
Ingénierie des systèmes d’information. Volume 9 – no 4/2004, pages 1 to 18 

 
 
Analyzing and Evaluating Data Freshness 
in Data Integration Systems 
 
 
Verónika Peralta* — Raúl Ruggia** — Mokrane Bouzeghoub* 
 
* Laboratoire PRISM, Université de Versailles 
45, avenue des Etats-Unis 
78035, Versailles cedex, FRANCE 

Veronika.Peralta@prism.uvsq.fr 
Mokrane.Bouzeghoub@prism.uvsq.fr 
 
** Instituto de Computación, Universidad de la República 
Julio Herrera y Reisig 565, 5to piso 
11300, Montevideo, URUGUAY 

ruggia@fing.edu.uy 
 

ABSTRACT: Data freshness has been identified as one of the most important data quality 
attributes in information systems. This importance increases particularly in the context of 
systems composed of a large set of autonomous data sources where integrating data having 
different freshness may lead to semantic problems. This paper addresses the problem of 
evaluating data freshness in a data integration system and presents a taxonomy to classify 
different scenarios where data freshness can be evaluated. We propose a framework for 
modeling the data integration system and performing freshness evaluation and we illustrate 
the approach for a particular scenario. 

RÉSUMÉ. La fraîcheur des données est l'un des facteurs de qualité les plus importants dans les 
systèmes d'information. Cette importance est accrue dans le contexte des systèmes composés 
d’un grand nombre de sources de données autonomes, où l’intégration des données 
caractérisées par des fraîcheurs différentes peut mener à des problèmes sémantiques. Cet 
article adresse le problème d'évaluer la fraîcheur de données dans un système d'intégration 
de données et présente une taxonomie pour classifier différents scénarios où la fraîcheur de 
données peut être évaluée. Nous proposons un cadre général pour modeler le système 
d'intégration de données et réaliser l'évaluation de la fraîcheur et nous illustrons l'approche 
pour un scénario particulier. 

KEY WORDS: Data Freshness, Quality evaluation, Quality metrics. 

MOTS-CLÉS: Fraîcheur des données, Evaluation de la qualité, Métriques de la qualité 

 



2     Ingénierie des systèmes d’information. Volume 9 – no 4/2004n 

1. Introduction 

Data freshness has been identified as one of the most important attributes of data 
quality for data consumers (Shin 2003). Some surveys and empirical studies have 
proved that data freshness is linked to information system success (Wang et al., 
1996; Mannino et al., 2004; Shin 2003). Specifically, the increasing need to access 
to information that is available in several data sources introduces the problem of 
choosing between alternative data providers and of combining data having different 
freshness values. This paper presents an analysis of data freshness within the context 
of a Data Integration System (DIS). 

A DIS is an information system that integrates data from different independent 
data sources and provides the users with a uniform access to the data by the mean of 
a global model. This is sketched in Figure 1. Examples of DIS are: Mediation 
systems, Data Warehousing systems, Federations of databases and Web Portals.   

data integration
system

data sources  

Figure 1 - Data Integration Systems 

Several freshness definitions have been proposed for different types of DIS. The 
traditional freshness definition, called currency (Segev et al., 1990), is related to 
view consistency when materializing data and describes how stale is data with 
respect to the sources. Currency captures the gap between the extraction of data 
from the sources and its delivery to the users. Recent proposals incorporate another 
notion of freshness, called timeliness (Wang et al., 1996), which describes how old 
is data. Timeliness captures how often data changes or how often new data is created 
in a source. Therefore, freshness represents a family of quality factors, each one best 
suiting a particular problem or system.  

Although data freshness has been largely studied (Segev et al., 1990; Zhuge et 
al., 1997; Cho et al., 2000; Li et al., 2003), several problems still remain either 
unsolved or insufficiently treated: specification of freshness expectations, 



Analyzing and evaluating data freshness in data integration systems     3 

acquisition of source freshness, auditing freshness of existing systems, providing 
support to quality-driven engineering and linking with other quality factors such as 
performance and accuracy (Bouzeghoub et al., 2003). Among these problems, we 
address the problem of evaluating data freshness and deciding if user quality 
expectations can be achieved. An auditing tool should take as input some metadata 
describing the DIS, sources and query classes, as well as measures of the actual 
freshness of source data and user freshness requirements. The tool should return a 
measure of the freshness of the data returned to the user. 

In this paper we analyze the dimensions that have impact in the freshness of data, 
namely, the nature of the data, the system features and the synchronization policies 
of the underlying management system, and we organize them in a taxonomy for 
classifying the scenarios where data freshness can be evaluated. We propose a 
framework that models DIS integration processes as a workflow of calculation 
activities and performs the evaluation based on the workflow representation. We 
illustrate the approach using the framework in a particular scenario.  

The rest of the document is organized as follows: Section 2 analyzes the 
dimensions involved in freshness evaluation and presents the taxonomy. Section 3 
describes the framework, which is used in section 4 to evaluate data freshness in a 
particular scenario. Finally, section 5 concludes with our general remarks. 

2. Data Freshness  

This section describes freshness metrics and techniques and analyzes some 
dimensions that impact the evaluation and enforcement of data freshness. We also 
present a taxonomy that summarizes this discussion and enables the classification of 
application scenarios. 

2.1. Overview of Metrics  

A metric is a specific instrument that can be used to measure a given quality 
factor. There might be several metrics for the same quality factor. Table 1 describes 
the metrics proposed in the literature for measuring data freshness, classified by 
factor. A larger description of factors and metrics can be found in (Bouzeghoub et 
al., 2004). 

These factors and metrics have been used in different systems and different 
application contexts, among which:  

− View Materialization: In the context of view materialization, a view is 
consistent if its state reflects an actual source state at some “recent time” (Zhuge et 
al., 1997), so the goal is assuring a certain degree of data currency. The view 
maintenance problem consists of updating a materialized view in response to  
  



4     Ingénierie des systèmes d’information. Volume 9 – no 4/2004n 

Factor Metric Definition 

Currency The time elapsed since data was extracted from the 
source (The difference between query time and 
extraction time) (Segev et al., 1990; Theodoratos et 
al., 1999).  

Obsolescence The number of updates transactions/operations to a 
source since data extraction time (Gal 1999). 

Currency 

Freshness rate The percentage of tuples in the view that are up-to-
date (have not been updated since extraction time) 
(Cho et al., 2000; Labrindis et al., 2003). 

Timeliness Timeliness The time elapsed from the last update to a source 
(the difference between query time and last update 
time) (Naumann et al., 1999; Gertz et al., 2004). 

Table 1 – Freshness factors and metrics 

changes arisen at source data. Most of the work concentrates in assuring data 
warehouse consistency for different types of views and refreshment strategies 
(Gupta et al., 1995). Another key problem has been the selection of a set of views to 
materialize in order to optimize the query evaluation and/or the maintenance cost 
(Theodoratos et al., 1997; Baralis et al., 1997). In this context, freshness is implicitly 
considered when defining the update propagation processes.  

− Caching: In caching systems, data is considered fresh when it is identical to 
data in the sources, so freshness is represented by the currency factor. An important 
problem is defining the refreshment policies in order to keep cache data up-to-date. 
Traditional cache proposals estimate the time-to-live (TTL) of an object to check 
whether this object is valid or not and when to get it from its source. In (Cho et al., 
2000), they study the synchronization policies for cache refreshment and 
experimentally verify their behavior. In (Li et al., 2003), the focus is in the fine-
tuning of the caching policy, balancing response time and invalidation cycles for 
assuring data currency. In (Bright et al., 2002), they propose the use of latency-
recency profiles to adapt caching algorithms to user currency requirements, 
accessing the remote site only when the expected currency is not achieved.  

− Virtual Systems: In pure virtual systems, e.g. classical mediation systems, 
currency is implicitly studied when dealing with response time. A key problem is 
query optimization, but freshness is not the goal. New proposals take into account 
the timeliness factor. It is used as a quality metric to compare among sources and to 
filter the data returned to the user. In (Naumann et al., 1999), they study how to 
propagate a set of quality factors from several heterogeneous sources to the 
mediator.  



Analyzing and evaluating data freshness in data integration systems     5 

2.2. Dimensions for Freshness Analysis 

This section analyzes some dimensions that impact the analysis and enforcement 
of data freshness: nature of data, system features and synchronization policies. 

2.2.1. Nature of Data  

According to its change frequency, we can classify source data in three 
categories:  

− Stable data: It is data that is improbable to change. Examples are person 
names, postal codes and country names.  

− Long-term-changing data: It is data that has a very low change frequency. 
Examples are the addresses of employees, country currencies and hotel price lists in 
a tourist center. The concept of “low frequency” is user dependent. 

− Frequently-changing data: It is data that has intensive change, such as real-
time traffic information, temperature sensor measures and sales quantities.  

The nature of data is important because it is related to the notion of freshness that 
users are interested in. When working with frequently changing data, it is interesting 
to measure how long data can remain unchanged and minimize the delivery of 
expired data. However, when working with stable or long-term changing data, these 
questions have no sense since data does not change very often. It is more interesting 
to measure how often new data is created or how old is the data. 

The changes can occur in a random way or with a defined frequency. For 
example restaurant menus, which are updated every morning, have a defined change 
frequency, but the account balances, which are updated with every account 
movement, have not got a defined frequency. In such cases, we can use data 
properties to develop specialized techniques, for example, synchronizing 
applications to extract data at the best moment. 

2.2.2. System Features 

The freshness of the data returned to the user depends on the freshness of the 
extracted data but also on the processes that extract, integrate and deliver this data. 
These processes are very important because they can introduce additional delays. 
These delays can be relevant or not depending on freshness requirements. For 
example, in a given system, the evaluation of a query (minutes) is irrelevant 
compared to timeliness requirements (weeks), while in another system the 
aggregation processes can have the same order of magnitude of currency 
requirements (hours). 

Specific cost models should take into account different parameters. These 
parameters depend on the system architectural techniques. We distinguish three 



6     Ingénierie des systèmes d’information. Volume 9 – no 4/2004n 

types of techniques: virtual, caching and materialization techniques. The features of 
these three categories of techniques are summarized below:  

− Virtual techniques: The system does not materialize any data so all queries 
are calculated when they are posed. The system queries the relevant sources and 
merges their answers in a global answer that is delivered to the user. Examples are 
pure virtual mediation systems and query systems in database federations. 

− Caching techniques: The system caches some information, typically data that 
is frequently accessed or the result of some frequent queries, and invalidates it when 
the TTL has expired. If the information required to answer a user query is stored in 
the cache, the system delivers it to the user; if not, the system queries the sources as 
in virtual systems. Examples are caching systems. 

− Materialization techniques: The system materializes large volumes of data 
which is refreshed periodically. The users pose their queries and the system answers 
them almost using the materialized data. Examples are data warehousing systems 
and web portals that support materialization. 

Virtual techniques query sources and return data immediately, so data is almost 
current. The processing and communication costs are the delays that influence 
currency. Caching techniques are conceived to return data as current as possible, 
estimating the TTL of each object for deciding when to invalidate it. However, 
materialized systems can tolerate some level of staleness. Data is stored for some 
time in the DIS repositories, which decreases its freshness; the refreshment 
frequency is an important delay.  

2.2.3. Synchronization Policies 

The way the DIS is implemented influences the freshness of the data delivered to 
the users. Particularly, the synchronization between the sources, the DIS and the 
users has impact in data freshness because it introduces delays. For example, a DIS 
that synchronizes updates each end of the day may provide data which is not fresh 
enough for the expectations of a given user.  

According to the interaction between the DIS and the sources, the extraction 
processes can have pull or push policies. With pull policy, the DIS queries the 
sources to obtain data and with push policy, the source sends data to the DIS. 
According to the interaction between the DIS and the users, the query processes can 
also have pull or push policies. With pull policy, users directly pose queries to the 
DIS. With push policy, users subscribe to certain queries and the DIS regularly 
conveys response data to the users. The notifications can be sent by active agents or 
can be determined by polling, driven by temporal or non-temporal events. 

Combining the previous interactions between users, DIS and data sources leads 
to six possible configurations which are shown in Figure 2. With synchronous 
policies, the user directly accesses source data. With asynchronous policies, the DIS 



Analyzing and evaluating data freshness in data integration systems     7 

answers user queries using materialized data and asynchronously, the materialized 
data is refreshed from source data. 

Asynchronous policies introduce delays. The refreshment frequency of the DIS 
repository is important to evaluate the freshness of retrieved data. When pushing 
data to the user, the push frequency is also important. In systems where there are 
heterogeneous data sources with different access constraints and users with different 
freshness expectations, it is important to support and combine several kinds of 
policies. 

Users

Sources

pull

pull push

push

(a)

(b)

(c)

(d)

(e)

(f)

DIS

Configurations are named with the user-DIS policy 
followed by the DIS-source policy, 
(/) represent asynchronisms and (-) synchronisms. 

Synchronous configurations:
- pull-pull: arrow (a)
- push-push: arrow (f)

Asynchronous configurations:
- pull / pull: arrows (b) and (c)
- pull / push: arrows (b) and (e)
- push / push: arrows (d) and (e)
- push / pull: arrows (d) and (c)

Users

Sources

pull

pull push

push

(a)

(b)

(c)

(d)

(e)

(f)

DIS

Users

Sources

pull

pull push

push

(a)

(b)

(c)

(d)

(e)

(f)

DIS

Configurations are named with the user-DIS policy 
followed by the DIS-source policy, 
(/) represent asynchronisms and (-) synchronisms. 

Synchronous configurations:
- pull-pull: arrow (a)
- push-push: arrow (f)

Asynchronous configurations:
- pull / pull: arrows (b) and (c)
- pull / push: arrows (b) and (e)
- push / push: arrows (d) and (e)
- push / pull: arrows (d) and (c)

 

Figure 2 – Synchronization policies 

We organize the previously described dimensions into a taxonomy, which can be 
used to classify the different scenarios where data freshness can be analyzed. An 
example of scenario can be a DIS that integrates frequently changing data, using 
caching techniques and pull/pull policies. The taxonomy is useful because the 
technical problems to solve for each scenario are quite different. For example, 
enforcing currency in a materialized system implies developing efficient update 
propagation algorithms to deal with consistency problems, while evaluating 
timeliness in virtual systems is quite independent on the query rewriting algorithms 
and is dominated by source data timeliness. 

There is a correlation between system features and synchronization policies, 
since virtual techniques only support the synchronous pull-pull configuration, 
caching techniques are conceived for user pulls and materialization techniques 
support the asynchronous configurations. However, a priori, all combinations of 
natures of data and system features are possible, i.e. virtual, caching or 
materialization techniques (with their valid combinations of synchronization 



8     Ingénierie des systèmes d’information. Volume 9 – no 4/2004n 

policies) can be built to query different types of data. In addition, users of these 
systems can be interested in both freshness factors. But taking into account the 
particularities of the systems and the availability of metadata and estimations, the 
different metrics are generally more related to some kinds of systems. For example, 
obsolesce is most studied in caching systems.  

Next section describes a framework for data freshness evaluation that models the 
DIS and allows expressing the properties of each scenario. 

3. A Framework for Data Freshness Evaluation 

In this section we present a framework for data freshness evaluation in the 
context of a DIS. The framework models the DIS processes and properties and 
evaluates the freshness of the data returned to the user. Data freshness is evaluated 
through the application of quality evaluation algorithms that embed the properties of 
the scenarios.  

The proposed framework consists of a set of available data sources, classes of 
user queries, the DIS integration process, a set of properties describing system 
features and quality measures and a set of quality evaluation algorithms. The 
following subsections describe the framework and its components. 

3.1. Modeling the Data Integration System 

The DIS can be viewed as a workflow in which the activities perform the 
different tasks that extract, transform and convey data to end-users. Each workflow 
activity takes data from sources or other activities and produces result data that can 
be used as input for other activities. Then, data traverses a path from sources to users 
where it is transformed and processed according to the system logics. The data 
produced by an activity can be immediately consumed by other activities or it can be 
materialized for being queried later. Note that this notion of activity can represent 
processes of different complexity; from simple SQL operations to complex 
transformation procedures that can execute autonomously.  

Figure 3 sketches the dataflow representation of a DIS process. On the bottom 
diagram there are remote sources (Si). On the middle diagram there are the different 
activities (Ai) whose inputs are source data. The arrows indicate that the output node 
uses the data returned by the input node. The activities that directly take input data 
from sources are the wrappers that perform the data extraction from sources. The 
other activities take input data, directly or indirectly, from wrappers. On the top 
diagram there are the user query classes (Qi) representing families of queries that 
can be solved using the data produced by activities. 



Analyzing and evaluating data freshness in data integration systems     9 

Source
Relations

DIS
Activities

Query 
Classes

Q1 Q2 Q3 Q4

A7 A8 A9

A6

A2 A3

A5 A4

A1

S1 S2 S3

Source
Relations

DIS
Activities

Query 
Classes

Q1 Q2 Q3 Q4

A7 A8 A9

A6

A2 A3

A5 A4

A1

S1 S2 S3
 

Figure 3 – A dataflow representation of a DIS 

Formally, we represent the DIS dataflow by means of a directed acyclic graph 
(dag) that describes the involved activities, their inputs and outputs. The dag shows 
the data paths from sources to user queries within the different activities. 

Definition 1. A calculation dag is a dag G = <V, E> defined as follows: The nodes 
in V are of three types: source nodes (with no input edges) that represent the 
sources, target nodes (with no output edges) that represent query classes and activity 
nodes (with both input and output edges) that represent the different activities that 
calculate the set of target nodes from the source nodes. The edges in E represent that 
a node is calculated from another (the data flows in the sense of the arrow).  � 

Example 1. Consider the DIS of Figure 3 which provides meteorological 
information. There are three sources: S1 with real time satellite meteorological 
predictions, S2 with official meteorological predictions from a french dissemination 
database and S3 with information taken by climatic sensors. The goal of the system 
is to provide meteorological information to solve four classes of queries: Q1 
(historical information about climate alerts), Q2 (detailed data comparing 
predictions), Q3 (aggregated data about predictions) and Q4 (aggregated data about 
climate measurements). The DIS is composed of nine activities that process the 
information performing the data extraction, integration and aggregation. The 
activities A1, A2 and A3 are the wrappers, while activity A4 filters information 
keeping only the data about the metropolitan regions of France. Activity A5 
integrates information extracted from sources S1 and S2, adding comparison 
indicators and checking some integrity constraints. Activity A6 joins information 
produced by A4 and A5 and materializes the result. Activity A7 aggregates 
information keeping historical materialized data about drastic changes in climate 



10     Ingénierie des systèmes d’information. Volume 9 – no 4/2004n 

alerts. Activity A8 also performs aggregations. Finally, activity A9 reorganizes input 
information ordering it by region. � 

3.2. Modeling Properties 

In this section we describe the properties that express data and system features 
and support the calculation of data freshness. To carry out data freshness evaluation 
we firstly need to identify which freshness factor to evaluate, depending on user 
applications. This implies the selection of metrics, the determination of the relevant 
properties and the implementation of evaluation algorithms that measure, estimate or 
bound such quality factor.  

In order to calculate quality values corresponding to the selected factor, the 
algorithms need input information describing system properties such as, for 
example, the time an activity needs to execute or a descriptor stating if an activity 
materializes data or not. These properties can be of two types: (i) descriptions, 
indicating some feature of the system (costs, delays, policies, strategies, constraints, 
etc.), or (ii) measures, indicating a quality value corresponding to a quality factor, 
which can be an actual value acquired from a source, a calculated value obtained 
executing an evaluation algorithm or an expected value indicating the user desired 
value for the quality factor. We define a property as follows: 

Definition 2. A property is a 3-uple <Name, Metric, DataType> where the Name is a 
String that identifies the property, Metric is a description of the measurement 
semantics and units and DataType describes the domain of the property values.  � 

The freshness of the data delivered to the user depends on source data freshness 
but also on the execution delay of the system, which is the amount of time from data 
extraction to data delivery. This length of time is influenced not only by the 
processing cost of each activity (the time the activity needs for executing) but also 
for the delays that can exist between the executions of consecutive activities. We 
briefly describe such properties, as well as user expectations: 

− Processing cost: It is the amount of time, in the worst case, that an activity 
needs for reading input data, executing and building result data.  

− Synchronization delay: It is the amount of time passed between the 
executions of two consecutive activities.  

− Actual Freshness: It is a measure of the freshness of data in a source, which 
can be provided by the source or can be estimated or bounded by the system.  

− Expected Freshness: It is the desired freshness for the data returned by 
queries.  It measures the extent to which the freshness of the data is appropriate for 
the task on hand (Wang et al., 1996), and is also related to data volatility that 
identifies the time interval in which data remain valid (Ballow et al., 1998). 



Analyzing and evaluating data freshness in data integration systems     11 

The relevance of these properties depends on its magnitude compared to 
freshness requirements, but it also depends on the scenario. For example, the 
materialization of data and the use of different policies to refresh such data may 
imply important synchronization delays while in virtual systems these delays can be 
negligible. Other properties can be considered for specific scenarios. The selection 
of adequate properties for each scenario also depends on the quality factors. 
Particularly, considering the source actual freshness is only relevant when 
evaluating timeliness because currency is measured with respect to source data.  

A property can be related to some nodes or edges of the calculation dag. For 
example, we can associate actual freshness to source nodes, expected freshness to 
target nodes and synchronization delays to edges. Figure 4 shows the calculation dag 
of Figure 3 labeled with some properties. The following definition formalizes the 
association of properties to the calculation dag. 

Definition 3. A labeled calculation dag is a calculation dag whose nodes and edges 
have associated a set of property values:  

G= <V, E, P, propvalue> 
where: 

− V and E are sets of nodes and edges. 

− P is a set of properties. 

− propvalue is a partial function that assigns a value of a property to a node or 
edge of the dag. It is defined as: propvalue: (V ∪ E) × {p / p ∈ P} � p.DataType � 

 

As a labeled calculation dag describes the DIS integration process and its 
properties, it contains the input information needed by the evaluation algorithms.  

The quality evaluation is performed by evaluation algorithms that take as input a 
labeled calculation dag, calculate the quality values corresponding to a quality factor 
and return a calculation dag with an additional property (corresponding to the 
evaluated quality factor). The calculation dag must be labeled with certain properties 
in order to execute a certain algorithm. For example, the activity nodes of a 
calculation dag must be labeled with their processing cost in order to execute certain 
algorithm that evaluates data currency in certain scenario.  

The framework does not constraint the way the algorithms can be implemented. 
For example, an algorithm can evaluate freshness in a bottom-up way, that is, 
calculating the freshness of the data produced by a node in terms of the freshness of 
the data coming from input nodes and adding processing costs and synchronization 
delays. Another algorithm can evaluate the freshness of target nodes in a top-down 
way, starting at target nodes and adding costs and delays of predecessor nodes until 
arriving to a source node. The proposed DAG representation facilitates the 
implementation because it enables to use graph primitives (getPredecessors, 



12     Ingénierie des systèmes d’information. Volume 9 – no 4/2004n 

getSuccessors, getProperties, etc.) and traversal methods (findShortestPath, 
depthFirstSearch, etc.).  

In the next section we present an example of how the evaluation algorithms can 
be implemented. 

4. Using the Framework  

In this section we show the application of the framework for a particular 
scenario. We firstly determine the set of properties that impact on the evaluation of 
data freshness for this scenario and we develop an evaluation algorithm that 
considers such properties. Then, we illustrate the evaluation and enforcement of data 
freshness. 

4.1. Determining the Appropriate Properties  

Consider the following scenario for the evaluation of timeliness in the DIS of 
Example 1: By the characteristics of the sources (meteorological satellite and 
dissemination sources) data changes very frequently. In addition, the 
implementation of the system combines virtual and materialization techniques and 
synchronous and asynchronous pull-pull policies.  

Lets consider that queries Q1, Q2, Q3 and Q4 have freshness requirements of 168, 
72, 48 and 2 hours respectively; then, only the costs and delays of the same 
magnitude order are relevant. In this scenario, for calculating the processing cost of 
the activities, we consider a global cost that adds communication, computing and 
materialization costs. For calculating the synchronization delay we consider access 
constraints, materialization, synchronization policies and execution frequencies. We 
briefly describe such properties and their influence in the synchronization delay: 

− Synchronization policy: It describes the synchronization between a node and 
a successor node. We distinguish four synchronization policies: (i) synchronous-
pull, the successor asks the node for data, the latter executes and answers with the 
produced data, (ii) asynchronous-pull, the successor asks the node for data and the 
latter answers with its materialized data, (iii) synchronous-push: the node executes 
and sends the produced data to the successor, and (iv) asynchronous-push: the node 
sends its materialized data to the successor.  

− Execution frequency: When an activity is not synchronized with predecessor 
nor successor nodes, we consider that it executes periodically, with a defined 
execution frequency.  

− Materialization: It indicates if an activity materializes data or not. 

− Access constraints: It is the lowest time interval that a source allows between 
two consecutive data extractions.   



Analyzing and evaluating data freshness in data integration systems     13 

Example 2. Figure 4 shows the calculation dag of Figure 3 labeled with the 
ExpectedFreshness, ActualFreshness, Cost (processing cost), Materialization, 
Efrequency (execution frequency), AccessConstraint, Spolicy (synchronization 
policy), and Delay (synchronization delay) properties. The Spolicy property has the 
values Spull (synchronous pull) and Apull (asynchronous pull). The Materialization 
property has the values V (virtual) and M (materialized). The other property values 
are expressed in hours. � 

 

Figure 4 – Labeled calculation dag 

In the presence of access constraints, the wrapper should periodically 
materialize data to assure the availability of source data. For example, consider that 
S2 materializes data once a day and consequently it has no sense to query it more 
frequently (constraint of 24 hours), S3 has no access constraint and can be queried at 
every moment (constraint is 0) and the system administrator has contracted to query 
S1 every 12 hours because of its price. 

When there are asynchronous synchronization policies between two consecutive 
activities, the data produced by the former must be materialized for being queried 
later by the latter, and could introduce synchronization delays. For example, the data 
produced by A6 (see Figure 4) can have been materialized for almost 10 hours when 
read by A8, then the delay will be 10 hours in the worst case. However, when there 
is no materialization, the activities execute immediately after its predecessors so 
there are no delays. Furthermore, activities having the same execution frequencies 



14     Ingénierie des systèmes d’information. Volume 9 – no 4/2004n 

(as A6 and A7) can be synchronized to execute one after the other without delay. 
When there is materialization, the delays with target nodes are the refreshment 
periods (inverse of refreshment frequencies) of the materialized data. When a source 
materializes data (as S2) and it is read later by the wrapper there is a delay. 

4.2. Evaluating Freshness  

In this section we specify how to propagate freshness values within the graph, 
calculating the freshness of the intermediate data produced by each node. We firstly 
give an intuitive idea of the freshness calculation strategy and then we present an 
algorithm.  

Intuitively, the freshness of the data produced by a node depends on the 
freshness of data at the moment of reading it (the freshness of data produced by the 
predecessor node plus the synchronization delay) and the time the node needs for 
executing (the processing cost). To calculate the freshness of a node we add such 
values. When the node reads data from several input nodes, input freshness values 
should be combined. As we are interested in an upper bound of freshness we take 
the worst case (the maximum).  

The following pseudo-code sketches the algorithm: 

FUNCTION DataFreshnessEvaluation (G: LabeledCalcula tionDag)  

 RETURNS LabeledCalculationDag  

BEGIN 

 INTEGER value, max; 

 FOR EACH source node A DO 

  value= A.GetPropertyValue(“ActualFreshness”); 

  A.addProperty(“freshness”, value); 

 ENDFOR 

 FOR EACH activity and target node A in a topologic al order DO 

  max= 0; 

  FOR EACH node B in G.getPredecessors(A) DO 

   value= B.getPropertyValue(“freshness”)  

      + G.getEdge(B,A).getPropertyValue(“delay”); 

   IF (value > max) THEN max= value;  

  ENDFOR 

  value= max + A.getPropertyValue(“cost”); 

  A.addProperty (“freshness”, value); 

 ENDFOR 

END 



Analyzing and evaluating data freshness in data integration systems     15 

The freshness of a source node is its actual freshness. The freshness of an 
activity or target node is the maximum sum of the freshness of a predecessor node, 
plus the synchronization delay between nodes, plus the processing cost of the node.  

Example 3. Figure 5 shows the Freshness property, calculated using the previous 
definition. For example, for A6 both inputs are compared, 55 (32+22+1) and 6 
(5+0+1) respectively, taking the maximum. � 

 

Figure 5 – Calculating freshness (Some properties have been omitted for readability) 

Observe that for each node, there is a path for which we add all synchronization 
delays and processing costs to the source actual freshness and we obtain the 
freshness of the node. In the previous example, the freshness of A7 can be calculated 
adding the freshness of source S2 (24), plus the delays (2,0,22,0) and the costs 
(3,3,1,2) in the path [S2, A2, A5, A6, A7]. In (Peralta et al., 2004) we show that there 
exists a path in the dag that determines the freshness of each node, and that this path 
is the most expensive one, i.e. the critical path (taking as costs the processing costs 
and synchronization delays). The existence of a critical path allows the use of a large 
spectrum of algorithms for optimizing a workflow of activities. Next section 
discusses their use when user requirements are not achieved. 

4.3. Enforcing Freshness 

The system should provide at the query level the data freshness expected by the 
users. To know if user freshness expectations can be achieved by the system, we can 



16     Ingénierie des systèmes d’information. Volume 9 – no 4/2004n 

propagate freshness values (executing the algorithm) and compare them with those 
expected for queries. If the propagated freshness values are lower than user expected 
values then freshness can be guaranteed. If the propagated freshness values are 
greater than user expected values, there exists at least one path from a source where 
propagated freshness is higher than expected freshness. There are several 
alternatives to enforce freshness in a path: negotiating with users to relax freshness 
expectations, negotiating with source data providers to relax source constraints, 
improving the design of the activities in order to reduce their processing cost and 
synchronizing the activities in order to reduce the delay between them (Peralta et al., 
2004). 

Example 4. In the example of Figure 5, data for solving Q1 has a freshness of 69 
hours which satisfy user expectations of 168 hours. This means that the system can 
be relaxed and activities in the paths from sources to Q1 can be executed less 
frequently. Data for solving Q3 does not meet user expectations (66 versus 48 
hours). Analyzing the critical path to Q3 ([S2, A2, A5, A6, A8, Q3]) some activities can 
be synchronized to reduce the delays and meet freshness expectations (for example 
executing A6 immediately after A5). The processing cost of some activities can be 
reduced too (for example replacing wrapper A2 by a more performing one). 
However, even neglecting the cost of the activities in the paths to Q4, freshness 
expectations cannot be achieved because the actual freshness of S3 is too high. The 
solution should be a negotiation with users and/or source providers. � 

5. Conclusion  

Data freshness represents a family of quality factors and metrics. In this paper 
we have analyzed these factors and metrics and the features that influence the data 
freshness evaluation, namely system features, synchronization policies and nature of 
data.  

We presented our current investigations in the line of developing an auditing tool 
for data freshness evaluation. We proposed a framework for performing such 
evaluation, which models the DIS integration process and its properties in terms of a 
labeled calculation dag. We discussed data freshness evaluation and enforcement 
solutions as graph traversal mechanisms and we illustrated our approach for a 
specific scenario. 

Most of the functions of the previously described framework have been 
implemented in a Data Quality Evaluation tool (Fajardo et al., 2004). The prototype 
was implemented in Java (JDK 1.4); figures 4 and 5 are taken from the screens of 
the tool. The tool has been used to perform some experiences with data freshness 
metrics in different scenarios. The first experience was the evaluation of timeliness 
in a virtual scenario, neglecting processing costs and synchronization delays, i.e. 
propagating timeliness as the combination of source actual timeliness, as in 



Analyzing and evaluating data freshness in data integration systems     17 

(Naumann et al., 1999). We have also used the tool with materialized scenarios, 
initially with asynchronous execution policies and progressively generalizing the 
scenarios to represent hybrid environments. The framework helped us to test the 
performance and appropriateness of the different evaluation algorithms. In the 
future, our goal is to confront the results with user quality profiles. 

6. References 

Ballow D., Wang R., Pazer H., Tayi, G., “Modelling Information Manufacturing Systems to 
Determine Information Product Quality”, Management Science, vol. 44 (4), April 1998. 

Baralis E., Paraboschi S., Teniente E., “Materialized view selection in a multidimensional 
database”, in proc. of the 23rd Int. Conf. on Very Large Data Bases VLDB’97, Greece, 
1997.  

Bouzeghoub M., Peralta V., “A Framework for Analysis of Data Freshness”, in proc. of the 
Int. Workshop on Information Quality in Information Systems IQIS’2004, France, 2004.  

Bright L., Raschid L., “Using Latency-Recency Profiles for Data Delivery on the Web”, in 
proc. of the 28th Int. Conf. on Very Large Databases VLDB'02, China, 2002. 

Cho J., Garcia-Molina H., “Synchronizing a database to improve freshness”, in proc. of the 
2000 ACM Int. Conf. on Management of Data SIGMOD'00, USA, 2000. 

Fajardo F., Crispino I., Peralta V., “DWE: Una Herramienta para Evaluar la Calidad de los 
Datos en un Sistema de Integración”, in proc. of the X Congreso Argentino de 
Computación CACIC’04, Argentine, 2004. 

Gal A., “Obsolescent materialized views in query processing of enterprise information 
systems”, in proc. of the 1999 ACM Int. Conf. on Information and Knowledge 
Management CIKM'99, USA, 1999. 

Gertz M., Tamer Ozsu M., Saake G., Sattler K., “Report on the Dagstuhl Seminar: Data 
Quality on the Web”, SIGMOD Record, vol. 33(1), March 2004. 

Gupta A., Mumick I., “Maintenance of Materialized Views: Problems, Techniques, and 
Applications”, Data Engineering Bulletin, June 1995.  

Labrinidis A., Roussopoulos N., “Balancing Performance and Data Freshness in Web 
Database Servers”, in proc. of the 29th Int. Conf. on Very Large Data Bases VLDB’03, 
Germany, 2003. 

Li W.S., Po O., Hsiung W.P., Selçuk Candan K., Agrawal D., “Freshness-driven adaptive 
caching for dynamic content Web sites”, Data & Knowledge Engineering DKE, vol. 
47(2): 269-296, 2003. 

Mannino M., Walter Z. (2004), “A Framework for Data Warehouse Refresh Policies”, 
Technical report CSIS-2004-001, University of Colorado at Denver, 2004. 

Naumann F., Leser U., “Quality-driven Integration of Heterogeneous Information Systems”, 
in proc. of the 25th Int. Conf. on Very Large Databases VLDB'99, Scotland, 1999. 



18     Ingénierie des systèmes d’information. Volume 9 – no 4/2004n 

Peralta V., Bouzeghoub M., Evaluating Data Freshness in Data Integration Systems, technical 
report, Université de Versailles, France, 2004. 

Segev A., Weiping F., “Currency-Based Updates to Distributed Materialized Views”, in proc. 
of the 6th Int. Conf. on Data Engineering ICDE’90, USA, 1990. 

Shin B., “An exploratory Investigation of System Success Factors in Data Warehousing”, 
Journal of the Association for Information Systems, vol. 4(2003), 141-170, 2003. 

Theodoratos D., Sellis T., "Data Warehouse Configuration", in proc. of the 23rd Int. Conf. on 
Very Large DataBases VLDB’1997, Greece, 1997. 

Theodoratos D., Bouzeghoub M., “Data Currency Quality Factors in Data Warehouse 
Design”, in proc. of the Int. Workshop on Design and Management of Data Warehouses 
DMDW'99, Germany, 1999. 

Wang R., Strong D., “Beyond accuracy: What data quality means to data consumers”, Journal 
on Management of Information Systems, vol. 12, 4:5-34, 1996. 

Zhuge Y., Garcia-Molina H., Wiener J., “Multiple View Consistency for Data Warehousing”, 
in proc. of the 13th Int. Conf. on Data Engineering ICDE'97, UK,1997. 


