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Chapter 3.    Data Freshness  

This chapter describes our proposal for data freshness evaluation and enforcement.  

We propose freshness evaluation algorithms 

 that take into account the properties of the data integration system that have 

more impact in data freshness. This approach allows the specialization of 

evaluation algorithms according to different application scenarios.  

We also present an approach for data freshness enforcement when freshness 

requirements cannot be achieved.  

1. Introduction 

The needs of having precise measures of data freshness become increasingly critical in several fields. Examples 

are numerous: 

− Information Retrieval: Given a user query, there may be a great number of web sources providing data to 
answer the query but having different data quality, in particular, having varied freshness. A big amount of 

retrieved data is not relevant for users because of its lacks of freshness (e.g. web pages announcing train 

ticket reductions for expired promotions). The analysis of data freshness is useful for making a pre-

filtering of data (or entire data sources), according to freshness requirements. In addition, retrieved data 

may be sorted according to their freshness, allowing the user to first see the freshest data.  

− Decision making: When decision making is based on data extracted from autonomous data sources, 
external to the organization, a fine knowledge of data quality is necessary in order to associate relative 

importance to data. For example, old euro currencies should not impact decisions in the same way than 

more recent currencies. In this context, data freshness should be informed to end-users, as an additional 

attribute qualifying data. Further strategies, as filtering old data may also be carried out. 

− E-commerce: Many web portals, such as Kelkoo® or Ebay® bring a uniform access to products of 
several vendors, allowing the comparison of product features and prices. Offerings are so numerous and 

disparate that users are overloaded with great amounts of data. Frequently, many of the proposed products 

are out of stock or have changed the offering conditions (e.g. the price); for example, when searching last 

minute flights, most of the offers are timeout and user loses considerable time. Incorporating data 

freshness conditions to the query interfaces offers a good possibility for reducing interaction times and 

providing relevant data.  

− Scientific experiments: Research experiments, especially in the field of life sciences, produce great 
amounts of data, which are published in databanks and journals. Searches of related experiments (e.g. 

about a gene sub-sequence) are frequently carried out in order to cross results and abstract similar 

behaviors. Comparison is not trivial and requires executing expensive routines, which is worsen by the 

great amount of data and its wide overlapping. Furthermore, the existence of relatively old data introduces 

noise to the task. In this context, the analysis of data freshness may help reducing the search space in 

order to retrieve the most recent experiments.  

− Web-services integration: Consider a company that uses web service S and wants to find a compatible 
service provider.  The selection among the offered services may be done according to several criteria, for 

example, response time or service availability. When the service also provides data, data freshness may 

play an important role, because users may prefer obtaining the most recent data. For example, in an 

application querying yellow pages providers, data freshness may be critical. 

− Customer relationship management: Managing obsolete data may become very expensive. A well-known 
example is the return of mail because customers have changed their addresses while the system continues 

managing the old ones. Generally, many data qualifying customers are obtained from external sources 

(e.g. address catalogs, yellow pages, census data). Knowing data freshness is crucial for taking accurate 

decisions. Furthermore, data freshness may be an important factor when choosing among data providers.  
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All these scenarios motivate the need of data freshness evaluation methods capable of adapting to different user 

expectations and different perceptions of data freshness. As argued in previous chapter, data freshness represents 

a family of quality factors. We recall the two freshness factors that have been proposed in the literature (see Sub-

section 2.1 of Chapter 2 for further details):  

� Currency describes how stale is data with respect to the sources. It captures the gap between the 

extraction of data from the sources and its delivery to the users. It is often measured as the time elapsed 

since data was extracted from the source.  

� Timeliness describes how old is data (since its creation/update at the sources). It captures the gap between 

data creation/update and data delivery no matter when data was extracted from sources. It is often 

estimated as the time elapsed from the last update to a source.  

We consider both freshness factors. We use the term data freshness when the discussion concerns both factors 

and we refer to data currency and data timelines only when specific discussion is necessary. We consider set 

granularity for measures, i.e. a freshness value is associated to each source relation (or equivalent structures 

when sources are not relational). 

In this chapter we deal with data freshness evaluation in data integration systems (DISs). We address the 

problem of evaluating the freshness of the data returned to users in response to their queries and deciding if 

users’ freshness expectations can be achieved. Initially, we treat the topic of data freshness evaluation, and then, 

we discuss how freshness measures can be used for improving the DIS and enforcing data freshness.  

In order to evaluate the freshness of the data returned to users, we should consider the freshness of source data 

and also take into account the processes that extract, integrate and convey data to users. In previous chapter we 

analyzed the various dimensions that influence data freshness, namely, nature of data, architectural techniques 

and synchronization policies. We now focus on modeling such features and using them in the freshness 

evaluation process. To this end, we propose a framework which attempts to formalize the different elements 

involved in data freshness evaluation. Among these elements there are data sources, user queries, processes that 

extract, integrate and convey data, metadata describing DISs features, quality measures and quality evaluation 

algorithms. 

In our framework, DISs are modeled as workflow processes in which the workflow activities perform the 

different tasks that extract, integrate and convey data to end-users. For example, in data warehouse refreshment 

processes, typical workflow activities are the routines that perform the extraction, cleaning, integration, 

aggregation and customization of data [Bouzeghoub+1999]. Workflow models enable the representation of 

complex data manipulation operations. Quality evaluation algorithms are based on the workflow’s graph 

representation and consequently, the freshness evaluation problem turns into value aggregation and propagation 

through this graph.  

The idea behind the framework is to define a flexible context which allows specializing evaluation algorithms in 

order to take into account the characteristics of specific application scenarios. For example, in a DIS that 

materializes data, the data freshness evaluation method should take into account the delays introduced by data 

refreshment, while in a virtual DIS such delays are not applicable. We propose a freshness evaluation approach 

that is general enough to be used in different types of DISs but is flexible enough to adapt to the characteristics 

of concrete application scenarios.  

In addition to allowing the evaluation of data freshness, our framework proposes many facilities for data 

freshness enforcement. A DIS should provide the data freshness expected by the users. In order to know if user 

freshness expectations can be achieved by the DIS, we can evaluate the freshness values of conveyed data and 

compare them with those expected by users. If freshness expectations are not achieved, we may improve DIS 

design in order to enforce freshness or negotiate with source data providers or users in order to relax constraints. 

We propose a freshness enforcement approach that supports the analysis of the DIS at different abstraction levels 

in order to identify its critical points and to target the study of improvement actions for these critical points. 

The following sections describe our approach for data freshness evaluation and enforcement: Section  2 describes 

the framework and presents an overview of the evaluation approach. Section  3 uses the framework for data 

freshness evaluation, specifically, we model the DISs processes and properties that have impact in data freshness 

and we implement evaluation algorithms that take into account the processes and properties. Section  4 deals with 

data freshness enforcement, presenting improvement actions for enforcing data freshness when freshness 

expectations cannot be achieved by a DIS. Section  5 illustrates the development of a specific improvement 

action. We conclude, in Section  6, by drawing the lessons learned from our experiments. 
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2. Data quality evaluation framework 

In this section we present a framework for data freshness evaluation in the context of DISs. The framework 

models data sources, data targets and the DIS processes (which build target data from source data). DIS 

processes include the tasks for extracting, transforming and integrating data and conveying it to users. We can 

model a unique DIS or several DISs (e.g. various data marts for different departments of an enterprise).  

The goal of the framework is twofold, firstly, helping in the identification of the DIS properties that should be 

taken into account for freshness evaluation, and secondly, allowing the easy development of evaluation 

algorithms that consider such properties.  

This section describes the quality evaluation framework, specifying the representation of its components and 

presenting an overview of its usage for data quality evaluation. The rest of the chapter provides detailed 

description on data freshness evaluation and enforcement, based on this framework. 

2.1. Definition of the framework 

The quality evaluation framework attempts to formalize the different elements involved in data freshness 

evaluation. Among these elements there are data sources, data targets, DIS processes, DIS features, quality 

measures and quality evaluation algorithms. We start defining the framework and along the section we define the 

framework components. 

The proposed framework is defined as follows:  

Definition 3.1 (quality evaluation framework). The quality evaluation framework is a 5-uple:  

 <Sources, Targets, QualityGraphs, Properties, Algorithms>  

where Sources is a set of available data sources, Targets is a set of data targets, QualityGraphs is a set of 

graphs representing several DISs processes, Properties is a set of properties describing DISs features and 

quality measures and Algorithms is a set of quality evaluation algorithms.   □ 

Example 3.1. Consider a DIS that retrieves meteorological information from three sources:  S1 (real time 

meteorological data of satellites), S2 (meteorological dissemination database) and S3 (climatic sensors). The 

DIS provides information to three query interfaces: T1 (historical information about climate alerts), T2 

(aggregated data about climate measurements) and T3 (detailed data about predictions). The DIS includes 

processes for extracting, filtering, integrating and aggregating data. Among the DIS features that are 

relevant for studying data freshness there are, for example, the processing cost of DIS processes and the 

refreshment frequencies of materialized data. As quality measure, users are interested in data timeliness. 

Consequently, there is a quality evaluation algorithm for measuring data timeliness in such DIS. The 

quality evaluation framework allows modeling all these components.   □ 

The framework includes a set of data targets for which the user requires data quality evaluation and a set of data 

sources providing data for feeding those data targets. Data sources can be relations in data repositories, web 

pages, user input interfaces or other types of applications producing data. Analogously, data targets can be 

relations in data repositories, views, user display interfaces or other types of applications consuming data. 

Sources and targets are defined as follows: 

Definition 3.2 (data source). A data source is represented by a pair <Name, Description> where 

Name is a String that uniquely identifies the source and Description is a free-form text providing 

additional information useful for end-users to identify the source (e.g. URL, provider, high-level content 

description).   □ 

Definition 3.3 (data target). A data target is represented by a pair <Name, Description> where Name 

is a String that uniquely identifies the data target and Description is a free-form text providing additional 

information useful for end-users to identify the target (e.g. application/process name, interfaces, servers 

running the application).   □ 
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Each DIS extracts data from some data sources and provides some data targets with data. Those sources and 

targets are included in the sets of sources and targets of the framework. Next sub-section describes a model for 

DISs processes. 

2.1.1. Graph model of the data integration system workflow 

A DIS is modeled as a workflow process in which the workflow activities perform the different tasks that 

extract, integrate and convey data to end-users. Each workflow activity takes data from sources or other 

activities and produces result data that can be used as input for other activities. Then, data traverses a path from 

sources to users where it is transformed and processed according to the system logics. We choose workflow 

models in order to enable the representation of complex data manipulation operations, as in [Bouzeghoub+1999] 

[Grigori+2005] [Ballou+1998]. In order to perform data quality evaluation, we define the concept of quality 

graph, which is a graph that has the same workflow structure as the DIS and is adorned with additional DIS 

information that is useful for quality evaluation. Many of existing proposals for workflow specification are graph 

based [van der Aalst+2002] [Mendling+2006] [Ziemann+2005] [Grigori+2005] and many works have 

represented DIS as graphs [Theodoratos+1997] [Naumann+1999]. For this reason, we choose to base our quality 

evaluation approach on graphs*. Using graphs as representation formalism, the quality evaluation problem turns 

into a graph traversal problem. 

A quality graph is a directed acyclic graph. The nodes are of three types: (i) activity nodes representing the major 

tasks of a DIS, (ii) source nodes representing data sources accessed by the DIS, and (iii) target nodes 

representing data targets fed by the DIS. Nodes have a name that identifies them; for source and target nodes, 

their name coincide with those of sources and targets of the framework. Activities can be atomic or composed. 

They consume input data elements and produce output data elements which may persist in repositories. There are 

two types of edges: (i) control edges expressing the control flow dependencies between activities (e.g. execution 

precedence), and (ii) data edges representing data flow from sources to activities, from activities to targets and 

between activities (i.e. the output data of an activity is taken as input by a successor activity). In most DISs, 

control flow is induced by data flow, i.e. there is a control flow edge between two activities if and only if there is 

a data flow edge between them. Both, nodes and edges can have labels, which are discussed in next sub-section. 

In summary, a quality graph is defined as follows:  

Definition 3.4 (quality graph). A quality graph is a quadruple G=(V, E, ρV, ρE) where: 

− V is the set of nodes. Vs, Vt and Va are the sets of source, target and activity nodes respectively; with 

V = V
s
 ∪ V

t
 ∪ V

a
. Each source or target node corresponds to a source or target of the framework. 

− E ⊂  V × V × T is the set of edges. T ={c, d} distinguishes between control edges (c) and data edges 

(d). The edge (u, v)
t
 originates at node u, terminates at node v and has type t; with u,v ∈ V, t ∈ T. 

− ρV : V → LV  is a function assigning labels to the nodes. LV denotes the set of node labels.  

− ρE : E → LE  is a function assigning labels to the edges. Analogously, LE denotes the set of edge 
labels.   □ 

We consider, without loss of generality, that target nodes have a unique incoming data edge. If we need to model 

multiple data edges incoming a target node, we can add a virtual activity node that concentrates the incoming 

edges and has a unique outgoing edge to the target node. This pattern is commonly used in workflow design [van 

der Aalst+2003]. Analogously, we consider that source nodes have a unique outgoing data edge. 

Figure  3.1 sketches the quality graph representation. Activity nodes are represented as circles, while source 

nodes (with no input edges) and target nodes (with no output edges) are represented as rectangles. Data edges are 

continuous arrows and control edges are dotted arrows. Labels are written next to nodes and edges. In some 

figures, when we only want to study the data flow, control edges may be omitted. Analogously, some properties 

may be omitted. 

                                                           

*
 We use graphs for representing workflows although the approach can easily be adapted to other formal models such as Petri nets or state-

chart diagrams, provided that it is a uniform model. 
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Figure  3.1 – Quality graph  

2.1.2. Quality features as graph adornments 

Data quality depends on the structure of the quality graph (i.e. how data traverses the graph) but also on data and 

process properties (e.g. process synchronization policies, data volatility). The idea behind this approach is to 

adorn quality graphs with property labels that allow estimating the quality of the data that can be produced by 

the DIS, for example, the time an activity needs for executing or a descriptor stating if an activity materializes 

data or not.  

Properties can be of two types: (i) features, indicating some characteristic of the DIS (costs, delays, policies, 

strategies, constraints, etc.), or (ii) measures, indicating a quality value corresponding to a quality factor.  

Features can represent precise process metadata (as execution cost of activities), estimations (e.g. based on 

designer experience on similar applications, cost models or upper bounds) or beliefs (e.g. source reputation). 

Quality measures can be actual values acquired from sources (e.g. source data freshness, measured from data last 

update) or expected values indicating user high level expectations (as the desired data freshness). Property values 

(for both, features and measures) can be directly given by system administrators, users or source providers (e.g. 

source availability windows, DIS refreshment policies, user expected freshness), can be systematically obtained 

using measurement processes (e.g. response time), can be aggregated from user passed behavior or statistics (e.g. 

user preferred sources, activity execution time), can be derived from other property values (e.g. activity global 

cost) or can be calculated in some ad-hoc way. Quality evaluation algorithms calculate further property values 

(quality measures) as will be discussed in next sub-section. 

We define a property as follows: 

Definition 3.5 (property). A property is a 3-uple <name, metric, domain> where name is a String 

that identifies the property, metric is a description of the measurement semantics and units, and domain 

describes the domain of the property values.   □ 

Nodes and edges of quality graphs are adorned with property labels of the form: property = value, where 

property is a property name and value is an element of the property domain. In Figure  3.1, property labels (cost, 

synchronization delay and source freshness) are written next to nodes and edges. 

In the following sub-section we illustrate how we utilize property labels for evaluating data quality. 
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2.2. The approach for data quality evaluation in data integration systems 

Quality evaluation is performed by evaluation algorithms that take as input a quality graph and calculate the 

quality values (corresponding to data freshness) for the graph. In order to illustrate our quality evaluation 

approach, consider the following example: 

Example 3.2. Figure  3.2 sketches a quality graph representing a simple DIS, 

which extracts traffic statistics of a unique data source (S1). A wrapper (activity 

A1) extracts data, which is cleaned and prepared by activity A2 and finally 

aggregated (activity A3) and delivered to a user application (T1).  

We aim to estimate data timeliness. Consider that S1 is a dissemination server 

that publishes traffic statistics once an hour, so published statistics correspond 

to traffic events of the passed hour. A1 extracts data immediately after its 

publication. Source data timeliness (at extraction time) is an hour (60 minutes) 

because the oldest source data may be produced at most an hour before. Also 

consider that the execution costs of activities A1, A2 and A3 are 5, 60 and 15 

minutes respectively, as shown in Figure  3.2. These costs should be taken into 

account in the estimation of the freshness (timeliness) of the data returned to 

users (through user application T1). Intuitively, timeliness of resulting data is 

estimated as 140 minutes, which results from adding the execution cost of 

activities to the source data freshness (60 + 5 + 60 + 15).   □ 

sourceFreshness=60

A1

A2

A3

cost=5

cost=60

cost=15

S1

T1

 

Figure  3.2 – Quality 

evaluation example 

Evaluation algorithms may traverse the graph, node by node, operating with property values. For example, a 

simple evaluation algorithm may start at source nodes, read the value of the source freshness property and move 

along the data flow adding the value of the cost property of each activity, as intuitively explained in previous 

example. Such algorithm can easily be implemented using default graph traversal methods. This mechanism for 

calculating data quality applying operations along the graphs is what we call propagation of quality measures 

within the graph (quality propagation for short).  

As a quality graph describes the DIS integration process and its properties, it contains the input information 

needed by evaluation algorithms. Evaluation algorithms take as input a quality graph, calculate the quality values 

corresponding to a quality factor and return a quality graph with an additional property (corresponding to the 

evaluated quality factor). The quality graph must be labeled with certain property values in order to execute a 

certain algorithm. For example, the activity nodes of a quality graph must be labeled with their execution cost in 

order to execute the evaluation algorithm informally described in  Example 3.1.  

Formally, evaluation algorithms are defined as follows: 

Definition 3.6 (quality evaluation algorithm). A quality evaluation algorithm is a 7-uple:  

 <Name, Description, QualityFactor, Input, Output, Preconditions, Postconditions>  

where: 

− Name is a String that identifies the algorithm. 

− Description is a free-form text describing algorithm evaluation strategy and optional details. 

− QualityFactor is the quality factor that the algorithm calculates. 

− The Input is a quality graph. 

− The Output is a quality graph that results of adding new property values (corresponding to the 
algorithm quality factor) to the input quality graph. 

− Preconditions is a set of pairs <group, property> indicating that a group of nodes/edges (e.g. activity 
nodes) must be labeled with values of such property (e.g. execution cost). The algorithm can be 

executed only if preconditions are satisfied. 

− Postconditions is a set of groups of nodes/edges that will be labeled with new property values 
(corresponding to the algorithm quality factor) after algorithm execution.   □ 
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Concerning code, evaluation algorithms have the following signature: 

 FUNCTION AlgorithmName (G: QualityGraph) RETURNS QualityGraph 

The implementation of evaluation algorithms may vary according to the quality factor and the concrete 

application scenario. The framework does not constrain the way the algorithms can be implemented. For 

example, the simple evaluation algorithm of  Example 3.1 propagates freshness values adding property values, 

but another evaluation algorithm may use sophisticated calculation strategies and even user-defined functions. 

The proposed graph representation facilitates the implementation because it enables to use graph primitives (e.g. 

getPredecessors, getSuccessors, getProperties) and traversal methods (e.g. findShortestPath, depthFirstSearch).  

There are two kinds of quality propagations: (i) propagation of actual values, and (ii) propagation of expected 

values. In the former (as illustrated in previous example), quality values of source data are propagated along the 

graph, in the sense of the data flow (from source to target nodes) and combined with property values of nodes 

and edges. In the latter, quality values expected by users are propagated along the graph but in the opposite sense 

(from target to source nodes) and combined with property values. 

Example 3.3. Consider that users expect freshness values of at most 2 hours (120 minutes) for data 

produced by the DIS of Figure  3.2. Subtracting activity execution costs from the freshness expected value, 

we obtain a value of 40 minutes (120 – 15 – 60 – 5). This value means that the source should provide data 

that is fresher than 40 minutes in order to satisfy user freshness expectations.   □ 

Propagation of actual values serves to inform users of the quality of result data; a comparison with user 

expectations at target nodes (expected values versus propagated actual values) determines if user quality 

expectations can be achieved or not. Conversely, propagation of expected values serves to constraint source 

providers on the quality of source data (or to choose among alternative sources providing the same type of data); 

a comparison with source actual quality at source nodes (actual values versus propagated expected values) 

determines if sources provide data with enough quality. 

An important remark is that quality propagation can be performed during the execution of DIS processes using 

precise property values (e.g. exact execution cost obtained during execution), or conversely, it can be performed 

without executing DIS processes and using estimations of property values (e.g. statistics of costs of previous 

executions). In the former, quality evaluation is used to inform users of results quality. In the latter, quality 

estimations can be used to decide whether query results will be adequate for user needs or not (if no adequate, 

alternative actions may be taken, for example, accessing to sources with higher quality even if source accesses 

are more expensive). We focus on this latter propagation context, even if our mechanism can be easily applied 

for calculating data quality during DIS execution. 

Finally, note that although the framework was conceived for the evaluation of data freshness, their components 

were defined in a general way allowing its use for the evaluation of other quality factors. For example, the 

response time quality factor may be measured in a similar way, and the direct use of the framework for its 

evaluation seems to be possible. In order to evaluate other quality factors, the framework may need to be 

extended, adding for example, new propagation operations; Chapter 4 illustrates this fact for the data accuracy 

quality factor.  

In the next section we use the framework for data freshness evaluation. 

3. Data freshness evaluation 

In this section we describe our data freshness evaluation approach. We firstly give an intuitive idea of the 

freshness calculation strategy and we describe some general properties that support the calculation of data 

freshness. Then, we present a basic data freshness propagation algorithm based on those properties. Finally, we 

describe an instantiation approach for adapting the basic algorithm to particular application scenarios. 

We firstly explain the propagation of freshness actual values (Sub-sections  3.1 to  3.5); the propagation of 

freshness expected values is similar and is discussed in Sub-section  3.6. We conclude this section motivating 

some direct applications of both types of data freshness propagations.   
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3.1. Basic evaluation algorithm  

In this sub-section we propose a basic algorithm for evaluating data freshness. In order to propagate freshness 

actual values, the algorithm needs input information describing DIS properties.  

The freshness of the data delivered to users depends on the freshness of source data but also on the amount of 

time needed for executing all the activities as well as on the delays that may exist among their executions. We 

briefly describe such properties, as well as users’ freshness expectations: 

− Processing cost: It is the amount of time that an activity needs for reading input data, executing and 
building result data (cost is used for short in some figures).  

− Inter-process delay: It is the amount of time passed between the executions of two activities, i.e. between 
the end of the former and the start of the latter (delay for short).  

− Source data actual freshness: It is the freshness of data in a source, i.e. at the moment of data extraction 
(sourceAfreshness for short). As data currency measures the gap with source data (the time passed since 

data extraction) data currency of source data is always zero, however, data timeliness of source data can 

take positive values. 

− Target data expected freshness: It is the users’ desired freshness for result data (targetEfreshness for 
short). 

The evaluation algorithm calculates the following property: 

− Actual freshness: It is an estimation of the actual freshness of data outgoing a node (Afreshness for short). 

The relevance of these properties depends on the application scenario. For example, the materialization of data 

and the use of different policies to refresh such data may imply important inter-process delays while in virtual 

systems these delays may be negligible. The calculation (or estimation) of such property values is discussed in 

Sub-section  3.4, taking into account the particularities of concrete scenarios.   

We propose an evaluation algorithm that estimates the freshness of result data based on previous properties. The 

algorithm propagates freshness actual values traversing the quality graph (following the data flow) and 

calculating the freshness of the data outgoing each node. The principle is the following: 

− For a source node A, the freshness of data outgoing A is calculated as the source data actual freshness.  

− For an activity node A with one predecessor P, the freshness of data outgoing A is calculated adding the 
freshness of data produced by P, the inter-process delay between P and A and the processing cost of A.  

− In the general case, if activity A has several predecessors, the freshness of data coming from each prede-
cessor (plus the corresponding inter-process delay) should be combined (synthesizing a unique value) and 

added to the processing cost of activity A. The typical combination function computes the maximum of 

the input values, but other user-specific functions may be considered (Sub-section  3.4.2 discusses other 

combination functions).  

The calculation can be sketched as shown in Figure  3.3: First, for each predecessor (P1… Pn) of activity A, we 

add the freshness of incoming data and the inter-process delay. Then, we combine such values 

(combineActualFreshness function) and add the processing cost to the result. The resulting value is associated to 

the data edges going from A to its successors (C1… Cm). 

1. v1 = Freshness(P1,A) + InterProcessDelay(P1,A) … 

vn = Freshness(Pn,A) + InterProcessDelay(Pn,A)  

2. F = combineActualFreshness({v1,…vn}) + ProcessingCost(A) 

3. Freshness(A, C1) = F…  

Freshness(A, Cm) = F 

Figure  3.3 – Freshness evaluation strategy 

We associate freshness values to the data edges outgoing nodes because we want to emphasize that freshness is a 

property of data not of processes. However, the strategy can be very easily adapted for associating freshness 
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values to nodes. For practical reasons, sometimes we refer to the freshness of a node, meaning the freshness of 

data produced by the node, i.e. freshness values associated to outgoing data edges. 

Note that in previous formulas (Figure  3.3) we need inter-process delay values to be associated to data edges. 

However, inter-process delays may be influenced by properties of control flow (e.g. the type of synchronization 

among activities), which should be taken into account in their calculation.  The calculation (or estimation) of 

property values is discussed in Sub-section  3.4. By the moment, we can consider that property values are labels 

of the quality graph as in Figure  3.4a. Processing costs are associated to activity nodes and inter-process delays 

are associated to data edges among activities, however, in order to facilitate the expression of some formulas 

(e.g. those of Figure  3.3) we often consider that processing costs are associated to all nodes (with zero value for 

source and target nodes) and that inter-process delays are associated to all data edges (with zero values for edges 

outgoing source nodes or incoming target nodes).  

Example 3.4. Consider the quality graph of Figure  3.4a as input for the propagation of freshness actual 

values. The freshness of (S1,A1) is calculated as the source data actual freshness of S1, i.e. 10 units of time. 

As A1 has a unique predecessor S1, the freshness of (A1,A3) is calculated adding actual freshness of (S1,A1) 

plus the inter-process delay of (S1,A1) plus the processing cost of A1, obtaining a value of 13 (10+0+3) 

units of time. As A3 has two predecessors (A1 and A2), two input values are combined: 18 (13+5) and 12 

(10+2), keeping the maximum, which is added to the processing cost of A3. Then, freshness of (A3, T1) is 

22 (18+4) units of time. Figure  3.4b shows the output quality graph.  □ 
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Figure  3.4 – Propagation of freshness actual values: (a) input quality graph, and (b) output quality graph 

The previous strategy is implemented in a basic algorithm for freshness propagation: 

ActualFreshnessPropagation (see Algorithm  3.1). It takes as input a quality graph and returns as output the 

quality graph with additional labels corresponding to data freshness. The QualityGraph class has methods for 

manipulating the classical graph operations (as getPredecessors) and for manipulating the property values 

associated to the nodes and edges (as addProperty and getPropertyValue). The algorithm first spans source 

nodes, obtaining source data actual freshness and storing the freshness of data outgoing source nodes. Then, the 

algorithm traverses activity nodes, obtaining data freshness and inter-process delays of incoming edges and 

storing such values in a list (valList). The values of the list are combined, added to the processing cost of the 

activity, and finally stored for all outgoing edges. A pseudocode of the algorithm is sketched in Algorithm  3.1. 

We defined the getSourceActualFreshness, getInterProcessDelay and getProcessingCost functions, as abstract 

functions, which should be instantiated for specific scenarios. The functions calculate the values of the source 

data actual freshness, inter-process delay and processing cost properties. Their signatures are: 

 FUNCTION getSourceActualFreshness (G: QualityGraph, A: Node) RETURNS INTEGER  

 FUNCTION getProcessingCost (G: QualityGraph, A: Node) RETURNS INTEGER  

 FUNCTION getInterProcessDelay (G: QualityGraph, e: Edge) RETURNS INTEGER  
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FUNCTION ActualFreshnessPropagation (G: QualityGraph) RETURNS QualityGraph 

 INTEGER value; 

 FOR EACH source node S of G DO 

  value= getSourceActualFreshness(G,S); 

  Edge e = data edge outgoing S in G 
  G.addProperty(e,“ActualFreshness”,value); 

 ENDFOR; 

 FOR EACH activity node A in topological order of G DO 

  HASHTABLE valList; 

  FOR EACH data edge e incoming A in G DO 

   value= G.getPropertyValue(e,“ActualFreshness”) + getInterProcessDelay(G,e); 

   valList.add(e,value); 

  ENDFOR; 

  value= combineActualFreshness(G,valList) + getProcessingCost(G,A); 

  FOR EACH data edge e outgoing A in G DO 

   G.addProperty(e,“ActualFreshness”,value); 

  ENDFOR; 

 ENDFOR; 

 RETURN G; 

END 

Algorithm  3.1 – Basic algorithm for propagating freshness actual values 

The combineActualFreshness function is also an abstract function that combines the freshness values of 

predecessor nodes (stored in the valList array, including the delays) and synthesize a unique freshness value. For 

example, if users are interested in an upper bound of freshness the combineActualFreshness function may return 

the maximum of predecessors freshness. Its signature is: 

 FUNCTION combineActualFreshness (G: QualityGraph, valList: HashTable) RETURNS INTEGER  

The previous abstract functions can be overloaded for different scenarios taking into account the characteristics 

of the scenarios. Next sub-sections discuss these ideas. 

3.2. Overview of the instantiation approach 

In order to characterize different types of scenarios we consider the freshness factor that users are interested in 

and the three dimensions that influence data freshness (introduced in Chapter 2 - Sub-section 2.3), namely, 

nature of data, architectural techniques and synchronization policies. Our goal is to develop data freshness 

evaluation algorithms specialized for the different scenarios. 

The basic evaluation algorithm can be specialized for considering the particularities of the scenarios. Firstly, 

different DIS properties should be considered in the evaluation. These properties are the ones that allow the 

estimation of source data actual freshness, processing costs and inter-process delays for a given scenario. For 

example, when materializing data, the time passed between two consecutive refreshments (refreshment period) 

may be an important component of the inter-process delay while in virtual systems this property has no sense. In 

addition, the evaluation algorithm should be instantiated to take into account the considered properties. The 

instantiation consists in overloading the abstract functions according to the scenario properties.  

Then, the instantiation method consists of three steps: 

1. Modeling the scenario according to the freshness factors and the dimensions that influence data freshness. 

2. Identifying the appropriate properties for the scenario. 

3. Instantiating the evaluation algorithm. 
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In order to illustrate the instantiation approach, we introduce the following motivating example: 

Example 3.5. Consider three different DIS scenarios that deal with information about cinemas and films, 

illustrated in Figure  3.5: 

� DIS1: A DIS that retrieves information about films and the cinemas where these films are in billboard, 

in response to user queries as “Where can I see a given film?” or “Which films are in billboard now?”. 

It extracts film information (titles, genre, actors, directors, timetables, etc.) from the AlloCiné site and 

cinema information (cinema, capacity, category, etc.) from the UGC and CinéCité sites. The process 

model consists of three activities for extracting data from the mentioned sites (A1, A2 and A3), an 

activity for merging (union) the data extracted from both cinema sites (A4) and an activity for joining 

film and cinema information (A5). Users expect data freshness of at least a week. 

� DIS2: A DIS (part of a reservation system) that accesses to information about cinemas and the 

availability of places for their performances (of the UGC and CinéCité sites) and present the 

information to the user allowing him to choose a cinema. The process model consists of two activities 

for extracting data from both sites (B1 and B2) and an activity (B3) that merges the extracted data, 

formats it and conveys it to the user interface. When activity B3 receives data from an extractor, it 

waits for data from the other extractor for at most one minute, conveying the available data to the user. 

User freshness expectations are of at least 5 minutes.  

� DIS3: A DIS that manages statistics information about films, the number of persons that watched each 

film and their opinions. Typical user questions are “Which films have the best ranking this week?” or 

“Which film should I watch?”. The DIS extracts film information and audience statistics from the 

AlloCiné site and critic information (films, opinions, recommendations, etc.) from the CineCritics and 

FilmCritiquer sites. Such sources are queried at different times (film data is extracted weekly and 

critic data daily) because of negotiations with source providers, so the extracted information is locally 

materialized in order to answer user questions. The process model consists of extraction activities (C1, 

C2 and C3), an activity for reconciling data from two extractors (C4), an activity for joining critic and 

film data (C6), and two activities for performing aggregations and calculating statistics (C5 and C7). 

Users expect data freshness of at least a week. 

Although all of them integrate data provided by several cinema sites, their characteristics (e.g. nature of 

data, system implementation) are very different. Furthermore, freshness factors and metrics as well as user 

freshness requirements are also different. Consequently, the way data freshness is estimated should be 

adapted to each application scenario.   □  
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Figure  3.5 – Quality graphs representing the example DISs (omitting property labels) 

Next sub-sections describe and apply each instantiation step. We explain the whole method, characterizing the 

scenarios, determining the properties of each scenario and implementing the overloaded functions. We illustrate 

the instantiation of the framework to the concrete scenarios introduced in previous example. 
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3.3. Modeling of scenarios 

In this step, DISs processes are classified according to the freshness factor and the four dimensions that influence 

data freshness. We remind those dimensions (see Sub-section 2.3 of Chapter 2 for details): 

− Nature of data. This dimension classifies source data according to its change frequency in three 
categories: stable, long-term-changing and frequently-changing data. When working with frequently 

changing data, it is interesting to measure how long data can remain unchanged and minimize the delivery 

of expired data (i.e. evaluate currency). However, when working with data that does not change very 

often, it is more interesting to measure how old is the data (i.e. evaluate timeliness).   

− Architectural techniques. This dimension classifies DISs architectural techniques in three categories: 
virtual, caching and materialization techniques. DISs architectural techniques are very relevant in 

freshness evaluation because they may introduce significant delays. Specifically, when caching or 

materializing data, the refreshment frequency causes important delays that should be considered.  

− Synchronization policies. This dimension classifies DISs synchronization policies according to the 
interaction between the sources, the DIS and the users (combinations of pull and push policies, in 

synchronous and asynchronous modes) in 6 categories*: pull-pull, pull/pull, pull/push, push/push, 

push/pull and push-push policies. Asynchronous modes, with data materialization, may introduce 

important delays.  

This classification is useful in the measurement of processing costs, inter-process delays and source data actual 

freshness because it summarizes the dimensions that may impact in these properties. A first remark is that the 

magnitude of source data actual freshness, processing costs and inter-process delays should not be considered in 

the absolute but compared to freshness expectations. For example, if users may tolerate data freshness of “some 

days”, the processing costs of activities (“some minutes”) are negligible; however, if users require data 

“extremely fresh”, the processing costs of activities could be relevant. In order to decide which properties are 

relevant and which are negligible for a given DIS, the classification according to the taxonomy brings a first idea 

of magnitudes, which will be taken into account in the calculation of property values. For example, the 

architectural techniques dimension gives a first idea of the magnitude of inter-process delays. 

A scenario is characterized by the freshness factor users are interested in and its classification according to the 

dimensions of the taxonomy. So, a scenario is described giving four components: (i) freshness factor, (ii) nature 

of data, (iii) architectural techniques, and (iv) synchronization policies. 

Example 3.6. Let’s classify the DISs of  Example 3.5 according to the freshness factor and the three 

dimensions of the taxonomy and model the respective scenarios. 

Users of DIS2 want to obtain the same data that is stored at the sources, no matter when the information 

was updated (when was sold the last ticket), so they are interested in currency. However, users of DIS1 and 

DIS3 are mainly interested in seeing information about “recent” films, so they are interested in timeliness. 

The nature of data is different in the various sources. Cinema descriptive information (UGC and CinéCité 

sites, accessed by DIS1) is quite stable, film information (AlloCiné site, accessed by DIS1 and DIS3) has a 

relatively long-term change frequency and place availability (UGC and CinéCité sites, accessed by DIS2) 

and critic information (CineCritic and FilmCritiquer sites, accessed by DIS3) frequently changes. 

Concerning DIS implementation, DIS1 is an interactive process, with virtual techniques and pull 

synchronous policies; activities are simple JSP queries. DIS2 is an interactive process, with virtual 

techniques, that synchronizes the extraction of data from two data sources (pull synchronous with timeout 

policies); activities are simple copies of data. DIS3 materializes the data produced by some activities (C1, 

C5, C6 and C7), so user queries are answered from materialized data. Data is refreshed periodically: film 

data is refreshed weekly and critic data daily. Activities are complex cleaning, reconciliation and 

aggregation processes. 

The scenarios for the three previous DISs can be characterized as follows: 

                                                           

*
 Each configuration is named with the user-DIS policy followed by the DIS-source policy. Asynchronism is represented by a slash (/), 

synchronism by a dash (-) 



  Verónika Peralta  

  51  

� Scenario Sc1 for DIS1:  

− Freshness factor: timeliness  

− Nature of data: stable and long-term-changing data 

− Architectural techniques: virtual techniques  

− Synchronization policies: synchronous pull policies (pull-pull) 

� Scenario Sc2 for DIS2:  

− Freshness factor: currency 

− Nature of data: frequently-changing data 

− Architectural techniques: virtual techniques 

− Synchronization policies: synchronous pull policies (with timeout) (pull-pull) 

� Scenario Sc3 for DIS3:  

− Freshness factor: timeliness 

− Nature of data: long-term-changing and frequently-changing  

− Architectural techniques: materialization techniques 

− Synchronization policies: asynchronous (periodic) pull policies (pull/pull)   □ 

Next step analyzes the relevant properties of each scenario.  

3.4. Identification of appropriate properties  

Data freshness is evaluated based on the source data actual freshness, processing cost and inter-process delay 

properties, but the way of calculating these properties depends on the particular scenario considered. The 

calculation may be based on DIS properties (e.g. wrapper extraction frequencies, synchronization policies), 

which may be set as labels of the quality graph or may be measured by used-defined functions. Analogously, the 

way of combining several freshness values (when an activity has several incoming edges) depends on the 

scenario and may be based on DIS properties (e.g. data volatility, source reputation). In this sub-section we deal 

with the identification of the DIS properties involved in such calculations and we discuss their estimation.  

3.4.1. Estimation of property values 

The calculation of source data actual freshness, processing cost and inter-process delay properties depends on the 

application scenario. Specifically, we discuss two aspects: (i) the DIS properties that influence their calculation 

and (ii) the estimation type. The combination of these two aspects should lead to a calculation method.  

The first aspect is how to calculate the source data actual freshness, processing costs and inter-process delay 

properties. Depending on the scenario, different DIS properties may influence their calculation. For example, 

several delays may compose processing costs of extraction activities in certain DISs [Hull+1996]: the 

communication delay between a source and the activity, the source query processing delay and the activity query 

processing delay. Similarly, many delays may influence the inter-process delay, for example when combining 

data from two sources, activities may hold data from a source while waiting for data from another source. When 

materializing data, the time passed from last materialization may be an important delay, bounded by the 

refreshment frequency [Theodoratos+1999]. Properties associated to control flow may be also taken into 

account, for example, if two activities are synchronized in a way that the latter executes one hour after the 

former, such synchronization delay should be taken into account. Scheduling methods like Critical Path Method 

(CPM) and Program Evaluation and Review Technique (PERT) [Hiller+1991] can be used for setting delays 

among activities. When control flow is not driven by data flow, the inter-process delay between two activities 

might be calculated using properties associated to other activities, as illustrated in the following example.  

Example 3.7. Consider the portion of a quality graph shown in Figure  3.6. Activity A5 is synchronized to 

execute one unit of time after activity A3 but it takes as input the data materialized by activity A2. Activity 

A3 is a control routine that does not produce any data. The inter-process delay associated to data edge 

(A2,A5) is calculated as the sum of synchronization delays of control edges (A2,A3) and (A3,A5) and the 

processing cost of A3, i.e. 2 (0+1+1) units of time.   □ 
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Figure  3.6 – Calculating inter-process delay from control flow properties 

Various works propose different estimations for the source data actual freshness (timeliness*), for example: using 

data timestamps [Braumandl 2003] or the update frequency of a source [Naumann+1999]. In sources with access 

constraints (as restrictions on the query frequency) or dissemination frequencies, such properties should be taken 

into account. In specific scenarios, the values of source data actual freshness, processing cost or inter-process 

delay may be directly provided by expert users, system administrators or source providers (set as labels of the 

quality graph) without need of considering additional DIS properties. 

The second aspect concerns the type of estimation, which could be a precise measure of data freshness at this 

moment or an estimation of data freshness in the average or worst case. The former implies storing metadata in 

each activity execution (e.g. the extraction time) and executing the evaluation algorithm each time the DIS 

conveys data (e.g. for each user query). The latter implies keeping statistics and bounds for property values 

which may be used to calculate upper bounds or average case values of data freshness (without need of 

calculating freshness when conveying data). 

In summary, we should compare the magnitude of source data actual freshness, processing costs and inter-

process delays with respect to freshness expectations (aided by the scenario modeled in previous step). For the 

relevant ones, we should identify the DIS properties that influence their calculation and the desired estimation 

type in order to obtain their calculation strategies. For example, if the processing cost of extraction activities is 

relevant, communication delay with sources is the preponderant cost and we want a worst case estimation, a 

good estimation strategy for the processing cost may consist in keeping statistics of communication costs and 

taking the maximum. We should study how to acquire each DIS property value. Some properties values may be 

directly provided by expert users, source providers or DIS administrators, or may be measured or estimated 

using specialized routines, for example, reading statistics. 

Example 3.8. Let’s analyze the relevant properties for the three DISs of  Example 3.5. Users expect 

freshness values of “a week” for DIS1 and DIS3. With such freshness requirements, the “day” is a good unit 

for measuring freshness and properties values. Properties with values ranging in “some minutes” or less can 

be neglected. However, as users expect freshness values of at most “five minutes” for DIS2, the 

measurement unit for it should be the “minute” and property values ranging in “some seconds” are relevant.  

We want to estimate property values in the worst case. For DIS1 the processing cost of simple JSP queries 

(seconds) and the inter-process delay for merging source data (seconds) can be neglected. For DIS3 the 

relevant processing costs are due to the reconciliation processes (activities C4 and C6), which may require 

human interaction (to solve conflicts or errors) and may last some days. DIS3 materializes data, so there is 

an asynchrony between the data extraction and the data delivery. Sources are queried at different times 

(because of negotiations with source providers), provoking important inter-process delays between the 

executions of some activities; then, the refreshment frequencies should be considered. For DIS2, 

synchronizing extractors introduces a relevant delay, as the data extracted from a source may be held while 

waiting for data from the other source. The synchronization timeout is an upper bound for such delay that 

can be used to estimate it in the worst case. The communication delay with the sources can be important 

too, as well as the processing cost (seconds) of the merge activity.  

For DIS1 and DIS3, where users are interested in data timeliness, source data actual freshness (days, weeks 

or months) is relevant. It can be estimated, in the worst case, as the source update frequency.   □ 

The relevant DIS properties are summarized in Sub-section  3.4.3, as well as the properties necessaries for 

implementing the combineActualFreshness function. The latter is studied in next sub-section. 

                                                           

*
 Remember that source data actual freshness is always zero when measuring data currency. 
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3.4.2. Combination of input values 

As argued in Sub-section  3.1, when an activity has several predecessors, the freshness of data coming from them 

is combined, synthesizing an input freshness value for the activity. That is, given the input values iv1, iv2,… ivn, 

where ivi is the freshness value (plus the inter-process delay) of data coming from the i
th
 predecessor, the 

combineActualFreshness function returns an estimation of the freshness of the whole input: 

cv= CombineActualFreshness (iv1, iv2,… ivn) 

The combination strategy depends on the activity semantics. Firstly, if the activity chooses among inputs (e.g. a 

mediator that returns only the data extracted from the most reputable source), the synthesized value is the input 

value of such source. Conversely, if the activity merges data from several inputs, the synthesized value should be 

calculated as a function of the input ones.  

A simple combination function considers the worst case, i.e. it returns the maximum of input values. 

Analogously, the function can return an average (or weighted average) of input values. Typical weights are data 

volume, data volatility or source reputation). Furthermore, voting strategies can be taken into account (e.g. given 

more weight to data that is present in more sources). Specialized functions can be defined considering the 

characteristics of specific scenarios. 

Analogously to the calculation of source data actual freshness, processing costs and inter-process delays, the 

combination function may be based on some DIS properties. We should identify the DIS properties that 

influence its calculation and determine their calculation strategies.  

Example 3.9. Let’s analyze the combineActualFreshness functions for the three DISs of  Example 3.5. For 

scenarios Sc2 and Sc3 the appropriate implementation is taking the maximum of predecessors freshness. 

However, in scenario Sc1 users expect to know how fresh is film information, independently to when the 

cinema data was last updated. We take into account data volatility (movie information is more volatile than 

actors’ information); the strategy consists in ignoring input values of sources providing more stable data. 

The nature of data dimension is used to define this strategy: expert users assign volatility values. When 

input activities have the same data volatility, the function returns the maximum input value.   □  

Next sub-section summarizes the relevant properties and their calculation strategies. 

3.4.3. Summary of relevant properties and their calculation 

As a result of this step, we produce a list of DIS properties that are necessary for overloading the 

getSourceActualFreshness, getInterProcessDelay, getProcessingCost and combineActualFreshness functions 

and we sketch the calculation strategies for their implementation. Both properties and strategies will be used in 

next step for implementing these functions. 

Table  3.1 summarizes the DIS properties that are relevant in the calculation of the overloaded functions for the 

three scenarios of previous examples, indicating, to which graph components they correspond (for example, 

indicating that only the processing cost of certain activity is relevant) and how to acquire the property values. 

Table  3.2 summarizes the calculation strategies for them. 

  DIS property Scope Acquisition  

Sc1 Source actual freshness Update frequency All sources Source providers  

Communication delay Wrappers 
Statistics of connections 

to sources Processing cost 

Processing cost  Activity B3 Statistics of executions 

Inter-process delay 
Synchronization 

timeout 

Control edges 

incoming activity B3 
System administrator 

Sc2 

Combine actual 

freshness 
Data volatility Data edges 

Expert users (at source 

level); replicated to edges 

Source actual freshness Update frequency All sources Source providers  

Processing cost Interaction cost  Activities C4 and C6 Statistics of executions Sc3 

Inter-process delay Refreshment frequency All activities System administrator 

Table  3.1 – DIS properties used for overloading functions 
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 Scenario Sc1 Scenario Sc2 Scenario Sc3 

Processing cost Neglect 

For wrappers (B1 and B2): 

- communication delay with 
sources + processing cost 

For merge activity (B3): 

- processing cost  
(worst cases from statistics) 

Processing cost  

(worst case from statistics) 

Inter-process 

delay  
Neglect 

For edges incoming B3: 

- synchronization timeout 
For other edges: 

- neglect 

For edges outgoing activities: 

- 1 / refreshment frequency of 
input node 

For other edges: 

- Neglect 

Source data 

actual freshness 
1 / update frequency Neglect 1 / update frequency 

Combine actual 

freshness 

Maximum of input 

values 

When different data volatility: 

- input value of the most 
volatile input 

When equal data volatility: 

- maximum of input values 

Maximum of input values 

Table  3.2 – Calculation strategies for overloading functions 

In next sub-section we describe how to take into account these properties and strategies in the implementation of 

freshness evaluation algorithms. 

3.5. Instantiation of the evaluation algorithm 

The freshness evaluation algorithm can be instantiated to adapt it to a specific scenario, overloading the 

getSourceActualFreshness, getInterProcessDelay, getProcessingCost and combineActualFreshness functions, in 

order to consider in each function, the DIS properties that are most relevant for the scenario (as discussed in 

previous sub-section). 

Generally, the implementation of the overloaded functions is very simple and consists in obtaining the values of 

some DIS properties or invoking routines to read statistics. However, for some particular scenario, more 

complex functions may be implemented. As an example, Table  3.3 shows a pseudocode of the 

getSourceActualFreshness function for scenario Sc1. The function reads the update frequency property, acquired 

from source providers (as specified in Table  3.1) and registered as a label of source nodes of the quality graph. 

The calculation follows the strategy described in Table  3.2.  As another example, the getProcessingCost function 

for scenario Sc3 should invoke an external function for reading statistics of processing costs of activities (stored 

for example in a log) and obtaining the maximum. The DIS should store such statistics during execution (no 

necessarily at each execution). 

FUNCTION getSourceActualFreshness (G: QualityGraph, A: Node) RETURNS INTEGER  

 INTEGER frequency = G.getPropertyValue(A,“UpdateFrequency”);  

 RETURN 1 / frequency;  

END 
 

Table  3.3 – Overloading of a function for scenario Sc1 

The framework does not constraint the type of code that can be used in the implementation of overloaded 

functions; all user-defined functions can be invoked. In addition, the functions implemented for a scenario may 

be reused for other scenarios (e.g. the function of Table  3.3 may be also used in scenario Sc3). Furthermore, 

alternative implementations might be provided in order to support different freshness estimations, for example, if 

some users need a metric but other users want to analyze another one. This gives additional flexibility to our 

approach. 

A real application scenario is studied in Chapter 5 (Sub-section 3.2). We identify the relevant DIS properties and 

overload the corresponding functions to instantiate the freshness evaluation algorithm. .  
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Next sub-section discusses the propagation of freshness expected values which allows to constraint source 

providers on the freshness of source data. 

3.6. Propagation of freshness expectations 

Analogously to the propagation of freshness actual values, we can propagate freshness expected values from 

target to source nodes. The propagated freshness expected values may help the DIS designer to know the 

freshness that he should ask the source providers for. A direct application of this propagation strategy is the 

comparison of alternative data sources in order to select the one that provides the freshest data.  

Sub-section  3.1 presented the propagation of freshness actual values from source to target nodes. The 

propagation of freshness expected values is quite similar but presents some additional problems. In this sub-

section we discuss the propagation of freshness expected values and we present the corresponding propagation 

algorithm.  

The propagation algorithm calculates the following property: 

− Expected freshness: It is an estimation of the expected freshness for data outgoing a node (Efreshness for 
short). 

The propagation principle is to traverse the quality graph (in sense inverse to the edges) calculating the expected 

freshness for data outgoing each node, i.e. the maximum freshness value that may be tolerated for the data 

produced by the node, in order to achieve freshness expectations. Intuitively, while for calculating actual values 

we add processing costs and inter-process delays to source data actual freshness, for calculating expected values, 

we should subtract them from target data expected freshness. A first intuitive propagation algorithm starts with 

target data expected freshness, and for each node, subtract the processing cost of the node and the inter-process 

delay with the predecessor node. Next example illustrates the idea: 

Example 3.10. Consider the quality graph of Figure  3.7a as input for the propagation of freshness expected 

values. Actual freshness was propagated with the basic algorithm described in Sub-section  3.1, taking the 

maximum as combination function (as illustrated in  Example 3.4). The expected freshness for (A3, T1) is 

calculated as the target data expected freshness of T1, i.e. 30 units of time. The expected freshness for 

(A1,A3) is calculated as the expected freshness of (A3, T1) minus the cost of A3 minus the inter-process 

delay of (A1,A3), obtaining a value of 21 (30-4-5) units of time. The other values are calculated 

analogously. Figure  3.7b shows the output quality graph. □ 
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Figure  3.7 – Propagation of freshness expected values: (a) input quality graph, and (b) output quality graph 

In previous example, freshness expected values are propagated in the same way to all predecessors. However, in 

certain scenarios, different values should be propagated to each predecessor. Such differentiation depends on the 



Data Quality Evaluation in Data Integration Systems 

56  

semantics of the combination function (combineAcutalFreshness), which synthesizes an input freshness value for 

each node. The following example illustrates this idea: 

Example 3.11. Consider again the quality graph of Figure  3.7a but suppose that freshness actual values 

were propagated using a different combination function which returns the freshness of input data coming 

from S1 (for example, because of data volatility). Note that it does not matter which is the freshness of data 

coming from S2, if freshness of data from S1 is good enough, freshness expectations are achieved. For 

example, if the source data actual freshness of S2 is 5000 units of time instead of 5 units of time, the actual 

freshness of (A3, T1) continues being 22 units of time, which does not surpass freshness expectations. So, 

the propagation of freshness expected values in this quality graph should respect this intuition, i.e. the 

expected freshness for (A2,A3) should be infinite.   □ 

When a node has several predecessors, its expected freshness is decomposed among the predecessors obtaining 

an expected value for each predecessor. We define the decomposeExpectedFreshness function for performing 

such decomposition. Given an input value iv corresponding to the expected freshness for data outgoing a node 

(minus the processing cost of the node), the decomposeExpectedFreshness function returns a set of values  

{v1, v2,… vn} where vi is the expected freshness value for data incoming the node from the i
th
 predecessor: 

{v1, v2,… vn} = decomposeExpectedFreshness (iv) 

Previous example motivated that the decomposition of expected values should be coherent to the combination of 

actual values. Specifically, the decomposeExpectedFreshness function should have the inverse effect of the 

combineActualFreshness function. The idea is that, if the combination function is applied to the propagated 

expected values, the synthesized value should satisfy freshness expectations. To see this, let v be the freshness 

expected value for a node and v1, v2,… vn the freshness expected values propagated to the node predecessors, i.e. 

decomposeExpectedFreshness (v) = {v1, v2,… vn}; then, the combination function applied to v1, v2,… vn should 

return a smaller value than v. In other words, the decomposition function should warranty that 

combineActualFreshness (v1, v2,… vn) ≤ v. 

The expected values propagated to predecessors (i.e. v1, v2,… vn) should be the greatest values that allows 

achieving freshness expectations (i.e. v). In other words, the combination function applied to smaller values 

should return a synthesized value that is smaller than freshness expectations. For that reason, we require the 

combineActualFreshness and decomposeExpectedFreshness functions to be monotonic.  

The decomposition function is the solution to the following optimization problem: 

Maximize: (v1, v2,… vn)  

subject to:  combineActualFreshness (v1, v2,… vn) ≤ v 

Unfortunately, for some combination functions the decomposition function cannot be easily deduced. 

Furthermore, in some situations, we cannot completely determine expected values and we only obtain equations 

with some degree of freedom, which are not as useful as those illustrated in previous examples. Next example 

illustratres one of such cases. 

Example 3.12. Consider that the combination function for the quality graph of Figure  3.7a performs an 

average of both input values, i.e. for activity A3, combineActualFreshness (18,12) = 15. The freshness 

expected values for predecessors of activity A3 should be the greater values that verify that 

combineActualFreshness (v1,v2) ≤ 30-4, i.e. (v1+v2)/2 ≤ 26.  

In this case, values v1 and v2 are not determined and there is a space of solutions that verifies the condition.  

Specifically, solutions are of the form (v, 52-v}.   □ 

In cases where the optimal decomposition function cannot be exactly determined, the function should be 

implemented for returning some values that could be useful for a particular scenario but knowing that it will be 

more restrictive than necessary, for example, decomposeExpectedFreshness (v) = {v,v…v}. 

Once the decomposition function has been identified, for a specific scenario, the propagation of expected values 

is analogous to that of actual values. It can be sketched as follows (see Figure  3.8): First, for each successor 

activity (C1… Cm), we obtain the expected freshness. We take the most restrictive value (the minimum) and we 

subtract the processing cost. Then, we decompose such value in a set of values, one for each predecessor activity 

(P1… Pn), and we subtract, from each value, the inter-process delay with the corresponding predecessor.  
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1. u1 = ExpectedFreshness(A,C1) … 

um = ExpectedFreshness(A,Cm) 

2. v = min {u1,…um} – ProcessingCost(A) 

3. {v1,…vn} = DecomposeExpectedFreshness (v)  

4. ExpectedFreshness (P1,A) = v1 -  InterProcessDelay (P1,A) …  

ExpectedFreshness (Pn,A) = vn -  InterProcessDelay (Pn,A) 

Figure  3.8 – Expected freshness propagation strategy 

The previous strategy is implemented in an algorithm for propagating freshness expectations: 

ExpectedFreshnessPropagation (see Algorithm  3.2). The algorithm first spans target nodes, obtaining target data 

expected freshness and storing the expected freshness for each incoming edge. Then, the algorithm traverses 

activity nodes, calculating the minimum expected freshness of outgoing edges and subtracting the processing 

cost. The resulting value is decomposed obtaining an expected value for each predecessor, in a list (valList). 

Each value of the list is subtracted of the corresponding inter-process delay and stored for the incoming edge. A 

pseudocode of the algorithm can be sketched as shown in Algorithm  3.2. 

The decomposeExpectedFreshness function is an abstract function that should be overloaded to implement the 

adequate decomposition strategy. 

FUNCTION ExpectedFreshnessPropagation (G: QualityGraph) RETURNS QualityGraph 

 INTEGER efreshness, value, m; 

 FOR EACH target node T DO 

  efreshness = getTargetExpectedFreshness(G,T); 

  EDGE e = data edge incoming T in G  
  G.addProperty(e,“ExpectedFreshness”,efreshness); 

 ENDFOR; 

 FOR EACH activity node A in inverse topological order of G DO 

  m = min ({G.getPropertyValue(e,“ExpectedFreshness”) / e is a data edge outgoing A in G}) 

  value= m – getProcessingCost(G,A); 

  HASHTABLE valList = edges incoming A in G; 

  decomposeExpectedFreshness (value, valList); 

  FOR EACH data edge e incoming A in G DO 

   efreshness = valList.get(e) – getInterProcessDelay(G,e); 

   G.addProperty(e,“ExpectedFreshness”,efreshness); 

  ENDFOR; 

 ENDFOR; 

 RETURN G; 

END 

Algorithm  3.2 – Basic algorithm for propagating freshness expected values 

Next sub-section presents some direct applications of both types of freshness propagations.  

3.7. Usages of the approach 

The algorithms for propagating actual and expected values of data freshness proposed in previous sub-sections 

can be used in different contexts, either in order to evaluate data freshness in an existing DIS or to determine 

constraints for DIS development. This sub-section summarizes the freshness evaluation approach by briefly 

presenting some usages of the approach for different purposes and at different development stages. Some of 

these usages are developed in the remaining of the chapter (Sections  4 and  5) and in Chapter 5. 
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3.7.1. Evaluating data freshness at different phases of the DIS lifecycle 

The data freshness evaluation approach can be used at different phases of the DIS lifecycle, e.g. at design, 

production or maintenance phases. Depending on the phase, a quality graph may represent an existing DIS 

(implemented, operative) or a specification of a DIS (not yet implemented). In the former, precise property 

values (source data actual freshness, processing costs and inter-process delays) can be obtained during DIS 

execution. In the latter, property values should be estimated, generally based on cost models. In both cases, 

property values can be upper bounds (e.g. worst case processing costs) so the evaluation algorithm will obtain 

upper bounds for data freshness. 

Some usages of the approach, in an existing DIS are: 

− At query evaluation: We can evaluate data freshness during query evaluation in order to obtain precise 
freshness values of the conveyed data (possibly labeling data with its freshness values). The actual 

freshness evaluation algorithm can be integrated to the query evaluation process. Precise property values 

can be obtained during DIS execution. In that case, we obtain the actual freshness of the conveyed data. 

− At query planning: We can evaluate data freshness before executing a query in order to predict the 
freshness of data that may be returned in response to the query. Data freshness evaluation should be based 

on estimations of property values (e.g. using cost models or statistics of previous query evaluations). This 

is the case of virtual DIS (e.g. mediation systems) where the calculation operations (activities) are decided 

for each user query. Query optimizers use costs models and statistics for predicting operations costs. 

− At DIS monitoring: We can evaluate data freshness offline (after executing several queries) in order to 
monitor if the DIS has quality problems. Data freshness evaluation should be based on estimations of 

property values (generally based on statistics of DIS executions). The data freshness evaluation algorithm 

can be integrated to a quality auditing tool.  

Some usages of the approach, in a DIS specification are: 

− At DIS design: We can evaluate data freshness in a (conceptual or logical) model of the DIS in order to 
validate the model. Data freshness evaluation should be based on estimations of DIS properties (e.g. using 

cost models). 

− At DIS maintenance: When doing modifications to DIS design (e.g. changing implementation of some 
activities or adding new components for providing additional processing), we can evaluate data freshness 

of the new model in order to validate the changes or decide if they are convenient. Statistics or cost 

models for the new/modified components can be used as estimations of DIS properties. 

− At DIS reengineering: When reengineering a DIS (possibly because of quality problems), we can evaluate 
data freshness in a new version of the DIS (e.g. substituting some activities by more performing ones) in 

order to validate the modifications. Data freshness evaluation should be based on statistics of DIS 

executions and estimations of property values for the new components. 

Note that for query evaluation and DIS monitoring data freshness evaluation is performed a posteriori, i.e. after 

executing queries, however, for query planning data freshness evaluation is performed a priori, i.e. before 

executing queries. In a DIS specification, data freshness evaluation is also performed a priori. 

3.7.2. Different applications of the evaluation approach  

Both types of propagations (of actual and expected values), either a priori or a posteriori, can be used for 

different purposes, ranging from simple quality assessment (e.g. for informing users of actual freshness) to 

quality improvement (e.g. for analyzing improvement actions). In this sub-section we discuss several usages of 

the approach. 

Data freshness assessment 

A first use of the approach consists simply on evaluating data freshness and communicating it to the 

correspondent actors (designers, administrators, users, source providers). The evaluation results can be used for 

different purposes, for example: 

− Communicating data freshness to users: Propagating freshness actual values, from sources to targets, we 
obtain metadata (data freshness) that qualifies conveyed data. Freshness values can be communicated to 
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users either as labels of conveyed data (in response to a query) or as upper bounds (before executing the 

query). In both cases, providing data freshness values to users represent a value-added to the data. 

− Estimating data freshness: Using estimations of property values (e.g. based on cost models or statistics) 
we can estimate the freshness of data that may be returned by a DIS. Results can validate design decisions 

or motivate the development of more performing components. So, data freshness may have impact in 

early design steps. In addition, at maintenance phase, freshness estimations may serve for monitoring the 

DIS.   

− Specifying constraints for source data actual freshness: Propagating freshness expected values, from 
targets to sources, we obtain freshness expected values for source data. These values may serve as 

constraints (upper bounds for source data actual freshness) for warranting the achievement of freshness 

expectations. They can be communicated to source providers when negotiating the service. In that way, 

freshness expectations also may have impact in early design steps. 

− Specifying constraints for DIS development: The comparison among target data expected freshness and 
source data actual freshness serves to determine constraints for DIS implementation. Their difference, if 

positive, indicates the longest period of time that DIS processes are allowed to spend in manipulating 

data, i.e. it is an upper bound for the execution delay of the DIS which includes the processing costs of 

activities and the inter-process delays among them. Examples of constraints are: maximal processing 

costs for activities, minimal execution frequencies for activities, minimal refreshment frequencies for 

materialized data and minimal access frequencies for data sources. 

Comparison of different DIS implementations 

A direct application of the freshness evaluation approach is the comparison among different quality graphs. The 

application consists in evaluating data quality in each quality graph and selecting the one that produces data with 

the highest quality (data freshness can be the unique quality criteria or can be balanced with other ones). The 

quality graphs may differentiate, for example, in the access to alternative data sources, in the use of different 

activities and in the interaction among activities (data and control flows). 

− Selecting a quality graph: Freshness actual values can be propagated, from sources to targets, obtaining 
measures for comparing among graphs. The comparison can be done at different moments, for example, 

at design phase, we can compare different (conceptual or logical) models for the DIS, at production phase 

(query planning), we can compare alternative execution plans, at maintenance phase we can compare 

different modifications to DIS implementation.  

− Selecting a data source: Given a model for the DIS, accessing to some generic sources (specification of 
the data types that must be provided by sources), we can propagate freshness expected values to sources 

obtaining constrains for source data. Then, candidate sources can be compared in order to select the one 

that provides data with the highest quality. Analogously, the comparison can be done at the different 

phases of the DIS lifecycle. 

In this line, we used the freshness evaluation approach in a mediation application in the context of data 

personalization. Complementing a procedure that automatically generates mediation queries for accessing 

alternative data sources, the evaluation approach was used for estimating data freshness of the generated queries 

in order to select the best one for a given user [Kostadinov+2004]. This application is described in Chapter 5 

(Sub-section 3.1). 

Data freshness analysis 

The data freshness propagation algorithms can be used as auditing tools for measuring the quality of the data 

produced by the DIS and analyzing the DIS based on data quality. Analysis includes checking if freshness 

expectations are satisfied and, if not, determining the critical points of the DIS. Both types of propagations are 

useful:  

− Checking if freshness expectations are satisfied for targets: We can compare freshness values obtained 
with the ActualFreshnessPropagation algorithm with those expected by users (target data expected 

freshness). The comparison allows finding the data targets for which freshness expectations are satisfied 

and those for which freshness expectations are overdrawn. This result may be important for informing 

users about the expectations that are not satisfied (inviting them to relax expectations). 
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− Checking if freshness expectations are satisfied by sources: Analogously, we can compare freshness 
values obtained with the ExpectedFreshnessPropagation algorithm with those provided by sources 

(source data actual freshness). The comparison allows finding the data sources for which freshness 

expectations are satisfied and those for which freshness expectations are overdrawn. This result may be 

important for informing source providers about data that is not satisfactory for users (inviting them to 

provide a better service. i.e. fresher data).  

In both cases, we identify portions of the DIS (targets, sources, paths from sources to targets) that may be 

analyzed in detail and possibly improved. Analysis can be done at design phase in order to validate the model, at 

production phase in order to monitor the DIS and at maintenance phase in order to suggest modifications.  Sub-

sections  4.1 to  4.3 discuss data freshness analysis. 

Data freshness improvement 

If freshness expectations are overdrawn, different improvement actions can be taken in order to enforce data 

freshness. Certain strategies intent to improve DIS implementation (e.g. substituting an activity by a more 

performing component, synchronizing activities for reducing delays, powering hardware for accessing more 

frequently or performingly to data sources) and other ones intent to obtain fresher source data (e.g. substituting a 

data source, negotiating with source data providers for relaxing access constraints). Sub-section  4.4 discusses 

improvement actions.  

Next section discusses data freshness enforcement. It utilizes both types of quality propagations for analyzing the 

quality graph, building a diagnostic on the achievement of freshness expectations and highlighting the 

bottlenecks for data freshness achievement, i.e. the portions of the quality graph that should be improved in order 

to enforce data freshness. We also present some improvement actions that can be applied to those bottlenecks in 

order to enforce data freshness.  

4. Data freshness enforcement 

The DIS should provide, for each target node, the data freshness expected by the users. The freshness evaluation 

approach, presented in previous section, allows checking if a DIS satisfies freshness expectations. To do such 

validation, we can calculate the freshness actual values for target nodes and compare them with those expected 

by users. If freshness actual values are lower than expected values then freshness can be guaranteed. If freshness 

actual values are greater than expected values, freshness expectations are not achieved and some improvement 

actions should be followed in order to enforce freshness. Examples of improvement actions are improving the 

implementation of activities in order to reduce their processing cost and synchronizing activities in order to 

reduce inter-process delays among them. The identification of critical paths (portions of the quality graph that 

represent bottlenecks for freshness calculation) allows concentrating improvement actions in the subsets of 

activities that cause freshness expectations to be overdrawn. 

In this section we present an approach for analyzing the quality graph at different levels of abstraction in order to 

identify critical paths and apply improvement actions to the nodes in the path. 

4.1. Top-down analysis of data freshness  

In this sub-section we propose an approach for analyzing data freshness in a top-down way, inspired from OLAP 

browsing mechanisms. Generally, OLAP users start analyzing aggregated data and when abnormal or warming 

situations are suspected, they perform drill-downs on identified data in order to obtain further information for 

understanding the phenomena, determining causes and conceiving solutions. Analogously, the proposed 

approach first analyzes data freshness in a high-level quality graph (macroscopic representation of the DIS) and 

analyzes more detailed quality graphs (microscopic representations of the DIS) when further details are 

necessaries for enforcing data freshness. Data freshness analysis consists in propagating data freshness values as 

discussed in previous section (ActualFreshnessPropagation algorithm), checking if freshness expectations can be 

achieved. If freshness values satisfy freshness expectations the DIS is appropriate for users freshness needs, 

however, if freshness values overdraw freshness expectations, detailed information about DIS activities (i.e. a 

lower level quality graph) may be useful for identifying bottlenecks and proposing improvement actions.  
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We consider a hierarchy of representations of the DIS processes (quality graphs at different abstraction levels) 

and two operators: level-up and level-down, which allow changing from a representation to another one, i.e. 

changing the level of abstraction. Figure  3.9 shows a hierarchy of quality graphs composed of three levels; the 

highest-level graph has a unique activity representing the whole DIS, allowing the visualization of the data 

sources that participate in the calculation of data targets; the intermediate-level graph abstracts macro activities 

and the lowest-level graph shows details about activity logics (i.e. detailed data and control flows).  
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Figure  3.9 – Hierarchy of quality graphs  

Next sub-sections model the hierarchy of quality graphs, describe the operations for browsing inside the model 

and aggregating processing costs and inter-process delays for high-level graphs, and discuss data freshness 

evaluation at different levels of the hierarchy.  

4.1.1. Hierarchy of quality graphs 

For representing the hierarchy of quality graphs we need two components: (i) an ordered sequence of quality 

graphs (each graph increasing the level of abstraction of its predecessor in the sequence), and (ii) a relation 

among activities of consecutive levels, indicating that they correspond to the same conceptual task. 

For representing the latter, we consider a hierarchy of activities where the root represents the whole DIS and 

each level represents DIS activities at a given level of abstraction. High-level activities abstract high-level tasks 

while lower-level activities show the processing details of the tasks. Ascending in the hierarchy correspond to 

abstracting task behaviors while descending in the hierarchy can be interpreted as decomposing an activity in 

more detailed and precise sub-tasks. For example, certain extraction activity may be decomposed in a sequence 

of sub-activities that perform the connection to the source, the execution of an extraction query, the filtering of 

irrelevant or erroneous data and the storage of the resulting data. Figure  3.10 shows the hierarchy of activities for 

the DISs of Figure  3.9. Note that all branches of the hierarchy tree have the same length. 

We represent the hierarchy of quality graphs with the above-mentioned components: a hierarchy of activities and 

an array of quality graphs: 

Definition 3.7 (hierarchy of quality graphs). A hierarchy of quality graphs is a pair (AH, GH) where 

AH is a tree of activities representing the hierarchy of activities and GH is a list of quality graphs 

representing the levels of abstraction.   □ 
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Figure  3.10 – Hierarchy of activities 

When referring to two consecutive graphs in the hierarchy, the lowest-level graph is called detailed graph and 

the highest-level graph is called summarized graph. 

In the following, we show how to build a summarized graph from a detailed one, how to aggregate property 

values and how to evaluate data freshness in it. To this end, we need to make some hypotheses about the 

hierarchy of quality graphs and the propagation of data freshness. The first hypothesis concerns the semantics of 

activities. It states that the execution of sub-activities must have the same effect than executing their parent 

activity, i.e. take the same inputs and produce the same outputs (both in data and control flows). Consequently, 

there may exist an edge between two activities (A and B) if and only if there is an edge between a sub-activity of 

A and a sub-activity of B. The second hypothesis states that data and control flow of the lowest-level quality 

graph must warranty that there will be no cycles at any abstraction level. In other works, if there is a path among 

a sub-activity descendent of A and a sub-activity descendent of B (being A and B two activities of the same 

high-level quality graph), it must not exist a path among any sub-activity descendent of B and any sub-activity 

descendent of A. The third hypothesis states that sibling sub-activities must be connected in the corresponding 

quality graph. This hypothesis is necessary to calculate processing costs of high-level activities, as will be 

explained in next sub-section. The last hypothesis states that the combineActualFreshness function returns the 

maximum of input values and consequently, the decomposeExpectedFreshness function returns the same value 

to all predecessors. This hypothesis is necessary to prove that freshness values can be propagated at all 

abstraction levels. Using different combination and decomposition functions we should make analogous proofs 

that those that will be shown in Sub-section  4.3. We have chosen these functions because they are the most 

typically used in several types of DIS, for example [Naumann+1999] [Braumandl 2003]. 

Given a quality graph of level L and a hierarchy of activities, the quality graph of level L+1 can be built using 

the buildLevelGraph function (see Algorithm  3.3). The method starts adding source and target nodes (which are 

the same for all levels) and then adds the activity nodes of level L+1. An edge between two nodes is created 

whether there is an edge between children activities. Given the quality graph of lowest-level and the hierarchy of 

activities, all higher-level quality graphs can be built invoking successively the buildLevelGraph function. 

The GraphHierarchy class has methods for managing the array of quality graphs and the tree of activities: 

 FUNCTION getLevel (G: QualityGraph) RETURNS INTEGER  

 FUNCTION getLevel (A: Activity) RETURNS INTEGER  

 FUNCTION getLevelGraph (level: INTEGER) RETURNS QualityGraph 

 FUNCTION getLevelGraph (A: Activity) RETURNS QualityGraph 

 FUNCTION levelUp (G: QualityGraph) RETURNS QualityGraph 

 FUNCTION levelDown (G: QualityGraph) RETURNS QualityGraph 

 FUNCTION getSubActivities (A: Activity) RETURNS ActivitySet  

 FUNCTION getParentActivity (A: Activity) RETURNS Activity  

 FUNCTION getSiblingActivities (A: Activity) RETURNS ActivitySet  

The getLevel functions return the level (in the hierarchy) of a quality graph, giving either the graph or one of its 

activities. The getLevelGraph functions return the quality graph of a level, giving either the level or one of its 

activities. The levelUp and levelDown functions return the quality graphs that are immediately upper (less detail) 

and lower (more detail) in the hierarchy than a given quality graph, respectively. The getSubActivities, 

getParentActivity and getSiblingActivities functions return the corresponding neighbors in the hierarchy of 

activities.  
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FUNCTION buildLevelGraph (AH: TREE OF Activity, int level, G: QualityGraph)  

 RETURNS QualityGraph 

 QualityGraph Q; 

 Q.insertNodes (G.getSourceNodes()); 

 Q.insertNodes (G.getTargetNodes()); 

 Q.insertNodes (AH.getLevelNodes(level)); 

 FOR EACH edge e=(B1,B2) in G DO 

  IF (B1 is a source or target node) THEN A1=B1; 

  ELSE A1 = AH.getParentActivity(B1); 

  IF (B2 is a source or target node) THEN A2=B2; 

  ELSE A2 = AH.getParentActivity(B2); 

  Q.insertEdge (A1,A2,e.getType()); 

 ENDFOR; 

 RETURN Q; 

END 

Algorithm  3.3 – Method for building the hierarchy of quality graphs 

In order to evaluate data freshness in high-level quality graphs, processing costs and inter-process delays should 

be calculated from the processing costs and inter-process delays of lower-level graphs (which is analogous, 

following the analogy with OLAP applications, to the aggregation of measures, i.e. the roll-up operation). Next 

sub-section discusses their calculation. 

4.1.2. Labeling of high level quality graphs 

In this sub-section we deal with the calculation of processing costs and inter-process delays of high-level quality 

graphs. In order to simplify the analysis, we label quality graphs with such properties*. The labeling of the 

lowest-level quality graph can be done executing the getSourceActualFreshness, getProcessingCost and 

getInterProcessDelay functions discussed in Section  3.  

Intuitively, the processing cost of an activity in the summarized graph should be the time necessary to execute all 

its sub-activities in the detailed graph. In other words, the processing cost should equal the extent of time 

between the start of execution of the initial sub-activity (the first one in starting execution) and the end of 

execution of the final sub-activity (the last one in finishing execution). In order to find initial and final sub-

activities, and consequently calculating the processing cost, sub-activities are scheduled, respecting the 

processing costs and inter-process delays of the detailed graph, as follows: 

Definition 3.8 (execution schedule). An execution schedule is a function that maps sub-activities to time 

intervals of the form <tA,TA>, with 0 ≤ tA ≤ TA; tA is called the starting time and TA is called the ending 

time of the execution of sub-activity A. A schedule verifies the following conditions: (i) for each sub-

activity, the length of its interval equals its processing cost, (ii) for each pair of consecutive sub-activities, 

the separation between their intervals equals the inter-process delay between them, (iii) for some sub-

activity, tA=0. The sub-activity (or sub-activities) that satisfies the last condition is called initial sub-

activity. The sub-activity (or sub-activities) that has maximum ending time is called final sub-activity.    □ 

Execution schedules can be visualized using Gantt charts as illustrated in Figure  3.11b. Time-intervals are 

represented by rectangles, which lengths indicate processing costs. Separations among rectangles represent inter-

process delays.  

                                                           

*
 The same analysis can be done without labeling quality graphs but overloading the getSourceActualFreshness, getProcessingCost and 

getInterProcessDelay functions for high-level quality graphs. For simplifying the understanding of the approach, we calculate property 
values, label quality graphs with them and overload functions for simply reading the property values. 
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Execution schedules can be computed using the Critical Path Method (CPM) [Hiller+1991]. The method uses a 

potential task graph, which is a directed labeled graph whose nodes represent tasks (activities) and whose edges 

represent precedence constraints, labeled with time constraints (delays). The potential task graph for a set of sub-

activities {B1,…Bn} can be built from the detailed graph. The problem of finding starting times for sub-activities 

reduces to finding most expensive paths in the potential task graph. The Ford algorithm [Hiller+1991] computes 

starting times with order O(m
3
) being m the number of edges of the graph. Ending times are calculated adding 

processing costs to starting times. 

The following example illustrates the use of the execution schedule for calculating processing costs.  

Example 3.13. Consider an activity B with 3 sub-activities: B1, B2 and B3. Figure  3.11a shows a portion of 

the quality graph that contains the sub-activities. Figure  3.11b shows the execution schedule corresponding 

to the quality graph. The starting times of B1, B2 and B3 are 1, 0 and 4 respectively, while their ending times 

are 3, 2 and 8 respectively. The initial sub-activity is B1 and the final sub-activity is B3.   □ 
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B2 cost=2B1cost=2

delay=1

B3cost=4

delay=2

(a) (b)  

Figure  3.11 – Calculation of starting and ending times of sub-activities: (a) portion of a quality graph, 

(b) execution schedule 

Now, we can formalize the calculation of processing costs in a high-level graph. Let A be an activity of a 

summarized graph S and let {A1…Am} be the sub-activities of A in a detailed graph D. The processing cost of A 

is calculated as the time passed from the starting time of its initial sub-activity (zero) to the ending time of its 

final sub-activity. Figure  3.12 shows the calculation formula. 

ProcessingCost (A) = EndingTime(FinalSubActivity(A))  

= max {EndingTime(A1),… EndingTime(Am)} 

Figure  3.12 – Calculation of processing costs in high-level graphs 

In order to calculate inter-process delays, we should consider delays among sub-activities but also take into 

account the starting and ending times of sub-activities. Intuitively, the inter-process delay between two activities 

A and B in a summarized graph should be the difference of time between the executions of their sub-activities in 

the detailed graph. Specifically, inter-process delay should equal the extent of time between the ending time of 

the final sub-activity of A and the starting time of the initial sub-activity of B. To this end, the execution 

schedules of activities A and B can be concatenated, respecting the inter-process delay among sub-activities, as 

shown in Figure  3.13b.       

Example 3.14. Consider two activities A and B of a summarized graph with sub-activities {A1,A2} and 

{B1,B2} respectively. Figure  3.13a shows a portion of the detailed graph that contains the sub-activities; 

shadow zones highlight siblings in the hierarchy of activities. Figure  3.13b shows the execution schedules 

(global time is added at the top of the figure for facilitating the visualization of inter-process delays). As the 

inter-process delay of (B1,A2) is 8 units of time, the schedules are shifted in 8 units of time respect to global 

time. The inter-process delay of (B,A) is easily seen in the graphic: it is 3 units of time.   □ 
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Figure  3.13 – Concatenation of execution schedules: (a) portion of a quality graph, (b) execution 

schedules 

Now, we can formalize the calculation of inter-process delays in a high-level graph. Let A and B be two 

activities of a summarized graph S and let {A1…Am} and {B1…Bn} be their sub-activities in a detailed graph D, 

respectively. The inter-process delay between two sub-activities Ai and Bj may be greater or equal to the inter-

process delay between A and B. Equality is achieved when Ai is a final sub-activity of A and Bi is an initial sub-

activity of B. In the rest of the cases, the difference of time between the ending time of a final sub-activity of A 

and the ending time of Ai, and the difference of time between the starting time of Bj and the starting time of an 

initial sub-activity of B (which is time 0), are both subtracted from the inter-process delay of (Ai,Bj). Note that 

inter-process delays can be negative in a summarized graph if B starts execution before A finishes. Figure  3.14 

shows the calculation of inter-process delays. 

InterProcessDelay (A,B) = max {InterProcessDelay (Ai,Bj) – 

(EndingTime(FinalSubActivity(A)) – EndingTime(Ai)) – StartingTime(Bj)  
 / (Ai,Bj) is a data edge of D, 1≤i≤m, 1≤j≤n } 

Figure  3.14 – Calculation of inter-process delays in high level graphs 

The maximum is taken in the case there exist several data edges among sub-activities of A and sub-activities of 

B, despite the same value should be obtained if inter-process delays are coherently assigned in the detailed 

graph. 

Next example summarizes the calculation of processing costs and inter-process delays.  

Example 3.15. Figure  3.15 shows a summarized graph S with three activities (A3, A6 and A7) and a 

detailed graph D with six sub-activities
 
(B31, B32, B33, B61, B71

 
and B72); both graphs are simplified versions 

or those of Figure  3.9. Figure  3.15a shows processing costs and inter-process delays of D while Figure 

 3.11b shows starting and ending times of sub-activities (e.g. the starting time of B33 is 4 units of time and 

its ending time is 8 units of time). The processing cost of A3 is calculated as the ending time of its final sub-

activity (B33), i.e. 8 units of time. The inter-process delay between A3 and A7 is calculated as the inter-

process delay between B32 and B71 minus the difference of ending times among B33 and B32 minus the 

starting time of B71, obtaining a value of -3 (3 – (8-2) – 0) units of time. The other processing costs and 

inter-process delays are calculated analogously, following the formulas of Figure  3.12 and Figure  3.14.   □  

Next sub-section discusses the use of such labels for calculating data freshness in high-level quality graphs. 

4.1.3. Data freshness evaluation at different abstraction levels 

Having built the hierarchy of quality graphs and labeled the graphs with processing cost, inter-process delay and 

source data actual freshness properties, we can evaluate data freshness at the different abstraction levels using 

the ActualFreshnessPropagation algorithm.  Lemma 3.1 proves that freshness values calculated in a summarized 

graph are greater or equal to those calculated in a detailed graph. In other words, the propagation of freshness 

values in high-level graphs brings upper bounds for data freshness.  
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Figure  3.15 – Calculation of processing costs and inter-process delays in high level graphs:  

(a) detailed graph, (b) starting and ending times in the detailed graph, and (c) summarized graph 

 

Lemma 3.1. Given a summarized graph S obtained applying the level-up operator over a detailed graph D, it is 

verified that: 

∀ target node V (being B the predecessor of V in D and being A the parent activity of B in S)  

. Freshness(A,V) ≥ Freshness(B,V)    

 

The proof is deferred to Sub-section  4.3 because we need to use some results presented in such sub-section.  

In most situations, the level-up method preserves freshness actual values propagated to target nodes, i.e. the 

same freshness values are obtained if evaluation is performed in a summarized or in a detailed graph. Exceptions 

may occur when an activity has several initial and final sub-activities, as illustrated in next example. In such 

exceptions, some freshness values of the summarized graph may be greater than those of the detailed graph. 

Example 3.16. Consider the propagation of freshness actual values in the summarized and detailed graphs 

of Figure  3.16 (S and D respectively). Note that actual freshness of data incoming V2 is preserved, but 

actual freshness of data incoming V1 is considerably lower in the detailed graph. The reason is that there is 

a path from S2 to T1 in S but there is no path between them in D.   □ 
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Figure  3.16 – Propagating data freshness: (a) summarized graph, (b) detailed graph 
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 Lemma 3.1 warranties that data freshness analysis realized in high-level graphs are valid in lower-level ones, i.e. 

if freshness expectations are satisfied in high-level graphs they are achieved in lower-level ones. When 

expectations are overdrawn, the level-down method allows decomposing activities and analyzing the graph in 

detail in order to obtain more accurate freshness values. Furthermore, better adapted improvement actions can be 

applied to detailed graphs in order to enforce data freshness (which will be discussed in Sub-section  4.4).  

The levelUp and levelDown functions allow browsing in the hierarchy of quality graphs, but they return the 

whole graph of the corresponding level. In order to analyze in detail certain activities (e.g. for trying to optimize 

them and then enforce data freshness) we need methods for browsing portions of the quality graphs. Next sub-

section presents such methods.   

4.2. Browsing among quality graphs 

There are two basic operations to refine the analysis of an activity: focus+ and zoom+. Focusing on an activity 

means concentrating the analysis in the activity ignoring the other ones, in other words, keeping only the portion 

of the quality graph that is relevant for the analysis: the activity and its neighbors. Zooming in an activity means 

analyzing the sub-activities that compose the given activity, in other words, descending a level in the hierarchy 

of quality graphs and showing the sub-activities and their neighbors. The focus– and zoom–methods achieve the 

inverse effects.  

Example 3.17. Consider the top-down analysis of Figure  3.17 over the hierarchy of quality graphs of 

Figure  3.9. We start the analysis at the high-level quality graph (first panel). The second panel results of 

applying the zoom+ operation to the node representing the DIS; it shows the main DIS activities. Suppose 

that we want to analyze activity A4, for example, for trying to reduce its processing cost. To this end, we 

apply the focus+ operation to A4 (third panel), showing A4 and its neighbor nodes. The last panel results of 

applying the zoom+ operation to A4; it shows the sub-activities that compose it and their neighbor nodes. 

Note that after applying some operations, source and target nodes might represent activities. Applying 

zoom–and focus– operations in reverse order we obtain the highest-level quality graph.   □ 
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Figure  3.17 – Operations for browsing the hierarchy of quality graphs: zoom+ (Z+), zoom– (Z–), 

focus+ (F+) and focus– (F–) 

Algorithm  3.4 shows the pseudocodes of the focusing methods. The focus+ method returns a sub-graph of the 

given quality graph containing the given activity, its predecessors and successors and the edges among them, i.e. 

it returns the sub-graph induced by an activity and its neighbors. The neighborSubGraph method (see Algorithm 

 3.6) returns the portion of the quality graph of a given level induced by a given set of nodes and their neighbors. 

The focus– method returns a quality graph (of the same abstraction level than the given one) containing the 

activity, its sibling nodes (in the hierarchy of activities),  their predecessors and successors and the edges among 

them, i.e. it returns the sub-graph of the level graph induced by an activity, its siblings and their neighbors. 

Algorithm  3.5 shows the pseudocodes of the zooming methods. The zoom+ method returns a quality graph (of 

the immediately inferior abstraction level) containing the sub-activities of the given activity, their predecessors 

and successors and the edges among them, i.e. it returns the sub-graph of the inferior-level graph induced by sub-

activities and their neighbors. The zoom– method returns a quality graph (of the immediately superior abstraction 

level) containing the parent activity of the given one, their predecessors and successors and the edges among 

them, i.e. it returns the sub-graph of the upper-level graph induced by the parent activity and their neighbors. 
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FUNCTION focus+ (G: QualityGraph, A: Activity) RETURNS QualityGraph 

 RETURN neighborSubGraph (G,{A}); 

END 

FUNCTION focus– (GH: GraphHierarchy, A: Activity) RETURNS QualityGraph 

 QualityGraph G = GH.getLevelGraph(A); 

 ActivitySet SA = GH.getSiblingActivities(A)) ∪ {A};  

 RETURN neighborSubGraph (G,SA); 

END 

Algorithm  3.4 – Focusing methods 

FUNCTION zoom+ (GH: GraphHierarchy, Activity A) RETURNS QualityGraph 

 QualityGraph G1 = GH.getLevelGraph(A); 

 QualityGraph G2 = GH.levelDown(G1); 

 ActivitySet SA = GH.getSubActivities(A); 

 RETURN neighborSubGraph (G2,SA); 

END 

FUNCTION zoom– (GH: GraphHierarchy, Activity B) RETURNS QualityGraph 

 QualityGraph G1 = GH.getLevelGraph(A); 

 QualityGraph G2 = GH.levelUp(G1); 

 Activity A = GH.getParentActivity(B); 

 RETURN neighborSubGraph (G2,{A}); 

END 

Algorithm  3.5 – Zooming methods 

FUNCTION neighborSubGraph (G: QualityGraph, SA: ActivitySet) RETURNS QualityGraph 

 QualityGraph Q; 

 Q.insertNodes (SA);  

 FOR EACH node A of SA DO 

  Q.insertNodes (G.getPredecessors(A));  

  Q.insertNodes (G.getSuccessors(A));  

 ENDFOR; 

 FOR EACH edge e incoming or outgoing nodes of SA in G DO 

  Q.insertEdge (e); 

 ENDFOR; 

 RETURN Q; 

END 

Algorithm  3.6 – A method for building sub-graphs induced by a set of nodes and their neighbors 

The focus+ and zoom+ methods allow refining the analysis of an activity. In order to refine the analysis of a 

(connected) sub-graph of the quality graph, analogous methods can be defined for focusing and zooming in a set 

of connected activities. Their signatures are the following: 

 FUNCTION focus+ (G: QualityGraph, SA: ActivitySet) RETURNS QualityGraph  

 FUNCTION focus– (GH: GraphHierarchy, SA: ActivitySet) RETURNS QualityGraph 

 FUNCTION zoom+ (GH: GraphHierarchy, SA: ActivitySet) RETURNS QualityGraph 

 FUNCTION zoom– (QH: GraphHierarchy, SA: ActivitySet) RETURNS QualityGraph 

Pseudocodes are analogous. 
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When expectations are overdrawn, the zoom+ method allows decomposing an activity in order to study it in 

detail and eventually finding accurate improvement actions (which will be discussed in Sub-section  4.4), for 

example, substituting a sub-activity for a more performing component.  Furthermore, if ending times are 

decreased in the detailed graph, the processing cost of the activity may be decreased in the summarized graph 

too. Then, the zoom+ method represents an interesting opportunity for enforcing data freshness. In addition, the 

focus+ method allows focusing on one activity and ignoring the others, which is more manageably than 

enormous graphs with details about all activities.  

Next sub-section presents a method for finding the activities that constitute bottlenecks for data freshness 

calculation. The zoom+ and focus+ methods may be applied to these activities, targeting the analysis of data 

freshness. 

4.3. Determination of critical paths 

For each target node, it may exist a path (along the data flow), starting at a source node, for which the freshness 

of delivered data can be obtained adding all the inter-process delays and processing costs of the nodes in the 

path, to the source data actual freshness of the source node. This path is called the critical path of the target node 

and represents the bottleneck for data freshness. The following example presents the intuition of critical paths. 

Example 3.18. Consider the quality graph of Figure  3.18. The freshness of data produced by activity A6 

(delivered to target T2) can be calculated adding the source data actual freshness of source S1 (0), plus inter-

process delays (0,0,10,20) and processing costs (30,60,30,5) in the path from S1 passing by activities 

A1,A3,A5 and A6, i.e. 0 + (0,0,10,20) + (30,60,30,5) = 155. So, this path is a critical path for T2.  □ 
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Figure  3.18 – An example of critical paths 

As previously argued, the freshness of the data delivered to the user may be improved optimizing the design of 

the activities in order to reduce their processing costs or synchronizing the activities in order to reduce the inter-

process delays among them. Sometimes the changes can be concentrated in the critical path, i.e. reducing source 

data actual freshness, processing costs and inter-process delays of the nodes of the critical path. This motivates 

the analysis and determination of critical paths.  

The existence of critical paths depends on the definition of the combination function, i.e. for certain functions the 

critical path may not exist. In this sub-section, we consider that the combination function returns the maximum 
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of input values and we prove that for such function the critical path always exists. Similar analysis can be done 

for finding bottlenecks for other combination functions.  

Before defining critical paths we define the concepts of data path and path freshness.  

Definition 3.9 (data path). A data path in a quality graph is a sequence of nodes of the graph, where 

each node is connected to its successor in the sequence by a data edge. We denote a data path, giving the 

sequence of nodes that compose it, comma separated and between square brackets, for example    

[A0,A1,A3,A4]. We also use suspension points for omitting intermediate nodes, for example [A0,…A4].   □ 

Definition 3.10 (path freshness). Given a data path in a quality graph [A0,A1,…Ap], starting at a source 

node A0, the path freshness is the freshness actual value propagated along the path (ignoring other nodes 

of the graph), i.e. it is the sum of source data actual freshness of the source node, the processing costs of 

the nodes in the path and the inter-process delays among the nodes*: 

PathFreshness([A0,…Ap])  = SourceActualFreshness (A0) + Σx=0..p ProcesssingCost(Ax)  

  +Σx=1..p InterProcessDelay(Ax-1,Ax)   □ 

The critical path for an activity is the data path (from a source node to the activity) that determines the freshness 

of the activity, i.e. the freshness actual value for the activity is equal to the path freshness. In other words, if we 

ignore other nodes and we calculate data freshness only using the critical path we obtain the same freshness 

value. We define a critical path as follows: 

Definition 3.11 (critical path). Given an activity node Ap, a critical path for Ap is a data path [A0,…Ap], 

from a source node A0, for which the freshness of data produced by node Ap (delivered to each successor, 

e.g. C) equals the path freshness.  

Freshness(Ap,C) = PathFreshness([A0,…Ap])    

Given a target node Ti, a critical path for Ti is the critical path of its predecessor activity.   □ 

The following lemma states the existence of at least a critical path for each activity node. 
 

Lemma 3.2. Given an activity node Ap, with successor Ap+1, there exists a data path [A0,A1,…Ap] from a source 

node A0 to Ap that verifies: 

Freshness(Ap,Ap+1) = PathFreshness([A0,…Ap])  

Proof: 

According to the ActualFreshnessPropagation algorithm, freshness of data produced by node Ap (delivered to 

Ap+1) is obtained adding the processing cost of Ap to the combination of freshness values (plus inter-process 

delays) of predecessors (P1… Pn). The considered combination function returns the maximum input values.  

Freshness(Ap,Ap+1) = ProcessingCost(Ap) + max ({ Freshness(P1,Ap) + InterProcessDelay (P1,Ap), … 
Freshness(Pn,Ap) + InterProcessDelay (Pn,Ap) }) 

Let Ap-1 be the predecessor that achieves the maximum in the previous formula. Then: 

Freshness(Ap,Ap+1) = ProcessingCost(Ap) + InterProcessDelay (Ap-1,Ap) + Freshness(Ap-1,Ap) 

Applying the same reasoning to Ap-1, to its predecessor achieving the maximum (Ap-2) and so on, we obtain: 

Freshness(Ap,Ap+1) = ProcessingCost(Ap) + InterProcessDelay (Ap-1,Ap)  
+ ProcessingCost(Ap-1) + InterProcessDelay (Ap-2,Ap-1) + …  
+ ProcessingCost(A1) + InterProcessDelay (A0,A1)  
+ SourceActualFreshness (A0) 

By definition of path freshness ( Definition 3.10) we have: 

Freshness(Ap,Ap+1) = PathFreshness ([A0,A1,…Ap])   ■ 
  

                                                           

*
 Remember that, as defined in Sub-section 3.1, processing costs are associated to all nodes (with zero value for source and target nodes) and 

inter-process delays are associated to all data edges (with zero value for edges outgoing source nodes or incoming target nodes).   
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The following lemma and its corollary provide a way of finding critical paths by computing the path freshness of 

all data paths from source nodes. They state that critical paths are those that have the greatest path freshness.  

 

Lemma 3.3. Given an activity node Ap, with successor Ap+1, all data paths [A0,…Ap] from source nodes verify:  

Freshness(Ap,Ap+1) ≥ PathFreshness([A0,… Ap]) 
 

Proof by induction in the length of the path: 

→ Basis step: for data paths of length 2 [A0,A1] . Freshness(A1,A2) ≥ PathFreshness([A0,A1]) 

Proof:  

Freshness(A1,A2) = ProcessingCost (A1) +  max ({Freshness(X,A1) + InterProcessDelay (X,A1)  
/ X is a predecessor of A1 }) 

Taking a particular predecessor achieves a smaller or equal value. Then, for A0: 

Freshness(A1,A2)  ≥ ProcessingCost (A1) +  Freshness(A0,A1) + InterProcessDelay (A0,A1)  

= ProcessingCost (A1) +  SourceActualFreshness(A0) + InterProcessDelay (A0,A1)  
= PathFreshness([A0,A1])   ■ 

→ Inductive step: Assume that for all data paths of length h≥2 [A0,…Ah-1] .  
Freshness(Ah-1,Ah) ≥ PathFreshness([A0,…Ah-1]) in order to prove that for data paths of length h+1 

[A0,…Ah-1,Ah] . Freshness(Ah,Ah+1) ≥ PathFreshness([A0,…Ah-1,Ah]) 

Proof:  

Freshness(Ah,Ah+1) = ProcessingCost(Ah) + max ({Freshness(X,Ah) + InterProcessDelay(X,Ah)   
/ X is a predecessor of Ah }) 

Taking a particular predecessor achieves a smaller or equal value. Then, for Ah-1: 

Freshness(Ah,Ah+1) ≥ ProcessingCost (Ah) + Freshness(Ah-1,Ah) + InterProcessDelay (Ah-1,Ah)  

Using inductive hypothesis: 

Freshness(Ah,Ah+1) ≥ ProcessingCost (Ah) + PathFreshness([A0,…Ah-1]) + InterProcessDelay (Ah-1,Ah) 
= PathFreshness([A0,…Ah-1,Ah])   ■ 

Corollary: 

Given an activity node Ap, with successor Ap+1, the freshness of data produced by Ap is equal to the maximum 

path freshness of the paths from a source node, i.e.: 

Freshness(Ap,Ap+1) = max {PathFreshness([A0,… Ap])  

/ [A0,… Ap] is a data path from a source node} 

Proof:  

By  Lemma 3.3 the freshness of data produced by Ap is greater or equal to the path freshness of all data paths 

from source nodes and by  Lemma 3.2 we know that there exists a path that verifies the equality (a critical path). 

So such path is the one with greatest path freshness.   ■ 

 

Corollary of  Lemma 3.3 suggest an effective method for calculating critical paths: finding the data paths with 

greatest path freshness. They can be computed using the Critical Path Method (CPM) [Hiller+1991], labeling a 

potential task graph with processing costs, inter-process delays and source data actual freshness (the potential 

task graph is similar to the quality graph but all labels are associated to edges). The Bellman algorithm 

[Hiller+1991] computes critical paths with order O(m) being m the number of edges of the graph.  

We can now prove  Lemma 3.1 using  Lemma 3.2 and  Lemma 3.3, as follows: 
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Proof of  Lemma 3.1. The lemma stated that given a summarized graph S obtained applying the level-up 

operator over a detailed graph D, it is verified that: 

∀ target node V (being B the predecessor of V in D and being A the parent activity of B in S)  

. Freshness(A,V) ≥ Freshness(B,V) 

Proof:  

Let [X,B11,…B1m
1
,B21,…B2m

2
,…Bn1,…Bnm

n
] be the critical path built by  Lemma 3.2, with Bnm

n
=B, and let Ai be 

the parent activity of Bi1,…Bim
i
, 1≤i≤n, with An=A. Note that the path [X,A1,…An] must exist in S because, by 

construction (BuildLevelGraph method), an edge (Bim
i
,B(i+1)1), 1≤i<n, cause the edge (Ai,Ai+1) to belong to S.  

On the one hand, by  Lemma 3.2 and definition of path freshness we have: 

Freshness(B,V) = PathFreshness([X,B11,…B1m
1
,B21,…B2m

2
,…Bn1,…Bnm

n
])  

= SourceActualFreshness(X) + ProcessingCost(B11) + InterProcessDelay(B11,B12)  
  + … + ProcessingCost(Bnm

n
)  (1) 

On the other hand, by  Lemma 3.3 and definition of path freshness we have: 

Freshness(A,V) ≥ PathFreshness([X,A1,… An])  

= SourceActualFreshness(X) + ProcessingCost(A1) + InterProcessDelay(A1,A2)  
  + … + ProcessingCost(An)  (2) 

We define αi=StartingTime(Bi1) and βi=EndingTime(Bim
i
), 1≤i≤n. Note that: 

ProcessingCost(Bi1) + InterProcessDelay(Bi1,Bi2) + … + ProcessingCost(Bim
i
) = βi – αi (3) 

According to the calculation of processing costs and inter-process delays for summarized graphs (Figure  3.12 

and Figure  3.14 respectively) we have: 

ProcessingCost(Ai) = EndingTime(FinalSubActivity(Ai) 

InterProcessDelay(Ai,Ai+1) = max ({InterProcessDelay(Bij,B(i+1)k) – EndingTime(FinalSubActivity(Ai)) + 
EndingTime(Bij) – StartingTime(B(i+1)k) / (Bij,B(i+1)k) is a data edge of D}) 

In particular, the edge (Bim
i
,B(i+1)1) achieves a smaller or equal value in previous formula. By algebraic 

manipulation we have: 

InterProcessDelay(Bim
i
,B(i+1)1) ≤ EndingTime(FinalSubActivity(Ai)) + InterProcessDelay(Ai,Ai+1) – βi + αi+1 

= ProcessingCost(Ai) + InterProcessDelay(Ai,Ai+1) – βi + αi+1 (4) 

Substituting (3) and (4) in (1) we obtain: 

Freshness(B,V) ≤ SourceActualFreshness(X) + (β1 – α1)  
  + (ProcessingCost(A1) + InterProcessDelay(A1,A2) – β1 + α2) + (β2 – α2) + … 

  + (ProcessingCost(An-1) + InterProcessDelay(An-1,An) – βn-1 + αn) + (βn – αn) 

= SourceActualFreshness(X) – α1 + ProcessingCost(A1) + InterProcessDelay(A1,A2) + … 

  + ProcessingCost(An-1) + InterProcessDelay(An-1,An) + βn  

As α1 ≥ 0 and βn ≤ ProcessingCost(An):  

Freshness(B,V) ≤ SourceActualFreshness(X) + ProcessingCost(A1) + InterProcessDelay(A1,A2) + … 

  + ProcessingCost(An-1) + InterProcessDelay(An-1,An) + ProcessingCost(An)  

Finally, using (2): 

Freshness(B,V) ≤ PathFreshness([X,A1,… An]) ≤ Freshness(A,V)   ■ 

 

As proved in previous lemma, when calculating freshness in a more detailed graph we may obtain more precise 

values than in a summarized graph. In addition, some improvement actions can be better applied in a more 

detailed graph which brings more specific information about processing costs and inter-process delays.  

Next sub-section discusses some strategies for enforcing data freshness when user freshness expectations cannot 

be achieved. 
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4.4. Improvement actions 

If freshness actual values are greater than expected values, freshness expectations are not achieved and some 

improvement actions should be followed in order to enforce freshness. Freshness actual values can be improved 

optimizing the design and implementation of the activities in order to reduce their processing cost, synchronizing 

the activities in order to reduce the inter-process delay among them, or negotiating with source providers in order 

to obtain fresher source data. In addition, freshness expected values can be relaxed negotiating with users. 

Consequently, improvement actions can be the response to one of the following objectives: (i) reduce processing 

costs, (ii) reduce synchronization delays, (iii) reduce source data actual freshness, or (iv) augment target data 

expected freshness. 

The result of applying an improvement action will be changes in the topology or the properties of the quality 

graph (i.e. changes in nodes, edges and labels). Elementary actions are:  

− addNode (N: Node) – This action adds a node to the quality graph. The node is not yet connected to 
other nodes (it has no incoming nor outgoing edges) and has not labels. 

− addEdge (e: Edge) – This action adds an edge to the quality graph. The edge has not labels. 

− addProperty (N: Node, P: Property, value: Object) – This action associates a label property=value 
to a node of the quality graph. If the property is already associated to the node, its value is updated. The 

data type of the value corresponds to the data type of the property. 

− addProperty (e: Edge, P: Property, value: Object) – This action associates a label property=value 
to an edge of the quality graph. If the property is already associated to the node, its value is updated. The 

data type of the value corresponds to the data type of the property. 

− removeNode (N: Node) – This action removes a node (and all incoming and outgoing edges, as well as 

associated properties) from a quality graph. 

− removeEdge (e: Edge) – This action removes an edge (and all associated properties) from a quality 

graph. 

− removeProperty (N: Node, P: Property) – This action deletes a property from a node of the quality 

graph. 

− removeProperty (e: Edge, P: Property) – This action deletes a property from an edge of the quality 

graph. 

All these elementary actions are member methods of the QualityGraph class.  

Elementary actions can be combined, conforming macro actions that solve typical improvement strategies. There 

is a great variety of macro actions that can be defined. Their feasibility depends on the particular application 

scenario, i.e. an action that considerably improves freshness in a DIS may have no impact on another one. In this 

sub-section we illustrate some typical macro actions (without trying to be exhaustive) that can be applied in a 

great variety of DISs. Examples of macro actions are: 

− replaceNode (G: QualityGraph, N: Node, N’: Node, NP’: NodePropertySet) – This action 
replaces a node (N) by a new one (N’), keeping the same edges. A set of properties (NP’) is associated to 

the new nodes. The action can be used, for example, for replacing an activity by a more performing one 

(reducing processing cost) or replacing a source by another one (reducing source data actual freshness).  

− replaceSubGraph (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NS’: NodeSet, ES’: EdgeSet,  
NP’: NodePropertySet, EP’: EdgePropertySet) – This action replaces a set of nodes and a set of 

edges conforming a sub-graph (NS and ES) by new set of nodes (NS’), connected by a set of edges (ES’). 

Sets of properties (NP’ and EP’) are associated to the new nodes and edges respectively. The action can 

be used, for example, for replacing a set of activities by a set of more performing components or 

replacing a source and its wrapper by new ones providing fresher data.  

− decomposeNode (G: QualityGraph, N: Node, NS’: NodeSet, ES’: EdgeSet,  

NP’: NodePropertySet, EP’: EdgePropertySet) – This action replaces a node (N) by a new set of 

nodes conforming a sub-graph (NS) which represent refined tasks, connected by a set of edges (ES’). Sets 

of properties (NP’ and EP’) are associated to the new nodes and edges respectively. The action can be 

used, for example, for replacing an activity by a set of activities representing refined tasks (which can be 

optimized or synchronized separately).  
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− parallelizeNodes (G: QualityGraph, NS: NodeSet, ES’: EdgeSet, EP’: EdgePropertySet) – This 
action replaces a set of edges among a path of nodes (NS), corresponding to a sequential execution, by 

edges (ES’) connecting the nodes according to a parallel execution. A set of properties (EP’) is associated 

to the new edges. The action can be used, for example, for parallelizing the execution of certain activities 

in order to reduce global processing cost.  

− changeNodesProperties (G: QualityGraph, NP’: NodePropertySet) – This action changes property 
values of a set nodes. The argument NP’ is a set of 3-uples of the form <node,property,value>. The action 

can be used, for example, for changing the processing cost property after optimizing the implementation 

activities, changing the source data actual freshness property after negotiation with source providers or 

changing DIS policies (e.g. refreshment frequencies) that will impact inter-process delays.  

− changeEdgesProperties (e: Edge, EP’: EdgePropertySet) – This action changes the property values 
of a set of edges. The argument EP’ is a set of 3-uples of the form <edge,property,value>. The action can 

be used, for example, for changing the inter-process delay property after synchronizing activities.  

In order to facilitate the easy implementation of macro actions, we define two additional macro actions (that can 

be used as templates) which manage (add and remove respectively) sets of nodes, edges and labels, invoking 

elementary actions. They have the following signatures: 

 PROCEDURE addSets (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NP: NodePropertySet,  EP: 

EdgePropertySet)  

 PROCEDURE removeSets (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NP: NodePropertySet, 

EP: EdgePropertySet)  

Inputs consists of a quality graph, a set of nodes, a set of edges, a set of triplets <node,property,value> and a set 

of triplets <edge,property,value>. Pseudocodes are shown in Algorithm  3.7.  

PROCEDURE addSets (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NP: NodePropertySet,        

EP: EdgePropertySet)  

 FOR EACH node N in NS DO 

  G.addNode(N); 

 FOR EACH node e in ES DO 

  G.addEdge(e); 

 FOR EACH triplet (node,prop,value) in NP DO 

  G.addProperty(node,prop,value); 

 FOR EACH triplet (edge,prop,value) in EP DO 

  G.addProperty(edge,prop,value); 

END 

PROCEDURE removeSets (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NP: NodePropertySet,   

EP: EdgePropertySet)  

 FOR EACH node N in NS DO 

  G.removeNode(N); 

 FOR EACH edge e in ES DO 

  G.removeEdge(e); 

 FOR EACH triplet (node,prop,value) in NP DO 

  G.removeProperty(node,prop); 

 FOR EACH triplet (edge,prop,value) in EP DO 

  G.removeProperty(edge,prop); 

END 

Algorithm  3.7 – Template macro actions 

Algorithm  3.8 shows the pseudocodes of the replaceNode, replaceSubGraph, decomposeNode, parallelizeNodes, 

changeNodesProperties and changeEdgesProperties macro actions. They are quite similar: they build the 

appropriate sets (nodes, edges, labels) and invoke the addSets and removeSets template actions. 
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PROCEDURE replaceNode (G: QualityGraph, N: Node, N’: Node, NP’: NodePropertySet)  

 EdgeSet ES’; 

 EdgePropertySet EP’; 

 FOR EACH edge e=(B,N)T incoming N in G DO 

  e’ = (B,N’)T; 

  (prop,value) = G.getProperties(e); 

  ES’.insert(e’); 

  EP’.insert(e’,prop,value); 

 FOR EACH edge e=(N,C)T outgoing N in G DO 

  e’ = (N’,C)T; 

  (prop,value) = G.getProperties(e); 

  ES’.insert(e’); 

  EP’.insert(e’,prop,value); 

 removeSets(G,{N},{},{},{}); 

 addSets(G,{N’},ES’,NP’,EP’); 

END 

PROCEDURE replaceSubGraph (G: QualityGraph, NS: NodeSet, ES: EdgeSet, NS’: NodeSet,  
ES’: EdgeSet, NP’: NodePropertySet, EP’: EdgePropertySet)  

 removeSets(G,NS,ES,{},{}); 

 addSets(G,NS’,ES’,NP’,EP’); 

END 

PROCEDURE decomposeNode (G: QualityGraph, N: Node, NS’: NodeSet, ES’: EdgeSet,  

NP’: NodePropertySet, EP’: EdgePropertySet)  

 removeSets(G,{N},{},{},{}); 

 addSets(G,NS’,ES’,NP’,EP’); 

END 

PROCEDURE parallelizeNodes (G: QualityGraph, NS: NodeSet, ES’: EdgeSet, EP’: 

EdgePropertySet)  

 EdgeSet ES; 

 FOR EACH edge e incoming a node of NS in G DO 

  ES.insert(e); 

 FOR EACH edge e outgoing a node of NS in G DO 

  ES.insert(e); 

 removeSets(G,{},ES,{},{}); 

 addSets(G,{},ES’,{},EP’); 

END 

PROCEDURE changeNodesProperties (G: QualityGraph, NP’: NodePropertySet)  

 addSets(G,{},{},NP’,{}); 

END 

PROCEDURE changeEdgesProperties (G: QualityGraph, EP’: EdgePropertySet)  

 addSets(G,{},{},{},EP’); 

END 

Algorithm  3.8 – Macro improvement actions 

In the remaining of the sub-section, we discuss the use of macro improvement actions according to the four 

objectives above mentioned. 
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Reducing processing costs 

A typical way of reducing processing costs is replacing the current implementation of an activity by a more 

performing one. To this end, a new ad-hoc process can be created or an existent component can be reused (e.g. a 

web service provided by a third party developer). In the latter case, additional activities (adapters) may be 

necessaries for connecting the existing activities to the new component. The cost of adapters must be taken into 

account. Complex activities may be decomposed in simpler portions in order to replace only some of them.  

Another improvement action consists in parallelizing the execution of some activities. Analogously, additional 

activities may be necessaries for controlling the execution (e.g. waiting for the end of all the activities before 

executing successors).    

Further actions include running some activities in a more performing server and powering CPU and memory. In 

this case, the topology of the quality graph does not change but property values are modified to reflex the new 

scenario (the processing cost may be one of the updated properties). In addition, specific actions can be defined 

for specific scenarios. 

Example 3.19. Consider activity A6 of the quality graph of Figure  3.19a, which integrates data coming 

from predecessor activities and also builds aggregates and statistics needed by successor activities. The 

process that implements A6 can be decomposed in three routines (Figure  3.19b): activity A61 performs data 

integration, activity A62 computes statistics for successor A7 and activity A63 build aggregates for successor 

A8. The decomposition allows replacing some routines by more performing ones, e.g. replacing A61 by A64 

(Figure  3.19c) and allocating more resources to it in order to execute it more performingly. Note that the 

time for building statistics for A7, is unnecessarily paid for data going to A8, thus, activities A62 and A63 can 

be parallelized (Figure  3.19c). 

The applied improvement actions are: 

- decomposeNode (G, A6, {A61,A62,A63}, {(A5,A61),(A4,A61),(A61,A62),(A62,A63),(A63,A7),(A63,A8)}, 
{<A61,’ProcessingCost’,3>,<A62,’ProcessingCost’,2>,<A63,’ProcessingCost’,1>}, 

{<(A5,A61),’InterProcessDelay’,12>,<(A4,A61),’InterProcessDelay’,0>, 

<(A61,A62),’InterProcessDelay’,0>,<(A62,A63),’InterProcessDelay’,0>, 

<(A63,A7),’InterProcessDelay’,7>,<(A63,A8),’InterProcessDelay’,7>}) 

- replaceNode (G, A61, A64, {<A64,’ProcessingCost’,2>}) 

- changeNodesProperties (G, {<A64,’ProcessingCost’,1>}) 

- parallelizeNodes (G, {A62,A63}, {(A64,A62),(A64,A63),(A62,A7),(A63,A8)}, 
{<(A64,A62),’InterProcessDelay’,0>,<(A64,A63),’InterProcessDelay’,0>, 

<(A62,A7),’InterProcessDelay’,7>,<(A63,A8),’InterProcessDelay’,7>})   □ 
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Figure  3.19 – Portions of a quality graph: (a) before performing improvement actions, (b) after 

decomposing an activity, (c) after replacing and parallelizing activities 
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Reducing inter-process delays 

A typical way of reducing inter-process delays is synchronizing activities, eventually changing their 

synchronization policies, for executing one after the other. Activities may have synchronous or asynchronous 

(pull or push) policies, driven by temporal or non-temporal events (see Sub-section 2.3 of Chapter 2) and 

coexistence of different policies may introduce delays. Even synchronization-related properties (synchronization 

policies, execution frequencies, synchronization events, control events) are inherent to control flow, they 

indirectly causes inter-process delays among activities. Synchronizing activities do not necessarily mean that 

activities must execute one immediately after the other; certain delays may be necessaries due to processing 

constraints, for example the need of sequentially execute other activities or system routines. Then, improvement 

actions may reduce delays instead of eliminating them.  

Unfortunately, improving the synchronization among some activities may worsen the synchronization with 

another ones. Consequently, when applying local synchronization techniques to portions of the quality graph, the 

impact to the whole graph should be studied. Next example illustrates this fact. 

Example 3.20. Figure  3.20a shows three activities A5, A6 and A8, the two former with periodic pull policies 

and the latter with aperiodic pull policy.  Activity A5 executes every 12 units of time and activity A6 every 

7 units of time, both materializing data. As they execute asynchronously, activity A6 reads data that have 

been materialized for some time, 12 units of time in the worst case. Activity A8 executes aperiodically, 

when users pose queries, but also reads data that has been previously materialized, 7 units of time in the 

worst case. Figure  3.20b illustrates their execution over time (executions are represented by rectangles, 

which lengths indicate processing costs) and the materialized data that is used as input (dotted lines). 

If activity A6 is synchronized with activity A5 (its execution frequency is changed for executing every 12 

units of time, just after A5) inter-process delays are negligible. But note that in this case, the inter-process 

delay with activity A8 will be 12 units of time in the worst case (instead of 7). 

However, if we change the execution frequency of activity A6 for executing every 6 units of time (as shown 

in Figure  3.20c), inter-process delays between activities A5 and A6 are either 0 or 6 units of time (6 units of 

time in the worst case, instead of 12) and delays between activities A6 and A8 are at most 6 units of time 

(instead of 7).  
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Figure  3.20 – Synchronization of activities: (a) portion of a quality graph, and (b) diagram of activity 

executions before the improvement action, and (c) portion of the quality graph and (d) diagram of 

activity executions after the improvement action 
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The applied improvement actions are: 

- changeNodesProperties (G,{<A6,’ExecFrequency’,1/6>}) 

- changeEdgesProperties (G,{<(A5,A6),’InterProcessDelay’,6>,<(A6,A8),’InterProcessDelay’,6>})   □ 

Increasing the refreshment frequency of materialized data (i.e. executing the activity more frequently) may 

improve freshness, as shown in previous example. However, note that refreshment frequencies are constrained to 

allowed source accesses and activity processing times. The former arises when sources can only be queried at 

certain times or the number of source accesses is limited (for example because of source access price) and 

requires negotiation with source data providers for relaxing access constraints. The latter is intuitive: if an 

activity last 5 units of time for executing, it cannot execute every 2 units of time. So, synchronization techniques 

may be complemented by techniques for reducing processing costs, for example, decomposing an activity in 

portions with smaller processing costs and then increasing the refreshment frequency of new activities. 

In previous example we only had two activities with periodic execution. The problem is more complex when 

activities have several predecessors and successors, each one with different synchronization policies. 

Furthermore, the combination of pull and push policies with different types of events makes very difficult the 

development of general synchronization techniques; specific techniques should be studied for particular 

application scenarios. In Section  5, we present a detailed analysis for one concrete scenario. 

Reducing source actual freshness 

If a source provides with data having too high freshness actual values, it can be substituted by another source 

providing with the same type of data but having lower freshness actual values. Note that the decision of 

substituting a source may also depend on other quality factors (e.g. accuracy, completeness, availability). The 

replacement of a source may imply the modification of other DIS components, especially wrapper activities.  

Note that the new source may provide with incomplete information, for example, if it does not provide with 

certain attributes (which may be provided by another source). Then, a source can be replaced by a sub-graph 

(accessing several sources) that calculates the same data. Note that even source data actual freshness may be 

reduced, processing costs of new activities may be higher, so they should also be studied. Analogously, certain 

sub-graphs representing the access to several sources can be replaced by the access to a unique source. 

Example 3.21. Figure  3.21a shows a portion of a quality graph accessing to source S2. Figure  3.21b shows 

the replacement of source S2 for sources S4 and S5, and the consequent replacement of wrapper activity A2 

for activities A21, A22 and A23. The applied improvement action is: 

- replaceSubGraph (G, {S2,A2}, {}, {S4,S5,A21,A22,A23}, {(S4,A21),(S5,A22),(A21,A23),(A22,A23),(A23,A5)}, 
{<S4,’SourceActualFreshness’,12>,<S5,’SourceActualFreshness’,6>,<A21,’ProcessingCost’,2>, 

<A22,’ProcessingCost’,1>,<A23,’ProcessingCost’,2>}, 

{<(A21,A22),’InterProcessDelay’,0>,<(A22,A23),’InterProcessDelay’,0>, 

<(A23,A5),’InterProcessDelay’,0>})   □ 
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Figure  3.21 – Portions of the example quality graph (a) before and (b) after replacing a source  
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The comparison of different source data providers allows selecting the sources that provide the freshest data. The 

propagation of freshness expected values aids in such selection. Negotiating with source providers is also 

possible, demanding (and eventually paying) for a better service (i.e. better source data actual freshness).  

Augmenting target expected freshness 

Finally, when data freshness cannot be further improved, i.e. user expectations are too high for the data that can 

be effectively obtained from data repositories or improvement actions are too expensive (e.g. imply the 

acquisition of new hardware), we should negotiate with users in order to relax freshness expectations. 

Furthermore, many users have incremental behaviors, i.e. they ask for certain freshness values (very exigent) and 

if the DIS cannot provide these values, they try with relaxed values and so on.  

Example 3.22. Consider that a user has demanded a freshness expected value of 10 units of time for certain 

data target T but the DIS cannot convey so fresh data, so the user is notified receiving no data. Then, the 

user decides to relax freshness expectations demanding a freshness expected value of 15 units of time and 

then, he tries his query again. The applied improvement action is: 

- changeNodesProperties (G, {<T,’TargetExpectedFreshness’,15>})   □ 

Summary 

All previously discussed actions are general enough to be applied to different types of DIS but their use for 

freshness enforcement should be guided by some high-level strategy in order to be effective. On the contrary, the 

ad-hoc use of improvement actions may be not viable. For example, manually finding optimal refreshment 

frequencies in order to minimize inter-process delays, in a DIS with several tens of activities is not an easy 

matter. Our approach consists in studying the DIS in a high-level quality graph and zooming in the critical paths 

(or portions of the paths) in concentrate improvement actions in the nodes and edges of the path. Clearly, in 

some scenarios, the actions applied to critical paths are not enough for enforcing data freshness and other 

portions of the graph should be studied, for example, when the synchronization of some activities degraded the 

synchronization of other ones. The methods for browsing in the hierarchy of quality graphs are useful to this end. 

The set of macro actions described in this sub-section is not complete, in the sense of trying to cover all possible 

improvement strategies. On the contrary, our approach allows the definition of specialized strategies for concrete 

application scenarios, as the one that will be presented in Section  5.  

Next sub-section summarizes our approach with an example. 

4.5. Summarizing example 

In the following example, we analyze a quality graph where freshness expectations are not achieved. We firstly 

compute the critical path and we zoom in activities with higher processing costs and synchronization delays, 

analyzing possible improvement actions. 

Example 3.23. Consider the DIS of Figure  3.22a, which has two data sources (Source1 and Source2) and 

two data targets (Query1 and Query2). Figure  3.22b shows a first zoom+ operation in order to show the ac-

tivities that compose the DIS process, which perform the data extraction (Extr1 and Extr2), integration (In-

teg3) and aggregation (Aggr4 and Aggr5). Considering the properties shown in Figure  3.22b, we achieve 

freshness values of 68 hours for Query1 and 61 hours for Query2. The former is acceptable, but the latter is 

too high and must be reduced in order to achieve user expectations. 

We analyze the critical path for Query2, i.e. [Source2, Extr2, Integ3, Aggr5]. First of all, we browse in the 

hierarchy of quality graphs, focusing in each activity of the critical path and zooming in them in order to 

have an overview of candidate portions to improve, as shown in Figure  3.22 (c, d and e). Extr2 extracts and 

cleans information from Source2; it is composed of three sub-activities: the wrapping process (Wrap21) and 

two cleaning processes (Clean22 and Clean23). Integ3 consolidates data extracted from both sources; it is 

composed of an initial integration activity (Integ31), a cleaning activity that corrects some kinds of common 

errors (Clean32) and a final activity that performs complex calculations (Calc33). Due to the complexity of 

operations, both Integ31 and Calc33 materialize data once a day. Aggr5 builds data needed by Query2; it is 

composed of an aggregation activity (Aggr51) and a posterior cleaning process for grouped data (Clean52).  
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Figure  3.22 – Browsing in the critical path for Query2: (a)highest-level quality graph, (b) zoom+ in the 

DIS node; and focus+ and zoom+ in activities: (c) Extr2, (d) Integ3, and (e) Aggr5 

Let’s start analyzing Integ3 and its synchronization with successors. Note that there is a big inter-process 

delay between Clean32 and Aggr51 due to the refreshment frequencies of Integ31, as shown in Figure  3.22d. 

A good improvement action consists in increasing the refreshment frequency of Integ31 (and thus executing 

Calc33 more frequently). This action should be negotiated with the provider of Source2 (to know if the 

source can be accessed more frequently) and DIS administrators (to know if the wrapper can be executed 

more frequently). Note that as activity Calc33 is very costly, it may continue executing once a day. Then, 

the first improvement actions consists in changing the refreshment frequency of Integ31 to 12 hours and 

consequently changing the inter-process delay between Clean32 and Aggr51 to 12 hours, i.e.:  

- changeNodesProperties (G3,{<Integ31,’RefreshFrequency’,1/12>}) 

- changeEdgesProperties (G3,{<(Clean32,Aggr51),’InterProcessDelay’,12>) 

Figure  3.23a shows the detailed graph for activity Integ3 after these actions. Returning to the summarized 

graph, freshness actual value for Query2 is 49 hours, which is still not acceptable. 

Another improvement action consists in parallelizing the cleaning sub-activities of Extr2. Both activities act 

over different data so the output of the wrapper can be decomposed in two disjoint sets (substituting Wrap21 
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by Wrap24) and merged at the end (adding activity Mer25), both having negligible cost. As Clean23 finishes 

before Clean22, it materializes data. Actions are: 

- replaceSubGraph (G, {}, {(Clean23,Integ31)}, {Mer25}, {(Clean23,Mer25),(Mer25,Integ31)}, 
{<Mer25,’ProcessingCost’,0>}, 

{<(Clean23,Mer25),’InterProcessDelay’,0>,<(Mer25,Integ31),’InterProcessDelay’,0>}) 

- replaceNode (G, Wrap21, Wrap24, {<Wrap24,’ProcessingCost’,0>}) 

- parallelizeNodes (G3, {Clean22,Clean23}, 
{(Wrap24,Clean22),(Wrap24,Clean23),(Clean22,Mer25),(Clean23,Mer25)}, 

{<(Wrap24,Clean22),’InterProcessDelay’,0>,<(Wrap24,Clean23),’InterProcessDelay’,0>, 

<(Clean22,Mer25),’InterProcessDelay’,0>,<(Clean23,Mer25),’InterProcessDelay’,1>}) 

Figure  3.23b shows the detailed graph for activity Extr2 after these actions. Returning to the summarized 

graph (Figure  3.23c), freshness actual value for Query2 is 47 hours, which is acceptable.   □ 
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Figure  3.23 – Quality graphs after improvement actions: (a) detailed graph for Integ3, (b) detailed 

graph for Extr2, and (c) summarized graph (after all actions) 

Along this section we have illustrated that data freshness enforcement may consist of several improvement 

actions (we have given examples of actions), which use for DIS design or reengineering depends on the 

particularities of concrete application scenarios. To illustrate this, next section fixes an application scenario and 

analyzes one improvement strategy: the synchronization of activities in order to enforce data freshness. Other 

strategies can be analyzed analogously for specific application scenarios; the quality evaluation framework and 

the general strategies discussed in this section (critical path, top-down analysis, actual and expected freshness 

propagation) may help in the analysis. 

5. Synchronization of activities  

Previous section proposed a set of elementary and macro improvement actions and argued that improvement 

strategies for DIS design can be enunciated for concrete DIS scenarios based on improvement actions. The 

purpose of this section is to illustrate the development of an improvement strategy. 

Based on an improvement action (change of execution frequencies of activities) suggested in Sub-section  4.4 for 

reducing inter-process delays, we discuss the determination of appropriate execution frequencies for activities. 

We consider a concrete application scenario where activities have specific synchronization policies and we deal 

with their synchronization in order to find the optimal execution frequencies that allow achieving freshness 

expectations. Next sub-section motivates and states the problem and the rest of the section discusses optimal and 

heuristic solutions. 
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5.1. DIS synchronization problem 

The comparison among source data actual freshness and target data expected freshness serves to determine 

constraints for DIS design. Their difference, if positive, indicates the longest period of time that DIS processes 

are allowed to spend in manipulating data, i.e. it is an upper bound for the execution delay of the DIS, which 

includes the processing costs of activities and the inter-process delays among them. If processing costs of 

activities are not too high, i.e. if all activities can execute in less time than the bound for the execution delay, the 

achievement (or overdraw) of freshness expectations depends on inter-process delays. The idea is to synchronize 

activities in a way that inter-process delays are sufficiently small to allow achieving freshness expectations. 

Example 3.24. Consider the quality graph of Figure  3.24. In the path [S2,A2,A3,A4,T1], the difference 

between freshness expectations and source data actual freshness is 12 units of time. The activities in the 

path summarize 4 units of time of processing costs, so 8 units of time can be spent in inter-process delays, 

i.e. greater values will cause freshness actual value to overdraw freshness expected value.  

If activity A3 executes every 3 units of time and activity A4 executes asynchronously with each user query, 

the delay among A3 and A4 will be 3 units of time in the worst case. Analogously, we can set the execution 

frequency of A2 for obtaining a delay of 5 units of time between A2 and A3. These delays of 3 and 5 units of 

time can be tolerated. Of course, delays in the path [S1,A1,A3,A4,T1] must also be analyzed.   □ 
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cost=2
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Figure  3.24 – Determination of execution policies 

Before enunciating the problem, we state some hypotheses that fix the application scenario, specially, the DIS 

synchronization policies: 

− Activities providing data to targets (called conveyance activities) execute when users ask for data (pulled 
by data targets) and do not materialize data; the other activities (called intermediate activities) execute 

asynchronously, guided by periodic pull events and may materialize data.  

− Activities must finish execution before starting a new execution. Consequently, the execution period* of 
an activity should be greater or equal to its processing cost.  

− Inter-process delays are determined exclusively by the execution frequencies of activities, i.e. they are not 
influenced by other DIS properties (e.g. hardware constraints, scheduling restrictions, communication 

delays). Activities can be executed in parallel. Control flow coincides with data flow. 

− Sources present no access constraints, i.e. they can be accessed as frequently as needed.  

− Processing costs, source data actual freshness and target data expected freshness, as well as execution 
periods, are all integer values, multiples of certain unit of time T (e.g. a day, an hour, fifteen minutes). 

The combineActualFreshness function returns the maximum of input values. 

Synchronizing activities consist in finding an appropriate execution frequency for each intermediate activity in 

order to coordinate the whole DIS and obtain inter-process delays that allow achieving freshness expectations. 

Note that different synchronization policies (providing the execution frequency for each activity) may allow 

                                                           

*
 The execution period is the inverse of the execution frequency, i.e. if an activity executes every P units of time, execution frequency is 1/P 

and execution period is P. 
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achieving freshness expectations. We need a method for finding feasible policies but we also need to decide 

which one to choose. Several criteria for selecting when a policy is better than another can be proposed. An 

example of this kind of criteria is minimizing the overall maintenance cost, which can be calculated as the 

processing cost of each activity, weighted par its execution frequency [Theodoratos+1999]. Finding the best 

synchronization of activities is an optimization problem. It can be stated as follows: 

Definition 3.12 Given a quality graph G, labeled with source data actual freshness, target data expected 

freshness and processing cost properties, the DIS synchronization problem consists in finding the most 

appropriate execution frequencies for intermediate activities in a way that inter-process delays allow 

achieving freshness expectations, minimizing maintenance cost.   □ 

In the following sub-sections we characterize the solution space and propose some algorithms to solve the 

problem. 

5.2. Characterization of the solution space 

A solution to the DIS synchronization problem is a set of execution periods (or execution frequencies), one for 

each intermediate activity. In this sub-section we characterize the solution space, determining the conditions that 

a solution must verify. 

Basically, the idea is to bound the amount of time that can be consumed in synchronization, studying the 

difference between actual and expected freshness. We firstly obtain upper and lower bounds for the freshness of 

the data produced by each activity, which are called uppermost and lowest freshness values respectively. The 

lowest freshness value is calculated propagating source data actual freshness, from sources to targets, adding the 

processing costs of activities. This is the lowest freshness value that the DIS might obtain, which is achieved if 

all activities are synchronized for starting as soon as the predecessor activities finish, without data 

materialization and consequently, without inter-process delays. Note that this kind of synchronization is not 

always possible. The uppermost freshness value is calculated propagating target data expected freshness, from 

targets to sources, subtracting the processing costs of activities. This is the greatest freshness value that can be 

supported by the DIS in order to achieve freshness expectations for data targets. The lowest and uppermost 

freshness values can be calculated using the propagation algorithms described in Section  3 (see Algorithm  3.1 

and Algorithm  3.2) overloading the getInterProcessDelay function in order to return zero.  

If for some activity, the lowest freshness value is greater than the uppermost freshness value, freshness cannot be 

assured no matter the synchronization of activities and other improvement actions should be followed, for 

example, for reducing processing costs. On the contrary, if the uppermost freshness value is greater than the 

lowest freshness value, their difference is an upper bound for the execution period of the activity. We define the 

greatest execution period for the activity as such difference. 

Definition 3.13 The greatest execution period of an activity is calculated as the difference between 

uppermost and lowest freshness values.   □ 

The valid execution periods for an activity are those comprised among the processing cost (smallest execution 

period that can be implemented) and the greatest execution period (calculated as explained before). Obviously, if 

for some activity, the processing cost is greater than the greatest execution period, freshness cannot be assured 

no matter the synchronization of activities and consequently, other improvement actions should be followed.  

We can now characterize the solution space.  

Definition 3.14 Given a quality graph G, with k intermediate activities {A1…Ak} that produce 

intermediate data consumed by other activities and n-k conveyance activities {Ak+1…An} that deliver data 

to some target node, the solution space of the DIS synchronization problem consists of two conditions:  

(i) ProcessingCost(Ai) ≤ ExecutionPeriod(Ai) ≤ GreatestExecutionPeriod(Ai), 1≤i≤k 

(ii) ActualFreshness(Ai,Ti) ≤ ExpectedFreshness(Ai,Ti), k+1≤i≤..n, for Ti being the successor of Ai 

The former condition ranges the execution period of intermediate activities (which are the variables of the 

problem) between the processing cost and the greatest execution period of the activity. The latter assures 

that actual freshness is not greater than expected freshness for all conveyance activities.   □ 
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For calculating data freshness (in order to check the second condition), inter-process delays must be calculated. 

Let’s start defining the notion of synchronism. 

Definition 3.15 Two activities are synchronized with a shift time of K (K-synchronized for short), if for 

each execution of the latter activity there is an execution of the former exactly K units of time before.   □ 

Example 3.25. Consider two activities A and B, where A executes every 4 hours. If B also executes every 

4 hours, just 1 hour after A, then they are 1-synchronized. If B executes every 8 hours, immediately after an 

execution of A, they are 0-synchronized. But if B executes every 3 hours, it is shifted with A in a variable 

number of hours, between 0 and 3 hours, so they are not synchronized.   □ 

If two activities A and B are 0-synchronized, B can start executing as soon as A finishes, which will minimize 

the waste of time between them. The inter-process delay among them is negligible. If two activities A and B are 

not 0-synchronized, A must materialize data, which will be asynchronously read by B. In this case, there is a 

positive inter-process delay between A and B. In order to estimate the inter-process delays, we analyze the 

execution periods of activities. If A and B are both periodically executed, the inter-process delay among them 

can be calculated, in the worst case, with the following formula: 

InterProcessDelay(A,B) = ExecutionPeriod(A) – GCD(ExecutionPeriod(A),ExecutionPeriod(B)) 

where GCD is the greatest common divisor function. Note than when A and B are 0-synchronized, the GCD 

function equals the execution period of A, so the inter-process delay is zero. Also note that the inter-process 

delay obtained with this formula should be increased if the execution of activities is shifted, for example, for 

executing B one hour after. If B is not periodically executed (which is the case of conveyance activities) the 

inter-process delay between A and B can be calculated, in the worst case, with the following formula: 

InterProcessDelay(A,B) = ExecutionPeriod(A) 

Example 3.26. Figure  3.25 shows the three synchronization cases discussed in  Example 3.25. In case (b), 

GCD(4,8)=4 so inter-process delay is 4–4=0. In case (c), GCD(4,3)=1, so inter-process delay is 4-1=3 in 

the worst case; Figure  3.25c illustrates the cases where inter-process delay takes the maximum value. In 

case (a), GCD(4,4)=4, so inter-process delay is 4–4=0; however, for external reasons activity B is config-

ured for executing one hour after A, 1-synchronized, so delay is 1.   □ 
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Figure  3.25 – Determination of inter-process delays 

Having a calculation method for inter-process delays, the getInterProcessDelay function can be conveniently 

overloaded and actual freshness can be evaluated using the ActualFreshessPropagation algorithm, which allows 

to practically check the second condition of the solution space (see  Definition 3.14). However, in order to 

formalize the problem, the second condition should be expressed in terms of the variables (execution periods). 

As stated in the corollary of  Lemma 3.3, the freshness of the data produced by an activity node coincides with 

the path freshness of its critical path. If we calculate all paths from a source to a conveyance activity, we can 
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decompose the second condition in a set of conditions, one for each path, stating that the path freshness must be 

lower or equal to expected freshness.  

We formalize the problem as a nonlinear integer programming (NLIP) problem (see  Definition 3.16). The 

variables (xi) represent the execution periods of intermediate activities. The objective function corresponds to the 

overall maintenance cost (sum of processing costs weighted by execution frequencies), which must be 

minimized. The constraints delimit the solution space. The former ranges variables between the processing cost 

and the greatest execution period of the activity. The latter states that for each path going from a source node to a 

conveyance activity, the path freshness must be lower or equal to the expected freshness of the activity. This 

assures that actual freshness is not greater than expected freshness for all conveyance activities. Note that neither 

the objective function nor the second constraint (due to GCD) are linear. 

Definition 3.16 Given a quality graph G, with m sources {S1…Sm}, k intermediate activities {A1…Ak} 

and n-k conveyance activities {Ak+1…An}, let ci, zi, afi, efi be non-negative integers corresponding to: 

− ci: the processing cost of activity Ai, 1 ≤ i ≤ n,  

− zi: the greatest execution period of activity Ai, 1 ≤ i ≤ k. 

− afi: the source data actual freshness of source node Si, 1 ≤ i ≤ m,  

− efi: the expected freshness for data produced by activity Ai, k < i ≤ n.  

Let {P1…Pr} be the set of paths from a source node to a conveyance activity. Pj has the form 

 [Pj0, Pj1,… Pjw
j
, Pj(w

j
+1)], 1 ≤ j ≤ r, wj ≤ k, where: 

− Pj0 is the index of a source relation, i.e. 1 ≤ Pj0 ≤ m,  

− Pji is the index of a intermediate activity, i.e. 1 ≤ Pji ≤ k, 1 ≤ i ≤ wj, 

− Pj(w
j
+1) is the index of a conveyance activity, i.e. k < Pj(w

j
+1) ≤ n. 

The DIS synchronization problem is formalized as follows: 

Minimize: Σi=1..k (ci / xi) 

subject to:  

 ci ≤ xi ≤ zi, i:1..k 

 afP
j0
 +Σi=1..(w

j
+1) (cP

ji
) +Σi=1..(w

j
–1) (xP

ji
 – GCD (xP

ji
,xP

j(i+1)
)) +xP

jw
j

 ≤ efP
j(w

j
+1)

, i:1..k, j:1..r   □ 

Example 3.27. Consider the quality graph of 

Figure  3.26. Maximal execution periods are 

calculated propagating uppermost and lowest 

freshness values. There are two paths from 

sources to conveyance activities: [S1,A1,A3,A4] 

and [S2,A2,A3,A4]. The NLIP problem for this 

quality graph is: 

Minimize: 2/x1 + 1/x2 + 3/x3 

subject to:  

 2 ≤ x1 ≤ 20 

 1 ≤ x2 ≤ 8 

 3 ≤ x3 ≤ 8 

 x1 + x3 – GCD (x1,x3) ≤ 20 

 x2  + x3 – GCD (x2,x3) ≤ 8 

The two latter conditions have been simplified 

from: 

  5 + 2 + 3 + 0 + x1 – GCD (x1,x3) + x3 ≤ 30 

  18 + 1 + 3 + 0 + x2 – GCD (x2,x3) + x3 ≤ 30   □ 
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Figure  3.26 – Quality graph labeled with uppermost and 

lowest freshness values and greatest execution periods 
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In practice, using the ActualFreshnessPropagation algorithm for obtaining freshness actual values is better than 

generating all possible paths from sources to conveyance activities. The following sub-section discusses different 

algorithms for solving the problem. 

5.3. Solutions to the DIS synchronization problem  

In this sub-section we discuss different solutions to the DIS synchronization problem. We first present a naïve 

method for rapidly finding a solution (generally non optimal). Then, we discuss a branch-and-bound* algorithm 

for finding the optimal solution. The solution built with the naïve method is used for pruning the solution space. 

Other properties are analyzed for providing further pruning. However, as most branch-and-bound methods, the 

algorithm only can be executed with small size graphs due to its high complexity. We then discuss heuristics for 

finding non-optimal but good-enough solutions.  

All algorithms return a tuple (an array of execution periods, one for each intermediate activity) that belongs to 

the solution space, i.e. verifies the two constraints of the problem defined in previous sub-section. Each tuple has 

associated a maintenance cost, i.e. its value for the objective function. Tuples are called candidate tuples when 

feasibility is not yet checked and solutions when they are a feasible solution to the problem. 

We define the following type to manage tuples and their costs: 

TYPE Tuple = RECORD (periods: ARRAY OF INTEGER, cost: FLOAT) 

Next sub-sections describe the algorithms. 

Naïve algorithm 

The naïve algorithm builds a candidate tuple, assigning the same execution period to all the intermediate 

activities, in a way that all intermediate activities are 0-synchronized without inter-process delay among them. 

The unique inter-process delays are those with conveyance activities. The value assigned to all variables is the 

smallest of the greatest execution periods of activities. Observe that if for an activity, its processing cost is 

greater than the assigned execution period, then, the candidate tuple is not a feasible solution (it does not verify 

the first problem constraint). So, the naïve algorithm does not always find a solution. 

A pseudocode of the naïve algorithm can be sketched as shown in Algorithm  3.9 (BaseSolution function). It first 

obtains the minimum of the greatest execution periods and then assigns it as execution period of all intermediate 

activities. If the candidate tuple is not a feasible solution, it returns an infinite cost tuple. The MaintenanceCost 

function calculates the objective function. 

FUNCTION BaseSolution (G: QualityGraph) RETURNS Tuple 

 Tuple T; 

 P = min {G.getPropertyValue(A,“GreatestExecutionPeriod”) / A is an intermediate activity} 

 FOR EACH intermediate activity A in G DO 

  IF (getProcessingCost(G,A) > P) THEN 

   T.cost = infinite; 

   RETURN T; 

  ELSE 

   T.periods[A] = P; 

 ENDFOR; 

 T.cost = MaintenanceCost (G,T); 

 RETURN T; 

END 

Algorithm  3.9 – Naïve algorithm for building a base solution 

                                                           

*
 Branch-and-bound is a classical method for solving NLIP problems [Cooper 1981] [Li+2003]. 
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If the naïve algorithm finds a solution, such solution can be used as first solution for an exhaustive branch-and-

bound algorithm (for pruning some tuples), if not, we take the infinite cost tuple (that obviously will not prune 

any tuple). Next sub-section presents a branch-and-bound algorithm for finding an optimal solution.  

Optimal algorithm 

The optimal algorithm will traverse the solution space, exhaustively testing all possible values for variables 

(comprised between the range imposed by the first problem constraint, i.e. the processing cost and the greatest 

execution period). The traversal starts with a tuple composed of the greatest execution periods and proceeds, in 

each iteration, decreasing one of the variables in a unit of time, backtracking when we can assure that the optimal 

solution cannot be found decreasing more variables (pruning criteria).  

FUNCTION OptimalSolution (G: QualityGraph) RETURNS Tuple 

 Tuple Best = BaseSolution (G); 

 Tuple T; 

 FOR EACH intermediate activity A in G DO 

  INTEGER P = G.getPropertyValue(A,“GreatestExecutionPeriod”); 

  G.setPropertyValue(A,”ExecutionPeriod”,P); 

  T.periods[A] = P; 

 ENDFOR; 

 T.cost = MaintenanceCost (G,T); 

 RETURN BacktrackingIteration (G,T,Best); 

END 

FUNCTION BacktrackingIteration (G: QualityGraph, T: Tuple, Best: Tuple) RETURNS Tuple 

 IF (T.cost < Best.cost) THEN 

  G = ActualFreshnessPropagation (G);  

  IF IsFeasibleSolution (G,T) THEN RETURN T; 

  ELSE 

   FOR EACH intermediate activity A in G DO 

    Tuple S = T; 

    IF (S.periods[A] > getProcessingCost(G,A)) THEN 

     S.periods[A] --; 

     G.setPropertyValue(A,”ExecutionPeriod”,S.periods[A]); 

     S.cost = MaintenanceCost (G,S); 

     Best = BacktrackingIteration (G, S, Best); 

   ENDFOR 

  ENDIF 

 ENDIF 

 RETURN Best; 

END 

FUNCTION IsFeasibleSolution (G: QualityGraph, T: Tuple) RETURNS BOOLEAN 

 FOR EACH intermediate activity A in G DO 

  If (G.getPropertyValue(A,”ActualFreshness”) > G.getPropertyValue(A,”ExpectedFreshness”)) 

   RETURN false; 

 ENDFOR 

 RETURN true; 

END 

Algorithm  3.10 – Exhaustive backtracking algorithm for finding the optimal solution 
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In order to define pruning criteria, let’s start observing an important property of the problem: the objective 

function (maintenance cost) is monotonic decreasing; it takes smaller values when the variables take greater 

values. This means that if we find a feasible solution (x1, x2,… xk), all candidates tuples (y1, y2,… yk) with yi ≤ xi, 

1≤i≤k, will have a greater or equal maintenance cost and thus, they can be pruned. This property also suggest that 

it is better to evaluate tuples with bigger values first; for that reason, the traversal starts with the greatest 

execution periods. Analogously, when the maintenance cost of a tuple is greater than that of a known solution, 

the branch can be pruned. Conversely, the second problem constraint is not monotonic due to the GCD function, 

which oscillates. This means that evaluating the constraint for a candidate tuple (x1, x2,… xk) does not allow to 

infer its value for neighbor tuples. It makes difficult the expression of pruning criteria for this constraint.  

A pseudocode of the algorithm is shown in Algorithm  3.10 (OptimalSolution function). It builds a candidate 

tuple with  the greatest execution period  for each activity and invokes the BacktrackingIteration  function, which 

traverses the solution space. The base solution built by the naïve algorithm is used as current best solution. In 

each iteration of the BacktrackingIteration function, the cost of the candidate tuple is compared with the cost of 

the current best solution and if it is smaller, actual freshness is evaluated, invoking the 

ActualFreshnessPropagation algorithm (note that graph G is labeled with the execution periods of T, for 

allowing the evaluation of data freshness with these periods). Freshness actual values are compared with 

freshness expected values for each conveyance activity (IsFeasibleSolution function). If the comparison is 

successful, the tuple becomes the new best solution and the current branch is pruned. If not, the function iterates 

descending each variable in a unit of time. The execution period of the corresponding activity is updated in the 

graph and the maintenance cost is recalculated, then, the BacktrackingIteration function is recursively called for 

the new tuple. 

As most branch-and-bound methods, the algorithm has combinatory complexity, and consequently it can only be 

executed with small size graphs. The GCD function, which is called several times per iteration during data 

freshness evaluation (for each data edge between intermediate activities), has also exponential order. However, 

as GCD arguments are bounded, the function results can be pre-calculated and stored in a matrix, which can be 

accessed with order 1. Next sub-sections discuss heuristics for reducing problem size.    

K-Path heuristic 

One of the difficulties of the problem is the synchronization of activities having several predecessors and/or 

successors, because improving the synchronization with one of them may degrade the synchronization with 

another one. However, activities that have one predecessor and one successor can be easily synchronized with 

their predecessors or successors without affecting other nodes. Executing these activities at different frequencies 

has no sense and causes the degradation of data freshness.  

A first idea for reducing problem size is 0-synchronizing activities that have one predecessor and one successor, 

i.e. activities belonging to a K-path. K-paths are defined as follows:  

Definition 3.17 Given a quality graph G, a K-path in G is a path of intermediate activities [A1,A2,…Au], 

where the activities in the path (excepting the initial one) have only one incoming edge in G and the 

activities in the path (excepting the final one) have only one outgoing edge in G.   □  

Example 3.28. In the quality graph of Figure  3.27 there are 5 K-paths, which are highlighted with shadow 

boxes.   □  

A heuristic for improving the optimal algorithm presented in previous sub-section (K-path heuristic), consists in 

assigning the same execution periods to the activities belonging to a K-path. This reduces the number of 

variables of the problem and therefore reduces the problem size. For example, in the quality graph of Figure 

 3.27, the original problem has 10 variables (x1…x10) while the heuristic problem has only 5 variables (x1, x2, x4, 

x6 and x9). As the optimal algorithm has combinatorial complexity, a reduction of the problem size considerably 

impacts its performance. Furthermore, the bounds for the execution period of the activities in a K-path are more 

restrictive. The lower bound must be the greatest of processing costs (in order to can execute all activities) and 

the upper bound must be the least of greatest execution periods. However, it can be proved that the greatest 

execution period is the same for all activities in a K-path (because of the way actual and expected freshness are 

propagated). 

The BacktrackingIteration function (see Algorithm  3.10) should be lightly modified for iterating in the K-paths 

instead of on intermediate activities (FOR clause) but setting execution periods of all the activities in the K-path. 
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Figure  3.27 – Identification of K-paths 

Random heuristic 

Another idea is to build a candidate tuple with random execution periods (among solution space bounds) and 

then check its feasibility (using the AcutalFreshnessPropagation function). The random selection can be done for 

each intermediate activity or for each K-path, i.e. combined with the K-path heuristic. 

The repeatedly execution of the random heuristic, a certain number of times, allows the comparison among the 

found solutions and the selection of the better one. Evidently, this method does not assure to find the optimal 

solution, however better solutions are found if we increase the number of executions. If we have a bound for the 

maintenance cost, we can stop when finding a good enough solution. Note that the bound may be not feasible 

(even for the optimal solution), so the method should also have a stop condition in the number of iterations.  

If the better random solution is not good enough, it can be used as a base solution (instead of the naïve one) 

providing further pruning to the solution space. Furthermore, the most solutions we find, the most the solution 

space can be reduced. For understanding this idea, remember that the objective function is monotonic, so each 

time we find a feasible solution we can prune the solution space, eliminating all tuples that are smaller than the 

found solution. 

Example 3.29. Consider the two-variable solution space (x1, x2) shown in Figure  3.28a, for the 

synchronization of two intermediate activities (or two K-paths). Bounds for variables are [a1,b1] and [a2,b2] 

respectively. If we found a feasible solution (s1,s2), we know that all smaller tuples will not improve the 

objective function, so we can reduce the solution space deleting the region under (s1,s2), i.e. the shadow 

region of Figure  3.28a. Considering other feasible solutions, the solution space is yet reduced, as shown in 

Figure  3.28b. 

a1 b1s1

a2

b2

s2

a1 b1s1

a2

b2

s2

 

Figure  3.28 – Reduction of the solution space: (a) with one feasible solution, and (b) with several 

feasible solutions 
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The solution space can be stored in a boolean k-dimensional matrix corresponding to variables (x1, x2,… xk), 

where a false value means that the tuple has been pruned of the solution space*. The BacktrackingIteration 

function can be improved checking the belonging to the matrix before iterating (instead of simply compare with 

processing costs; see Algorithm  3.10). 

The oscillatory nature of the GCD function makes difficult the definition of local searches for optimizing a 

feasible solution, as in the Greedy Randomized Adaptive Search Procedure (GRASP) [Pitsoulis+2001]. 

However, we think that advances in operations research methods can be applied in order to find more 

appropriate heuristics, which is out of the scope of this thesis.  

6. Conclusion 

In this chapter we dealt we data freshness evaluation and enforcement topics.  

We proposed a quality evaluation framework that is a first attempt to formalize the elements involved in data 

quality evaluation. In the framework, the DIS is modeled as a directed acyclic graph, called quality graph, which 

reflex the workflow structure of the DIS and contains (as labels) the DIS properties that are relevant for quality 

evaluation. Quality evaluation is performed by evaluation algorithms that calculate data quality traversing the 

quality graph. 

We presented a basic algorithm for data freshness evaluation. Compared to existing evaluation proposals that 

only combine freshness values of source data, our algorithm takes into account two DIS properties that have 

impact in data freshness: the processing cost of activities and the inter-process delay among them. The algorithm 

can be instantiated for different application scenarios by analyzing the properties that influence the processing 

costs, inter-process delays and source data actual freshness in specific scenarios. 

We also presented an enforcement approach for analyzing the DIS at different abstraction levels, identifying the 

portions that cause the non-achieved of freshness expectations. We suggested some basic improvement actions, 

which can be used as building-blocks for specifying macro improvement actions adapted to specific scenarios. 

As an application, we studied the development of an improvement strategy that follows an improvement action 

for a concrete application scenario. Other improvement strategies can be analyzed analogously; the quality 

evaluation framework and the general strategies discussed in this section (critical path, top-down analysis, actual 

and expected freshness propagation) may help in the analysis. 

The proposal can be used at different phases of the DIS lifecycle (e.g. at design, production or maintenance 

phases), either for communicating data freshness to users, specifying constraints for source data or DIS 

development, comparing different DIS implementations accessing to alternative sources, checking the 

satisfaction of user freshness expectations or analyzing improvement actions for enforcing data freshness. 

Chapter 5 presents some applications that illustrate some of these usages. 

Although we have shown that out approach can be used for DIS maintenance and evolution, we don’t treat this 

subject in this thesis. The work of Marotta [Marotta 2006] based in our framework, treats the problem of 

detecting changes in source data quality and propagating changes to the DIS. They also apply improvement 

actions to enforce data freshness after changes. The work of Kostadinov [Mostadinov 2006] treats the expression 

of user preferences and then, the changes in user quality expectations. In Chapter 6, we discuss the relationship 

with such works as perspectives of research in these areas. 

 

                                                           

*
 Specific data structures for storing sparse matrices or geo-spatial data can be used. 


