

Module 3 – Aide à la Réussite : EP 2 Soutien en Programmation Travaux Dirigés (1), Licence 1ère Année Instructions Simples et Types Élémentaires

Exercice 1 Somme des chiffres d'un entier

1.1. En utilisant les instructions / et %, écrivez un programme qui demande à l'utilisateur d'introduire un entier de 4 chiffres et qui affiche la somme de ces derniers.

Exemple: Si le nombre introduit est **1234**, le programme devrait afficher une somme égale à **10** (1 + 2 + 3 + 4 = 10).

```
Problems @ Javadoc Declaration Console S Dec
```

1.2. Généralisez le programme de façon qu'il fasse la même chose pour un entier d'un quelconque nombre de chiffres.

Exemple:

Exercice 2 Quantité de billets représentant une somme d'argent

Écrivez un programme qui demande à l'utilisateur d'introduire une valeur (multiple de 5) représentant une somme d'argent et qui calcule et affiche le nombre de billets de 100, 50, 20, 10 et 5 euros qu'elle représente (en privilégiant le minimum de billets).

Exemple

Exercice 3 Génération aléatoire d'un nombre

La méthode **Math.random()** donne un réel aléatoire positif, strictement inférieur à 1 (**[0, 1[**).

En utilisant la méthode **random()** de la classe **Math**, générez les nombres suivants :

3.1. Un réel compris dans l'intervalle **[min, max[**, où **min** et **max** sont des réels introduits par l'utilisateur.

Exemple

3.2. Un entier compris dans l'intervalle [10, 15].

Exemple

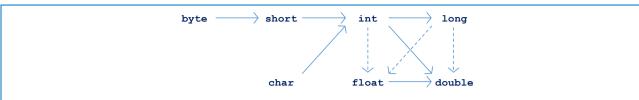
3.3. Un entier compris dans l'intervalle [-10, 15].

Exemple

```
Problems @ Javadoc Declaration Console Section Console Section
```

3.4. Un entier compris dans l'intervalle **[min, max]**, où **min** et **max** sont des entiers introduits par l'utilisateur.

Exemple


Exercice 4 Déclarations, Types et Expressions

Rappel des types de base de Java :

Type	Désignation	Longueur	Défaut	Valeurs
boolean	valeur logique : true ou false	1 bit	false	true ou false
byte	octet signé	8 bits	0	-128 à 127
short	entier court signé	16 bits	0	-32768 à 32767
char	caractère Unicode	16 bits	\u0000	\u0000 à \uFFFF
int	entier signé	32 bits	0	-2147483648 à 2147483647
float	virgule flottante simple précision (IEEE754)	32 bits	0.0	1.401e-045 à 3.40282e+038
double	virgule flottante double précision (IEEE754)	64 bits	0.0	2.22507e-308 à 1.79769e+308
long	entier long	64 bits	0	-9223372036854775808 à 9223372036854775807

Rappel sur les conversions :

Pour qu'une conversion sans perte d'information soit possible entre deux types, il faut trouver un chemin qui les relie en suivant les flèches. Les flèches pleines représentent les conversions sans perte de précision et les flèches pointillées celles où une perte de précision peut avoir lieu.

5.1. Parmi les déclarations de variables suivantes, indiquez celles qui sont valides et celles qui ne le sont pas. Vous pourrez les vérifier dans un programme.

```
1. int i = 0;
2. short j;
3. long 11, 12 = 0, 13;
4. short j = 60000;
5. int i = 0x10;
6. char c = 0x41;
7. char c = a;
8. char c = 0x41;
9. char c = '\u20AC';
10. boolean b = true;
11. boolean b = 0;
12. real r = 0.1;
13. float f = 0.1;
14. double d = 0.1;
15. double d = 0x10;
16. float f = 0x10;
17. double d = .1;
18. int i = 'a';
```

Soient les declarations suivantes :

```
int i, j, k;
double x, y, z;
char c;
boolean b;
```

5.2. Indiquez le type de chacune des expressions suivantes (vous pouvez les tester dans un programme Java, en reprenant les déclarations ci-dessus et en affectant une valeur initiale à chacune des variables) :

```
13. x < y
               7. i + 2
1. x
                                               19. i > j && k > j
2. 2
               8. x + i
                             14. i % j + y
                                              20. x + y * i
                             15. i / j + y
3. i = j
              9. x / 2
                                              21. i = c
              10. x / 2.0
                             16. i > j > k
4. i == j
                                              22. x = (int) y
              11. i / 2
5. x + 2.0
                             17. i && b
                                              23. c = (char)((int)c+1)
6. x + 2
              12.
                  i / 2.0
                             18. i == j && b
                                               24. i++
```

5.3. Écrivez en Java les expressions suivantes et testez-les en vérifiant que vous avez les mêmes résultats pour les mêmes valeurs de variables que dans l'exemple ci-dessous :

$$a^{2}-c+\frac{a}{bc+\frac{c}{d+\frac{e}{f}}}$$

$$(2)$$

$$\frac{-b+\sqrt{b^{2}-4ac}}{2a}$$

$$\frac{\frac{1}{a}+\frac{1}{b}}{c+d}$$