
  153 

Annex A.  Design of the DQE tool 

This annex presents the data model of DQE and its storage in 

the metabase.  

1. Data model 

In this section we present a simplified version of the data model of DQE, focusing in the most important classes 

and omitting auxiliary ones.  

Framework components and sessions 

The framework is composed of a set of quality graphs, a set of data sources, a set of data targets, a set of 

properties and a set of algorithms. The formal definitions of the framework and its components can be found in 

Sub-section 2.1 of Chapter 3. Sessions contains sub-sets of such components. Data sources, data targets, 

properties and algorithms can be contained in several sessions but quality graphs can be contained in a unique 

session. Figure  A.1 shows framework and sessions components.  

Quality

graph

Data 

source

Data 

target
Property Algorithm

Session
contains

1..* 1..*

Framework

1..* 1..*

contains

1..*

0..*

1

1..* 1..* 1..* 1..*1..*

0..*

0..* 0..*

containscontains
contains

 

Figure  A.1 – Conceptual representation of global components and session components 

The remaining of the section describes the components and their inter-relations*.  

Quality graphs, data sources and data targets 

Quality graphs are composed of nodes and edges. Nodes can be of three types: source nodes, target nodes, or 

activity nodes. The two former reference the corresponding data sources and data targets respectively. Edges 

relate two nodes. In order to reuse Java graph libraries, we choose to represent mono-edged graphs, i.e. graphs 

that have a unique edge between a pair of nodes. Edges can be of three types: data edges, control edges and 

mixed edges; the latter represents the existence of a data edge and a control edge between the nodes. Figure  A.2 

illustrates the representation of quality graphs, data sources and data targets.  

                                                           

*
 In the remaining figures, we color the framework components with the same colors they appear in Figure  A.1 in order to quickly identify 
their sub-components and the relationships with other framework components.  



Data Quality Evaluation in Data Integration Systems 

154  

Node Edge

1..* 1..*

Quality

graph

Data 

source

Data 

target

2

Source 

node

Target 

node

Activity

node

Data 

edge

Control

edge

Mixed 

edge

1..* 1..*
references

11
references

 

Figure  A.2 – Conceptual representation of quality graphs, data sources and data targets 

Properties 

Properties can be of two types: features and measures. In the case of a measure, we also model the hierarchy 

quality dimension � quality factor � quality metric, as shown in Figure  A.3. 

Property

Feature Measure
1..*

Factor Dimension
1..*

 

Figure  A.3 – Conceptual representation of properties 

The association of properties to nodes and edges is done indirectly, via groups of nodes and groups of edges. In 

other words, nodes and edges are grouped according to the properties they should have and properties are 

associated to the groups. This allows associating the relevant properties once and not for each node/edge. Figure 

 A.4 shows the grouping of some nodes in three node groups and the association of properties to such groups; for 

example, as Node1 belongs to Group1 it has indirectly associated two properties: Prop1 and Prop2.  

Prop1

Prop2

Prop3

Prop4

Node1

Node2

Node3

Node4

Group1

Group2

Group3

Node1
Prop1
Prop2

Prop4

Node2

Node3

Node4

Prop3

Prop2

Prop2

Prop3
Prop4

Prop3

Properties Node Groups Nodes

Association of properties Grouping of nodes

Node Properties

 

Figure  A.4 – Association of properties to nodes 

There are two types of associations: global and local. In the former, properties are globally associated to groups 

and therefore they are valid for all quality graphs whose nodes/edges belong to such groups. In the latter, the 

association is local to a quality graph, i.e. only the nodes/edges of the graph belonging to such groups are 



  Verónika Peralta  

  155  

affected. Nodes and edges are labeled with property values (when they belong to a group that has associated the 

property). For generality purposes, some property values can label the whole quality graph (e.g. the label 

DISadministrator=’VP’). Figure  A.5a illustrates the grouping of nodes and edges and their association of 

property values. As data sources and data targets can also have property values, source nodes and target nodes 

inherit the property values of the referenced sources and targets respectively, as illustrated in Figure  A.5b. 

Node Edge

1..* 1..*

Quality

graph

2

Property

Node

group

Edge

group

belongsbelongs

1..* 1..*

0..* 0..*

associated
0..*

0..* has value

0..*

0..*

0..* 0..*

0..* 0..* has valuehas value

Group associated

0..*

0..*

0..*

 

Node

Data 

source

Data 

target

Source 

node

Target 

node

Activity

node

1..* 1..*
references

11
references

Property

0..*

0..*

has value

has valuehas value

0..* 0..*

0..* 0..*

  

Figure  A.5 – Conceptual representation of the association of property values: (a) grouping of nodes and 

edges, and (b) inheritance of source and target properties 

Algorithms 

Algorithms have associated pairs <group, property> indicating the groups that must be labelled with certain 

properties as precondition for executing and the groups that will be labelled with certain properties as 

postcondition of the execution. They also indicate the quality property that they calculate, as shown in Figure 

 A.6. 

Algorithm

Group

Measure Feature

0..*

1..*

0..*
Property

pre

condition

post

condition

0..*

0..*

0..*

calculates

0..*

1

 

Figure  A.6 – Conceptual representation of algorithms 

2. Metabase 

The metabase provides the persistency of the data model. The relational schema of the metabase is shown in 

Figure  A.7; tables are colored according to the framework components that they represent, namely:  catalogues 

of data sources and data targets,  catalogue of quality graphs,  catalogue of properties,  catalogue of 

algorithms,  sessions,  grouping and  property values; bold attributes represent keys; continuous lines 

among relations represent foreign key dependencies while dashed arrows represent optional references (treated 

as foreign key depending on the value of other attributes). 



Data Quality Evaluation in Data Integration Systems 

156  

F
ig
u
re
  A
.7
 –
 M

et
a
b
a
se
 s
ch

em
a
 



  Verónika Peralta  

  157  

Annex B.  Instantiation of the Freshness Evaluation Algorithm 

This annex presents the overloaded functions that instantiate  

the freshness evaluation algorithm in two application scenarios: a Mediation 

application and a Web Warehousing application. 

1. Mediation application scenario 

In this section we recall the relevant properties of the mediation application scenario and we present the 

pseudocodes of the corresponding overloaded functions. 

Four freshness evaluation algorithms where proposed: 

− TimelinessEvaluation1: It is the algorithm used in virtual contexts or when user expectations range 

several months. Processing costs and inter-process delays (including those caused by data materialization) 

are neglected. Source data actual timeliness is considered.  

− TimelinessEvaluation2: It is the algorithm used in materialization contexts when user expectations range 

several days or weeks. Inter-process delays due to data materialization are considered, as well as source 

data actual timeliness. Processing costs and other inter-process delays are neglected. 

− CurrencyEvaluation1: It is the algorithm used in virtual contexts. Processing costs are estimated from the 

number of input tuples and inter-process delays are neglected. Source data actual currency is neglected. 

− CurrencyEvaluation2: It is the algorithm used in materialized contexts. Processing costs and inter-process 
delays among operation nodes are irrelevant compared to refreshment periods, hence, the unique property 

value that is consider is the inter-process delay cause by data materialization. 

Table  B.1 recalls the calculation of properties, which was discussed in Sub-section 3.1.3 of Chapter 5 (Table  B.1 

is adapted from Table 5.1). 

 Data timeliness 1 Data timeliness 2 Data currency 1 Data currency 2 

Processing cost (A) 

one predecessor B 
Neglect Neglect 

Tuples(B) / 

Capacity(A) 
Neglect 

Processing cost (A) 

two predecessors B1 and 

B2 

Neglect Neglect 

Tuples(B1) * 

Tuples(B2) / 

Capacity(A) 

Neglect 

Inter-process delay 

(between operators) 
Neglect Neglect Neglect Neglect 

Inter-process delay  

(between the last operator 

A and the interface I) 

Neglect 
Refreshment 

period (A) 

Refreshment 

period (A) 

Refreshment 

period (A) 

Source data actual 

freshness (S), successor A 

Update period 

(S) 

Update period 

(S) 
Neglect Neglect 

Combination of input 

values  

Maximum of 

input values 

Maximum of 

input values 

Maximum of 

input values 

Maximum of 

input values 

Table  B.1 – Calculation of property values with different types of estimation  

Algorithm  B.1 shows the pseudocodes of the overloaded functions for the second algorithm (timeliness 2 in 

Table  B.1). The getSourceActualFreshness function returns the source update period. The getProcessingCost 

function returns zero because processing cost is neglected. The getInterProcessDelay function returns zero for 

all edges except that incoming the mediator interface, which is calculated as the refreshment period. The 

combineActualFreshness function returns the maximum of input values.  



Data Quality Evaluation in Data Integration Systems 

158  

For the first algorithm (timeliness 1), the getInterProcessDelay function returns zero; the other functions are 

reused from Algorithm  B.1. 

For the fourth algorithm (currency 2), the getSourceActualFreshness function returns zero; the other functions 

are reused form Algorithm  B.1. 

For the third algorithm (currency 1), the getProcessingCost function is calculated from the tuples and capacity 

properties, as shown in Algorithm  B.2; the other functions are reused form Algorithm  B.1. 

FUNCTION getSourceActualFreshness (G: QualityGraph, A: Node) RETURNS INTEGER  

 INTEGER value = G.getPropertyValue(A,“UpdatePeriod”); 

 RETURN value; 

END 

FUNCTION getProcessingCost (G: QualityGraph, A: Node) RETURNS INTEGER  

 RETURN 0; 

END 

FUNCTION getInterProcessDelay (G: QualityGraph, e: Edge) RETURNS INTEGER  

 NODE A= e.source, B= e.target; 

 IF G.belongsToGroup(B,”Interface”) THEN  

  INTEGER value = G.getPropertyValue(A,“RefreshPeriod”); 

  RETURN value; 

 ELSE  

  RETURN 0; 

END 

FUNCTION combineActualFreshness (G: QualityGraph, valList: HushTable) RETURNS INTEGER  

 INTEGER aux= 0;  

 FOR EACH <e, value> in valList DO 

  IF value > aux 

   aux = value; 

 ENDFOR 

 RETURN aux; 

END 

Algorithm  B.1 – Overloading of functions for the second algorithm (timeliness 2) 



  Verónika Peralta  

  159  

FUNCTION getProcessingCost (G: QualityGraph, A: Node) RETURNS INTEGER  

 INTEGER tuples; 

 INTEGER capacity = G.getPropertyValue(A,“Capacity”); 

 LIST OF NODE nList = G.getPredecessors (A); 

 IF (nList.getSize == 1) THEN  

  NODE B= nList.getFirst(); 

  tuples = G.getPropertyValue(B,“Tuples”); 

  RETURN tuples / capacity; 

 ELSE 

  NODE B1= nList.getFirst(); 

  tuples = G.getPropertyValue(B1,“Tuples”); 

  NODE B2= nList.getLast(); 

  tuples = tuples * G.getPropertyValue(B2,“Tuples”); 

  RETURN tuples / capacity; 

END 

Algorithm  B.2 – Overloading of the getProcessingCost function for the third algorithm (currency 1) 

2. Web warehousing application scenario 

In this section we recall the relevant properties of the web warehousing application scenario and we present the 

pseudocodes of the corresponding overloaded functions. 

Table  B.2 recalls the calculation of properties, which was discussed in Sub-section 3.2.3 of Chapter 5 (Table  B.2 

is adapted from Table 5.2 and Table 5.3). 

 Precise value Average case Worst case 

Processing cost (A) Neglect Neglect Neglect 

Inter-process delay (A,B),  

B in {i1, i2, t1, t2, t4, t5} 
Neglect Neglect Neglect 

Inter-process delay (A,B), 

B in {m1, m2, t3, v1, v2, v3, 

v4, v5} 

Last execution time (B) 

– Last execution time (A) 

Average in statistics of: 

Execution time (B) 

– Execution time (A) 

Maximum in statistics of: 

Execution time (B) 

– Execution time (A) 

Source data actual 

currency (S) 
Neglect Neglect Neglect 

Source data actual 

timeliness (S), push  
Neglect Neglect Neglect 

Source data actual 

timeliness (S),  

periodic pull, wrapper W 

Last execution time (W)  

– Last change detection  

+ Pull period (W) 

Pull period (W) + 

Average in statistics of: 

Execution time (W)  

– Change detection time  

Pull period (W) + 

Maximum in statistics of: 

Execution time (W)  

– Change detection time 

Combination of input 

values (different data 

volatility) 

Input value of most volatile input 

Combination of input 

values (equal data 

volatility) 

Average of input values  

weighted with  

Data volume 

Average in statistics of: 

average of input values  

weighted with 

Data volume 

Maximum (input values) 

Table  B.2 – Calculation of property values with different types of estimation  



Data Quality Evaluation in Data Integration Systems 

160  

Algorithm  B.3 shows the pseudocodes of the overloaded functions for calculating timeliness with the precise 

estimation strategy, according to Table  B.2. The getSourceActualFreshness function returns different values 

depending on the source capabilities, namely it returns: (i) zero for sources that can announce changes and (ii) 

the difference between wrapper execution time and last change detection time plus the pull period of the wrapper 

for the other sources. The getProcessingCost function returns zero because processing cost is neglected. The 

getInterProcessDelay function returns different values for the different types of edges, namely it returns: (i) zero 

when the successor activity belongs to the NoDelay group (i.e. activities i1, i2, t1, t2, t4 and t5) and (ii) the 

difference of execution times for the other activities. The combineActualFreshness function traverses the list of 

input values keeping the total (sum of input values multiplied by data volumes) and volume (sum of data 

volumes) variables, which allows the calculation of the weighted average at the end. When a more volatile 

predecessor is found, such values are reinitialized. Note that some property values are obtained from the graph 

(labels of nodes and edges) but other ones are read in a log. 

For calculating currency, the getSourceActualFreshness function returns zero, and the other functions are reused 

from Algorithm  B.3. 

The pseudocodes of the overloaded functions for the average and worst case estimation strategies are analogous. 

The difference is that the log methods getAverage or getMaximum are invoked instead of the getLast method 

(highlighted in red in Algorithm  B.3).  

FUNCTION getSourceActualFreshness (G: QualityGraph, A: Node) RETURNS INTEGER  

 INTEGER announce= G.getPropertyValue(A,”AnnounceChanges”) 

 IF announce = TRUE THEN 

  RETURN 0; 

 ELSE 

  NODE W= G.getSuccessors(A)  /*the wrapper*/ 

  LOG log = G.getLog(”Execution-ChangeDetection”); 

  INTEGER time = log.getLast(A,W); 

  INTEGER pull= G.getPropertyValue(W,”PullPeriod”); 

  RETURN time + pull; 

END 

FUNCTION getProcessingCost (G: QualityGraph, A: Node) RETURNS INTEGER  

 RETURN 0; 

END 

FUNCTION getInterProcessDelay (G: QualityGraph, e: Edge) RETURNS INTEGER  

 NODE A= e.source, B= e.target; 

 INTEGER time; 

 IF G.isSource(A) or G.isTarget(B) THEN  

  RETURN 0; 

 ELSE IF G.belongsToGroup(B,”NoDelay”) THEN  

  RETURN 0; 

 ELSE  

  LOG log = G.getLog(”Execution-Execution”); 

  INTEGER time = log.getLast(A,B); 

  RETURN time; 

END 



  Verónika Peralta  

  161  

FUNCTION combineActualFreshness (G: QualityGraph, valList: HushTable) RETURNS INTEGER  

 INTEGER maxVolatility= 0, volume= 0, total= 0, volatility, aux;  

 FOR EACH <e, value> in valList DO 

  NODE A= e.source; 

  volatility = G.getPropertyValue(e,“DataVolatility”); 

  LOG log = G.getLog(”DataVolumne”); 

  INTEGER aux = log.getLast(A); 

  IF volatility > maxVolatility THEN 

   maxVolatility = volatility; 

   volume = aux; 

   total = aux * value; 

  ELSE IF volatility = maxVolatility THEN 

   volume = volume + aux; 

   total = total + aux * value; 

 ENDFOR 

 IF volume = 0 THEN RETURN 0; 

 ELSE RETURN total / volume; 

END 

Algorithm  B.3 – Overloading of functions for timeliness and precise estimation strategy 


