
APMD-Workbench: A Benchmark for Query Personalization

Verónika Peralta
Laboratoire d’Informatique

Université de Tours
3, pl Jean Jaures

41000 Blois, France
+33-2-54552112

vperalta@univ-tours.fr

Dimitre Kostadinov
Alcatel-Lucent Bell Labs France

Route de Villejust
91620 Nozay, France

+33-1-30772116

Dimitre_Davidov.Kostadinov
@alcatel-lucent.com

Mokrane Bouzeghoub
Laboratoire PRiSM

Université de Versailles
45, av des Etats-unis

78000 Versailles, France
+33-1-39254057

mok@prism.uvsq.fr

ABSTRACT
Query personalization algorithms intend to deliver the most rele-
vant data to each user according to their profiles. Validating effi-
ciency and relevancy of such algorithms still remains a very diffi-
cult task as it requires a scalable dataset, a bunch of user profiles
and queries and possibly user feedbacks. At the best of our
knowledge, there is not a reference benchmark devoted to the
validation of such algorithms. In most of the published papers,
validation of personalized queries is done through ad hoc bench-
maks whose features are not given and which are generally not
provided to other authors to perform similar evaluations. In this
paper, we present a benchmark for query personalization which
aims to be a reference to validate query personalization systems.
The benchmark is based on a large test bed derived from MovieL-
ens and IMDb datasets, and provides, besides the data set itself, a
large sample of queries and users as well as their corresponding
good results.

1. INTRODUCTION
Query personalization is one of the main solutions to improve data
relevance in information retrieval and database systems. Before
being executed, user queries are reformulated on the basis of user
profile preferences. This allows targeting user’s domain of interest
and thus delivering pertinent results and reducing result size.

In order to measure the relevance of results, we need to compare
delivered results with those effectively preferred by users. In other
words, we need a reference data set that contains several queries
and the corresponding sets of query results that are relevant for
each user. In this way, we can quantitatively evaluate the behav-
iour of a personalization algorithm using metrics such as preci-
sion, recall, result size, performance, etc.

In this paper we describe the construction of a benchmark for
query personalization. There exist several benchmarks among
which we can cite the TPC benchmarks for database server per-
formances [9] or the TREC benchmarks for information retrieval

systems [8]. However, as far as we know, there is no benchmark
providing a validation framework to query personalization algo-
rithms, at least in the database domain. A benchmark for query
personalization should also manage different users and their pref-
erences. Specifically, they should provide a large database, a set
of users, a set of queries and the reference results associated to
each user and query, i.e. they should provide collections of triplets
{(query, user) � results}.

Obtaining such reference results is very costly because it involves
asking users to explicitly evaluate query results. The TREC
benchmark [8] was built in this manner and the task lasted several
years. In addition, there was no notion of user profile in TREC,
but users divided the task of judging if documents were pertinent
or not in a global manner. For the proposed benchmark, instead of
asking a set of users to manually classify query results according
to their preferences and feelings, we reuse ratings already ex-
pressed by real users and published on the Web.

Our dataset is derived from two public databases, i.e. MovieLens
[1] and IMDb [5]. Both databases deal with data about movies.
The IMDb database contains rich information about films, actors,
directors, the places where they are produced, their budgets, their
categories and the average rank given by the users who had evalu-
ated them. The MovieLens database contains very few informa-
tion about films but provides a huge amount of evaluations given
by users who have seen these films. The two databases are com-
plementary as they almost target the same movies (actually the set
of films referred in MovieLens is a subset of those referred in
IMDb). The main advantage of using these databases is their large
volume of data, which is freely available through Internet. In addi-
tion, movie data is very easy to understand, to use and to analyze.

The construction of the benchmark proceeds in three phases, as
illustrated in Figure 1. The first phase consists in extracting, trans-
forming and loading movie data from IMDb and MovieLens. The
second phase consists in generating a set of queries and deriving
the corresponding “good” results for each user. This can be done

IMDb

MovieLens

Data Extraction,
Cleaning,

Reconciliation
and Integration

Movie info
User ratings

Queries and
Results

Generation

Users
Queries

Ref. results

Benchmark rBenchmark refinementefinement

Profiles and
Queries

Selection

User ProfilesUser Profiles
Selected QueriesSelected Queries

Ref. resultsRef. results

Integrated Schema

Data acquisition Data acquisition Benchmark construction Benchmark construction

Integrated database
Benchmark database Refined benchmark

Figure 1 – Benchmark construction process

thanks to the content originated from MovieLens which provides
a large set of user evaluations on different films they have seen.
The benchmark database contains several thousand queries and
users, and several millions reference results. The third phase con-
sists in selecting the users and queries that are worth to be tested
in a particular type of test. This selection is particularly necessary
as the execution of the whole set of queries for the whole set of
users necessitates tens of years although limiting the query evalua-
tion process to a few seconds. Actually, the benchmark database
serves as a basement to generate several specific benchmarks with
different features, depending of the evaluation goal.

This paper describes the construction of the benchmark and its use
for query reformulation. Section 2 describes the procedures for
extracting and integrating IMDb and MovieLens data, for generat-
ing a set of queries, and for obtaining the reference results for
each pair (query, user). Section 3 presents an example of use of
the benchmark, illustrating the generation of user profiles and the
comparison of results for a particular type of tests. Finally, Sec-
tion 4 presents our conclusions.

2. BENCHMARK DESIGN
This section describes the challenges, the difficulties and the
strategies used to define the benchmark.

2.1 Data Acquisition
The first phase consists in extracting, transforming and integrating
IMDb and MovieLens data in order to build a relational database
about movies, which includes movie descriptions and user ratings.

MovieLens data set consists of 3 text files, with tabular format,
describing 1.000.209 anonymous ratings of 3.883 movies made by
6.040 MovieLens users. IMDb data set consists of 49 ad-hoc text
files, called lists, which record different details about movies. At
October 2006, list sizes varied from 25.000 to 5.000.000 tuples
about more than 850.000 movies. We extracted data from 23 lists,
representing the most relevant tabular features about movies.

For both data sets, data extraction consisted in several tasks in-
cluding loading of text data into a relational database, transforma-
tion and normalization of data types, standardization of codes,
filtering of inconsistent values and duplicate elimination. The
matching of MovieLens and IMDb movie titles (which identify
movies) was the most difficult task in the construction of the inte-
grated database.

The integrated schema consists in 52 tables describing movies,
companies and persons related to movies as well as the users that
evaluated movies. It includes 1 table listing movies, 1 table con-
taining user evaluations, 3 tables describing users, 20 tables de-
scribing movie features (e.g. genres), 23 tables relating movies to
features and 4 auxiliary tables. We refer the interested user to [6]
for further details on data acquisition.

2.2 Generation of Queries
In order to build the benchmark database we need to build a set of
queries and the reference results for each pair (query, user). In-
stead of asking users to manually classify query results according
to their relevance, we reuse movie ratings already given by
MovieLens users. Specifically, each tuple of the I_UserRatings
table of the integrated database corresponds to an evaluation of a
movie, registered by a user, indicating a rating (in a 1-5 star
scale).

As ratings qualify movies, we generate a set of queries returning
movies, which are lately compared to the movies having a high
user rating. Queries have a star-like form:

SELECT I_UserRatings.movieid
FROM I_UserRatings, <additional tables>
WHERE <filtering conditions> AND <join conditions>

Note that instead of selecting movies from the whole set of mov-
ies, we consider as space of solutions, the ones that the user has
already evaluated (i.e. the I_UserRatings table). In this way, que-
ries return only movies whose ratings are already known. We join
the I_UserRatings table with some tables describing movie fea-
tures and we add some filtering conditions on such features.

Filtering conditions are predicates of the form feature operator
value, where operator ∈ {=,≤,≥}, and value ranges in the domain
of a movie feature. We randomly select a small number of predi-
cates (from 1 to 5) for each query, which avoids generating mon-
ster queries that returns no data. However, the randomness of the
selection allows obtaining result sets of different sizes, ranging
from almost empty sets when queries have several restrictive
predicates to almost all data when queries have few non-restrictive
predicates. The additional tables are those referenced in the predi-
cates and those necessary to join them to the I_UserRatings table.
Details on query generation can be found in [7].

2.3 Computation of Reference Results
As the rating of each movie is known, we can easily build the set
of reference results, i.e. those movies rated with 3, 4 or 5 stars.

Actually, we partition the I_UserRatings table into two subsets: (i)
training set, available for the generation of user profiles, and (ii)
test set, available for executing queries and measuring personal-
ization results. This partitioning allows personalization algorithms
to learn user preferences and derive user profiles without biasing
the test results. To avoid side effects generated by the arbitrary
choice of these two subsets, the process has been repeated for
several subsets, randomly generated from the original dataset.

In order to compute partitions, five random attributes were added
to the I_UserRatings table (namely, C1, C2, C3, C4 and C5), each
one randomly filled with an integer between 0 and 9. Therefore,
the test set is described by a condition on the values of one of the
Ci attributes (1≤i≤ 5). We also parameterize the rating above
which a film is considered to be good (from 3 to 5).

Consequently, in order to execute a query for a given user accord-
ing to a partitioning and rating strategy, the query is restricted
with three conditions on the I_UserRatings table: (i) a TestSet-
Condition of the form Ci<N, 1≤i≤ 5, 0≤N≤9, (ii) a RatingCondi-
tion of the form rating ≥ V, 3≤V≤5 and (iii) a UserCondition of
the form userid=U, 1≤U≤6040. As an example of restricted que-
ries consider:

SELECT I_UserRatings.movieid
FROM I_UserRatings, I_MovieCountries
WHERE I_UserRatings.movieid =I_MovieCountries.movieid
AND I_MovieCountries.country = ‘France’
AND Ci<N AND userid = U AND rating ≥ V ;

2.4 Experiment and statistics
The benchmark was developed and stored in an Oracle 9i data-
base. Preprocessing and parsing procedures where implemented in
Java, loading was performed with the SQL-Loader utility and the
remaining procedures where implemented in PL-SQL (stored
procedures). In this section we describe some results and statistics
obtained from the execution of those procedures, specifically, we
describe parameter setting and we analyze the generated queries
and their result sizes.

2.4.1 Setting parameters
As previously argued, we aim at generating different partitioning
and rating strategies in order to obtain unbiased experimental
results. We tested different parameters discarding those that pro-
duced too few tuples in the test set (e.g. when setting ‘rating = 5’).

We kept the 20 strategies shown in Table 1 (they are packed by 5,
for 1 ≤ i ≤ 5). These strategies combine two test set sizes, with
approximately 50% (Ci≥5) and 70% (Ci≥3) of tuples respectively,
and two rating conditions (rating ≥ 3 and rating ≥ 4). Table 2
shows the average number of good ratings in the test set per user
and type of strategy.

Table 1 – Combination of partition and rating strategies

Strategy id Test set cond. Rating cond.
1-5 Ci ≥ 5 Rating ≥ 3
6-10 Ci ≥ 5 Rating ≥ 4
11-15 Ci ≥ 3 Rating ≥ 3
16-20 Ci ≥ 3 Rating ≥ 4

Table 2 –Average number of good ratings in the training set
per user and type of strategy

Test cond All ratings Rating≥3 Rating≥4
Ci ≥ 3 116 96 66
Ci ≥ 5 83 69 48

2.4.2 Obtained queries
Having set parameters, we proceeded to execute the query genera-
tion procedures. We obtained an initial set of 622.061 predicates
for all queries, from which we randomly selected from 1 to 5
predicates per query. We generated 6040 queries and we added a
query with no predicates. After generating queries, we executed
them over several test sets (for all users) and we measured the size
of the obtained results. Figure 2 illustrates result sizes for one
particular strategy (with test size=70% and rating≥3). We took
two measures: the average of user’s result sizes, and the maximum

Cumulative number of queries by result size

0

1000
2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Number of results

N
u

m
b

er
 o

f
q

u
er

ie
s

max

avg

Figure 2 – Number of queries by result size

result size (for the user obtaining the most of results). Note that
most queries returns less than 20 tuples in average but they return
more results for some users. Further details can be found in [7].

3. AN EXAMPLE OF BENCHMARK USE
The benchmark presented in the previous section can be used to
evaluate various personalization approaches. This section shows
its use for evaluating query reformulation approaches.

3.1 Query Reformulation Approaches
Query reformulation applies to the context of mediation systems.
It consists in reinterpreting the user intention, expressed in his
initial query, into a more complete query, considering at the same
time the user profile and the descriptions of the data sources.
Thus, query reformulation integrates two complementary tasks: (i)
query enrichment which consists in integrating user profile con-
tent in the user query and (ii) query rewriting which transforms a
query expressed on the virtual schema in expressions (rewritings)
expressed on the data sources.

We evaluated three query reformulation approaches, proposed in
[3]. Two of them are compositions of existing algorithms for
query rewriting [2] and query enrichment [4]. They differ in the
order of application of the rewriting and enrichment algorithms.
The third approach is an interleaving of the two previous ones.

In order to evaluate and compare these query reformulation tech-
niques, we adapted the benchmark presented in the previous sec-
tion. Next sub-section presents the benchmark refinement process.

3.2 Benchmark Refinement
The query reformulation approaches require the presence of a
distributed system and the availability of predicate-based user
profiles. In order to fulfill these requirements, the benchmark have
been refined by simulating a distributed system and by extracting
profile predicates from the users’ training sets.

To simulate a distributed environment, the integrated schema of
the benchmark is taken as global schema. Then 52 views have
been manually defined over this global schema in accordance with
the following assumptions: (i) views should provide all data con-
tained in the integrated database, assuring no information loss, (ii)
views schemas should overlap, generating some redundancy in
order to measure the capacity of an approach to select only rele-
vant data sources, and (iii) some views definitions should contain
selection predicates enabling to check if a reformulation approach
selects data sources which are able to better satisfy the user pref-
erences . Each view is considered as being a separate data source.
User profiles are constructed as sets of predicates that state user
preferences on movie features. Profile predicates have the form
feature=value, where value ranges in the domain of the movie
feature. For example, a certain user may prefer movies spoken in
French or action movies; which is expressed by the predicates:
Language = French, Genre = Action.

In order to extract a user profile from a set of user evaluations
(those of the training set), we look for common features of the
evaluated movies. For example, if most of the movies to which the
user has assigned a great rating are filmed in France, we deduce
that the user prefers movies filmed in France, and we propose the
predicate LocationCountry=France.

We generated a large set of predicates where each predicate is
associated with a weight representing the percentage of evaluated
films that satisfy it. Weights allow conforming more or less re-
strictive user profiles by choosing the predicates with higher
weights or accepting predicates with lower weights. Weighted
predicates have the form <table.attribute operator value
(weight)> where: table and attribute refer to an attribute of a table
of the integrated schema (referencing a movie feature), value is an
element of the attribute domain, operator ∈ {=,<,≤,>,≥} and
weight represents the percentage of the evaluated films that satisfy
the predicate. Examples of weighted predicates are
“I_MovieLanguages.language = English (80)” and
“I_Countries.continent = Europe (25)” which can be interpreted
as among the films the user has evaluated, 80% are spoken in
English and 25% have been filmed in Europe.

3.3 Query and Profile Selection
The execution of the whole set of available queries using the
whole set of generated profiles necessitates tens of years although
limiting the query reformulation process to a few seconds. Thus,
the evaluation was performed on a subset of queries and profiles.

The main parameter which is taken into account for query selec-
tion is the response time of the query reformulation algorithms.
Query rewriting is the most time-consuming phase of the reformu-
lation process. According to [2], the response time of query re-
writing algorithms depends on several parameters such as the
number of virtual relations in the query, the schema type, the
number of sources, the number of variables in the source schemas,
etc. Most of these parameters do not vary in our benchmark; the
only variable parameter is the number of virtual relations in the
queries. We made some preliminary tests which shown that query
rewriting takes about 1 minute for queries expressed on 9 virtual
relations and more than 10 minutes for queries with 10 relations.
As query reformulation is usually a real time process, we limited
its response time to 1 minute. In addition, to enable the expansion
of a query with additional virtual relations during query enrich-
ment, we restricted to queries expressed on at most 5 virtual rela-
tions. Thus, a total of 13 queries was selected for the tests includ-
ing the only available query expressed on 1 virtual relation and 3
queries for each other configuration (i.e. expressed on 2, 3, 4 and
5 virtual relations).
The selection of a subset of users (and their profiles) is guided by
the following requirements: (i) a user test set should be large
enough to get significant number of results when executing the
queries on it, (ii) the predicates of a user profile should be ex-
pressed on different attributes (to simplify the query enrichment),
(iii) profile predicates should have weights superior or equal to
80, and (iv) a user should have enough predicates to allow con-
sidering profiles with different cardinalities. To satisfy these re-
quirements, we applied several filtering steps. First, users whose
test set contain less than 100 movies have been pruned. Second,
for each profile we pruned all predicates expressed on the same
attribute but the one with the highest weight. Finally, only predi-
cates which weights are superior or equal to 80 were selected. The
filtering resulted in 747 profiles having from 2 to 10 predicates.
For our tests we selected the 2 available profiles containing 10
predicates and 3 profiles containing 9 predicates. Each profile was
then used to produce two new profiles by randomly selecting 3
and 6 of its predicates. Thus, the refined benchmark contains a
total of 15 user profiles (3 profiles per user).

The benchmark allowed to compare the three query reformulation
approaches and to highlight the contexts where each one performs
better. Evaluations show that introducing personalization into
query reformulation improves the precision of the obtained results
but increases response time and can lead to the loss of relevant
results. A more complete description of the tests and the obtained
results can be found in [3].

4. CONCLUSIONS
This paper proposes a benchmark for query personalization based
on movies rated by real users. The benchmark database includes a
large set of users, queries and reference results.

The benchmark can be refined to support the evaluation of various
personalization approaches. We showed an example of refinement
that we used for comparing three query reformulation approaches.
In this example we generated simple user profiles. The benchmark
can also be used for testing and comparing profile generation
algorithms, both for individual users and communities. Our hope
is that this platform serves as a reference test in the database
community in order to federate the sparse evaluations around a
common data set as done for example in the TREC protocol.

A detailed description of the APMD-Workbench can be found at:
http://apmd.prism.uvsq.fr/SubProject4/TestPlatform/ ([10]).

5. REFERENCES
[1] GroupLens Research: “movielens: helping you to find the

right movies”. Web site, ULR: http://movielens.umn.edu, last
accessed on July 9th, 2007.

[2] Halevy, A., Pottinger, R.: “MiniCon: A scalable algorithm
for answering queries using views”, Very Large Data Bases
Journal, Vol. 10, p. 182-198, 2001.

[3] Kostadinov, D.: “Data Personalization: an Approach for
Profile Management and Query Reformulation”, PhD thesis,
University of Versailles, France, 2007.

[4] Koutrika, G., Ioannidis, Y. E.,: “Personalization of Queries
in Database Systems”, In Proc. of the 20th Int. Conference on
Data Engineering, Boston, USA, p. 597-608, 2004.

[5] Internet Movie Database, Inc.: “The Internet Movie Data-
base”, Web site, URL: http://www.imdb.com/, last accessed
on July 9th, 2007.

[6] Peralta, V.: “Extraction and Integration of MovieLens and
IMDb Data”. Technical Report, Laboratoire PRiSM, Univer-
sité de Versailles, France, July 2007.

[7] Peralta, V.: “Generation of a Reference Data Set for Query
Personalization”. Technical Report, Laboratoire PRiSM,
Université de Versailles, France, October 2007.

[8] Text REtrival Conference (TREC). URL:
http://trec.nist.gov/, last accessed on September 2007.

[9] Transaction Processing Performance Council. URL:
http://www.tpc.org/, last accessed on September 2007.

[10] URL of the APMD-Workbench: A Benchmark for Query
Personalization Systems:
http://apmd.prism.uvsq.fr/SubProject4/TestPlatform/.

