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Abstract

Mining frequent itemsets in large datasets has received much attention in recent years
relying on the MapReduce programming model. For instance, many efficient frequent item-
set mining (a.k.a. FIM) algorithms have been parallelized to MapReduce principle such
as Parallel Apriori, Parallel FP-Growth and Dist-Eclat. However, most approaches focus
on job partitioning and/or load balancing without considering the extensibility depending
on required memory assumptions. Thus, a challenge in designing parallel FIM algorithms
consists therefore in finding ways to guarantee that the data structures used during the
mining process always fits in the local memory of working nodes during all computation
steps. In this paper, we propose MapFIM+, a two-phase approach to frequent itemset
mining in very large datasets benefiting both from a MapReduce-based distributed Apri-
ori method and local in-memory FIM mining methods. In our approach, MapReduce is
first used to generate frequent itemsets until getting local memory-fitted prefix-projected
databases, and an optimized local in-memory mining process is then launched to gen-
erate all remaining frequent itemsets from each prefix-projected database on individual
processing nodes. Indeed, MapFIM+ improves our previous algorithm MapFIM by using
an accurate evaluation of prefix-projected database sizes during the MapReduce phase,
and this improvement makes MapFIM+ more efficient especially for databases leading to
huge candidate sets by significantly reducing communication and disks I/O costs. Our
performance evaluations show that MapFIM+ is more efficient and more extensible than
existing MapReduce based frequent itemset mining approaches.

Keywords: Frequent itemset mining, MapReduce programming model, Distributed
file systems, Hadoop framework.

1 Introduction

Frequent pattern mining [2] is an important field of Knowledge Discovery in Databases that
aims at extracting itemsets occurring frequently inside database entries (as transactions, event
sets, etc.). Usually, a minimum support threshold is fixed in this problem and frequent patterns
are defined as patterns whose frequency is greater than this threshold. All the algorithms rely
on an important anti-monotonicity property for pruning the search space stating that when an
itemset is extended then its support, i.e., the number of transactions it covers, decreases. In
other terms, given an itemset, the supports of its supersets are lower or equal to its support.
For more than 20 years, a large number of algorithms have been proposed to mine frequent
patterns as efficiently as possible [1]. In the Big Data era, proposing efficient algorithms that
handle huge volumes of transactions still remains an important challenge due to the memory
space requirements while mining all frequent patterns. To tackle this issue, recent approaches
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Figure 1: Maximum length of frequent itemsets in WebDocs dataset

have been made to work in distributed environments and the major idea is to distinguish two
mining phases: a global phase and a local one. In such schemes, the first global mining phase
often relies on MapReduce [6] to find among the frequent patterns the ones whose calculation
requires a huge amount of data that does not fit in memory; then, the local mining phase mines
on single nodes all the supersets of the patterns obtained at the global phase. Obviously, the
idea is that such supersets can be extracted using a part of data that can fit in the memory
of a single machine. Intuitively, the first phase guarantees the possibility of working on huge
datasets while the second phase preserves a reasonable execution time. Unfortunately, existing
approaches are all difficult to be fully extensible, i.e. mining becomes intractable as soon as
the number of transactions is too large or the minimum frequency threshold is too low.

For the efficiency of two-phase frequent mining approaches, a major difficulty consists in
determining the balance between the global and the local mining phases. Indeed, if an approach
relies too heavily on local mining, it will be limited to large minimum frequency thresholds only,
for which the amount of candidate patterns and/or the projected databases fit in memory. For
instance, Parallel FPF algorithm [8] with distributed projected databases cannot deal with very
low minimum thresholds when projected databases do not fit in local memory of a machine.
Conversely, if an approach relies too much on global mining, it will be less efficient since the cost
of communications is high. For instance, Parallel Apriori [9] is relatively slow for low thresholds
because all patterns are extracted during the global phase. In BigFIM [15], a parameter k must
be set by the users: it represents the minimum length below which the itemsets are mined
globally while itemsets that are larger than k are locally mined since they cover a smaller set
of transactions that is supposed to fit in memory. However, a practical problem is that such a
length is difficult to determine as it depends on datasets and on available memory. To illustrate
the issue raised by the setting of the threshold k, Figure 1 plots the maximum lengths of frequent
itemsets with the WebDocs dataset (see Section 5 for details) when the minimum frequency
threshold varies. In [15], it is suggested to use a global phase for itemsets of size k = 3, assuming
that, for larger itemsets, the conditional databases will fit in memory. However, from Figure 1,
with respect to the used dataset, it is easy to see that 3 is not a sufficiently high threshold since
there is at least one itemset of size 4 that covers more than 40% of transactions. Moreover, two
patterns of the same size may have very different frequencies and this point is not taken into
account in BigFIM.

We introduced in [7] MapFIM (Memory aware parallelized Frequent Itemset Mining) algo-
rithm which is, to the best of our knowledge, the first algorithm extensible with respect to the
number of transactions. The advantage of this extensibility is that, it is possible to process large
volumes of data (although the addition of machines does not necessarily improve run-time per-
formance as it is the case with scalability). The key idea is to introduce a maximum frequency
threshold β above which frequency counting for an itemset is distributed on several machines.
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We proved that there exists at least one setting of β for which the algorithm is extensible under
the conditions that the FIM algorithm used locally takes a memory space bounded with respect
to the size of a projected database and that the set of items holds in memory. We showed how to
determine this parameter in practice. Indeed, the higher this threshold, the faster the mining
(because more patterns are mined locally). Performance evaluation showed the extensibility
and the efficiency of MapFIM compared to the best state-of-the-art algorithms. Nevertheless,
in MapFIM, β parameter is estimated on the average of transaction lengths. This may induce
a rough estimation of β parameter in some extreme database cases, whereas β is the criterion
used to switch from the global to the local mining phase, and finding an accurate evaluation of
β is fundamental for efficiency.

In this paper we introduce MapFIM+, an extended version of MapFIM. MapFIM+ improves
our previous approach by using an efficient MapReduce routine to generate candidate sets,
which makes it more efficient than MapFIM by reducing communication and disks I/O costs;
this is all the more true in the case of huge candidate sets. Moreover, MapFIM+ is based
on an exact evaluation of prefix-projected database sizes which makes MapFIM+ insensitive
to an estimation error of MapFIM’s β parameter. However, to be able to adapt MapFIM+
to the amount of memory available on processing nodes for local mining phase, we introduce
a simplified parameter called γ that is used as a prefix-projected database size threshold for
local mining. This parameter is fixed only using the amount of memory available on processing
nodes.

Contributions.

• We present a transaction-extensible algorithm MapFIM+ for mining frequent itemsets,
i.e., it manages to mine all frequent itemsets whatever the number of transactions.

• MapFIM+ is an extension of MapFIM, that relies on a single parameter γ, depending
only on the amount of memory available on processing nodes. The parameter γ allows to
determine when the frequent supersets of a frequent itemset can be mined locally.

• We prove that our algorithm is correct and complete under the condition that the local
mining algorithm is prefix-complete. We also prove that our algorithm is transaction-
extensible.

• We propose a method for automatically calibrating γ.

• We conduct experiments, on WebDocs dataset and on artificially generated datasets, al-
lowing to compare MapFIM+ first with MapFIM and then, with the best approaches for
itemset mining using Hadoop MapReduce framework (BigFIM and PFP). We also illus-
trate the transaction-extensibility of MapFIM+, showing that it can deal with databases
that BigFIM and PFP can not handle.

The rest of the paper is organized as follows. Section 2 formulates the problem of frequent
itemset mining in an extensible way in order to deal with a huge volume of transactions.
Section 3 studies existing approaches in literature in terms of extensibility. In Section 4, we
present how our improved algorithm MapFIM+ works and in particular, we detail the two
phases (i.e., global and local mining processes) and the switch between them. In Section 5,
we empirically compare the performance of MapFIM+ to MapFIM [7] and also against the
state-of-the-art methods by comparing execution times and memory consumption. Section 6
concludes this paper.
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transaction items transaction items
t1 a t6 a, d
t2 a, b t7 b, c
t3 a, b, c t8 c, d
t4 a, b, c, d t9 c, e
t5 a, c t10 f

Table 1: Original dataset

2 Problem Formulation

2.1 Frequent Itemset Mining problem

Let I = {i1, i2, . . . , in} be a set of n literals called items. An itemset (or a pattern) is a subset of
I. The language of itemsets corresponds to 2I . A transactional database D = {t1, t2, . . . , tm}
is a multi-set of itemsets of 2I . Each itemset ti, usually called a transaction, is a database
entry. For instance, Table 1 gives a transactional database with 10 transactions ti described by
6 items I = {a, b, c, d, e, f}.

Pattern discovery takes advantage of interestingness measures to evaluate the relevancy of
an itemset. The frequency of an itemset X in the transactional database D is the number
of transactions covered by X [2]: freq(X,D) = |{t ∈ D : X ⊆ t}| (or freq(X) for sake of
brevity). Then, the support of X is its proportion of covered transactions in D: supp(X,D) =
freq(X,D)/|D|. An itemset is said to be frequent when its support exceeds a user-specified
minimum threshold α. Given a set of items I, a transactional database D and a
minimum support threshold, frequent itemset mining (FIM) aims at enumerating
all frequent itemsets.

In our approach, in order to distribute the computation of frequent itemsets, we use the
usual notion of projected database. More precisely, given an arbitrary total order over the set
of all items, the projected database of an itemset is defined as follows:

Definition 1 (Projected database). Given an arbitrary total order <I over the set I of all
items and a database D, let X be an itemset. The projected database of X, denoted DX , is
defined by: DX = {σ>X(Y ) : Y ∈ D, X ⊂ Y } where σ>X(Y ) = {i ∈ Y : (∀j ∈ X)(j <I i)}.
Moreover, the size of DX , denoted ‖DX‖, is defined by ‖DX‖ =

∑
Y ∈DX

|Y |.

For instance, considering the database D presented Table 1 and the total order a <I b <I
· · · <I f , the projected database of itemset ab is Dab = {c, cd} and we have ‖Dab‖ = 1+2 = 3.

2.2 MapReduce programming model

MapReduce is a simple yet powerful programming model initialized by Google [6] for imple-
menting distributed applications without having extensive prior knowledge of issues related to
data redistribution, task allocation or fault tolerance in large scale distributed systems.

The core functioning of MapReduce is based on two functions, map and reduce, that
developers are supposed to provide to the framework. These two functions should have the
following signatures:

Map: (k1, v1) −→ list(k2, v2),
Reduce: (k2, list(v2)) −→ list(k3, v3).

4



The map function has two input parameters, a key k1 and an associated value v1, and
outputs a list of intermediate key/value pairs (k2, v2). This list is partitioned by the MapReduce
framework depending on the values of k2, with the constraint that all elements with the same
value of k2 belong to the same group. The reduce function has two parameters as inputs: an
intermediate key k2 and a list of intermediate values list(v2) associated with k2. It applies the
user defined merge logic on list(v2) and outputs a list of values list(k3, v3).

MapReduce excels in the treatment of data parallel applications, where computation can be
decomposed into many independent tasks, involving large input data. However MapReduce’s
performance may degrade in the case of dependent tasks or in the presence of skewed data due
to the fact that, in Map phase, all the emitted key-value pairs (k2, v2) corresponding to the
same key k2 are sent to the same reducer. This may induce a load imbalance among processing
nodes and also can lead to task failures whenever the list of values corresponding to a specific
key k2 cannot fit in processing nodes available memory [3, 4]. For scalability, MapReduce
algorithm’s design must avoid load imbalance among processing nodes while reducing disks I/O
and communication costs during all stages of MapReduce jobs computation.

In this paper, our approach is based on Hadoop, the industrial standard open source imple-
mentation of MapReduce as well on its distributed file system HDFS (Hadoop Distributed File
System) designed to store very large files with streaming data access patterns.

2.3 The challenge of extensibility

Guaranteeing the correct execution of a method whatever the volume of input data is a classical
challenge in MapReduce through the notion of scalability. Scalability refers to the capacity of
a method to perform similarly even if there is a change in the order of magnitude of the data
volume, in particular by adding new machines (as mappers or reducers). We introduce the
notion of extensibility, which refers to the capacity of a method to deal with an increase in the
data volume but without performance guarantees.

More precisely, our goal is to efficiently process transaction databases whatever the number
of transactions while the set of all distinct items remains unchanged. This situation covers
many practical use cases. For instance, in a supermarket, the set of products is relatively stable
while new transactions will be added continuously. We formalize the notion of extensibility
with respect to the number of transactions as follows:

Definition 2 (Transaction-extensible). Given a set of items I, a FIM method is said to be
transaction-extensible iff it manages to mine all frequent itemsets whatever the number of trans-
actions in D = {t1, . . . , tm} (where ti ⊆ I) and the minimum support threshold α.

This definition is particularly interesting for a pattern discovery task. Indeed, the transaction-
extensible property guarantees that for a given set of items I, the method will always be able
to mine all the frequent itemsets whatever the changes of the number of transactions in D and
of the minimum frequent threshold α. In this paper, we aim at proposing the first transaction-
extensible FIM method. This goal is clearly a challenge in terms of controlling the amount of
memory required by frequent itemset mining.

3 Related Work

Due to the explosive growth of data, many parallel implementations of frequent pattern mining
(FPM) algorithms have been proposed in the literature, mainly on mining frequent itemsets
[8–10, 16–18, 21], but also to mine frequent sequences [5, 14]. In this section, we only consider
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related work involving the parallelization of FPM algorithms via MapReduce and review their
important shortcomings.

A first category of approaches includes approaches that are specific parallelizations of exist-
ing FPM algorithms, for example, different adaptations of Apriori on MapReduce [9,10]. These
adaptations of Apriori are not transaction-extensible since they assume that at each level, the
set of candidate itemsets can be stored in the main memory of the worker nodes (mappers or
reducers). We show in Section 4.3 how this limitation can be overcome by using HDFS to store
the set of candidates. Different implementations of FP-Growth on MapReduce [8,21] distribute
the conditional databases of the frequent items to the mappers. However, these proposals do
not guarantee that the conditional databases can be stored among worker nodes, and therefore,
these parallelizations of FP-Growth are also not transaction-extensible. More recently, Makanju
et al. [13] propose to use Parent-Child MapReduce (a new feature of IBM Platform Symphony)
to overcome the limitations of the previous implementations of FP-Growth and show that their
method provides significant speed-ups over Parallel FP-Growth [8]. However, their method
requires to predict the processing loads of a FP-Tree which is a particularly difficult challenge.

A second category of approaches includes approaches that are independent of a specific
FPM algorithm, meaning that after a data preparation and partitioning phase, they can use
any existing FPM methods to locally extract patterns. In this category, we can distinguish two
sub-categories of approaches as follows.

At a high-level, the methods in the first sub-category carefully partition the original dataset
in such a way that each partition can be mined independently and in parallel [14,16,17]. In [18],
the authors propose an algorithm that extract frequent itemsets in three phases. In the first
phase, their algorithm divides the original dataset D into a number of non-overlapping partitions
Dk (k ∈ [1..K]). Then, in the second phase, each partition Dk is mined independently to extract
itemsets that are locally frequent, i.e. frequent in Dk. Finally, in the third phase, the sets of
locally frequent itemsets are merged, and a scan of the whole dataset is performed to identify the
itemsets that are globally frequent, i.e. frequent in D. Note that this third phase is necessary
because the sets of locally frequent itemsets may contain false positive, i.e. itemsets that are
locally frequent but not globally frequent. In order to overcome this problem and remove the
need of the third phase, the algorithms proposed in [14, 16, 17] introduced partition methods
such that locally frequent patterns are necessarily globally frequent. However, in order to obtain
this property, it is important to note that with these methods, partitions Dk can overlap and
that some frequent patterns can be generated several times. Moreover, all these methods cannot
guarantee that all data partitions Dk will fit in main memory (of the mappers or reducers),
which means that they are not transaction-extensible.

The approaches in the second sub-category do not initially partition the dataset, but the
search space (the pattern language), thereby ensuring that each frequent pattern is only gen-
erated once. We can consider that Parallel FP-Growth (PFP) [9] also belongs to this second
sub-category of methods. However, because PFP partitions the search space only considering
single frequent items, it is less efficient. In order to overcome this type of limitation, Moens et
al. [15] propose in BigFIM to use longer frequent itemsets as prefixes for partitioning the search
space. In a first and global phase, BigFIM mines the frequent k-itemsets using a MapReduce
implementation of Apriori, and then subsets of prefixes of length k are passed to worker nodes
in a second phase. These worker nodes use the conditional databases of prefixes to mine fre-
quent patterns that are more specific, assuming that the conditional databases can fit in the
main memory of the worker nodes.

Note that the selection of the parameter k for BigFIM can be very difficult in practice.
Indeed, if a too low value is chosen for k, BigFIM might not terminate successfully if any
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conditional database cannot fit in main memory; on the other hand, if the k value is too high,
the first global phase that computes the frequent k-itemsets will be highly time consuming. That
is also why we propose our novel approach MapFIM+ that do not require any involvement to
fix a parameter such as k, and automatically detect when it is possible to switch from global
mining to local mining.

4 MapFIM+: An improved MapReduce approach for Fre-
quent Itemset Mining

4.1 Overview of the approach

The key idea of our proposal is to enumerate using a breadth-first search all itemsets using
distributed techniques (global mining phase) until one reaches a point of the search space
where all its supersets can be mined on a single machine (local mining phase). This point of
the search space is reached as soon as each projected database (plus the amount of memory
required to enumerate the itemsets) holds in memory. To do this, for each itemset, we do not
only compute its frequency, but also the size of its projected database.

More precisely, in order to evaluate when it is possible to switch to the local mining phase,
we introduce a maximum projected database threshold γ and define below the notions of locally
tractable itemset and minimally locally tractable itemset.

Definition 3 (Locally tractable). Given a database D, a minimum support threshold α and
a maximum projected database threshold γ, an itemset X is said to be locally tractable if it
is frequent and its projected database holds in memory, i.e. supp(X,D) ≥ α and ‖DX‖ ≤ γ.
Moreover, an itemset X = (i1, . . . , ik) with i1 <I . . . <I ik, is said to be minimally locally
tractable if it is locally tractable and (i1, . . . , ik−1) is not locally tractable.

In the following, we denote T + the set of frequent itemsets that are minimally locally
tractable, e.g. itemsets X such that supp(X,D) ≥ α, ‖DX‖ ≤ γ ( locally tractable) and that are
minimal among the locally tractable itemsets. We also denote T − the set of frequent itemsets
that are not locally tractable, e.g. itemsets X such that supp(X,D) ≥ α and ‖DX‖ > γ. G is
the set of frequent itemsets that are either not locally tractable or minimally locally tractable
(G = T + ∪ T −). Such sets are indexed by k when we want to refer to itemsets of length k.

For instance, let us consider the database D presented in Table 1, the minimum support
threshold α = 20% and the maximum projected database threshold γ = 5. Note that itemset
{a} is not locally tractable as its projected database Da = {b, bc, bcd, c, d} and ‖Da‖ = 1 + 2 +
3 + 1 + 1 = 8 > γ. On the other hand, itemset {ab} is locally tractable as freq(ab,D) = 3 ≥
α.|D| = 2 (ab is frequent), Dab = {c, cd} and ‖Dab‖ = 1 + 2 = 3 < γ (the projected database of
ab holds in memory). Moreover, itemset {ab} is minimally locally tractable since itemset {a} is
not locally tractable.

Given a transactional database D, a minimum support threshold α and a maximum pro-
jected data threshold γ, as shown in Algorithm 1, MapFIM+ enumerates all frequent itemsets
by using three main phases:

1. Initialization and database compression: This phase initializes the process by com-
pressing the original database D based on frequent 1-itemsets (see line 3 of Algorithm 1).
Considering the database D presented in Table 1 and α = 20%, the compressed version of
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D, denoted D′, is shown in Table 2. D is first compressed by removing non-frequent items
e and f . Then, transactions t1 and t10 in D are removed because they can not contain an
itemset of size 2 (or greater). Next, Algorithm 1 computes the set T −1 of 1-itemsets in G1
that are not locally tractable (see line 4) and the set T +

1 of 1-itemsets that are minimally
locally tractable (see line 5). In our example, considering α = 20% and γ = 5, we obtain
G1 = {a, b, c, d}. Note that itemset {a} is not locally tractable as its projected database
D′a consists of 5 transactions (see Table 3) and ‖Da‖ = 8 > γ. Conversely, itemsets {b},
{c} and {d} are locally tractable since ‖D′b‖ = 4 < 5, ‖D′c‖ = 2 < 5 and ‖D′d‖ = 0 < 5.
Therefore, at the end of this phase, we have T −1 = {a} and T +

1 = {b, c, d}.

2. Global mining: This phase mines all potentially frequent itemsets that are not locally
tractable using Apriori algorithm. At each iteration k, Algorithm 1 first generates the
set of candidate k-itemsets Ck by joining T −k−1 and Gk−1 (see line 9). Note that we do
not join Gk−1 with Gk−1 because we do not want to generate candidates that are locally
tractable, except candidates that are potentially minimally locally tractable. For instance,
at step k = 2, three candidates of size 2 will be generated from itemsets in T −1 = {a} and
G1 = {a, b, c, d}, e.g. C2 = {ab, ac, ad}. Indeed, these candidate 2-itemsets are potentially
not locally tractable.

After the generation of the set of candidate k-itemsets Ck, Algorithm 1 evaluates their
frequency and the size of their projected database (see line 11). Using these measures,
it computes the set Gk of frequent k-itemsets (mined during the global phase). Then,
it identifies from Gk the set of frequent k-itemsets that are not locally tractable, e.g.
the set T −k (see line 13). Finally, it computes the set T +

k of frequent k-itemsets that
are minimally locally tractable. We will demonstrate in Section 4.5 that all itemsets in
Gk \ T −k are necessarily minimally locally tractable. In our example, all candidate 2-
itemsets in C2 = {ab, ac, ad} are frequent. Indeed, we have: freq(ab,D′) = 3 ≥ α.|D| = 2,
freq(ac,D′) = 3 ≥ 2 and freq(ad,D′) = 2 ≥ 2. Moreover, because the size of their
projected databases (‖D′ab‖ = 3, ‖D′ac‖ = 1 and ‖D′ad‖ = 0) is lower than γ = 5, T −2 is
empty and T +

2 = {ab, ac, ad}. Finally, because T −2 = ∅, MapFIM+ moves to the local
mining phase (see the test at line 7).

3. Local mining: This phase mines the itemsets from frequent itemsets that are minimally
locally tractable (see line 17). In our running example, the frequency of the prefix-based
supersets generated from T + = T +

1 ∪ T
+
2 = {b, c, d, ab, ac, ad} will be evaluated during

this phase. Each prefix is considered individually by using a projected database as given
in Table 3. More precisely, frequent pattern abc will be generated from the prefix ab,
frequent pattern bc from the prefix b, frequent pattern cd from c, and we will obtain L =
{abc, bc, cd}. Finally, Algorithm 1 will return the set of all frequent patterns G1∪G2∪L =
{a, b, c, d} ∪ {ab, ac, ad} ∪ {abc, bc, cd}.

In the following, Sections 4.2, 4.3, and 4.4 detail how MapReduce is used to implement effi-
ciently the three main phases of MapFIM+. Then, Section 4.5 demonstrates the completeness
and extensibility of MapFIM+ with respect to the number of transactions.

4.2 Database compression and initialization

In this phase, we have first to compute the set of frequent 1-items, e.g. the set of items in
G1. Using MapReduce, this goal can be achieved by adapting the Word Count routine [6].
Each item is considered as a word and we get the support of every item by MapReduce word
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Transaction items
t2 a, b
t3 a, b, c
t4 a, b, c, d
t5 a, c
t6 a, d
t7 b, c
t8 c, d

Table 2: Compressed database D′

itemset Projected databases
a D′a = {b, bc, bcd, c, d}
b D′b = {c, cd, c}
c D′c = {d, d}
d D′d = ∅
ab D′ab = {c, cd}
ac D′ac = {d}
ad D′ad = ∅
cd D′cd = ∅

Table 3: Projected databases

Algorithm 1: MapFIM+: chaining of MapReduce jobs

1 Function Main(Float α,Float γ):
2 // Initialization and database compression phase;
3 Computation of G1 and generation of compressed database D′ from D;

4 T −1 ← {X ∈ G1 : ‖D′X‖ > γ}; T +
1 ← G1 \ T

−
1 and k ← 2;

5 // Global Mining phase;

6 while |T −k−1| > 0 do
7 // Using GenMap/GenReduce job;

8 Generation of Ck from T −k−1 and Gk−1;

9 // Using EvalMap/EvalReduce job;
10 Evaluation of freq(X,D′) and ‖D′X‖ for all candidates X ∈ Ck;
11 Gk ← {X ∈ Ck : freq(X,D′) ≥ α.|D|};
12 T −k ← {X ∈ Gk : ‖D′X‖ > γ};
13 T +

k ← Gk \ T
−
k ;

14 k ← k + 1;

15 // Local Mining phase using LocalMap/LocalReduce job;

16 T + =
⋃k−1

i=1 T
+
i ;

17 Computation of L ←
⋃

X∈T +{Y : X ⊆ Y ∧ freq(Y,D′) ≥ α.|D|};
18 return (

⋃k−1
i=1 Gi}) ∪ L;

counting. Then, the compressed database D′ is generated and stored in HDFS. This procedure
is solved by a simple Map function, where each mapper reads a block of data, removes items
which are not in G1, and finally emits transactions with at least two frequent items.

Finally, we have to compute the size of the projected databases of all frequent items to
determine if they are locally tractable or not (see line 4 of Algorithm 1). This goal can also
be achieved using MapReduce. In the Map function, for each transaction t ∈ D′, a pair (i, s)
is emitted where i is an item in t and s is the length of t minus the position of i in t. In the
Reduce function, for each pair (i, L) received, we just have to sum the values in L to obtain
the size of the projected database D′i of item i. For example, for transactions t2, t3, t4 and t7,
the mappers will emit the pairs (b, 0), (b, 1), (b, 2) and (b, 1) and a reducer will compute the
size of the projected database D′b of item b as 0 + 1 + 2 + 1 = 4. At the same time, using the
γ parameter and the size of the projected database of all frequent items, the sets T −1 and T +

1

can be easily constructed.
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4.3 Global mining based on Apriori

This phase is similar to the parallel implementation of Apriori algorithm [9]. The key difference
is mainly on the way candidates are generated (see Section 4.3.1). Moreover, during the eval-
uation of the supports of the candidates (see Section 4.3.2), we also evaluate the size of their
projected databases, in order to detect whether they are minimally locally tractable or not.

4.3.1 Candidate generation step

In Apriori algorithm and its parallel implementation [9], the set Ck+1 of candidate (k + 1)-
itemsets is generated by the join Lk 1 Lk at each iteration, where Lk denotes the set of all
frequent k-itemsets1.

In our case, a candidate (k+ 1)-itemset is obtained by the join of a frequent but not locally
tractable k-itemset, i.e. an itemset in T −k , with a frequent k-itemset that is locally tractable or
not, i.e. an itemset in Gk. During the candidate evaluation step (see Section 4.3.2), all candidate
itemsets that are frequent are emitted and stored with a flag in {+,−} to underline whether
they are locally tractable (flag = +) or not (flag = −). Therefore, at iteration (k + 1) of the
candidate generation step, we join only frequent k-itemset with a negative flag (flag = −) with
frequent k-itemset (whatever their flag).

We now detail how we implement the candidate generation step using a MapReduce job (see
Algorithm 2). In the Map function (see GenMap in Algorithm 2), for each pair (X, flag) ∈
value, where X = (i1, . . . , ik−1, ik) is a frequent k-itemset and flag ∈ {+,−} indicates whether
X is locally tractable or not, we emit a pair (prefix, (ik, f lag)) where prefix = (i1, . . . , ik−1)
is the prefix of X of length k − 1.

In the Reduce function (see GenReduce in Algorithm 2), we combine candidate k-itemsets
with the same prefix P = (i1, . . . , ik−1). Given two pairs (i, f lagi) ∈ values and (j, f lagj) ∈
values, we join the k-itemset X = (i1, . . . , ik−1, i) with the k-itemset X ′ = (i1, . . . , ik−1, j) if
and only if:

• flagi = − in order to check whether X is not locally tractable (see line 14 of Algorithm 2),
i.e. X ∈ T −k and

• i < j in order to generate each candidate once (see line 16 of Algorithm 2).

If the two conditions are fullfilled, the reducer emits a new candidate (k+1)-itemset Y = X 1

X ′ = (i1, . . . , ik−1, i, j) (see line 17 of Algorithm 2). In Section 4.5, we prove that combining
only frequent k-itemsets X ∈ T −k with frequent k-itemsets X ′ ∈ Gk, we are complete w.r.t.
T + ∪ T −.

4.3.2 Candidate evaluation

The candidate evaluation step consists in computing both the frequency and the size of its
projected database for each candidate in Ck. This is achieved by a MapReduce job, described
in Algorithm 3.

In the Map function (see EvalMap in Algorithm 3), for each transaction t ∈ D′ and for each
candidate X ∈ Ck, if X is a subset of t (see line 8 in Algorithm 3), a pair composed of the value
1 (thus counting the presence of X in t) and the size of the projection of t in D′X is emitted

1In our work, in order to generate each candidate once, we use a prefix-based join operation. More pre-
cisely, given two sets of frequent k-itemsets Lk and L′k, the join of Lk and L′k is defined by: Lk 1 L′k =
{(i1, . . . , ik, ik+1) | (i1, . . . , ik−1, ik) ∈ Lk ∧ (i1, . . . , ik−1, ik+1) ∈ L′k ∧ i1 < · · · < ik < ik+1}.
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Algorithm 2: MapFIM+: Map and Reduce functions to generate candidate itemsets

1 Function GenMap(String key, String value):
2 // key: input name;
3 // value: a set of pairs (X, flag) where X ∈ Gk and flag ∈ {+,−};
4 foreach (X, flag) ∈ value do
5 Let X = (i1, . . . , ik−1, ik) ;
6 prefix← (i1, . . . , ik−1) ;
7 Emit(prefix, (ik,flag));

8 Function GenReduce(String key, Iterator values):
9 // key: a prefix P = (i1, . . . , ik−1);

10 // values: a list of pairs (i, f lag) where i ∈ I and flag ∈ {+,−};
11 foreach (i, f lagi) ∈ values do
12 Let X = (i1, . . . , ik−1, i);

13 // Test if X ∈ T −k ;
14 if (flagi == −) then
15 foreach (j, f lagj) ∈ values do
16 if (i < j) then
17 Y ← (i1, . . . , ik−1, i, j) // Y belongs to Ck+1;
18 Emit(null, Y ) ;

(see line 11 in Algorithm 3). More precisely, in order to compute the size of the projection of
t in D′X , we first identify the maximal item imax of X w.r.t. <I (see line 9 in Algorithm 3).
Then, we count the number of items j in t greater than imax w.r.t. <I . Note that if the set
of candidats Ck is too large to fit in memory of Mappers, then Ck is partitioned into blocks
CBlock and Mappers process candidates block by block (see line 5 in Algorithm 3). Finally,
we can point out that this Map phase achieves a good load balance because the compressed
database D′ is distributed equally among mappers and all mappers handle the same candidate
set (reading the same number of candidate blocks).

In the Reduce function (see EvalReduce in Algorithm 3), each key is a candidate itemset
X ∈ Ck, and value is a list L including for each transaction t ∈ D′ covered by X a pair
(freq, size) where freq = 1 and size is the size of the projection of t in D′X . Thus, in order
to compute the frequency of X and the size of D′X , a Reducer has just to sum the first and
second components of the pairs in L (see lines 18 and 19). Then, if X is frequent in D w.r.t.
the minimum support threshold α, i.e. freq(X,D′) ≥ α × |D′| (see line 20 in Algorithm 3), a
Reducer tests whether X is locally tractable or not (see line 21 in Algorithm 3). Finally, if X
is locally tractable, we emit a pair (X,+); otherwise, we emit a pair (X,−) (see line 22 and 24
in Algorithm 3).

4.4 Local mining of frequent itemsets

As described in the previous sections, the two-phase mining strategy guarantees the efficiency
of MapFIM+. Indeed, when each projected-database stemming from a prefix is sufficiently
small to be handled by a single node in the cluster (i.e., ‖D′X‖ ≤ γ), MapFIM+ switches to the
local mining phase. After presenting the local mining method, we will show how to configure γ
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Algorithm 3: MapFIM+: Map and Reduce functions to evaluate candidates itemsets

1 Function EvalMap(String key, String value):
2 // key: input name;
3 // value: a subset of transactions in D′;
4 while there are unsolved candidates do
5 CBlock ← A block of Ck in HDFS;
6 foreach transaction t ∈ value do
7 foreach itemset X ∈ CBlock do
8 if X ⊆ t then
9 imax ← max<I (X) // Last item of X;

10 size← |{j ∈ t : imax <I j}|;
11 Emit(X, (1, size));

12 Function EvalReduce(String key, Iterator values):
13 // key: a candidate X ∈ Ck;
14 // values: a list of (frequency, projectedTransactionSize);
15 totalFrequency ← 0;
16 totalProjectedData← 0;
17 foreach (frequency, projectedData) ∈ values do
18 totalFrequency ← totalFrequency + frequency;
19 totalProjectedData← totalProjectedData+ projectedTransactionSize;

20 if totalFrequency ≥ α ∗ |D| then
21 if totalProjectedData ≤ γ then
22 Emit(null, (X,+)) // X belongs to T +

k ;

23 else
24 Emit(null,(X,−)) // X belongs to T −k ;

parameter to ensure that this method has sufficient memory space for D′X processing.

Method In the local mining phase, the frequent itemset enumeration is completed by using
a traditional efficient algorithm (for instance, Eclat [20] or LCM [19]) that fits the memory
constraints required by single nodes. More precisely, this algorithm has to enumerate all the
itemsets corresponding to a given prefix X in a linear memory space with respect to the size of
D′X . Level-wise algorithms will therefore not be adapted since it is difficult to limit themselves
to a given prefix and the amount of memory required is very variable. Similarly, approaches
based on FP-trees do not guarantee a bounded amount of memory for tree storage. However
vertical database layout based approaches such as Eclat or LCM fit well the requirement of
bounded memory usage.

Algorithm 4 details this step, which is still MapReduce driven. Local memory-fitted projected-
databases are dispatched to each node (as Reducers) that allow to run the selected local FIM
algorithm. Due to the difference in size among projected databases, the local mining could lead
to a load imbalance among reducers. In [15], the authors of BigFIM algorithm have experi-
mented different strategies to assign the prefixes and it is shown that a random method can
achieve a good workload balancing.

12



Algorithm 4: MapFIM: Local Mining

1 Function LocalMap(String key, String value):
2 // key: input name;
3 // value: a subset of transactions in D ;
4 while there are unsolved locally tractable itemsets do
5 T +

Block ← A block of T + in HDFS;

6 foreach itemset X ∈ T +
Block do

7 imax ← max<I (X) // The last item in X;
8 foreach transaction t ∈ value that contains X do
9 t′ ← {j ∈ t : imax <I j};

10 if t′ 6= ∅ then
11 Emit(X, t′);

12 Function LocalReduce(String key, Iterator values):
13 // key: an itemset X;
14 // values: the projected database DX of X;
15 Create an empty file fin in local disk;
16 Save values into fin;

17 Run a local FIM program with input=fin, output=fout, support=α ∗ |values||D| ;

18 foreach frequent itemset X ′ ∈ fout do
19 X ′′ = X ∪X ′;
20 Emit(null,X”) // X ′′ belongs to L;

In the Map phase (lines 1-11 in Algorithm 4), we consider frequent itemsets X ∈ T + as
prefixes and construct their projected databases. For each X ∈ T +, imax denotes the maximal
item in X w.r.t <I . The projected-database D′X is built by: (1) pruning every transaction
t ∈ D′ that does not contain X (2) pruning every item j ≤I imax since these items cannot
expand X due to the prefix-based join. As shown in Algorithm 4, each Mapper reads a block
of data, then for each X ∈ T +, it emits every transaction t′ that contains X after pruning
unnecessary items (line 11).

In the Reduce phase (lines 12-20 in Algorithm 4), a local FIM algorithm is independently
called to enumerate all the frequent itemsets for each projected-database. More precisely, in
the Reduce phase, each key is a frequent itemset X ∈ T + and each list of values contains all
transactions of the projected-database of X. They are saved to a local file so that the local
FIM algorithm can work on it. For each itemset X ′ being frequent in the projected-database,
the itemset X ′′ = X ∪X ′ is frequent in D. Notice that in the case where T + is too large to fit
in memory of Mappers, we partition this set into several parts and repeat a local mining (via
a MapReduce phase) for each part until that all itemsets in T + are processed.

Automatic parameterization of MapFIM+ In our algorithm, a good value of γ is im-
portant for getting high performance. The higher the value of γ is, the better performance we
get in general but more memory is required. Unfortunately the configuration of this threshold
is complex for a user. Indeed, the appropriate choice of this parameter requires a good under-
standing of the approach in order to anticipate the amount of memory to consume at the level
of this local mining phase. Without an automatic configuration system, a novice user could
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make the extraction impossible (memory saturation or extraction time too long). Even a more
seasoned user might not get the best of the approach.

The automatic procedure for parameterizing the minimum size of the projected dataset γ
requires an offline calibration phase which is carried out only once before extractions. The
first step is to select a local frequent itemset mining algorithm whose memory is proportional
to the size of the projected database as explained above. For instance, in our experiments,
we use a local program based on Eclat/LCM algorithm [19, 20] which requires a maximum of
f(projectedData) of memory, where f() is a linear function. Then, the maximum memory
needed by the program is K × projectedData where K is the amount of memory required per
item of projectedData in the worst case during the extraction. The second step is to calibrate
this algorithm by applying it to various datasets and then, figuring out the value of K. Once
the constant K is known, it is easy to configure the parameter γ (whatever the dataset and the
minimum frequency threshold) by applying a proportionality law, taking care to keep enough
memory for performing the reducer. More precisely, we propose to set the threshold γ in
MapFIM+ as follows:

γ =
MReduce −Mreduce task

K
(1)

where MReduce is the limit of memory of a Reducer and Mreduce task is the memory required
for a reduce task without running the local mining program.

4.5 Completeness and extensibility

Thanks to the complementarity of global and local mining phases, this section demonstrates
that MapFIM+ is not only correct and complete, but also transaction-extensible.

Let us first recall that MapFIM+ is composed of two phases: a global phase computes G,
the set of frequent itemsets that are either not locally tractable or that are minimally locally
tractable, then a local mining phase computes the frequent itemsets derived from frequent min-
imally locally tractable itemsets. We show that the global phase is complete w.r.t. G and that
the whole algorithm is complete w.r.t. the frequent itemsets, under the conditions of the prefix-
completeness of the local algorithm.

Proposition 1. MapFIM+ is correct, i.e., all itemsets returned by the algorithm are frequent
and complete, i.e., all frequent itemsets are returned by the algorithm.

Proof: The algorithm counts the support of each itemset and returns only frequent itemsets,
therefore it is correct. The proof of the completeness is decomposed in two steps: proof of the
completeness of the global phase w.r.t. G and the proof of the completeness of MapFIM+ w.r.t.
L. In the following, let X = (i1, . . . , ik) be an itemset with i1 < i2 . . . < ik, then Xj denotes
the prefix of X, with length j, i.e., Xj = (i1, . . . , ij).

Proof of the completeness of the global phase w.r.t. G. We first prove by recurrence on k that the
algorithm is complete w.r.t. G, i.e. the set of frequent minimally locally tractable itemsets and
of frequent non locally tractable itemsets. We recall that for k > 1, we have Ck = T −k−1 1 Gk−1.
Therefore, to prove completeness, we have to prove that Gk ⊆ Ck.

This is true for k = 1, since during data preparation, the support of all items are counted
and only non frequent items are discarded. Thus, it allows to compute G1. Now, let us suppose
that the algorithm is complete w.r.t. Gk−1 and let us show that the algorithm is complete w.r.t.
Gk.
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Let X = (i1, . . . , ik), with i1 < i2 . . . < ik be an element of Gk and let us show that
X ∈ Ck. X is equal to the join of two k − 1 itemsets, (i1, . . . , ik−1) and (i1, . . . , ik−2, ik), i.e.
X = (i1, . . . , ik−1) 1 (i1, . . . , ik−2, ik). We have two cases:

• X ∈ T −k : X is not locally tractable, i.e. supp(X,D) ≥ α and ‖DX‖ > γ.

– (i1, . . . , ik−1) ∈ T −k−1 , since it is frequent and it is not locally tractable (as a prefix
of an itemset that is not locally tractable)

– (i1, . . . , ik−2, ik) is frequent but it is not a prefix of X. It is either not locally tractable
or locally tractable. If it is locally tractable, it is minimally locally tractable, since its
prefix is not locally tractable. Therefore it belongs either to T −k−1 or to T +

k−1.

Therefore (i1, . . . , ik−1) ∈ T −k−1 and (i1, . . . , ik−2, ik) ∈ T −k−1∪T
+
k−1 = Gk−1 and X belongs

to T −k−1 1 Gk−1

• X ∈ T +
k : X is minimally locally tractable, i.e. supp(X,D) ≥ α, ‖DX‖ ≤ γ, and all its

prefixes Xj satisfy
∥∥DXj

∥∥ > γ

– (i1, . . . , ik−1) and (i1, . . . , ik−2) are frequent but not locally tractable (otherwise X
would not be minimally locally tractable), i.e. (i1, . . . , ik−1) ∈ T −k−1 and (i1, . . . , ik−2) ∈
T −k−2

– (i1, . . . , ik−2, ik) is either in T −k−1 or in T +
k−1 (since (i1, . . . , ik−2) ∈ T −k−1 ), i.e.

(i1, . . . , ik−2, ik) ∈ Gk−1

As a consequence, X belongs to T −k−1 1 Gk−1.

Proof of the completeness of MapFIM+ w.r.t. L.
Now we can prove the completeness of the algorithm w.r.t. the set L of frequent itemsets.

Let X = (i1, . . . , ik), with i1 < i2 . . . < ik, be a frequent itemset. We have two cases:

• X ∈ T −, therefore X ∈ G and we have already shown the completeness of the algorithm
w.r.t G.

• X /∈ T −: supp(X,D) ≥ α and ‖DX‖ ≤ γ. Let j be the smallest index such that
Xj ∈ T +. Xj belongs to G and therefore it has been generated in the global phase. If
j = k then Xj = X has been generated at the global phase, otherwise under the condition
that the local mining algorithm is prefix complete, X is generated in the local phase. More
precisely, the frequent itemsets starting by Xj will be mined in the local mining step, from
the conditional database with respect to Xj . It is built by considering all transactions in
D containing Xj and removing from these transactions all items i with i ≤ ij . Since X is
ordered, if X is frequent in D then {ij+1, . . . , ik} is frequent in the conditional database
w.r.t Xj and will be found during the local mining phase.

The main challenge faced by MapFIM+ is to deal with a very large number of transactions.
This is possible because the preparation and the scanning of this transactional database is
distributed on several mappers and the set of generated candidates that is potentially huge is
stored on the distributed file system. Therefore, in addition to being complete, MapFIM+ is
transaction-extensible as introduced by Definition 2:
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Proposition 2 (Transaction-extensible). Assuming the distributed file system has an in-
finite storage capacity, MapFIM+ is transaction-extensible when the set of items I holds in
memory and the local frequent itemset mining method takes space O(γ).

Proof: The first step of data preparation is not a problem as it is similar to MapReduce Word-
Count problem. The second step is also transaction-extensible because the set of frequent items
holds in memory as we make the assumption that the set of all items holds in memory. Global
mining phase does not raise any problem because all candidates are stored on the distributed
file system (which has an infinite storage capacity) and can be partitioned into independent
blocks of candidates (see line 5 of Algorithm 3). For local mining phase, the minimally locally
tractable itemsets are also considered block by block (see line 5 of Algorithm 4). In the re-
duce step, the mining algorithm for a prefix takes a memory space proportional to the size of
its projected database so there is at least one γ such that each projected database holds in
memory.

5 Experiments

The experimental evaluation mainly focuses on performance and transaction-extensibility of the
proposed Memory Aware Parallelized Frequent Itemset method. The research questions are as
follows:

• Q1 How MapFIM+ compare to MapFIM, MapFIM+ being an improved version of our
previous MapFIM method?

• Q2 How transaction-extensible is MapFIM+, i.e. does it manage to mine all frequent
itemsets whatever the number of transactions in the dataset and the minimum support
threshold?

• Q3 How MapFIM+ compare to the best approaches for itemset mining using Hadoop
MapReduce framework, in particular BigFIM and PFP?

Question Q1 is addressed in Section 5.2, whereas questions Q2 and Q3 are both addressed in
Section 5.3. All the experiments were performed on a cluster of 16 virtual machines, where each
virtual machine possesses 4 vCPUs, 8 GB RAM, and 300 GB HDD space. Each map/reduce
task is allowed to use up to 7 GB of RAM. MapFIM+, MapFIM and PFP are experimented
on top of Hadoop 2.7.3 while BigFIM is tested on Hadoop 1.2.1.2

5.1 Experimental Setup

Data Sets In our experiments, we have chosen WebDocs dataset [11], one of the largest com-
monly used datasets in Frequent Itemset Mining. It is derived from real-world data and has a
size of 1.48 GB. The copy of the dataset used in our experiments is obtained from the Frequent
Itemset Mining Implementations Repository at http://fimi.ua.ac.be/data/.

We have also generated various synthetic datasets by using the generator from the IBM
Almaden Quest research group. Their program can no longer be downloaded and we have used
another repository available at https://github.com/zakimjz/IBMGenerator. The command
used to generate our synthetic datasets is: ./gen lit -ntrans 50000 -tlen L -nitems 100

-npats 1000 -patlen 4 -ascii where L is the average length of transactions. We varied

2In our configuration, there is no real difference of performance between Hadoop 1.2.1 and Hadoop 2.7.3.

16

http://fimi.ua.ac.be/data/
https://github.com/zakimjz/IBMGenerator


parameter L from 20 to 100 to generate 5 different datasets. The characteristics of the datasets
are given in Table 4.

Dataset Avg length # Items # Transactions FileSize (GB)

WebDocs 177 5,267,656 1,692,082 1.5
T20.I100K.D50M 20 100,000 50,000,000 6.0
T40.I100K.D50M 40 100,000 50,000,000 11.9
T60.I100K.D50M 60 100,000 50,000,000 17.8
T80.I100K.D50M 80 100,000 50,000,000 23.7
T100.I100K.D50M 100 100,000 50,000,000 29.6

Table 4: Characteristic of the two used datasets

Setting of MapFIM+ For setting MapFIM+, we first apply the calibrating protocol described
in Section 4.4 on the selected local FIM implementation based on Eclat/LCM algorithm [19,20].
With 10 datasets coming from the FIMI repository at http://fimi.ua.ac.be/data/, we run
the program with a minimum support threshold equal to 0% to report the maximum memory
used during one hour by the program. Then we compute Ki = projectedData

max memory and report the

result in Table 5 (e.g., the value of K for dataset WebDocs is 0.018). From experiments,
the value of Ki varies from 0.017 to 0.043, with an average value K of 0.023 and a standard
deviation of 0.00785. For estimating γ, we fixed the value of K equals to 0.05. Finally, as
the available memory space of the reducer is MReduce KB and the reduce task requires around
Mreduce task KB, we configure MapFIM+ by setting MapFIM+ such that: γ = (MReduce −
Mreduce task)/0.05.

5.2 Difference between MapFIM+ and MapFIM

In this subsection, we focus on the first question Q1: How MapFIM+ compare to MapFIM?
MapFIM+ is implemented similarly to MapFIM algorithm, both are in Java 8 for Hadoop 2.
Moreover, for the local mining phase of both MapFIM+ and MapFIM, Eclat/LCM program
implemented in C++ by Borgelt at http://www.borgelt.net/eclat.html was used to mine
local projected database.

Dataset projectedData max memory (KB) K (KB)

accidents 11,500,870 228,400 0.020
connect 2,904,951 58,160 0.020
kosarak 8,019,015 193,644 0.024
pumsb 3,629,404 63,332 0.017
retail 908,576 25,588 0.028
T40I10D100K 3,960,507 71,988 0.018
T10I4D100K 1,010,228 25,916 0.026
chess 118,252 5,100 0.043
pumsb star 2,475,947 47,424 0.019
webdocs 299,887,139 5,422,024 0.018

Table 5: Parameter K setting using Borgelt’s implementation of Eclat/LCM
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Experimental Setup The main difference between MapFIM+ and MapFIM is how each
approach estimates the projected datasets, based on the memory allocation for the local mining
phase. Therefore, we experiment the two algorithms using different values of the bound of
memory available for the local mining program. Both programs are tested using WebDocs
dataset with a value of support equals to 5%. We varied the bound of memory for local mining
program from 1024 MB to 4096 MB.

For MapFIM+ algorithm, we recall that γ parameter is defined using the value of K equal
to 0.05. For MapFIM algorithm, memory control is based on β parameter which is the number
of transactions that can be processed locally. This β parameter is more difficult to set because
the size of transactions in a projected database varies. A suboptimal solution is to bound the
size of the projected database by using the maximum transaction length l: ‖D′X‖ ≤ β × l. By
injecting this approximation into Equation 1, we obtain for the threshold: β = γ/l. Table 6
presents the estimated value of β parameter in MapFIM.

For example, when memory available for the local program is bounded by 1024 MB, MapFIM
estimates that local program can only handle projected datasets with at most 24% of the total
transactions. With 4096 MB of available memory or more, the performances of MapFIM+ and
MapFIM are identical because every projected datasets generated from frequent items can be
mined locally. As a consequence, the number of prefix-projected datasets is the same in the two
approaches. However, with limited memory, the difference between MapFIM+ and MapFIM is
clear.

Experimental Results Figure 2 shows execution time of the two programs (in seconds). As
expected, with 4096 MB of available memory for allocation, there is no difference between the
two programs in term of performance. However, for lower memory available for allocation,
MapFIM+ performs better than MapFIM. Figure 3 shows the number of projected datasets
generated by MapFIM+ and MapFIM for different cases of available memory of local processing
nodes. By calculating the exact size of each projected dataset, MapFIM+ achieves a good
performance compared to MapFIM by generating a smaller number of projected datasets. Not
difficult to see, the gap between MapFIM+ and MapFIM shall be more important in the case
of huge candidate sets due to the parallel candidate sets generation in MapFIM+, which is
performed by a single processing node in MapFIM.

Memory available for local mining program (MB) Estimated β in MapFIM

1024 24%
2048 47%
3072 71%
4096 94%

Table 6: Estimated value of β parameter in MapFIM

5.3 Comparison to other existing FIM approaches

In this subsection, we focus on the second and third questions:

• Q2 How transaction-extensible is MapFIM+?

• Q3 How MapFIM+ compare to the best existing approaches for itemset mining using
Hadoop MapReduce framework?
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Figure 2: Execution time of MapFIM+ and MapFIM using WebDocs dataset with support=5%
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Figure 3: Number of projected datasets using different bounds of local memory (MB)

Experimental Setup Beside MapFIM+, we believe that Parallel FP-Growth (PFP) [8] and
BigFIM algorithms [15] are the best approaches for itemset mining using Hadoop MapReduce
framework. Thus, we decide to compare the performance of MapFIM+ to BigFIM and PFP
algorithms. Moreover, we check that MapFIM+ is transaction-extensible, meaning that it
can mine all frequent itemsets whatever the number of transactions in the data set and the
minimum support threshold, which is not the case for PFP and BigFIM algorithms. In our
experiments, we use PFP implementation available in the library Apache Mahout 0.8 [12] and
BigFIM implementation based on Hadoop 1 and provided by the authors at https://gitlab.
com/adrem/BigFIM-sa.

PFP program was tested with its default parameter and BigFIM program was configured
with parameter k = 3 as suggested by the authors. Using this configuration, BigFIM uses a
parallel Apriori approach to mine all 3-frequent itemsets before switching to local mining phase.
It is shown in [15] that with k = 3, BigFIM achieves a good performance.

Experimental Results The first experiment consists of testing the real dataset WebDocs. We
varied the value of the minimum support threshold from 5% to 15%. This dataset is expected to
be hard to mine as it has long frequent itemsets as well asvery frequent itemsets. For example,
in this dataset, there exists a frequent 7-itemset that occurs in 20% of the transactions and at
least one frequent 3-itemset that appears in more than 60% of transactions.

The results are shown in Table 7. It is surprising that PFP can not solve WebDocs dataset
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with values of minimum support threshold between 5% and 15%, showing that PFP is not
transaction-extensible. The program requires a huge memory for the Reduce phase for min-
ing projected FP-trees. The results show that MapFIM+ outperforms BigFIM and can solve
effectively the dataset for low values of minimum support threshold.

In the second experiment, we compare the performance of approaches with generated syn-
thetic datasets. All the synthetic datasets consists of 100.000 different items and 50.000.000
transactions. However, the average length of transactions varies from 20 to 100. We set the
value of minimum support threshold to 0.2%. The result is shown in Table 8. With the
average length equal to 20, all three programs can solve the dataset within 20 minutes. How-
ever, BigFIM program can not solve other datasets due to memory lack, showing that it is
not transaction-extensible. PFP program can solve two further datasets but not the last ones
where the average length of transactions is equal to 80 and 100. It is clear that MapFIM+ has
a better execution time and is able to solve harder datasets with longer transactions. These
results confirm that MapFIM+ is transaction-extensible.

From the papers presenting the different approaches and the implementations of the pro-
grams, in our opinion, there are three main reasons that explain why MapFIM+ achieves better
performances:

• Our approach generates balanced prefix-projected datasets in an efficient manner while
guaranteeing that projected datasets can always be mined locally. This makes local mining
of projected datasets more efficient compared to existing approaches.

• Different from BigFIM and PFP, MapFIM+ does not implement the local mining program
but is able to use any efficient FIM implementations such as Eclat, so the performance
of MapFIM+ could be further improved while applying additional optimizations to local
mining process.

• MapFIM+ is transaction-extensible while guaranteeing good balancing properties, among
processing nodes, during all computation steps.

Support MapFIM+ BigFIM PFP

15 392 4136 Out of Memory
14 401 5583 Out of Memory
13 446 8207 Out of Memory
12 465 12319 Out of Memory
11 514 19748 Out of Memory
10 615 32267 Out of Memory
9 703 Out of Memory Out of Memory
8 894 Out of Memory Out of Memory
7 1208 Out of Memory Out of Memory
6 1798 Out of Memory Out of Memory
5 2684 Out of Memory Out of Memory

Table 7: Execution time (in seconds) using WebDocs dataset

20



Dataset MapFIM+ BigFIM PFP

T20.I100K.D50M 788 854 1009
T40.I100K.D50M 3178 Out of Memory 10838
T60.I100K.D50M 7623 Out of Memory 54031
T80.I100K.D50M 15092 Out of Memory Out of Memory
T100.I100K.D50M 24749 Out of Memory Out of Memory

Table 8: Execution time (in seconds) using synthetic datasets

6 Conclusion and Future Work

In this paper, we present MapFIM+ an improved version of our previous MapFIM algorithm [7],
a MapReduce based two-phase approach to efficiently mine frequent itemsets in very large
datasets. In the first global mining phase, MapReduce is used to generate local memory-fitted
prefix-projected databases from the input dataset benefiting from the Apriori principle. Then,
in a local mining phase, an optimized in-memory mining process is launched to enumerate in
parallel all frequent itemsets from each prefix-projected database. Compared to other existing
approaches, our algorithm implements a fine-grained method to switch from global phase to the
local mining phase. Moreover, we show that our method is transaction-extensible, meaning that
given a fixed set of items, it can mine all frequent itemsets whatever the number of transactions
and the minimum support threshold. To the best of our knowledge, our algorithm is the first
one to guarantee this property.

Our experimental evaluations show that both MapFIM and MapFIM+ outperform the best
existing MapReduce based frequent itemset mining approaches. Moreover, MapFIM+ performs
better than MapFIM in the case of huge candidate sets by reducing communication and disks
I/O costs. We show how to define and set the unique γ parameter of our MapFIM+ algorithm
depending only on the available memory for local mining using prefix-projected databases.
This point is particularly important, since an optimal value of γ parameter guarantees a high
performance level.

Future work will be devoted to make MapFIM+ scalable. This can be achieved by using
similar approaches, as those based on randomized key redistributions and introduced in [3,4] for
join processing. Indeed, the use of randomized key redistributions prevents the effects of data
skew while guaranteeing perfect balancing properties during all the stages of join computation
in large scale systems.
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