
  117 

Chapter 5.    Experimentation and Applications  

This chapter presents our experimentation results.  

We describe several applications and the use of the quality evaluation 

framework for evaluating data quality in such applications.  

We describe a prototype of a Data Quality Evaluation tool, DQE, which implements 

the framework and allows the execution of quality evaluation algorithms. 

 The prototype was used for evaluating data freshness and data accuracy  

in several application scenarios. 

1. Introduction 

Chapters 3 and 4 described our proposal for the evaluation of data freshness and data accuracy in data integration 

systems. In this chapter we illustrate its practical use in real applications. To this end, we have developed a 

prototype of an evaluation tool, called DQE, which implements the proposed quality evaluation framework. The 

tool allows displaying and editing the framework components as well as executing quality evaluation algorithms. 

The prototype was used for evaluating data freshness and data accuracy in several application scenarios in order 

to validate the approach. Specifically, we describe three applications: (i) an adaptive system for aiding in the 

generation of mediation queries, (ii) a web warehousing application retrieving movie information, and (iii) a data 

warehousing system managing information about students of a university. We briefly describe each application, 

we model it in DQE (quality graphs, properties, etc.) and we explain the evaluation of data freshness and data 

accuracy for them.  

The goal of our experimentation is twofold. Firstly, we want to validate the approach in real applications, 

analyzing the practical difficulties of modeling different DISs as quality graphs, setting property values and 

instantiating evaluation algorithms for them. Secondly, we want to test the execution of evaluation algorithms for 

such quality graphs. For the first application (mediation application) we also tested the connection of the tool 

with other DIS design modules, communicating via a metadata repository. 

In addition, we describe some tests for evaluating performance and limitations of the tool. To this end, we 

generated some data sets (quality graphs adorned with property values) and we executed a quality evaluation 

algorithm over each graph. The test results allow affirming that the tool can be used for large applications 

(modeling hundreds of graphs with hundreds of nodes each).  

The following sections describe our experimentations: Section  2 presents the DQE tool, describing its 

functionalities, architecture and interface. Section  3 uses DQE in three application scenarios, describing the 

evaluation experiments performed in each application and their results. Section  4 presents the performance tests, 

describing the generation of test data sets, the tests themselves and the obtained results. Finally, section  5 

concludes. 

2. Prototype 

Most of the functionalities of the framework for data quality evaluation described in previous chapters have been 

implemented in a quality auditing tool called DQE (Data Quality Evaluation). The prototype was implemented in 

Java (JDK 1.4) and manages persistence via an Oracle® database (Oracle 10g Enterprise Edition Release 

10.1.0.2.0). The tool allows displaying and editing the framework components as well as executing quality 

evaluation algorithms. Next sub-sections describe the tool main characteristics; design and implementation 

features are treated in Annex 1.  



Data Quality Evaluation in Data Integration Systems 

118    

2.1. Functionalities 

The main functionalities of the tool are: 

− Storage of framework components: The framework components (data sources, data targets, quality 

graphs, properties and algorithms), auxiliary components that ease the manipulation of framework (e.g. 

sessions, groups of nodes and edges) and graphical components, are all stored in a relational database, 

called metabase. The metabase contains global catalogues for the various components and maintains 

association lists among components. The goal of the metabase is threefold: it provides persistency, it 

allows reusing components previously defined, and it serves as communication media for sharing data 

with other DIS design tools (in particular with the tool managing user profiles, which stores user expected 

quality values) and statistical tools (which estimate and store property values).  

− Management of sessions: A session represents a concrete application scenario and encloses the framework 

components for that scenario, i.e. data sources, data targets, quality graphs, properties and algorithms. 

Several sessions can be stored in the metabase but the tool only manages one session at a time. Among 

the functionalities of management of sessions, the tool includes: the creation, loading, storing and deletion 

of sessions, the creation, loading, storing and deletion of components. Most of the components (data 

sources, data targets, properties and algorithms) are stored in global catalogues of the metabase and can 

be loaded in several sessions. Quality graphs, however, are associated to a unique session.  

− Management of properties: An editor of properties allows the creation, modification and deletion of 

properties from the global catalogue and their inclusion/removal from the current session. Information 

describing properties include: a code (auto-generated), a name (globally unique, used by the user for 

identifying the property), a description (natural language description of the property semantics and units), 

a type (feature or measure) and the domain data type (e.g. integer). In the case of measure properties, the 

dimension and factor and also required (e.g. the Currency metric corresponds to the Currency factor of 

the Freshness dimension). 

− Management of sources and targets: Sources and targets are managed in the same way. A simple editor 

allows the creation, modification and deletion of sources/targets from the global catalogue and their 

inclusion/removal from the current session. Information describing sources/targets include: a code (auto-

generated) and a description. Sources may have associated some property values (e.g. actual quality 

values, availability, access cost); targets may also have associated some property values (e.g. expected 

quality values, workload). The editor also allows associating and dissociating properties to sources and 

targets as well as changing property values. 

− Management of algorithms: A simple interface allows the inclusion and deletion of algorithms from the 

global catalogue and their inclusion/removal from the current session. An algorithm is identified by a 

name (globally unique) and has a description and a reference to a Java class that implements it. The 

current version does not provide a graphical interface for implementing an algorithm; algorithm code 

should be produced using a text editor or a Java development environment. However, the tool provides a 

method for dynamically adding new algorithms (automatically binding arguments and properties) without 

closing the session. 

− Visualization and edition of quality graphs: Quality graphs are the most important components managed 

by the application and consequently, a sophisticated display utility, called graph viewer, allows 

visualizing the graphs and their components (nodes, edges, labels). The graph viewer allows visualizing 

nodes and edges, moving them in order to better analyze the graph topology, showing or hiding property 

values, grouping nodes and edges, coloring nodes and edges according to different criteria and zooming. 

The graph viewer also allows adding and removing nodes and edges to a quality graph, and changing 

property values.  

− Association of properties to nodes and edges of a quality graph: Nodes and edges are grouped in order to 

associate properties to them (for example: we can define the group MaterializedActivities and associate 

the property RefreshFrequency to all nodes in such group). The tool provides functionalities for creating 

and deleting groups of nodes and edges, inserting and deleting nodes and edges to a group and associating 

and dissociating properties from a group. Source and target nodes also inherit the properties of the 

corresponding source or target. As a node or edge can belong to several groups, they can have associated 

a same property several times, but a unique value is set.  



  Verónika Peralta  

  119  

− Execution of an algorithm: There are two ways of executing an algorithm. The first one consists in 

selecting a quality graph and invoking an algorithm (selected from the session algorithms) for the graph. 

The second one consists in invoking an algorithm for all the quality graphs of the session. The execution 

of an algorithm in a quality graph is performed in a separate thread, so other functionalities can be 

invoked during the execution of an algorithm. The execution of an algorithm on different graphs is 

parallelized but the execution of several algorithms on a same graph is sequential.  

− Visualization of results: The graph viewer is automatically refreshed after the execution of an algorithm, 

showing the new property values (corresponding to the evaluated quality factor). The auditing tool allows 

coloring nodes that do not achieve quality expectations, identifying and coloring critical paths, changing 

property values in order to test alternative configurations and re-executing the evaluation algorithms to 

see the effects of the changes.  

2.2. Architecture 

The architecture is structured in layers and the communication among layers is done via interfaces in order to 

standardize the access to each layer. The design of the graphical interface follows the model-view-controller 

pattern, implemented in three different layers (View, Logic and Model). The persistency in a relational database 

(Oracle 10g) is implemented in the DataAccess layer. Exception management and other utility functions are 

accessed via the Utilities transversal layer. Figure  5.1 shows the layers of the architecture and the interaction 

among them, as well as the most relevant packages that compose each layer.  

DataAccess

Model

Logic

ViewUtilities

Metabase

QualityGraph
Algorithm

Config

PropertySource

Target

Controller

Execution
Session

GUI PropertyGroup

SessionTreeJGraphComponents

GraphViewer

Factory

Util

Exception

AlgorithmBatch

 

Figure  5.1 – Architecture of the prototype 

The View layer manages the graphical representation. The main packages are: GUI (controls the graphical user 

interface), GraphViewer (displays and allows the creation and edition of quality graphs), JGraphComponents 

(manages graph components (nodes, edges, labels) and their graphical properties), SessionTree (manages session 

components) and PropertyGroup (manages the properties and groups associated to nodes and edges). 

Logic layer: Implements the application logic, bringing methods for managing sessions and executing 

algorithms. The main packages are: Controller (acts as a bridge between graphical interface and data model), 

Session (manages sessions), Algorithm (manages the collection of algorithms, their arguments, preconditions and 

implemention), Execution (controls the execution of algorithms) and Batch (controls batch execution of 

algorithms over all quality graphs). 

Model layer: Manages the data model. Tha main packages contain the representation of the framework 

components: Source, Target, QualityGraph, Property and Algorithm. 

DataAccess layer: Persists the data model in a relational database (Metabase package) and interacts with 

configuration files (Config package). 

Utilities layer: Brings basic services to the other layers. The main packages are: Exception (handles exceptions), 

Factory (manages the creation of objects) and Util (contains utilitarian functions).  



Data Quality Evaluation in Data Integration Systems 

120    

2.3. Interface 

The graphical interface of the tool is shown in Figure  5.2. The main window consists of four main components:  

− Main menu (top): The menu allows adding, deleting and editing session components, global components 

and groups. 

− Graph Viewers panel (right): A Graph Viewer is the editor of a quality graph. It allows displaying a 

graph, adding/deleting nodes and edges, inserting/deleting groups, changing property values, 

showing/hiding properties and groups, coloring nodes and edges according to different criteria, zooming 

and highlighting critical paths. The Graph Viewers panel is a container for displaying Graph Viewers; it 

can show several graphs allowing its comparison. In Figure  5.2, the Graph Viewer of Graph1 is active 

and the Graph Viewers of Graph2 and Graph3 are iconified. 

− Session Tree panel (up-left): Shows the components of the current session, structured as a tree, and 

controls the insertion/deletion of components. The visualization of Graph Viewers and the execution of 

evaluation algorithms are also invoked from this panel. As shown in Figure  5.2, Session1 is composed of 

three quality graphs, five data sources, five data targets, two evaluation algorithms and five properties. 

− Group-Property panel (down-left): When a set of nodes/edges of a quality graph is selected in the 

GraphViewer, their groups and properties are shown in the Group-Property panel. The panel also allows 

inserting/deleting the selected nodes or edges to groups, changing property values, and indicating the 

properties that are shown/hidden in the GraphViewer (for readability purposes). In Figure  5.2, the edge 

A1-A5 is selected in the GraphViewer of Graph1 and consequently its groups and properties are listed in 

the Group-Property panel. 

A user manual (in Spanish) can be found in [Ramos+2006]. 

 

Figure  5.2 – Graphical Interface 



  Verónika Peralta  

  121  

2.4. Practical use of the tool  

In this section we describe the typical use of the DQE tool for data quality evaluation, not excluding that other 

sequences of actions can be followed in particular application scenarios and that individual functionalities can be 

used for other purposes (e.g. visualizing graphs representing other aspects of an application). Therefore, the 

quality evaluation process using DQE can be abstracted as consisting in two major phases: (i) the personalization 

of the evaluation algorithms and (ii) their use for evaluating data quality in a DIS. Figure  5.3 illustrates the steps 

in the quality evaluation process. 

Define 

properties

Design 

algorithms

Model quality 

graphs

Execute 

algorithms

Analyze 

results

Personalization of algorithms Execution of algorithms on a DIS

 

Figure  5.3 – Steps in the quality evaluation process 

In the first phase, the user must define (or reuse from the catalogue of properties) the desired quality factors and 

define (or reuse) the properties that have impact in such quality factors. The tool has a default catalogue of 

properties that includes all properties mentioned in Chapter 3 and Chapter 4, but the user can add its own 

properties.  

Having defined properties, evaluation algorithms must be implemented, for propagating quality combining such 

property values. The algorithms for propagating data freshness and data accuracy described in previous chapters, 

as well as other test algorithms, are included in the default catalogue. In addition, the tool provides an interface 

and a set of primitive methods for easing the implementation of new algorithms. The user can obtain an 

evaluation algorithm in three ways:  

− Selecting a default propagation algorithm provided by DQE. The property values needed by the algorithm 
(e.g. source data actual freshness, processing costs and inter-process delays required for the 

ActualFreshnessPropagation algorithm) must be calculated using external methods and stored in the 

metabase (or manually set in the GraphViewer interface). 

− Extending an existing propagation algorithm by overloading the methods for calculating property values. 
In this case, a new algorithm must be implemented as a Java class extending a default propagation 

algorithm and overloading the appropriate functions (e.g. overloading the getSourceActualFreshness, 

getProcessingCost and getInterProcessDelay methods of the ActualFreshnessPropagation algorithm, as 

described in Sub-section 3.5 of Chapter 3). 

− Implementing a new algorithm from scratch. To this end, we defined a Java interface (IAlgorithm) whose 

unique method (execute) is invoked by DQE for executing the algorithm. The new algorithm must be 

implemented in a new Java class that implements the IAlgorithm interface and the propagation strategy 

must be implemented in the execute method. All the methods of the QualityGraph class can be invoked in 

order to traverse a quality graph with the desired propagation strategy.  

In the second phase, the algorithms are used for evaluating the quality of a set of a set of quality graphs. Firstly, a 

session must be created, selecting the previously defined properties and algorithms, and creating (or reusing) the 

data sources, data targets and quality graphs. The GraphViewer can be used for creating quality graphs from 

scratch, editing existing quality graphs or cloning existing quality graphs (e.g. for testing different property 

values).  

Once quality grahs are modeled and property values are associated to their nodes and edges, the evaluation 

algorithms can be executed. DQE allows executing an algorithm on a selected qualtiy graph or executing an 

algorithm (in parallel) on all the quality graphs of the session.  

After executing algorithms, the GraphViewer can be used again for analyzing evaluation results, for example, 

highlighting critical paths. Several quality graphs (for example representing alternative implementations of the 

DIS) can be graphically compared. The evaluation results are also stored in the metabase in order to support 

decision-making using external tools. In order to support what-if analysis, some property values can be changed 

(simulating alternative configurations) and the algorithms can be re-executed with the new property values. 



Data Quality Evaluation in Data Integration Systems 

122    

2.5. Liberation of versions 

The tool first liberation dates from April 2004. The second version, liberated in October 2004, was used for the 

tests and results that will be discussed in next sections. However, the implementation of the tool was continued, 

improving persistency and graphical interface, resulting in two additional liberations. Further improvements are 

scheduled, which are discussed as perspectives in Chapter 6.  

History of versions and implementers: 

− Version 1 – April 2004: Initial design of the framework; emphasis in the design of the overall architecture 
and its extensibility (dynamic incorporation of quality properties and evaluation algorithms). 

Implementation of the main framework components with rapid solutions for evaluation algorithms (basic 

test algorithms), persistency (via XML files) and graphical interface (ad-hoc components). Developed in a 

pre-grade project by Fabian Fajardo and Ignacio Crispino, supervised by Verónika Peralta and Raúl 

Ruggia [Fajardo+2004], presented in the CACIC’2004 conference [Fajardo+2004a]. 

− Version 2 – October 2004: Incorporation of new functionalities, emphasis in the interoperation with other 
DIS design tools via a metadata repository. Implementation of freshness evaluation algorithms, 

incorporation of new display functionalities (as visualization of critical paths), enrichment of the 

graphical interface and persistence of the framework in the metadata repository. Developed by Verónika 

Peralta, presented in the BDA’2004 conference [Kostadinov+2004]. 

− Version 3 – August 2005:  Reengineering of data and persistency modules, emphasis in scalability, 
replacing memory storage by database accesses. Extension of the framework data model, including new 

features (as groups of nodes and edges) and graphical properties (as colors of nodes and edges), and 

implementation of the data model in a relational database. Rapid solutions for graphical interface. 

Developed in a pre-grade project by María José Rouiller, supervised by Verónika Peralta [Rouiller+2005]. 

− Version 4 – April 2006: Reengineering of the graphical interface, emphasis in easing user interaction. 
Restructuration of menus and toolbars, incorporation of new display functionalities and implementation 

of some accuracy evaluation algorithms. Developed in a pre-grade project by Mayra Ramos and Renzo 

Settimo, supervised by Verónika Peralta, Adriana Marotta and Salvador Tercia [Ramos+2006]. 

Section  3 describes several application scenarios and the use of the tool for evaluating data freshness and/or data 

accuracy in them. 

3. Applications 

In this section we describe some application scenarios where we used the quality evaluation framework. We 

briefly describe each application scenario, we model it in DQE and we illustrate quality evaluation for it. 

3.1. An adaptive system for aiding in the generation of mediation queries 

Nowadays, mediation systems are well-known and there exists a great number of implementations. Their main 

components are: the global schema, mappings between the global schema and the data sources, query rewriting 

functions and result merging functions. All these components take into account the heterogeneity of data sources 

which is one of the main problems treated by mediation systems. Other design problems appear at mediator 

exploitation time. Among these problems we distinguish the definition of the mappings between the global 

schema and the data sources. Because of a great number of data sources, possibly containing redundant 

information and different data quality, it is also important to adapt these mappings to user's needs, in particular, 

in terms of data quality.  

In [Kostadinov+2005], we presented an adaptive system for aiding in the generation of mediation queries (which 

represent the mappings between the mediation schema and the data sources). The goals of the system are, on the 

one hand, to automatically generate mediation queries taking into account data heterogeneity, and on the other 

hand, to adapt the queries to the user requirements in terms of quality. In this sub-section we describe the system 

and the use of DQE in the design of mediation applications adapted to user preferences. 

The goal of this experiment is twofold: Firstly, we want to validate our approach, instantiating the framework 

and evaluating data freshness in this concrete application scenario. Secondly, we want to test different evaluation 

algorithms adapted to different configurations of the system (e.g. materializing data or not). 



  Verónika Peralta  

  123  

3.1.1. Description of the application 

A mediation system is defined as the integration of several distributed and heterogeneous data sources. The 

integration is described by means of a global schema, called mediation schema, and the mappings relating it to 

the data sources, called mediation queries. Figure  5.4 presents an overview of the architecture of mediation 

systems. 

The generation of mediation queries is one of the most tedious task to be done manually, because of the great 

number of sources that may be involved (hundreds or thousands) and of the volume of the metadata describing 

them (source and global schema descriptions, semantic correspondence assertions, etc.). As there may exist 

several sources providing the same type of data, several mediation queries can define a same mediation object. A 

key problem is determining the sources (or combination of sources) that provide the results the most adequate to 

user’s needs, according to their thematic and quality preferences. In this context, data quality has a fundamental 

role in the design and exploitation of mediation applications. 

Source 1

User Query 1

Source 2 Source 3 Source m

MEDIATOR

User Query 2 User Query n

Mediation Schema

Object 1 Object 2 Object p

Q2 QpQ1

Mediation Queries

 

Figure  5.4 – Mediation system architecture 

Example 5.1. Consider a mediation system providing information about scientific publications and their 
authors. The mediation schema is composed of a unique relation: 

 Publications (title, author, affiliation, conference, year, editor)* 

Also consider four data sources: AuthorBase, ConfList, DBpubs and LP. AuthorBase contains information 

about authors of scientific publications, ConfList is a catalogue of conferences, DBpubs and LP are lists of 

published articles. Their schemas are:  

− Source AuthorBase : Authors (author, address, email, affiliation, nationality) 

− Source ConfList : Conferences (conference, year, city, country, editor) 

− Source DBpubs : Publications (author, title, conference) 

− Source LP : Pubs (author, title, conference, year, editor) 

In order to calculate the mediation relation the source relations must be combined. In this example, there is 

not a unique solution. Queries Q1, Q2, Q3 (and their combinations: Q1 ∪ Q2, Q1 ∩ Q3, etc.), allows to obtain 

the mediation relation:  

− Q1 = LP. Pubs author AuthorBase.Authors  

− Q2 = DBpubs.Publications author AutorBase.Authors conference ConfList.Conferences  

− Q3 = DBpubs.Publications author AutorBase.Authors auteur, titre LP.Pubs  

Even if each query allows providing all the attributes of the mediation relation, they produce results with 

different semantics and different quality. For example, if the source DBpubs is not frequently updated, it 

can provide data that is less fresh than LP, being less interesting for a researcher searching for new 

publications.   □ 

                                                           

*
 Attributes in bold constitute the key of the relations 



Data Quality Evaluation in Data Integration Systems 

124    

The application consists in generating several mediation queries, evaluating the quality of their data and 

selecting the most appropriate one according to user preferences. A design toolkit provides these functionalities. 

It is composed of three tools: mediation query generation, user profile management and data quality evaluation. 

The tools communicate via a metabase server which store all the metadata used and produced by the tools 

(metadata describing sources, the mediator, mappings, quality measures and user profiles). A definition interface 

allows users to interact with the tools. Figure  5.5 shows the architecture of the toolkit.  

The mediation query generation tool [Xue 2006] is responsible for the selection of relevant sources, the 

detection and resolution of semantic conflicts and the generation of mediation queries. The user profile 

management tool [Kostadinov 2006] is responsible for the definition of user profiles, which include quality 

expected values. The data quality evaluation tool (presented in Section  2) is responsible for the estimation of the 

quality of data provided by the generated queries and the selection of those satisfying user quality expectations. 

Definition Interface

Meta-base

Data Quality

Evaluation 

User Profile

Management 

Mediation Query 

Generation

user administrator

 

Figure  5.5. Toolkit architecture  

In the remaining of this sub-section we discuss quality evaluation features; an overview of the functionalities of 

the other tools can be found in [Kostadinov+2005]. 

3.1.2. Modeling of the application in DQE 

In this sub-section we illustrate the instantiation of the quality evaluation framework for the application 

introduced in previous sub-section. Concretely, we model each generated mediation query as a quality graph, 

allowing the execution of quality evaluation algorithms on the graphs and the comparison among them.  

Each query operator is represented as an activity. An additional activity represents the mediator interface for user 

queries. Figure  5.6 shows a quality graph for the mediation query Q3 of  Example 5.1.  

sourceAfreshness=0

J1

J2

I

operation=Join on title

materialization=YES

sourceAfreshness=5sourceAfreshness=60

DBpubs.Publicatins AuthorBase.Authors LP.Pubs

Publications

operation=Join on author

tuples=50000 tuples=10000tuples=1000
 

Figure  5.6 – Quality graph for a mediation query 



  Verónika Peralta  

  125  

We build two quality graphs for each mediation query, having the same topology but differing in some property 

values. Concretely, one of the graphs represents a virtual mediation query while the other represents the 

materialization of the query data. Consequently, synchronization techniques include synchronous and 

asynchronous pull policies.  

Considering that users are interested in measuring both, currency and timeliness, the application scenario is 

characterized as follows: 

� MED scenario:   

� Freshness factor: currency and timeliness  
� Nature of data: depends on specific sources (all types of data are possible) 
� Architectural techniques: virtual and materialization techniques 
� Synchronization policies: pull-pull and pull/pull policies 

The estimation of property values, taking into account the characteristics of the scenario, is discussed in next 

sub-section.  

3.1.3. Estimation of property values 

In order to manipulate concrete freshness expectations, we take as case of study, the domain of scientific 

publications and their authors introduced in  Example 5.1 and we assume that users have very different freshness 

expectations, ranging from “some days” to “several months” for timeliness and ranging in “some minutes” for 

currency. Therefore, we need several evaluation algorithms, adapted to different DIS properties and different 

user expectations. 

For timeliness requirements, the “day” is a good unit for measuring data timeliness and properties values ranging 

in “some hours” or less can be neglected. Query operation costs and inter-process delays among operations are 

negligible compared with timeliness expectations. However, when materializing data, the inter-process delays 

with mediator interfaces are relevant. Such delays can be estimated, in the worst case, as the refreshment period. 

Source data actual timeliness is also relevant. Data timeliness is measured, in the worst case, as the source update 

period. We assume that external processes are capable of estimating and bounding the time passed since last 

source update, and that such processes store the calculated value as a source property. 

For currency requirements, the “second” should be used for measuring data currency and properties values 

ranging in “some seconds” should be considered. Query operation costs are relevant. As our purpose was to test 

the execution of evaluation algorithms and not to compare sophisticated cost models, we simply estimated 

processing costs based on the number of tuples of source relations. Concretely, the processing cost was 

computed dividing the number of input tuples (product of numbers of tuples of both input relations, in the case 

of a join) by the number of tuples that can be processed per second (operation capacity). Note that we need to 

estimate the number of tuples resulting from each operator (that will be the input for calculating the cost of 

successor operators). In the case of data materialization (despite materialization is not appropriate for such 

currency requirements) the inter-process delays with mediator interfaces, estimated in the worst case as the 

refreshment period, is the predominant delay.  

Table  5.1 summarizes the calculation strategies for both factors. 

 Data currency Data timeliness 

Processing cost (A),  

one predecessor B 
Tuples (B) / Capacity (A) Neglect 

Processing cost (A),  

two predecessors B1 and B2 

Tuples (B1) * Tuples (B2) / 

Capacity (A) 
Neglect 

Inter-process delay (between operators) Neglect Neglect 

Inter-process delay  (between the last 

operator A and the interface I) 
Refreshment period (A) Refreshment period (A) 

Source data actual freshness (S), 

successor A 
Neglect Update period (S) 

Table  5.1 – Calculation of property values for currency and timeliness factors 

When an activity has several predecessors, the maximum input freshness value is taken, i.e. the combination 

function returns the maximum. (See Chapter 3, Sub-section 3.1 for further details on combination functions). 



Data Quality Evaluation in Data Integration Systems 

126    

The following properties were associated to the quality graph: 

− RefreshPeriod (last operation node): Represents the difference of time between two refreshments of 
materialized data. It is defined during mapping generation. 

− Capacity (operation node): Represents the quantity of tuples that the node can process per second. It is 
defined during mapping generation. 

− Selectivity (operation node): Represents the percentage of input tuples (product of numbers of tuples of 
both input relations, in the case of a join) that constitutes the operation result. It is defined during 

mapping generation. 

− Tuples (source and operation nodes): Number of tuples delivered by a node. For source nodes, it is 
provided by source administrators. For operation nodes, it is calculated from the number of tuples of input 

nodes and operation selectivity. 

− UpdatePeriod (source nodes): Represents the difference of time between two updates at a source. It is 
provided by source administrators. 

Several freshness evaluation algorithms where instantiated, overloading the getSourceActualFreshness, 

getInterProcessDelay, getProcessingCost and combineActualFreshness functions according to the DIS 

properties discussed previously. Concretely, we provided the following algorithms: 

− TimelinessEvaluation1: It is the algorithm used in virtual contexts or when user expectations range 

several months. Processing costs and inter-process delays (including those caused by data materialization) 

are neglected. Source data actual timeliness is considered.  

− TimelinessEvaluation2: It is the algorithm used in materialization contexts when user expectations range 

several days or weeks. Inter-process delays due to data materialization are considered, as well as source 

data actual timeliness. Processing costs and other inter-process delays are neglected. 

− CurrencyEvaluation1: It is the algorithm used in virtual contexts. Processing costs are estimated from the 

number of input tuples and inter-process delays are neglected. Source data actual currency is neglected. 

− CurrencyEvaluation2: It is the algorithm used in materialized contexts. Processing costs and inter-process 
delays among operation nodes are irrelevant compared to refreshment periods, hence, the unique property 

value that is considered is the inter-process delay caused by data materialization. 

The pseudocodes of such functions are detailed in Annex B. Next sub-section describes the experimentations 

with this application. 

3.1.4. Experimentation  

As we previously motivated, the experimentation with this applications has two main goals: (i) instantiate the 

framework and evaluate data freshness in this concrete application scenario in order to validate our evaluation 

approach, and (ii) test different evaluation algorithms adapted to different DIS properties and user expectations.  

To achieve these goals, we implemented several freshness evaluation algorithms, as detailed in previous sub-

section, and we simulated different scenarios by changing user preferences. Source property values (Tuples and 

UpdatePeriod) were manually set during test configuration. DIS property values (RefreshPeriod, Capacity and 

Selectivity) were randomly generated during query generation. All these properties, as well as the quality graphs 

representing mediation queries, were read from the metabase. 

We executed the evaluation algorithms and used the graphical functionalities of DQE for analyzing evaluation 

results. Two main functionalities were particularly used: the coloring of graphs not achieving freshness 

expectations and the coloring of critical paths. This allowed simulating DIS reengineering analysis. Furthermore, 

some property values were manually changed during the simulation (using the Group/Property panel of DQE), 

for example, the refreshment frequency or the capacity of a node. Then, the evaluation algorithms were re-

executed with the new property values, allowing the simulation of some basic kinds of what-if analysis. 

The evaluation results, i.e. labels of the quality graphs, were persisted in the Metabase and thereafter used by the 

User Profile Manager in order to select the mediation query that better adapts to user preferences. The selection 

principle was very simple: mediation queries were ordered according to data freshness and other criteria, and the 

one providing the best quality (in a multi-criteria aggregation) was selected. 



  Verónika Peralta  

  127  

In order to provide other quality criteria, we implemented simple quality evaluation algorithms for computing 

response time and confidence estimations. Response time was computed adding the processing cost property 

calculated for data freshness evaluation. Confidence was computed as an average of the source confidence 

values, set as properties of source nodes. Despite the simplicity of the test, this allowed to validate the possibility 

of extending the framework (and the tool) for the evaluation of other quality factors. 

As results of our experimentations we obtained some conclusions. Firstly, the application of the instantiation 

method to a given scenario is straight forward. In addition, we found that the knowledge about many properties 

and its estimation can be reused for other scenarios. The implementation of the overloaded functions is also very 

simple and its integration to the framework is straight forward. Finally, the graphical functionalities of the tool 

allowed an easy interpretation of evaluation results, especially, the visualization of critical paths is very useful 

for targeting enforcement analysis. 

3.2. Evaluating data freshness in a web warehousing application 

Web warehousing (WW) systems extract and integrate data from a set of conceptually-related web pages and 

store it in a Data Warehouse in order to allow decision making. WW extraction processes have to solve many 

problems related to the heterogeneity of web pages and the autonomy of web sources, including finding new 

relevant pages, detecting changes in the pages, accessing pages with different formats and transforming data to a 

common format. As many sources can provide the same information, extracted data must be reconciled in order 

to provide consistent and not duplicated information.  

In this sub-section we study data freshness evaluation in the context of a WW application. Concretely, we 

instantiate the freshness evaluation algorithm to a WW scenario and we use the evaluation results in the 

integration process in order to return the freshest data to the user.   

The main goal of this experiment is the practical use of our approach in a real application. This implies the 

modeling of several types of processes with different synchronization policies and different assessment methods 

for property values. The challenge is to show that our framework allows the easy representation of the 

application and that the freshness evaluation algorithm can be easily instantiated for this scenario. 

3.2.1. Description of the application  

In this sub-section we describe the Web Warehousing architecture proposed in [Marotta+2001], which is based 

on two types of modules: wrappers and mediators. The goal of a wrapper is to access a source, extract the 

relevant data, and present such data in a specified format. The role of a mediator is to merge data produced by 

different wrappers or mediators. Figure  5.7 shows an overview of the Web Warehousing architecture, starting 

with data extraction from Web documents and finishing with user interfaces or applications querying the system.  

W
r
a
p
p
e
r

W1

M
e
d
i
a
t
o
r

M1

W
r
a
p
p
e
r

Wn

M
e
d
i
a
t
o

r

Mn

M
e
d
i
a
t
o
r

M

…

Q
u
e
r
y

I
n
t
e
r
f
a
c
e

 

Figure  5.7 – Overview of the Web Warehousing architecture 



Data Quality Evaluation in Data Integration Systems 

128    

The set of Web pages is grouped according to the information to be extracted from them. For each group of 

pages, a request schema and an associated wrapper are defined. The wrapper extracts the data in the pages and 

structures it according to the request schema. The output of each wrapper is a set of identical schemas populated 

with the corresponding data of each page. The wrappers also detect changes in Web pages.  

A global integrated schema is also defined, which represents a unified view of the data manipulated by the 

system. As a direct consequence, data integration follows the local as view approach, where each data source is 

defined as a view of the global schema. The proposed architecture contains two kinds of mediators: (i) those 

integrating the results returned by each wrapper (called Mi) which only perform instance mappings since input 

schemas are identical, and (ii) a global mediator integrating the data returned by the Mi mediators (called M) 

which performs schema and instance mappings.  

We briefly describe each module; a larger description can be found in [Giaudrone+2005] [Marotta+2001].  

− Wrappers: Information search is oriented by a request schema (expressed in an XML schema). The 

information request is build using all concepts of the request schema, incorporating synonyms of the 

concepts (e.g “movie” and “film”) and instances of the concepts (e.g. “movie” and “Harry Potter”) 

obtained from a domain ontology. It is used for identifying relevant Web pages and retrieving data from 

them. The retrieval algorithm is based on page structure; it evaluates rules for each element of the 

information request in order to locate it in the page. The result is an XML document for each relevant 

page, formatted according to the request schema.  

− Mi mediators: An Mi mediator integrates the XML documents returned by wrappers, solving possible data 

conflicts. When a same element is found in several input pages, conflicting attributes are solved using a 

source-trust policy (the value from the source with the greater trust is chosen), non-conflicting attributes 

are taken from its source. The integration process can be extended to handle other conflict-resolution 

policies. The mediator also uses the domain ontology for unifying terms (e.g. “United States”, “EE.UU” 

and “USA”) and performs some basic cleaning for refusing invalid data elements (e.g. those containing 

null values for mandatory attributes). The result is an XML document that contains all extracted 

information for a request schema. 

− M mediator: The M mediator integrates the data produced by Mi mediators, also solving structural 

conflicts. The final result is a relational DW. The DW schema is designed by applying a set of high-level 

transformations to the request schemas [Marotta 2000]. Each transformation takes as input a set of 

relations and produces as output a set of relations, corresponding to high-level operations such as 

aggregations, denormalizations, calculations, etc. Data conflicts are solved following the approach of 

[Calvanesse+1999], which declaratively specifies suitable matching and reconciliation operations. 

Regarding synchronization policies, some sources have the capability of announcing changes to wrappers (push 

policy). After being notified of a change in a page and having verified that it is a significant change (not only a 

format change) the wrapper executes. For the other sources, the wrappers periodically compare pages with their 

previously recorded versions (pull policy). Mediators follow push policies, which means that they execute when 

a previous module produced a new output (an XML document, input for the mediator). It is possible that changes 

are not reflected in the mediator output, for example, if the new data was duplicated in other source, or if it is 

conflicting with data coming from a source with higher priority. All modules materialize data, either in XML 

documents or in a relational database. User queries follow pull policies. Other application scenarios with 

different synchronization policies where studied in [Peralta 2006]. 

The following case of study (taken from [Giaudrone+2005]) illustrates the approach along the sub-section: 

Example 5.2. Consider a web-warehousing application that extracts web data about cinema. The 
application has two wrappers, the one extracting information about movies (title, original title, country, 

year, duration, genre, etc.) and the other extracting information about actors (name, nationality, place of 

birth, etc.). Figure  5.8 shows an example of a web page with information about a movie, showing some 

attributes of the request schema that where recognized by the wrapper in the page text. Detailed 

information about the request schemas, as well as the ontologies describing such concepts, can be found in 

[Giaudrone+2005]. 

Two mediators: M1
 
and M2 take as input the XML documents with the extracted information and produce 

two XML documents integrating extracted data. Mediator M transforms such documents to the relational 

model, integrates and transforms data, populating five materialized views that conform the DW. Users 

access the DW data through view interfaces, which allows queries on producers, movies, plays, statistics on 

plays and actors.   □ 



  Verónika Peralta  

  129  

Names of the producersProductores

Names of the directorsDirectores

Names of the main actorsActores

Total takingsRecaudación

Original languageIdioma

Number of tickets soldAudiencia

Production companyProductora

Artistic genre Genero

Duration in minutesDuración

Opening yearAño

Production countriesPaises

Original title (original language)Título original

Title (Spanish)Título

DescriptionAttribute

Names of the producersProductores

Names of the directorsDirectores

Names of the main actorsActores

Total takingsRecaudación

Original languageIdioma

Number of tickets soldAudiencia

Production companyProductora

Artistic genre Genero

Duration in minutesDuración

Opening yearAño

Production countriesPaises

Original title (original language)Título original

Title (Spanish)Título

DescriptionAttribute

 

Figure  5.8 – Extracting information about an actor: (left) web page, (right) request schema 

The following sub-section shows how this case of study is modeled in DQE. 

3.2.2. Modeling of the application in DQE 

In this sub-section we illustrate the instantiation of the quality evaluation framework for the case of study 

introduced in previous sub-section. Concretely, we model quality graphs, describing the representation of the 

activities and their interaction. We consider a simplified version of the case of study, accessing to a small 

number of web pages ({mov1, mov2, mov3} for movies and {act1, act2, act3, act4} for actors).  

The quality graph modeling the application is shown in Figure  5.9. Wrappers execute for each page, generating 

an XML document with the extracted information. We represented several instances of wrappers (activities w11, 

w12, w13, w21, w22, w23 and w24) to explicitly show the data flow, however, there is a unique process that is 

invocated for several pages. Mediators M1
 
and M2 take as input the XML documents with the extracted 

information and produce another XML document integrating all extracted data; they are represented by activities 

m1 and m2. Mediator M integrates information produced by mediators M1
 
and M2. Input data is transformed to the 

t5t1

t3t2

i1 i2 i3

movies actorsplayplayQprod

t4

m1 m2

w11 w12 w13 w21 w22 w23

mov11 mov12 mov13 act21 act22 act23 act24

w24

 

Figure  5.9 – Quality graph for the web warehousing application 



Data Quality Evaluation in Data Integration Systems 

130    

relational model and stored in two ODS relations (activities i1 and i3). The DW is populated by a set of processes 

that transform ODS data, represented by activities t1, t2, t3, t4 and t5. Users access the DW data through the view 

interfaces v1, v2, v3, v4 and v5. Control flow coincides with data flow. The data types of the data produced by 

each node (e.g. XML documents, temporal relations, materialized views) are labels of the quality graph.  

Let’s analyze some characteristics of the scenario: 

− Users are interested in seeing “recent” information about films and actors (timeliness). However, system 
administrators (who monitor change detection and view refreshment) need currency measures.  

− The nature of data is different in the various sources. Actors’ information (name, nationality, etc.) is quite 
stable, some movie information (title, country, genre, etc.) has a relatively long-term change frequency 

but some attributes (audience, takings, etc.) frequently change. 

− Concerning DIS implementation, the application materializes data. Furthermore, all activities materialize 
data, either in XML files or in a relational database. Activities are simple automatic extraction, 

reconciliation and aggregation processes. 

− There are different synchronization policies: synchronous push and asynchronous pull between sources 
and wrappers, synchronous pull between view interfaces and targets, asynchronous pull between 

transformations and view interfaces, and asynchronous push among the other activities.  

The scenario is characterized as follows: 

� WW scenario:   

� Freshness factor: currency and timeliness  
� Nature of data: stable, long-term-changing and frequently-changing data 
� Architectural techniques: materialization techniques 
� Synchronization policies: push-push, pull-pull and pull/pull policies 

The characteristics of the scenario are taken into account to determine the relevant properties and estimate them, 

which is discussed in next sub-section.  

3.2.3. Estimation of property values 

Users expect timeliness values of “two weeks” for movies, play, statistics and producers’ information and of “six 

months” for actors’ information. System administrators tolerate currency values of “a week” for all user 

interfaces. With such freshness requirements, the “day” is a good unit for measuring freshness and properties 

values. Properties with values ranging in “some minutes” or less can be neglected. Activities processing costs are 

negligible compared with freshness expectations. However, due to data materialization, inter-process delays are 

relevant.  In addition, as many sources may rarely update data, source data actual timeliness is also relevant. 

We can now estimate the values of relevant properties, i.e. inter-process delays and source data actual freshness.  

Data currency is measured as the time passed since data extraction, so it is zero at extraction time (source data 

actual currency). Data timeliness is measured as the time passed since page update*. The estimation of update 

time depends on the synchronization policy between sources and wrappers. For wrappers with push policy the 

notification time is used. Wrappers with push policy extract data immediately after being notified of a change, so 

source data actual timeliness is negligible for them. For wrappers with pull policy, source data actual timeliness 

is more difficult to estimate. When a change is detected (comparing with the previous version) the time passed 

between two consecutive pulls (pull period) is a worst case estimation. When no change is detected, the time 

passed since the last change detection should be added. More precise estimations may be obtained from 

knowledge about sources (e.g. if we know that a source is updated every Monday) or using statistical techniques 

(e.g. frequently accessing a source during some periods to determine source update behaviors). Some sources 

allow the access to file system metadata (as file modification time) or include the “last update time” inside the 

page text. Our tests have shown that none of these indicators are reliable enough. The former depends on system 

configuration (regional settings and correct configuration of local time) and the latter is not always updated when 

modifying a page.  

                                                           

*
 Depending on user needs, display changes can be ignored.  



  Verónika Peralta  

  131  

Due to push policies, activities having a unique predecessor (which is the case of i1, i2, t1, t2, t4 and t5) always 

execute after their predecessor, so there is no inter-process delay among them. However, an activity having 

several predecessors (which is the case of m1, m2 and t3) executes when an input activity produces new data but 

may read data materialized several days ago by the other input activities. The inter-process delay among them is 

measured as the difference of time between their executions. Keeping statistics of execution dates the precise 

calculation is straightforward. Average values and upper bounds can be also obtained from statistics or can be 

deduced from source update policies*. Note that as some modules may not produce output data (e.g. if the 

changes are not relevant or where provided by other sources), successor activities do not need to execute because 

they would produce the same output too. Regarding data, the output of successor modules will be identical to the 

existing one, nevertheless, regarding data quality, the output will be fresher because it is built with more recent 

data (the page was updated). So, the execution date of all successor activities is updated even if they do not 

execute. The time passed between the materialization of data and the moment a user poses a query, determines 

the inter-process delay between transformations and view interfaces. Precise values, average values and upper 

bounds can be also obtained from statistics of execution dates. 

Table  5.2 summarizes the calculation strategies. 

 Precise value Average case Worst case 

Processing cost (A) Neglect Neglect Neglect 

Inter-process delay (A,B),  

B in {i1, i2, t1, t2, t4, t5} 
Neglect Neglect Neglect 

Inter-process delay  (A,B), 

B in {m1, m2, t3, v1, v2, v3, 

v4, v5} 

Last execution time (B) 

– Last execution time(A) 

Average in statistics of: 

Execution time (B) 

– Execution time (A) 

Maximum in statistics of: 

Execution time (B) 

– Execution time (A) 

Source data actual 

currency (S) 
Neglect Neglect Neglect 

Source data actual 

timeliness (S), push  
Neglect Neglect Neglect 

Source data actual 

timeliness (S),  

periodic pull, wrapper W 

Last execution time (W)  

– Last change detection  

+ Pull period (W) 

Pull period (W) + 

Average in statistics of: 

Execution time (W)  

– Change detection time  

Pull period (W) + 

Maximum in statistics of: 

Execution time (W)  

– Change detection time 

Table  5.2 – Calculation of property values with different types of estimation  

Remember that when an activity has several predecessors, the freshness of data coming from them is combined, 

consolidating an input freshness value for the activity and that the combination strategy depends on the activity 

semantics. In our case of study we take into account data volatility (movie information is more volatile than 

actors’ information); the strategy consists of ignoring input values of sources providing more stable information. 

For example, t3 will return the input value from t1. The nature of data dimension is used to define this strategy. 

When input activities have the same data volatility (which is the case of wrappers), the combination function 

performs a weighted average, where weights are data volumes (number of movies/actors). Table  5.3 summarizes 

the calculation strategies. 

 Precise value Average case Worst case 

When different data 

volatility 
Input value of most volatile input 

When equal data 

volatility 

Average of input values  

weighted with  

Data volume 

Average in statistics of: 

average of input values  

weighted with 

Data volume 

Maximum (input values) 

Table  5.3 – Calculation of combination functions with different types of estimation  

In next sub-section we discuss the instantiation of freshness evaluation algorithms taking into account these 

properties. 

                                                           

*
 Despite source autonomy, in some application domains it is common to have information about source update policies. For example, in the 

cinema domain, most timetables pages are updated weekly (e.g. at Wednesday) because cinema schedules generally change weekly. 



Data Quality Evaluation in Data Integration Systems 

132    

3.2.4. Data freshness evaluation 

The freshness evaluation algorithm is instantiated overloading the getSourceActualFreshness, 

getInterProcessDelay, getProcessingCost and combineActualFreshness functions according to the DIS 

properties that are most relevant for the scenario. Pseudocodes of such functions are detailed in Annex 2. 

The following properties were associated to the quality graph: 

− AnnounceChanges: Represent the capability of the source to announce changes to the corresponding 
wrapper. It is defined by DIS administrators and set as propagate value (at DIS design time). 

− PullPeriod (wrapper nodes): Represents the difference of time between two data extractions. It is defined 
by DIS administrators and set as propagate value (at DIS design time). 

− DataVolatility (data edge): Represents the volatility of data flowing in the edge. Expert users provide the 
volatility values for wrappers, which are replicated to data edges and set as propagate values (at DIS 

design time). 

The following logs were used to register more volatile properties: 

− Execution-ChangeDetection (source, wrapper): At each execution, a wrapper registers two values: (i) its 
execution time and (ii) the previous change detection time. The log provides statistics of the difference 

between such values, i.e. the last, average and maximum entry. 

− Execution-Execution (activity, activity): At each execution, a mediator task or view interface registers 
two values for each predecessor module: (i) the execution time of the predecessor (obtained from the 

output of the module or a previous entry of this log) and (ii) its execution time. The log provides statistics 

of the difference between such values, i.e. the last, average and maximum entry. 

− Execution-ChangeDetection (source, wrapper): At each execution, a wrapper or mediator task registers 
one value: the number of produced tuples/elements. The log provides statistics on such values, i.e. the 

last, average and maximum entry. 

Statistics on execution times and change detection times where recorded by wrappers and mediators 

[Vila+2006]. Statistics on user queries have been recorded by triggers on view interfaces (we simulated random 

accesses in order to test the proposal).  

Next sub-section describes the experimentations with this application. 

3.2.5. Experimentation  

In order to test the practical use of our approach in a real application, we modeled the WW application as a 

quality graph and we analyzed its properties. The main difficulty resided in the modeling of different update 

propagation policies, which caused different ways of determining inter-process delays. The assessment of source 

data freshness was an additional challenge. Several property values (announcement policies, pull periods and 

data volatility) were determined at design time and set as labels of the quality graph. However, other property 

values (amounts of time among execution of activities) are more volatile and needed fresh statistical estimations 

in order to assess property values. We measured such property values from logs recorded by wrappers and 

mediators. Such modules were explicitly modified in order to record such statistics; details on the 

implementation of logs can be found in [Vila+2006].  

A first conclusion of our experimentation is that, even the DIS and its relevant properties can be easily modeled 

in DQE, the assessment of source data quality and DIS property values can be a tedious task and may imply the 

development of specialized routines. In this thesis we do not deal with source quality and property assessment, 

but we found that the analysis of assessment techniques can be an interesting line for future works. This topic is 

discussed in Chapter 6. 

Concerning the implementation and execution of evaluation algorithms, we confirm the conclusions obtained in 

previous experiment, i.e. the application of the instantiation method to a given scenario is direct, the 

implementation of the overloaded functions is very simple and its integration to the framework is straight 

forward.  



  Verónika Peralta  

  133  

An indirect result of the experimentation was the use of quality values to improve the data integration process. 

Concretely, the Mi mediators where modified in order to take as input the freshness of data extracted by 

wrappers. Data quality is introduced in the integration process in two ways: 

− Data filtering: The sources do not achieving a certain quality level are discarded. To this end, each 

mediator has associated a quality bound (a freshness threshold) and does not process inputs (XML 

documents corresponding to Web pages) which freshness value is greater than the threshold.  

− Reconciliation policy: The source with the higher quality is selected when there are conflicts. To this end, 

a new reconciliation policy was defined for the WW application, based on the freshness of conflictive 

data, i.e. the data coming from the freshest input (XML document corresponding to a Web page) is 

chosen. 

Clearly, the new implementations of mediators produce fresher data than their previous versions. However, as 

data freshness is not the unique criterion that should be taken into account in data reconciliation, the real 

improvement has not been tested. We will discuss it as perspective.  

3.3. Evaluating data accuracy in a data warehousing application  

The loading and refreshment of a Data Warehouse (DW) involves several types of activities, ranging from the 

extraction of data from several sources, the transformation of this data and its loading into the DW. Such 

processes is generally know as ETL (Extraction, Transformation and Loading) processes. The transformations 

applied to extracted data consist, basically, of data cleaning and formatting routines. Data cleaning is necessary 

to assure the quality of DW data. It involves, among others, the correction of errors, the elimination of 

redundancy and the resolution of inconsistencies, as well as the achievement of the business rules. Formatting 

serves to structure data according to DW requirements. It includes the adjustment of data to DW schema, the 

changing of data format and the aggregation of data.  

In this section we analyze the ETL processes of a concrete DW application, which manages information about 

students of a university [Etcheverry+2005]. 

The goal of this experiment is threefold. Firstly, we want to model a big complex application in DQE, having 

many activities and varied properties. Secondly, we intend to experience with different accuracy metrics (for 

different data types and error types) and with varied measurement techniques. Finally, we want to validate the 

accuracy evaluation approach in a real application. 

3.3.1. Description of the application 

We limited our analysis to the ETL processes of a data mart of the university DW. The data mart consists of two 

multidimensional fact tables and eleven dimensions, which describe university students, the courses they 

followed, the exams they took and their marks. 

ETL processes where studied at three levels of abstraction: The highest level provides a macro vision of ETL 

packages and their precedence relationships. There are 3 packages, one for loading dimensions and one for 

loading each fact table. The medium level describes the dataflow inside each module, identifying ETL routines 

(transactions). The lowest level describes the sequence of operations that implement each ETL routine. Each 

ETL module contains between 5 and 20 routines, each one containing up to 10 operations. Figure  5.10 illustrates 

the routines that compose the loading of one of the fact tables (medium level). A complete description of ETL 

modules, at the three abstraction levels, can be found in [Etcheverry+2005]. 

The modeling of the application in DQE is straight forward. We defined a hierarchy of quality graphs, with three 

levels, representing activities at the three abstraction levels. The highest-level graph allows visualizing the whole 

process; activity nodes represent ETL packages. The medium-level graph represents the dataflow among ETL 

routines and the lowest-level graph shows ETL operations. Source nodes represent source relations and target 

nodes represent dimension and fact tables. See Sub-section  4.1.1 of Chapter 3 for details on modeling quality 

graphs at different abstraction levels.  



Data Quality Evaluation in Data Integration Systems 

134    

BD_ACTIVIDADESDW_ESTUDIANTES
AX_MAPEO_

ASIGNATURAS

AX_MAPEO_

CARRERAS
BD_ASIGNATURAS BD_EST_CARR IN_ACTIVIDADES

CONSISTENCY

CHECK:

belonging of a student in 

DW_ESTUDIANTES 

EXTRACTION

inscriptions and exams

CLEANING

EXTRACTION 

courses

IN_CARRERAS

EXTRACTION

cycle, plan and  

degree

CLEANING

LOADING

DW_RESULTADOS

EXTRACTION

period

TRANSFORMATION:

Format change

TRANSFORMATION:

code generation

TRANSFORMATION:

format change

TRANSFORMATION:

format change

 

Figure  5.10 – Routines of an ETL package:  extraction,  consistency check,  transformation,  

 cleaning, and  loading. 

3.3.2. Accuracy assessment 

In order to measure accuracy of source data, we experienced several metrics and measurement functions. The 

implementation of the assessment techniques was carried out by two master students: Lorena Etcheverry and 

Salvador Tercia [Etcheverry+2006], the former having worked in the development of the DW application some 

years ago. They implemented specialized techniques for detecting and measuring four types of errors*, which are 

summarized in Table  5.4. 

The assessment of semantic correctness was simulated in order to avoid comparisons with real-world. Source 

relations were polluted in order to represent semantic errors. Copies of source relations (before pollution) were 

used as referential tables representing real world. The assessment method (CHECK_REF function) consisted in 

the comparison of source data with referential data. This pollution strategy allowed the implementation of 

automatic assessment methods. 

An assessment function (CHECK_RULE) was implemented for measuring syntactic errors. The function verifies 

if data satisfies a given format, given by a range or a grammar. Several attributes already contained errors but 

further errors were simulated either polluting source data or defining restricted formats. An example of the latter 

was the definition of a grammar, consisting of 7 digits, for telephone numbers. As in Uruguay home telephones 

have 7 digits and mobile telephones have 9 digits, mobile telephones are detected as having an illegal format. 

We detected several cases of imprecision in source data. For example, most instances of city attribute 

(DW_ESTUDIANTES table) correspond to cities, but we also found country names and continent names. We 

defined a referential table containing the instances of the city attribute and assigning them a level of precision. 

Specifically, precision is 1 for city names and takes inferior values for country and continent names. The 

assessment function (CHECK_LEVEL) obtains the precision measure from the referential table. Implementation 

details can be found in [Etcheverry+2006]. 

                                                           

*
 The work also included the assessment of data consistency, considering further types of errors, including the presence of null values for 

mandatory attributes and the violation of attribute dependencies, uniqueness constraints and referential integrity constraints. As the analysis 

of data consistency is out of the scope of this thesis, we do not provide details on its measurement. 



  Verónika Peralta  

  135  

Accuracy factor Error description Assessment method 

Semantic correctness 
Values that not correspond 

to a real-world entities. 

CHECK_REF: Compares data against a referential table 

representing real-world. 

Out or range values 
CHECK_RULE: Evaluates if data satisfies a range rule 

(expressed as a numeric interval) 
Syntactic correctness 

Illegal format  
CHECK_RULE: Evaluates if data satisfies a format rule 

(expressed by a grammar) 

Precision Insufficient precision 
CHECK_LEVEL: Compares data precision against a 

referential table 

Table  5.4 – Typical errors and their corresponding assessment functions 

3.3.3. Experimentation  

In order to test our accuracy evaluation algorithm we defined an application scenario inspired on the DW loading 

processes. We evaluate accuracy of data loaded from DW sources, i.e. data stored in the DW. As our evaluation 

approach does not considers data materialization and only manages JSP queries, ETL processes were simplified 

to JSP queries, ignoring data cleaning, consistency checks and complex transformations. The simplified loading 

queries allowed the validation of our approach with a representative set of queries. 

Source relations were partitioned based on accuracy measures (using the assessment functions explained in 

previous sub-section). Several partitioning criteria were used. In some cases we used knowledge about error 

distribution (obtained executing test queries and keeping statistics); in other cases we designed pollution 

methods in order to obtain certain error distribution (e.g. with defined a set of areas and we polluted them with 

different error ratios). It was not necessary, for our tests, to use Rakov’s partitioning algorithm. The loading 

queries were rewritten in terms of partitions. The selectivity of each rewriting was estimated using simple 

statistics. 

This test allowed the validation of our measurement approach with real data. We experimented with different 

accuracy metrics and assessment functions as well as with different partitioning criteria. We can affirm that the 

approach is viable and obtained accuracy values may approximate the actual values obtained assessing accuracy 

of exact query result. We plan to make additional tests in order to measure the precision of the obtained accuracy 

values. In Chapter 4 we showed that the evaluation approach depends on the techniques used for measuring 

accuracy of source relations, partitioning them and estimating query selectivity. We aim to quantify such 

influence by testing different techniques and their impact in the partitioning of query results. By performing such 

tests, we can compare results with those obtained applying the Naumann’s approach [Naumann+1999] (which 

considers uniform distribution of errors) and the Rakov’s approach [Rakov 1998] (which is build knowing the 

exact query result). Both approaches were described in Sub-section 3.1 of Chapter 4. We defer this test to near 

future. 

As future work, we hope to extend the approach to consider other types of activities, specially, those correcting 

errors (e.g. data cleaning and format standardization routines). This DW application can be taken as a case of 

study for proposing evaluation techniques and algorithms for this type of application scenarios. The 

measurement approach proposed in Chapter 4 is a first step towards the definition of general evaluation methods 

that might be instantiated to several types of application scenarios. This topic is discussed as perspective in 

Chapter 6. 

Another result of this experiment, was the use of DQE for modeling a big and complex DIS, with many activities 

and varied properties (materialization, complex transformations, etc.).  

4. Evaluation of Performance and Limitations of the DQE Tool  

In this section we present the results of performance and limitations tests performed with the DQE tool.  

In order to evaluate performance and limitations, we generated some test data sets (consisting in a set of quality 

graphs, data sources, data targets and property values) and we executed an evaluation algorithm (the 

ActualFreshnessPropagation algorithm) on each graph. The second version of DQE was used for the tests, so 

quality graphs are loaded from the metabase and stored in memory. Thus, one of the objectives of the tests was 



Data Quality Evaluation in Data Integration Systems 

136    

to determine the limitations of the tool, i.e. the number of quality graphs that can be loaded in a session being the 

input for the execution of quality evaluation algorithms. We made three types of tests:  

− Application limits: The test consisted in generating large data sets in order to know the number of graphs 

(with different topologies) supported concurrently by the tool. 

− Quality evaluation performance: The test consisted in measuring the time it takes the tool to evaluate data 

quality on a set of graphs, i.e. executing the evaluation algorithm on the graphs. 

− Loading performance: The test consisted in measuring the time it takes the tool to communicate with the 

metabase for loading the set of graphs and their associated metadata. 

The obtained results allow affirming that the tool can be used for large applications (modeling hundreds of 

graphs with hundreds of nodes each). Scalability (using the last DQE version) is discussed as perspective in 

Chapter 6. The following sub-sections discuss the generation of test data sets, describe the tests and present the 

results. 

4.1. Generation of test data sets 

In this section we describe the data sets used for the various tests, the process used for generating them and the 

results of the generation. 

We generated three types of test data sets:  

− Small data sets: Fifty data sets where generated varying the number of graphs (from 10 to 100) and the 

number of nodes of each graph from (10 to 50).  

− Bulk data sets: Fifty data sets where generated varying the number of graphs (from 100 to 5000); graphs 

are small (15 nodes).  

− Big data sets: A hundred data sets where generated varying the number of graphs (from 100 to 1000) and 

the number of nodes of each graph from (100 to 1000).  

The main purpose of generating small data sets is validating the correctness of the generator (checking if 

generated graphs are well-formed, with varied topologies and adequate property values, allowing the correct 

execution of the evaluation algorithm). In addition, as most application scenarios are represented with small 

graphs, we also are interested in evaluating the tool performance. The purpose of generating bulk and big data 

sets is to know the maximum number of small/big graphs supported in memory and the performance of the 

quality evaluation algorithms with such data sets. 

Next sub-section describes the generation process.  

4.1.1. Generator of data sets 

We implemented a generator of data sets, which works in three phases: (i) generates a set of sources and a set of 

targets, (ii) generates a set of quality graphs, and (iii) associates property values to the nodes and edges of the 

graphs. 

The first phase is straightforward. Sources and targets are sequentially named (e.g. S1 and T1). 

In the second phase, a set of graphs is also generated, with sequential names (e.g. graph1). Nodes and edges are 

generated in six steps, as illustrated in Figure  5.11 (all edges are mixed data edges, representing data and control 

flow). The generation steps are the following: 

1. A set of source nodes is randomly selected from the source set and a set of target nodes is randomly 
selected from the target set. In Figure  5.11a, three sources and two targets are selected. 

2. A set of activity nodes is generated, sequentially named (e.g. A1). In Figure  5.11b, six activities are 
generated. 

3. A set of edges between source and activity nodes is generated in the following way: for each source node, 
an activity node is randomly selected (a different activity for each source node) and an edge between 

them is added. In Figure  5.11c, activities A6, A2 and A1 are selected.  

4. A set of edges between activity nodes is generated in order to link each isolated activity to the ones 
already connected (initially, those linked to source nodes). To do so, a set of activity nodes are randomly 



  Verónika Peralta  

  137  

selected from those already connected (which will be the predecessors) and an edge between each 

predecessor and the isolated activity is added. In Figure  5.11d, A6 and A2 are selected as predecessors for 

A3; then A5 is linked to A6 and A4 is linked to A3. 

5. A set of edges between activity and target nodes is generated, in the following way: for each target node, 
an activity node is randomly selected (a different activity for each source node) and an edge between 

them is added. Activities with no successors have priority to be selected. In Figure  5.11e, activities A5 

and A4 are selected. 

6. If there are activities with no successors, a set of edges is generated for connecting them to other nodes. In 
order to avoid cycles, candidate nodes are those that are predecessors of some target node. In Figure 

 5.11f, an edge between A1 and A4 is added. 

A6 A2

A3

A4

S5

T7

S2

T1

A1

S8

A5

A6 A2

A3
A4

S5

T7

S2

T1

A1

S8

A5

A6

A2 A3

A4

S5

T7

S2

T1

A1

S8

A5

S5

T7

S2

T1

S8

A6 A2

A3

A4

S5

T7

S2

T1

A1

S8

A5

A6 A2

A3

A4

S5

T7

S2

T1

A1

S8

A5

(d) (e)

(b) (c)(a)

(f)

 

Figure  5.11 – Generation of graphs 

In the third phase, a set of property values are associated to nodes and edges, in the following way: 

− A source data actual freshness value is associated to each source, and then, to all source nodes (of the 
graphs) corresponding to the source. 

− A target data expected freshness value is associated to each target, and then, to all target nodes (of the 
graphs) corresponding to the target. 

− A processing cost value is associated to each activity node of the graphs. 

− An inter-process delay value is associated to each edge of the graphs. 

Table  5.5 lists the generation parameters and their default values. Four categories of parameters are defined: 

session components, number of graph nodes, input degree of activity nodes and property values. All these 

parameters are written in a configuration file.  

Table  5.6 summarizes the parameters used for generating the three types of data sets. 

The generator was implemented in Java (JDK 1.4) and stores the generated data set in an Oracle® database 

(Oracle 10g Enterprise Edition Release 10.1.0.2.0). In next sub-section we discuss a preliminary test performed 

for verifying that the generated graphs are well-formed and allow the execution of quality evaluation algorithms.  



Data Quality Evaluation in Data Integration Systems 

138    

Parameter Description Default 

Session components. Sources, targets and quality graphs are generated; properties and algorithms are fixed. 

S Number of sources in the session (integer number)   

T Number of targets in the session (integer number)  

G Number of graphs in the session (integer number)  

Number of graph nodes. As nodes are of three types (source nodes, activity nodes and target nodes), three 

parameters are defined, one for each type. In order to generate heterogeneous graphs, the number of nodes is 

randomly set, given the intervals (minimum and maximum values) for the random selection. Some integrity 

rules assures that minimum values are appropriate (smaller than maximum values and, in the case of activities, 

bigger than the number of sources and targets randomly generated). Parameters are: 

Ns Maximum number of source nodes of the graphs (integer number)  

ns Minimum number of source nodes of the graphs (integer number) Ns/2 

Nt Maximum number of target nodes of the graphs (integer number)  

nt Minimum number of target nodes of the graphs (integer number) Nt/2 

Na Maximum number of activity nodes of the graphs (integer number).   

na Maximum number of activity nodes of the graphs (integer number).  Na/2 

Input degree of activity nodes, i.e. the number of edges incoming activity nodes (excepting wrappers, which 

have degree 1). In order to generate heterogeneous nodes, the input degree is randomly generated given the 

intervals for the random selection, namely: 

d Minimum degree (integer number) 1 

D Maximum degree (integer number) 3 

Property values for nodes and edges. In order to generate different values, they are randomly generated given 

the intervals for the random selection. Furthermore, as different properties may have different significant 

values, intervals are specified for each property, namely: 

pa Minimum actual freshness of a source node (integer number) 0 

Pa Maximum actual freshness of a source node (integer number) 24 

pe Minimum expected freshness of a target node (integer number) 24 

Pe Maximum expected freshness of a target node (integer number) 48 

pc Minimum processing cost of an activity node (integer number) 0 

Pc Maximum processing cost of an activity node (integer number) 2 

pd Minimum inter-process delay of an edge (integer number) 0 

Pd Maximum inter-process delay of an edge (integer number) 4 

Table  5.5 – Generation parameters 

Data set N=Ns+Nt+Na G S T d D 

Small from 10 to 50 from 10 to 100 10 10 1 3 

Bulk 15 from 100 to 5000 10 10 1 2 

Big from 100 to 1000 from 100 to 1000 200 200 1 3 

Table  5.6 – Generation parameters for the data sets 

4.1.2. Generation correctness 

The small data sets were analyzed in order to check whether well-formed graphs were generated and visualize 

them. Figure  5.12 shows some of the graphs generated in a test (with 10<N≤20) and Figure  5.13 shows a bigger 

graph generated in another test (with 40<N≤50). The generator takes no care of node positions but allows users 

to reposition nodes (drag and drop) in order better visualize them. Repositioning, even if possible, is not viable 

for huge graphs*. 

A first remark is that some graphs are not connected. We analyzed the possibility of checking connection during 

generation (and adding some edges to connect disconnected sub-graphs), but we discarded the idea because of 

the cost of such checking. Disconnection is not a problem for quality evaluation algorithms since data quality is 

propagated along existing data flow.  So, we  permitted the generation of disconnected sub-graphs.  However, we  

                                                           

*
 Screen captures correspond to the graphical interface of DQE version 2, differing from that of the current version shown in Sub-section  2.3. 



  Verónika Peralta  

  139  

 

 
 

 

 

 

Figure  5.12 – Some generated graphs having among 10 and 20 nodes  

assured that graphs respect the quality graph definition (Definition 3.4), i.e., graphs are acyclic, source nodes 

have no incoming edges and a unique outgoing edge, target nodes have a unique incoming edge and no outgoing 

edges. We also checked that all nodes and edges have the appropriated property values. 

Property values were also verified, as well as the result of applying evaluation algorithms. The analysis of 

critical paths for the graph of Figure  5.13 is shown in Figure  5.14. Some big data sets were also analyzed (it was 

a tedious task). No figures are shown because graphs are too big to be displayed inside a screen.   

A batch script, without graphical interface, was implemented to run the tests. It firstly invokes the generator 

indicating the name of a file containing generation parameters, it loads the generated session into the DQE tool, 

and it execute the AcutalFreshnessPropagation algorithm (presented in Chapter 3) for all generated graphs. 

Generation, loading and evaluation times (and other indicators) are logged in a file. All tests where repeated 

three times. In next sub-sections we discuss test results for application limits, quality evaluation performance and 

loading performance.  



Data Quality Evaluation in Data Integration Systems 

140    

 

Figure  5.13 – Generated graph having 9 target nodes, 25 activity nodes and 10 source nodes  

 

Figure  5.14 – Highlighting critical paths  

4.2. Test of limitations  

The bulk and big data sets where used to determine applications limits, i.e. know the number of graphs (with 

different topologies) supported concurrently by the tool. Remember that DQE version 2 loads data in memory, 

so, the test indicates how many graphs can be stored in memory for quality evaluation.  

The result with the bulk data sets is that up to 2800 small graphs (15 nodes) can be treated in parallel; 2900 

graphs can be loaded but memory overflow occurs during quality evaluation.  

The result with the big data sets is shown in Table  5.7; colored cells indicates the data sets that were successful 

for all test repetitions, shadow cells indicate the data sets that were successful for all repetitions of the loading 

test but not for the evaluation test and uncolored cells indicates the data sets for which the tests failed for at least 

one repetition. Obviously, some data sets were not tested because of the fail of smaller data sets. The test shows 

that the tool supports data sets consisting in several hundreds graphs with several hundreds nodes. The tool can 

also support almost a thousand medium graphs (with a hundred nodes) or some huge graphs (with a thousand 

nodes). The application does not scale to thousands of huge graphs. Scalability must be provided replacing the 

memory storage by access to secondary storage, which is discussed as perspective in Chapter 6.   

Next sub-section analyzes performance for the tests data sets that succeeded. 

 



  Verónika Peralta  

  141  

N
      G 100 200 300 400 500 600 700 800 900 1000 

100           

200           

300           

400           

500           

600           

700           

800           

900           

1000           

Table  5.7 – Application limits for the big data sets 

4.3. Test of performance 

In this sub-section we analyze the tool performance for the three types of data sets. The main goal is to evaluate 

quality evaluation performance, but as quality graphs have to be loaded in memory in order to evaluate their 

quality, we also evaluate loading performance.  

4.3.1. Quality evaluation performance 

In this test we analyze quality evaluation performance. We measure the time it takes the tool to evaluate data 

freshness, i.e. executing the ActualFreshnessPropagatiion algorithm on all graphs of the data set. 

The test with the small data sets shows that evaluation time is linear in the number of graphs and the number of 

nodes. This result is reasonable because the evaluation algorithm is applied to each graph, traversing each node 

once. Figure  5.15 shows the test result; the noise in the graphics is explained by the small magnitude of 

evaluation times (milliseconds), which makes difficult the filtering of other operation system routines that also 

consume time. The bigger data set (100 graphs of 50 nodes) was computed in 0.22 seconds.  

 

Figure  5.15 – Evaluation times for the small data sets 

The test with the bulk data sets also shows that evaluation time is linear in the number of graphs. Figure  5.16 

shows the test result. Quality evaluation can be performed in more than a thousand graphs in a second.  



Data Quality Evaluation in Data Integration Systems 

142    

 

Figure  5.16 – Evaluation times for the bulk data sets 

The test with the big data sets confirms that evaluation time is linear in the number of graphs and the number of 

nodes also for big graphs. However, the limit data sets (the biggest ones being supported) provoke a great 

number of memory faults, which cause a huge evaluation time, overdrawing the linear scale. Figure  5.17 show 

the test result. Quality evaluation in some hundred graph of some hundred nodes lasts some seconds.  

 

Figure  5.17 – Evaluation times for the big data sets (the bar corresponding to <900nodes,100graphs> 

overdraws the scale; its evaluation time is 40 seconds) 

4.3.2. Loading performance 

In this test we analyze loading performance. We measure the time it takes the tool to communicate with the 

metabase for loading each session and their components. 



  Verónika Peralta  

  143  

The test with the small data sets shows that loading time is linear in the number of graphs and slightly increases 

with the number of nodes. Figure  5.18 shows the test result. Times are bigger than evaluation ones; some data 

sets were loaded in almost a minute. Noise is also bigger, which is mainly due to Oracle internal routines (e.g. 

logging) and inter-process communication delays.  

 

Figure  5.18 – Loading times for the small data sets  

The test with the bulk data sets also shows that loading time is linear in the number of graphs. Figure  5.19 shows 

the test result. Loading can be performed in less than a minute for most data sets.  

 

Figure  5.19 – Loading times for the bulk data sets   

The test with the big data sets confirms that loading time is linear in the number of graphs and the number of 

nodes also for big graphs. However, the limit data sets (the biggest ones being supported) overdraw the linear 

scale. Figure  5.20 show the test result. The loading of some hundred graphs of some hundred nodes lasts some 

minutes.  



Data Quality Evaluation in Data Integration Systems 

144    

 

Figure  5.20 – Loading times for the big data sets   

5. Conclusion 

In this chapter we presented our experimentations with data freshness and data accuracy evaluation. We 

described the prototype of a data quality evaluation tool, DQE, which manages the proposed quality evaluation 

framework. The tools models the framework components, namely, data sources, data targets, quality graphs, 

properties, measures and quality evaluation algorithms. 

We used the tool for evaluating data freshness and data accuracy in several application scenarios in order to 

validate our approach. Specifically, we described three applications: (i) an adaptive system for aiding in the 

generation of mediation queries, (ii) a web warehousing application retrieving movie information, and (iii) a data 

warehousing system managing information about students of a university. We showed how the DIS applications 

were modeled as quality graphs and how evaluation algorithms were instantiated to them. This experimentation 

allows validating the approach in real applications, specially, its ease of use for modeling DIS and properties and 

instantiating quality evaluation algorithms. 

We also describe some tests for evaluating performance and limitations of the tool. We generated some data sets 

(quality graphs adorned with property values) and we executed a quality evaluation algorithm over each graph. 

The obtained results allow affirming that the tool can be used for large applications (modeling hundreds of 

graphs with hundreds of nodes each).  

 


