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Abstract
Pattern mining in numerical data remains a challeng-
ing task due to the pattern search space that becomes
potentially infinite with real-valued dimensions. Most
approaches reluctantly reduced the expressiveness of
mined patterns to make possible extraction. Despite
this expressiveness loss, they do not provide results
within a short response time of a few seconds. This
paper addresses the instant discovery of patterns in nu-
merical data based on sampling techniques. Instead of
splitting each dimension into intervals, we use a metric
to introduce the density as new interestingness measure,
and to define neighborhood patterns. The language of
neighborhood patterns is semantically rich but in re-
turn, its size is infinite. We then present a new exact
and non-enumerative random procedure to sample this
infinite language according to density. An experimental
study demonstrates the good compromise between pre-
cision and diversity of neighborhood patterns. Finally,
in the context of associative classification, we show that
a sample of neighborhood patterns is as accurate as tra-
ditional methods that traverses the entire search space.

1 Introduction
During the last two decades, pattern mining has been
a very active field of data mining by offering a large
number of algorithms dedicated to more or less com-
plex qualitative data such as itemsets, sequences or
graphs [15]. However many application areas require
the use of quantitative data such as spatial coordinates
in geography, demographic data in economics and so
on. In order to take into account numerical dimensions,
the most popular approach is to partition them before
applying the pattern mining algorithm (if there exists
no natural partition). In general, the discretization [8]
produces non-overlapping intervals meaning that each
value of the same dimension is inside a single interval.
It is well known that this technique induced an inherent
loss of information on the distance between two values.
For a given dimension, two very close values may be in
separate intervals and be regarded as completely differ-
ent. In contrast, two more distant points may be in the
same interval and be regarded as identical. Moreover,
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Figure 1: Impact of the norm on a neighborhood pattern
in two dimensions (left) ; A diamond pattern in L(D)
denser than the two patterns s1 and s2 in L(S) (right)

these intervals without overlapping inevitably degrade
the diversity of forthcoming mined patterns.

In order to overcome these limitations, this paper
adresses the discovery of patterns in numerical data
without considering any discretization process. To this
end, we first introduce a language of patterns, called
neighborhood patterns. Given a set of dimensions D,
containing either categorical or numerical values, a
neighborhood pattern x[D] is simply a point x in a
subspace D ⊆ D for a p-norm and a radius r. Its set
of neighbors is then defined as the subset of data points
whose projection on D is at a distance lower than r. [20]
has already used a dimensional point as pattern with a
number of neighbors instead of a radius. As illustration,
the left-hand side of Figure 1 presents 3 neighborhood
patterns with a same center (represented by a diamond)
for a same radius.

Due to the infinite domain for real-valued dimen-
sion, it is clear that the full-space language L(D) of
neighborhood patterns is also infinite. Therefore, a
complete enumeration method to extract the set of
all interesting neighborhood patterns is not possible.
One possible approach [20] is to limit the extraction to
the dataset sub-language L(S) ⊆ L(D) containing only
neighborhood patterns x[D] where x is the projection
on D of a point in the dataset S. As this language is
finite, it makes possible a complete enumeration but it
misses the most relevant neighborhood patterns. As il-
lustration, let us consider Figure 1 (right-hand side) rep-
resenting a two-dimensional space with two data points
s1 and s2. All points in the intersection of the neighbor-
hoods of s1 and that of s2 (like the plotted diamond) has
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two neighbors and satisfy a minimum threshold equal to
2. In contrast, each pattern in L(S) has exactly 1 neigh-
bor because no projection of si∈{1,2} has two data points
in its neighborhood (i.e., no projection is contained in
the darkest area). So there would be no patterns mined
with 2 as minimum threshold. This example clearly
illustrates the importance of addressing the full-space
language L(D) instead of the dataset language L(S).

To deal with the infinite size of the full-space lan-
guage L(D), this paper benefits from pattern sampling
techniques introduced in [17, 4]. Basically, pattern sam-
pling aims at drawing patterns in a language L with a
probability proportional to an interestingness measure
m. This approach has been successfully applied with
different interestingness measures on discrete data. Its
strength is to offer the user a fast and direct access to
the entire pattern language and with no parameter (ex-
cept possibly the sample size). This paper shows how to
extend pattern sampling to neighborhood patterns con-
sidering the full-space pattern language and the density
as interestingness measure. For instance, considering
the example of Figure 1 (right-hand side), our method
is twice as likely to draw a neighborhood pattern in the
dark gray area as in the light gray area. It naturally fo-
cuses on data vectors serving to describe an anomalously
high local density of data points as defined in [16].

The main contributions of the paper are as follows:

• We introduce a language of patterns, called neigh-
borhood patterns, that allows the discovery of inter-
esting pattern from numerical data without using
any discretization process. We also formally define
the density to evaluate the interestingness of neigh-
borhood patterns.

• We propose an exact and non-enumerative sam-
pling procedure addressing the infinite pattern lan-
guage L(D). This method instantly returns neigh-
borhood patterns according to a probability density
function proportional to their density. We detail
the sampling procedure for three different norms:
1-norm, 2-norm and ∞-norm.

• We present a large set of experimental results. On
the one hand, we use two measures, plausibility
and diversity, to assess the intrinsic quality of
sampled patterns. On the other hand, we show how
these patterns lead to build accurate associative
classifiers.

The paper is organized as follows. Section 2 reviews
some related work about pattern mining in numerical
data and pattern sampling methods. Section 3 intro-
duces basic definitions and the formal problem state-
ment. Neighborhood pattern sampling algorithm is de-

tailed in Section 4. We report a study on benchmarks
in Section 5 evaluating the plausibility and the diversity
of the approach, and the accuracy of classifiers based on
neighborhood patterns. We conclude in Section 6.

2 Related Work
2.1 Pattern Structure for Numerical Data The
introduction has already mentioned discretization meth-
ods [8]. There are some other transformation techniques
of numerical data into binary data (e.g., in [1], the gen-
erated binary transaction encodes the neighborhood of
the data point) that also lose information. To alle-
viate this problem, online partitioning approaches dy-
namically build intervals during the extraction of pat-
terns [27, 14, 19] aiming at considering all possible in-
tervals for each dimension. Unfortunately, this exhaus-
tive approach is unfeasible in practice due to the pro-
hibitive number of combinations much higher than the
number of patterns in classical binary data. An ele-
gant framework [19] significantly reduces the number of
intervals by benefiting from condensed representation
principles. However, this approach is insufficient to deal
with large real-world datasets and the use of heuristics
to not generate all the intervals remains necessary as
done in [27, 14]. Again, the completeness paradigm is
sacrificed to make feasible the mining task.

Finally, offline or online partitioning of numerical
data are achieved dimension by dimension often ignor-
ing the multivariate phenomena. There are few notable
exceptions for two-dimensional spaces including [10].
Correlations concerning several dimensions will be then
more difficult to identify [2]. Besides, as the combina-
tion of intervals (built individually on each dimension)
form an hyperrectangle whose volume increases rapidly
with the number of dimensions, the paradigm of inter-
val is often more sensitive to outliers. In this paper,
the notion of neighborhood with an infinite norm leads
to the same topology (i.e., hyperrectangles). But it also
makes possible to benefit from another topology like hy-
perspheres thanks to the 2-norm.

There are also other discrete pattern structures [7,
6, 18, 28] to circumvent the difficulties stemming from
numerical data. These pattern structures remain sets of
literals but their evaluation on the dataset benefits from
the numerical nature of data. For instance, a gradual
pattern [7] identifies a set of variations often observed
between dimensions when comparing two data points
(e.g., “the higher the age, the higher the salary”) i.e.,
couples of a variation sense (ascending/descending) and
a dimension. Other approaches [6, 18, 28] still mine sets
of dimensions but they take into account the numerical
data in the support calculation. An important differ-
ence is that for all of these proposals, a pattern is not
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local, but global since the computation of its support
always considers all the data points. Besides, all these
pattern structures are discrete and in particular, they
are not points in a data subspace. In contrast, a neigh-
borhood pattern is truly local and numerical because it
relies on a center involving numerical values.

2.2 Pattern Sampling Pattern sampling [17, 4]
aims at accessing the pattern space L by an efficient
sampling procedure simulating a distribution π : L →
[0, 1] that is defined with respect to some interestingness
measure m, i.e., π(.) = m(.)/Z where Z is a normaliz-
ing constant. As the pattern language is fully addressed
proportionally to m, this approach guarantees a good
variety of patterns returned to the user unlike heuris-
tic approaches (including those whose goal is to find
patterns maximizing interestingness criteria) and even,
statistical properties [11]. As constraint-based pattern
mining, pattern sampling problem has been proposed
for different languages like itemsets [4] and graphs [17],
and different interestingness measures including sup-
port [17, 4], area [4], discriminative measure [4], utility
measure [4, 23]. Additional constraints are sometimes
mandatory on the sampled patterns as it is the case in
[9] that benefits from the SAT framework. But, to the
best of our knowledge, no pattern sampling proposal
addresses an infinite language and especially, large sub-
spaces with numerical dimensions.

There are two main families of pattern sampling
approaches. Markov Chain Monte Carlo (MCMC)
method [17, 24, 3] uses a random walk on the partially
ordered graph formed by the pattern language. With
such a stochastic simulation, it is difficult to set the
equilibrium distribution with the desired properties and
the convergence to the stationary distribution within
an acceptable error can be slow. In contrast, two-
step random procedure [4, 23] samples patterns exactly
and directly without simulating stochastic processes.
Basically, this procedure randomly selects a data point
according to a first distribution and then, it selects
a pattern from this data point according to a second
distribution. The choice of these two distributions
enable a fine control of the produced patterns (e.g.,
area or discriminative measure as interestingness). This
method is particularly effective for drawing patterns
according to support or area (linear with the size of the
dataset). But it turns out quadratic or worse for some
measures (like the discriminative measure) requiring the
drawing of several data points in the first step. In this
paper, our proposal is based on the second family due
to its efficiency. Nevertheless, we complete the two-step
random procedure by a new and essential third step for
taking into account the nature of numerical data.

3 Problem Statement
3.1 Preliminary Definitions We now introduce
the formal framework of this paper. D is a set of di-
mensions. dom(d) is the (finite or infinite) domain of
the dimension d ∈ D containing either numerical or cat-
egorical values. A k-dimensional subspace S[d1, . . . , dk]
is the Cartesian product of the domains of dimensions
d1, . . . , dk, given as dom(d1)×· · ·×dom(dk). If k = |D|,
then the subspace is also called a full-space. Note that
S∗[D] extends S[D] by extending the domain of each di-
mension with a null value. A dataset is a subset of the
full-space: S ⊆ S∗[D] (meaning that a value can be not
stated by using null). Each element of S is named a
data point.

A k-dimensional point x[d1, . . . , dk] is a vector
⟨x1, . . . , xn⟩ where the ith component of x is drawn
from the domain of di. It means that x[d1, . . . , dk] ∈
S[d1, . . . , dk]. When the k-dimensional subspace is clear,
S simply denotes S[d1, . . . , dk] and x simply denotes
x[d1, . . . , dk]. When E ⊆ D ⊆ D, x[D][E] (or simply
x[E]) is the projection of x[D] on E.

3.2 Neighborhood Pattern Sampling Problem
In traditional discrete data, frequent pattern mining is
an extremely popular task due to the support measure.
This interestingness measure is intuitive for experts and
it is an essential atomic element to build many other
interestingness measures. For all these reasons, we
adapt the notion of support by considering a pattern
as a neighborhood. Instead of considering an exact
matching of the dimensional point x[D] with the data
point s (i.e., x[D] = s[D]), we tolerate a certain distance
between x[D] and s[D] by using a p-norm. Given p ≥ 1,
∥x∥p denotes the p-norm of a k-dimensional point x and

is defined as
(∑k

i=1 |xi|p
)1/p

. For p = 1, we get the
Manhattan norm; for p = 2, we get the Euclidean norm
and for p approaching ∞, we get the infinity norm (i.e.,
∥x∥∞ = max(x1, . . . , xk)). Let us recall that ∥x− y∥p
is a metric and ∥x− y∥p ≤ r means that y is near to
x for the p-norm and the radius r ≥ 0. For dealing
with a categorical dimension d, we define the absolute
difference of two values xi, yi ∈ dom(d) as 0 if xi = yi,
or infinite otherwise1. In the same way, for null values,
the absolute difference of a value xi ∈ dom(d) and null
is 0 if xi = null, or infinite otherwise.

Given p ≥ 1 and r ≥ 0, the neighborhood pattern
x[D] is the ball in S[D] centered around the dimensional
point x[D] with a radius r considering the p-norm. As
the p-norm and the radius r does not vary within an

1For simplicity, we do not discuss other possible approaches
because our goal is primarily to address numerical data.
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extraction, they will often be omitted in the remainder
of the paper and a neighborhood pattern simply corre-
sponds to its center. The full-space language L(D) is
the set of all neighborhood patterns: L(D) = {x[D] :
x ∈ S ∧ D ⊆ D} (note that neighborhood patterns do
not contain null values). The dataset language L(S) is
the set of all neighborhood patterns occurring in at least
one data point: L(S) = {s[D] ∈ L(D) : s ∈ S∧D ⊆ D}.
Figure 1 (left-hand side) illustrates the impact of the
norm in two dimensions. It is clear that a p-norm is
looser than a q-norm when p > q.

Now it is possible to extend the notion of support
to neighborhood patterns in L(D). The set of neighbors
for a neighborhood pattern x[D] is the set of the data
points which projection on D is near to x[D] (for the
p-norm and the radius r):

np,r(x[D], S) = {y ∈ S : ∥x[D]− y[D]∥p ≤ r}

If two neighborhood patterns x and y contain the
same number of neighbors, but the volume of x is
twice as small as that of y, it is clear that x is more
interesting because it concentrates more data points in
a smaller volume. To take into account the volume,
we introduce the notion of density. The density of the
neighborhood pattern x[D] is the number of data points
which projection on D is near to x[D] normalized by its
volume (for the p-norm and the radius r):

dp,r(x[D], S) =
|np,r(x[D], S)|

V |D|
p (r)

where V |D|
p (r) denotes the volume of the |D|-ball of ra-

dius r, denoted B|D|
p (r). Unlike the support, the den-

sity is not antimonotone due to the volume definition:
V |D|
p (r) = (2Γ( 1p + 1)r)|D|/Γ( |D|

p + 1) where Γ is Euler’s
gamma function.

Now we introduce the problem that is addressed in
the remainder of the paper:

Given a dataset S ⊆ S∗[D], a p-norm and
a radius r ≥ 0, the dense neighborhood pattern
sampling problem consists in returning a random
neighborhood pattern x[D] ∼ dp,r(L(D), S).

4 Neighborhood Pattern Sampling Algorithm
4.1 Three-Step Random Procedure The intu-
ition at the core of frequent itemset sampling in [4]
remains relevant for our pattern sampling problem on
numerical data. A dimensional point close to a random
data point is likely to be closed to many data points al-
together. This intuition leads to formulate the first two
steps of our non-enumerative sampling procedure:

1. Select randomly a data point x in the dataset with a

Algorithm 1 Dense Neighborhood Pattern Sampling
Input: A dataset S ⊆ S∗[D], p ≥ 1, a radius r ≥ 0
Output: A random neighborhood pattern drawn according

to density
1: Draw a data point x[D] ∼ w(S) where w(s) = 2l (l is

the number of non-null values) for all data points s ∈ S
2: Draw a set of dimensions E ∼ u(2D) where D ⊆ D are

the non-null dimensions of x
3: Draw a dimensional point z[E] ∼ u({y ∈ S[E] :

∥x[E]− y∥p ≤ r})
4: return z[E]

probability proportional to the size of the powerset
of its non-null dimensions.

2. Select a uniformly sampled set E of non-null di-
mensions of x and return x[E].

Note that the probability stemming from the non-null
dimensions of x in the first step is essential for not
introducing a biased towards dimensions occurring in
data points having null dimensions. Besides, it is clear
that the radius r has no impact on this method.

At this stage, as the neighborhood pattern x[E]
belongs to the dataset language, this two-step method
is limited to sample the dataset language L(S) (and not
L(D)!). Indeed, the proposed method does not exactly
follow the intuition given above: a dimensional point
close to a random data point. Instead of really drawing
a pattern close to the data point, the second step only
selects a projection of the random data point on E (as
if the radius of the neighborhood was zero). So, instead
of returning x[E] directly at step 2, we need to add a
third and essential step for completing the method:

3. Select a uniformly sampled dimensional point z[E]
in the neighborhood of x[E] and return z[E].

Thanks to this new step, our three-step random
procedure considers all dimensional points of the full-
space language L(D). In particular, it is easy to see
that all dimensional points for which the density is
zero are not drawn because they do not belong to any
neighborhood of a data point. Algorithm 1 sketches this
exact and non-enumerative random procedure. As main
theoretical result, Theorem 4.1 proves the correctness of
this algorithm:

Theorem 4.1. Given a dataset S ⊆ S∗[D], Algorithm 1
generates a neighborhood pattern z[E] according to a
probability density function proportional to its density:
z[E] ∼ densityp,r(L(D), S).

Proof. Due to the lack of space, we demonstrate this re-
sult by considering that all dimensions D are numerical.
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We are going to prove that the probability of selecting
a point in the ball centered on z[E] with a radius ϵ ≪ r,
denoted by Bp(z[E], ϵ), is proportional to the density of
z[E] times the volume of this ball:

P(y ∈ Bp(z[E], ϵ)) =
dp,r(z[E], S)

Z
× V |E|

p (ϵ)

where Z =
∑

D⊆D
∫
S[D]

|np,r(x[D], S)|/V |D|
p (r)dx. The

normalizing constant Z can be rewritten as the sum of
the volumes on each subspace:

Z =
∑
D⊆D

∑
s∈S/D

∫
B|D|
p (r)

1/V |D|
p (r)dx︸ ︷︷ ︸

=1

=
∑
D⊆D

|S/D| =
∑
s∈S

2D(s)

where B|D|
p (r) is a |D|-ball of radius r, S/D is the set of

data points in S having no null value on D and D(x)
gives the number of non-null dimensions for x.

In order to compute P(y ∈ Bp(z[E], ϵ)), we have to
marginalize out x (the data point drawn at step 1) and
F (the set of dimensions drawn at step 2):

P(y ∈ Bp(z[E], ϵ)) =
∑

x∈S,F⊆D(x)

P(x)× P(F/x)×

P(y ∈ Bp(z[E], ϵ)/x, F )

Considering Algorithm 1, it is easy to see that
the probability to select x in S using step 1 is:
P(x) = 2D(x)/

∑
s∈S 2D(s). Then, the probability

to select a subset F of dimensions in D(x) using
step 2 is: P(F/x) = 1/2D(x). Finally, the proba-
bility P(y ∈ Bp(z[E], ϵ)/x, F ) is equal to zero if x ̸∈
np,r(z[E], S) or F ̸= E. Otherwise, as z[E] is uni-
formly sampled into the neighborhood of x[E], we have:
P(y ∈ Bp(z[E], ϵ)/x,E) =

∫
Bp(z[E],ϵ)

dy

V|E|
p (r)

=
V|E|

p (ϵ)

V|E|
p (r)

.
Using the above three probabilities, we obtain:

P(y ∈ Bp(z[E], ϵ)) =
∑

x∈np,r(z[E],S)

2D(x)∑
s∈S 2D(s)

×
1

2D(x)
×

V|E|
p (ϵ)

V|E|
p (r)

=
∑

x∈np,r(z[E],S)

1∑
s∈S 2D(s)

×
V|E|

p (ϵ)

V|E|
p (r)

=
|np,r(z[E], S)|

V|E|
p (r)︸ ︷︷ ︸

dp,r(z[E],S)

×
1∑

s∈S 2D(s)︸ ︷︷ ︸
1/Z

×V|E|
p (ϵ)

�

Each of the first two steps (Algorithm 1) achieves
a uniform sampling on a finite set of elements (the
data points S or the powerset of non-null dimensions

of x) and are rather simple to implement. In contrast,
the third step addresses an infinite set of points by
considering the neighborhood of the dimensional point
x[E]. This step is semantically interesting because it
brings diversity. Because it is non-trivial, next section
investigates how it can be performed efficiently.

4.2 Third Step The draw of a dimensional point
z[E] in the neighborhood of x[E] is equivalent to the
uniform sampling of a point inside the p-norm |E|-ball
of radius r (plus a translation of x). In the case of
the ∞-norm, this draw consists in uniformly drawing
a point in the hypercube centered on the origin having
its edges of length 2 × r, parallel to the axes. This
can easily be achieved by sampling each component zi
uniformly in the interval [−r,+r]. For the 1-norm or
the 2-norm, the draw is more complex. A naive method
would be to perform a rejection sampling by drawing a
point in the hypercube (as above) and by rejecting this
point whenever its distance from the origin is greater
than r for the 1-norm (or the 2-norm). This approach is
inefficient when the number of dimensions in E increases
due to the curse of dimensionality. For instance, the
rejection probability is greater than 0.99 as soon as a
5-dimensional (resp. 9-dimensional) space is considered
with the 1-norm (resp. the 2-norm). This approach is
not feasible in practice when datasets have dozens of
dimensions (see Section 5).

We present two specific and efficient algorithms for
uniformly sampling the p-norm |E|-ball of radius r for
p = 1 and p = 2. The first algorithm dedicated to the
1-norm (see Algorithm 2) is mainly based on selecting
a point from a unit simplex, uniformly at random [26].
As a reminder, any point inside the simplex has the sum
of its components less than 1. After, the components of
such a sampled point are scaled according to the radius
r and randomly opposite (line 6). Algorithm 2 returns
a k-dimensional point uniformly drawn inside the ball
Bk
1 (r) in O(k ln k) time due to the sort of components.

The second algorithm (see Algorithm 3) reformu-
lates the technique used in [25] that returns points uni-
formly distributed on the unit k-sphere. It rests on a
property of the normal distribution (the k-dimensional
canonical normal density function has constant prob-
ability on the surfaces of k-dimensional spheres with
common centers). Note that we use the Box-Muller
transform [5] for the generation of a normal distribu-
tion. Algorithm 3 returns a k-dimensional point uni-
formly drawn inside the ball Bk

2 (r) in O(k) time.

4.3 Global Complexity Analysis A single pass
over the dataset is necessary for preparing the first
step of Algorithm 1 by computing the weight w for
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Algorithm 2 Uniform 1-norm Ball Sampling
Input: A dimension number k, a radius r
Output: A k-dimensional point uniformly drawn inside the

ball Bk
1 (r)

1: Draw a k-dimensional point y according to the k-
dimensional uniform distribution

2: Sort the k components of y in ascending order
3: p := 0
4: for i = 1 to k do
5: Draw u ∈ [0, 1] according to the uniform distribution
6: xi := r × (yi − p)× signum(u− 0.5)
7: p := yi
8: end for
9: Permute randomly components of x

10: return x

Algorithm 3 Uniform 2-norm Ball Sampling
Input: A dimension number k, a radius r
Output: A k-dimensional point uniformly drawn inside the

ball Bk
2 (r)

1: Draw a k-dimensional point x according to the k-
dimensional standard normal distribution

2: Draw a value u ∈ [0, 1] according to the uniform
distribution

3: x := r × u1/k × x
∥x∥2

4: return x

all data points. After, the draw of a neighborhood
pattern requires to access the sampled data point (in
time O(ln |S|)) and to select a subset of dimensions
(in time O(|D|)). Finally, the time complexity varies
according to the considered p-norm at step 3 (proofs of
properties are omitted due to lack of space):

Property 4.1. Given a dataset S ⊆ S∗[D], a family of
k realizations of a random neighborhood pattern x ∼
densityp,r(L(D), S) can be generated in time O(|S| ×
|D| + k(|D| + ln |S|)) for the 2-norm and the ∞-norm
and in time O(|S| × |D| + k(|D| ln |D| + ln |S|)) for the
1-norm.

Only the use of the 1-norm leads to an harder
complexity of the three-step method compared to the
two-step method. In practice, the average pattern draw
time in the datasets used in the next section does not
exceed a few tens of milliseconds (whatever the p-norm),
except for the letter dataset where drawing a pattern
requires on average 360 milliseconds.

5 Experimental Study
This experimental study aims at evaluating the quality
of neighborhood patterns returned by the three-step
random procedure. It is always difficult to show that
extracted patterns are relevant since pattern mining is

an unsupervised task. In Section 5.1, we assess the
sampled patterns via a swap randomization protocol
inspired from [13]. As an objective evaluation metric
in Section 5.2, we will also measure the accuracy of
classifiers built from the sampled neighborhood patterns
as done in [4].

Experiments are conducted on 19 datasets coming
from the UCI ML repository (archive.ics.uci.edu/
ml). We normalize numerical data using z-score: z =
(x − µ)/σ where µ is the mean of the population and
σ is the standard deviation of the population. All
experiments are performed on a 2.5 GHz Xeon processor
with the Linux operating system and 2 GB of RAM
memory. Algorithms are implemented in Java and the
source code is available at www.info.univ-tours.fr/
~soulet/prototype/sdm18/.

5.1 Plausibility and Diversity of Sampled
Neighborhood Patterns Our first goal is to assess
the significance of neighborhood pattern sampling with
p-norms (for p ∈ {1, 2,∞}) using density on the full-
space language L(D). For this purpose, we compare
this sampling approach with three others:

• Neighborhood patterns on L(S): We remove
the third step for restraining the sampling to L(S)
(see Section 4.1).

• Interval pattern: MinIntChange algorithm [19]
for mining a condensed representation of interval
patterns is not sufficiently scalable for dealing with
UCI datasets. Instead, we have developed interval
pattern sampling method simulating 1) a complete
extraction of all interval patterns (not only the
condensed representation) and 2) a draw of interval
patterns proportional to their frequency. More
precisely, this approach uses the same first two
steps of Algorithm 1 and replaces the third step
by an interval generation. For each component
xi of dimension d, this interval generation selects
uniformly two values mi,Mi ∈ dom(d) such that
xi ∈ [mi,Mi].

• 3-bins itemset: We first discretize the dataset us-
ing an equal-frequency discretization method with
three bins (i.e., each discrete interval contains the
same number of values). Then, we apply our pat-
tern sampling algorithm. On categorical data, it
is exactly equivalent to that of [4] because the vol-
ume of a neighborhood pattern is 1 when there is
no numerical dimension.

We use two measures for assessing the quality of
patterns resulting from each method:
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Two-step method in L(S) Three-step method in L(D)
1-norm 2-norm ∞-norm 1-norm 2-norm ∞-norm Interval 3-bins

Dataset Plau. Div. Plau. Div. Plau. Div. Plau. Div. Plau. Div. Plau. Div. Plau. Div. Plau. Div.
abalone 0.79 0.99 0.53 0.99 0.38 0.99 0.80 0.99 0.54 0.99 0.29 0.99 0.24 1.00 0.74 0.51
adult 0.31 0.96 0.27 0.96 0.24 0.96 0.30 0.96 0.25 0.96 0.24 0.96 0.17 0.97 0.17 0.95
breast 0.79 0.70 0.52 0.70 0.34 0.70 0.82 0.91 0.52 0.81 0.32 0.94 0.35 0.94 0.64 0.44
bupa 0.13 0.77 0.07 0.76 0.05 0.77 0.13 0.90 0.07 0.87 0.05 0.89 0.04 0.95 0.15 0.31
crx 0.38 0.78 0.34 0.78 0.29 0.78 0.36 0.79 0.31 0.78 0.31 0.77 0.24 0.77 0.21 0.59
glass 0.56 0.56 0.28 0.56 0.17 0.56 0.56 0.74 0.29 0.67 0.16 0.78 0.18 0.81 0.38 0.35
heart∗ 0.81 0.64 0.38 0.64 0.25 0.64 0.79 0.71 0.39 0.66 0.23 0.71 0.25 0.81 0.31 0.54
hypo 0.46 0.99 0.34 0.99 0.31 0.98 0.46 0.99 0.34 0.99 0.29 0.99 0.32 0.99 0.28 0.97
ionosphere∗ 1.00 0.55 1.00 0.55 0.93 0.55 1.00 0.58 1.00 0.56 0.88 0.42 0.60 0.49 0.07 0.10
iris 0.35 0.10 0.29 0.10 0.25 0.10 0.33 0.36 0.28 0.29 0.21 0.44 0.21 0.62 0.46 0.01
letter∗ 0.95 0.99 0.55 0.99 0.27 0.99 0.94 1.00 0.56 0.99 0.19 1.00 0.18 1.00 0.10 0.98
new-thyroid 0.20 0.28 0.14 0.28 0.11 0.28 0.20 0.62 0.14 0.54 0.10 0.68 0.11 0.83 0.24 0.08
pima 0.31 0.94 0.14 0.94 0.09 0.94 0.31 0.97 0.13 0.96 0.08 0.96 0.08 0.99 0.19 0.70
sick 0.40 0.98 0.28 0.98 0.23 0.98 0.39 0.98 0.27 0.98 0.22 0.98 0.26 0.99 0.21 0.96
spambase∗ 0.72 0.83 0.66 0.83 0.26 0.83 0.88 0.83 0.57 0.83 0.37 0.81 0.09 0.83 0.38 0.66
waveform∗ 0.97 0.98 0.77 0.98 0.34 0.98 0.98 0.98 0.78 0.98 0.37 0.90 0.24 1.00 0.02 0.73
wdbc∗ 1.00 0.80 0.98 0.80 0.68 0.80 0.98 0.81 0.98 0.80 0.73 0.48 0.46 0.81 0.03 0.17
wine 0.96 0.73 0.66 0.73 0.42 0.73 0.95 0.78 0.66 0.76 0.38 0.63 0.33 0.82 0.41 0.29
yeast 0.15 0.92 0.07 0.92 0.05 0.92 0.15 0.96 0.07 0.95 0.04 0.96 0.03 0.97 0.09 0.54

Average: 0.59 0.76 0.44 0.76 0.30 0.76 0.60 0.83 0.43 0.81 0.29 0.80 0.23 0.87 0.27 0.52

Table 1: Plausibility and diversity for UCI benchmarks with a radius equal to 1

• Plausibility: Plausibility measures whether the
mined patterns truly characterize the dataset or
whether they result from chance. It is defined as the
probability that a sampled pattern X ∈ S having
an interest m greater than δ ∈ [0,∞) in S has
not an interest m greater than δ in a randomized
dataset S∗. Note that the randomized dataset
S∗ shares the same characteristics with S but the
values of a same dimension have been permuted.
The idea of this randomized dataset is to erase all
correlations of S. Thus, all the patterns in S∗ are
considered as spurious. More formally, we define
the plausibility w.r.t. m (e.g., density or support)
for a sample S as follows:∫ ∞

0

|{m(X,S) ≥ δ ∧m(X,S∗) < δ|X ∈ S}|
|{m(X,S) ≥ δ|X ∈ S}| dδ

This protocol is inspired from [13] for evaluating
the significance of results.

• Diversity: We define the diversity of k sam-
pled patterns as the number of distinct equiv-
alent classes divided by k. Two patterns x[D]
and y[E] are equivalent when they share the same
data points as neighbors i.e., np,r(x[D], S) =
np,r(y[E], S).

Table 1 reports the plausibility (for 10, 000 pat-
terns) and the diversity (for 100, 000 patterns) for each
UCI benchmarks considering a radius equal to 1. Each
reported evaluation measure is the arithmetic mean of
10 repeated measurements (interval confidence are nar-
row enough to be omitted). For each line, the best ap-
proach is highlighted in bold.

Overall neighborhood pattern sampling is the best
sampling method in terms of plausibility. Only the plau-
sibility using the ∞-norm is not completely satisfactory.
In this case, a neighborhood pattern behaves as an in-
terval pattern of side 2r and are rather sensitive to noise
in large dimensions. Whatever the number of steps, the
plausibility of neighborhood pattern sampling with the
1-norm is significantly better than that with the 2-norm.
Neighborhood pattern sampling with p ∈ {1, 2} is par-
ticularly relevant in datasets with a large number of
numerical dimensions. Apart spambase, the 6 datasets
having at least 10 numerical dimensions (marked by a
star) are also the 6 datasets having a plausibility for 1-
norm neighborhood patterns twice more important than
that for discretized itemsets. Thus, neighborhood pat-
terns seem to be more resistant to the “curse of dimen-
sionality”.

As expected, the diversity of interval patterns is the
highest while that of discretized patterns is the worst
(reflecting the inherent information loss). Neighbor-
hood patterns have good diversity since for the 1-norm
three-step method, the gap with the interval patterns
is a few percent. Importantly, the third step increases
the diversity of neighborhood patterns showing the true
interest to consider the full-space language L(D).

Figure 2 presents the averages of evaluation mea-
sures (plausibility with 10, 000 patterns and diversity
with 100, 000 patterns) for the 19 UCI benchmarks when
the radius varies from 0 to 4. Neighborhood pattern
sampling has clearly the best plausibility when the ra-
dius is low. For radii below 1, the plausibility of the
neighborhood patterns is greater than that for the in-
tervals. About the diversity, we remark that increasing
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Figure 2: Plausibility and diversity of neighborhood
pattern sampling with radius

Sampling-based classifiers Baseline classifiers
Dataset 1 2 ∞ 3-bins cba cmar cpar
crx 86.4 86.5 86.7 86.7 84.7 84.9 85.7
glass 70.5 72.9 72.4 67.3 73.9 70.1 74.4
heart* 81.9 82.6 82.6 78.1 81.9 82.2 82.2
hypo 97.5 97.4 97.5 95.3 98.9 98.4 98.1
iono.* 83.2 83.2 84.6 74.4 92.3 91.5 92.6
iris 96.7 96.7 96.0 96.7 94.7 94.0 94.7
pima 76.8 76.0 76.7 69.0 72.9 75.1 73.8
sick 96.8 96.6 96.7 93.5 97.0 97.5 96.8
wave.* 82.6 82.1 81.2 72.3 80.0 83.2 80.9
wine 94.4 96.6 95.5 92.2 95.0 95.0 95.5

avg: 86.7 87.1 87.0 82.5 87.1 87.2 87.5

Table 2: Pattern-based classification based on neighbor-
hood pattern sampling

the radius increases the diversity until a certain level
(depending on the method). For the three-step sam-
pling, the diversity is higher than that of itemsets for
radii less than 4. The diversity of neighborhood pattern
sampling with the ∞-norm even managed to reach that
of interval patterns.

In summary, it is clear that the three-step method
with the 1-norm is the best compromise between plau-
sibility and diversity. It is also interesting to use the
Euclidean norm which can be more intuitive on certain
datasets (e.g., spatial data). In all situations, the ad-
dition of the third step increases the diversity with a
marginal plausibility loss in the worst case. A radius
around 1 provides a good plausibility and a satisfactory
diversity when the z-score is used as standardization.

5.2 Accuracy of Sampling-Based Classification
In this section, we evaluate the interest of neighbor-
hood patterns in the context of pattern-based classi-
fication. Our goal is to apply a CBA-like classifica-
tion [22] starting from a sample of neighborhood pat-
terns to measure whether the accuracy is comparable to
traditional associative classifiers which are based on a
complete exploration of the search space. In a nutshell,
it consists in building an associative classifier based

on a sample S of 10,000 neighborhood patterns. For
each pattern x[D] ∈ S, an association rule x[D] → c
is derived iff x[D] → c has a confidence greater than
0.5 (here, conf(X → c) = np,r(x[D], Sc)/np,r(x[D], S)
where the subdataset Sc contains all the data points
of class c). The cba approach is used for making pre-
diction. Given a new data point y, the rule x[D] → c
such that ∥x[D]− y[D]∥p ≤ r and that maximizes the
confidence (and if necessary, the neighborhood) is ap-
plied to predict the class c. For each dataset S and
each norm p, an optimal radius r is found by means
of a cross-validation on the training dataset where the
accuracy is optimized. Table 2 reports the accuracy of
this sampling-based classification for the three norms.
We apply this same approach with a sample of 10,000
frequent itemsets on a discretized dataset (see the fifth
column of Table 2). Finally, we compare our approach
with three associative classifiers (i.e., cba, cmar and
cpar) as baseline in the three last columns. We re-
port the accuracy results given in [29] for the datasets
in common with the previous section.

The first observation is that the three norms have a
very similar behavior (average accuracy between 86.7%
and 87.1%). Indeed, the adjustment of the radius (by
means of cross-validation) makes it possible to find
a good compromise between plausibility and diversity
which attenuates the impact of each norm whatever the
dataset. Interestingly, the use of neighborhood patterns
directly on numerical data improves the accuracy with
respect to a similar sampling approach on the binarized
data. In particular, neighborhood patterns are more
relevant for datasets with a large number of numerical
dimensions (e.g., ionosphere or waveform).

The most important observation is that our CBA-
like approach based on neighborhood pattern sampling
is as accurate as associative classifiers of the literature.
It means that the sample of neighborhood patterns is
sufficiently interesting and representative of the entire
search space. Obviously this result is all the more
interesting as unlike the complete methods, the set of
neighborhood patterns is sampled in a few seconds.

6 Conclusion
We introduced a new pattern mining method in numer-
ical data that abandons the paradigm of the complete
enumeration to that of an instant access to the pat-
tern language. An originality of our work is the pro-
posal of neighborhood pattern which is a pattern struc-
ture that does not separately consider each dimension
due to the use of a metric. The experimental study
shows that neighborhood patterns have a high preci-
sion while maintaining excellent diversity in comparison
with previous literature approaches. In the context of
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associative classification, a sample of neighborhood pat-
terns gives an accuracy comparable to the traditional
approaches traversing the entire search space. Despite
the infinite number of neighborhood patterns, a new
method was proposed to sample according to density
without using a stochastic process. After a prelimi-
nary pass over the data, this three-step method is effec-
tive enough to instantly return patterns even on large
datasets.

Our work goes in the direction of the interactive
data exploration using pattern mining [12] that encour-
ages a tight coupling between the user and the mining
system. Although it focused on the density measure, we
would like to extend this technique to other interesting-
ness measures that may include user feedback. Rather
than immediate use by an end-user, we also intend to
benefit from this method of pattern sampling in numer-
ical data as an elementary block for subspace clustering
[21] without considering discretization.
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