. It was a very costly and dim
consuming work, but we succeeded to match all Mcess titles to IMDD titles.

This integration of MovieLens and IMDb data is motly useful for our testing purposes but can beriefia
wide database community working on query persoagdin.
5. References

[1] GroupLens Research: “movielens: helping you to fitide right movies”. Web site, ULR:
http://movielens.umn.edlast accessed on Jul}),2006.

[2] Internet Movie Database, Inc.: “The Internet Mobiatabase”, Web site, URttp://www.imdb.com/last
accessed on July'92007.

[3] Peralta, V.: “Extraction and Integration of Movigleand IMDb Data”. Technical Report, Laboratoire
PRiSM, Université de Versailles, Versailles, Frark@07.

17

