
Anytime Large-Scale Analytics
of Linked Open Data

Arnaud Soulet1,2[0000−0001−8335−6069] and Fabian M. Suchanek2

1 Université de Tours, LIFAT
firstname.lastname@univ-tours.fr

2 Telecom Paris, Institut Polytechnique de Paris
lastname@telecom-paris.fr

Abstract. Analytical queries are queries with numerical aggregators:
computing the average number of objects per property, identifying the
most frequent subjects, etc. Such queries are essential to monitor the
quality and the content of the Linked Open Data (LOD) cloud. Many
analytical queries cannot be executed directly on the SPARQL endpoints,
because the fair use policy cuts off expensive queries. In this paper, we
show how to rewrite such queries into a set of queries that each satisfy
the fair use policy. We then show how to execute these queries in such a
way that the result provably converges to the exact query answer. Our
algorithm is an anytime algorithm, meaning that it can give intermediate
approximate results at any time point. Our experiments show that the
approach converges rapidly towards the exact solution, and that it can
compute even complex indicators at the scale of the LOD cloud.

1 Introduction

The Linked Open Data (LOD) cloud accumulates more and more triplestores,
which are themselves more and more voluminous. Several statistical indicators
have been proposed to monitor the content and the quality of the data: Mapping
methods [3,11,29] provide statistical indicators to summarize the property and
class usage and the links between them. Other indicators evaluate the complete-
ness of the data [16,24] or the representativeness of the properties [34]. However,
the increase in volume that makes these indicators more necessary also makes
them harder to compute. The most recent methods adopt distributed architec-
tures [14,33] that centralize the data, and then execute the indicator queries
on that centralized data repository. To compute the exact query result, these
approaches thus require the materialization of the entire LOD cloud. This is
expensive in both storage space and processing time.

It would thus be interesting to calculate these indicators not on a central-
ized data repository, but directly from the SPARQL endpoints. Unfortunately,
computing large-scale analytical indicators with SPARQL queries is very chal-
lenging. First, these queries concern hundreds of triplestores – while federated
query processing [30] already has difficulties coping with a dozen of them. Sec-
ond, existing engines assume that the SPARQL endpoints have no usage limits.

However, public SPARQL endpoints have relatively strict fair use policies, which
cut off queries that are too expensive. As it turns out, statistical indicators are
usually exactly among the most expensive queries. For instance, computing the
proportion of each property of the LOD cloud involves every single triple of every
single triplestore – an impossibility to compute under current fair use policies.

This paper proposes to relax the notion of exact query answers, and to com-
pute approximate query answers instead. Given an analytical query and a set of
triplestores, we propose to split the query into a series of smaller queries that each
respect the fair use policies. We have developed an algorithm that aggregates
these query answers into an approximate answer. Our algorithm is an anytime
algorithm, meaning that the approximate answer can be read off at any time,
and provably converges to the exact answer over time. In this way, our approach
does not only avoid the large storage requirements of centralized solutions, but
it also delivers a first answer very quickly, while at the same time respecting the
fair use policies. More specifically, our contributions are as follows:

– We provide an algebraic formalization of analytical queries in the context of
fair use policies.

– We propose a parallelizable anytime algorithm whose results are proportional
to the exact query answer and provably converge to it.

– We show the efficiency of our approach by computing complex indicators on
a large part of the LOD cloud.

This paper is organized as follows. Section 2 reviews related work. Section 3 intro-
duces the notions of analytical queries and fair use policies. Section 4 presents our
algorithm. Section 5 provides experimental results, before Section 6 concludes.

2 Related Work

Centralized query answering. Several architectures have been proposed to
handle SPARQL queries on large volumes of data. Some approaches use the Pig
Latin language [22,23], others use Spark [32], and again others HBase [15]. For
analytical queries, groupings and aggregates are the most important aspects.
Several architectures have been specifically designed for this use case:

LODStats [3] is inspired by approaches for querying RDF streams [5,8]. It
parallelizes streaming and sorting techniques to efficiently process RDF data.
More recent methods either use HDFS (LODOP [14]) or store the data in mem-
ory (DistLODStats [33] via Spark). Exact rewriting rules have also been pro-
posed to optimize the execution of such queries with groupings and aggregates
in RDF data [11]. All of these approaches centralize the data. This does not
just come with high download cost and high disk storage requirements, but also
long execution times. Our method, in contrast, does not centralize the data and
computes a continuous approximation of the query answer.
Federated query answering. Federated query systems avoid the centralization
of the data by executing SPARQL queries directly over several endpoints [30].
Some of these approaches are dedicated in particular to aggregate queries [20].

These systems decompose a query into a set of queries that are executed on each
triplestore. Then the results are recombined to yield the final query answer.
A recent study analyzes the large-scale performance of these approaches [31].
Some systems are specifically dedicated to privacy [21] or authorization con-
straints [12]. However, none of these systems is able to respect the fair use
policies of SPARQL endpoints. Much like on the Deep Web [7], queries that do
not respect this policy will simply fail. This issue is even more important in the
case of analytical queries, which concern many public endpoints, and potentially
all entities in each of them. Our approach, in contrast, makes sure that the fed-
erated queries satisfy the fair use policy, while at the same time guaranteeing
that the recombined result tends towards the exact answer.
Query answering by samples. Several works aim at computing aggregates
by sampling the data directly. With regard to RDF graphs, only [17,25] samples
the data to study its statistics. This approach requires a partial centralization
of the data and offers no theoretical guarantee on the exactness of the result.
Our approach, in contrast, provably converges to a result proportional to the
exact answer. Finally, there are several proposals about sampling operators in
the database field [28,27]. Unfortunately, these operators cannot be used in our
scenario, because they are not implemented by SPARQL endpoints. Similarly,
there are anytime approaches [19] to compute aggregates in databases, but these
work designed for centralized data directly modify the query execution plan and
the read-access to the data.

3 Preliminaries

3.1 Basic definitions

This work relies on the SPARQL algebra framework [13], whose notations are
mainly inspired from traditional relational algebra [1]. In all of the following
our sets are multi-sets, i.e., they can contain the same element several times. In
the algebraic framework, a relation T [A1, .., An] consists of a name T , attribute
names A1, ..., An (the schema) and a set of n-tuples. For ease of notation, we
will often identify a relation with its set of tuples. A triplestore is a relation with
the 3 attributes subject, property, and object (which we omit because they are
always the same). The Linked Open Data (LOD) cloud is a set of triplestores
{T1, . . . , TN}. For instance, Table 1 shows two small triplestores TCaesar and
TdaVinci, which contain 16 triples with 2 properties.

The following operators are defined on relations: The Cartesian product of
two relations R and S is defined as R × S = {(t, u)|t ∈ R ∧ u ∈ S}. The
union, the intersection and the difference of two relations R and S with the
same schema are defined as R ∪ S, R ∩ S and R − S, respectively. Given a
relation R and a boolean formula f , the selection σf (I) = {t|t ∈ I ∧ f(t)}
selects the tuples of R that satisfy the logical formula f . Given a relation R
with at least the attributes A1, ...An, the extended projection πA1,...,An

(R) =
{t[A1, . . . , An]|t ∈ R} preserves only the attributes A1, . . . , An of R. Besides,
the projection also allows extending the relation by arithmetic expressions

TCaesar

subj prop obj

Gaius parentOf Julius
Gaius parentOf JuliaTheE.
Gaius parentOf JuliaTheY.
Marcus parentOf Atia
JuliaTheY. parentOf Atia
Gaius gender male
Julius gender male
JuliaTheE. gender female
JuliaTheY. gender female
Marcus gender male
Atia gender female

TdaVinci

subj prop obj

Piero parentOf Leonardo
Caterina parentOf Leonardo
Piero gender male
Caterina gender female
Leonardo gender male

Table 1. A toy example with 2 triplestores with FOAF properties

and the (re)naming of expressions. For instance, πA+B→B′,C→C′(R) creates a
new relation where the first attribute called B′ results from the arithmetic
expression A + B and the second attribute corresponds to C, but was re-
named to C ′. Given a relation R with at least the attributes A1, . . . , An, B,
and given an aggregation function AGG (which can be COUNT, SUM, MAX, MIN),
a grouping γA1,...,An,AGG(B)(R) = {(a1, . . . , an, AGG(πB(σA1=a1∧···∧An=an(R)))
|(a1, . . . , an) ∈ πA1,...,An

(R)} groups tuples of I by A1, ...An and computes AGG

on the attribute B. Our approach currently does not support an aggregation
operator to compute the median. However, our approach will work for the aver-
age, which can be decomposed into SUM and COUNT aggregates. The expression
γA1,...,An

(R) has the same effect as a projection on A1, . . . , An, but it does not
retain duplicates. Finally, a query q is a function from one relation to another
one. The set of attributes of the result of q is denoted by sch(q).

3.2 Analytical queries

Our definition of analytical queries is inspired by multi-dimensional queries in
online analytical processing (OLAP) [10,9]:

Definition 1 (Analytical query). An analytical query is a query of the form
γA1,...,An,AGG(B)(q(T)), where q is a query such that {A1, . . . , An, B} ⊆ sch(q).

For example, the following analytical query counts, for each property p and each
integer i how many subjects have exactly i objects for property p:

αcard ≡ γprop,card,COUNT(subj)→count(γsubj,prop,COUNT(obj)→card(T))

In this query, A1 = prop and A2 = card are two aggregate attributes;
subj is the measure attribute B; COUNT is the aggregate function, and
γsubj,prop,COUNT(obj)→card(T) is the query q. In this case, the aggregation is com-
puted on the view γsubj,prop,COUNT(obj)→card(T), which contains the number of

objects for each pair of a subject and a property. Table 2 shows how this query
is executed on TCaesar ∪ TdaVinci from Table 1: The result tells us that there are
4 subjects with 1 child, 1 subject with 3 children, and 9 subjects with 1 gen-
der. This information is particularly useful for discovering maximum cardinality
constraints [26] (e.g., that there is at most one gender for a subject).

αcard(TCaesar)

prop card count

gender 1 6
parentOf 1 2
parentOf 3 1

+

αcard(TdaVinci)

prop card count

gender 1 3
parentOf 1 2

→

αcard(TCaesar ∪ TdaVinci)

prop card count

gender 1 9
parentOf 1 4
parentOf 3 1

Table 2. Execution of the analytical query αcard on TCaesar ∪ TdaVinci

Cardinality distribution per property and subject:
αcard ≡ γprop,card,COUNT(subj)→count(γsubj,prop,COUNT(obj)→card(T))

First significant digit distribution per property:
αFSD ≡ γprop,fsd,COUNT(obj)→count(γobj,prop,FSD(COUNT(subj))→fsd(T))

Co-class usage per property:
αatt ≡ γp,o′,o′′,COUNT(∗)→count(σs=s′=s′′∧p′=p′′=rdf:type(T × T ′ × T ′′))

Maximum value for each numerical property:
αmax ≡ γprop,MAX(obj)→max(σdatatype(prop)∈{int,float}(T))

Property usage: αprop ≡ γprop,COUNT(∗)→count(T)
Class usage: αclass ≡ γobj,COUNT(∗)→count(σprop=rdf:type(T))

Table 3. Examples of analytical queries

Our definition of analytical queries is very general: It allows the computation
of arbitrary aggregations on arbitrary views on the data. With this, our defini-
tion is more expressive than most of the proposals in the literature, which have
often focused on statistics that concern individual triples [3,11]. Table 3 shows
more examples of analytical queries. The second query αFSD uses the function
FSD, which, given a number (e.g., 42) returns the first significant digit of that
number (here: 4). The query αFSD then calculates for each property the distri-
bution of the first significant digits of the fact number per object. This query
is particularly useful for estimating the representativeness of a knowledge base
by exploiting Benford’s law [34]. We will use this query in Section 5 to evaluate
the representativeness of the LOD cloud. The query αatt counts the number of
subjects at the intersection of two classes (here, obj′ and obj′′) for each prop-
erty. Such statistics are useful for identifying the obligatory attributes for a given

class [24]. Finally, the last three queries come from [3]. They return the usage of
properties and classes as well as the maximum value for numerical properties.
As said above, these last three queries are less sophisticated because their inner
query q is a simple filter.

In the following, we will often have to combine the results of analytical queries
from several relations:

Definition 2 (Aggregator). The aggregator version of an analytical query
α(T) ≡ γA1,...,An,AGG(B)(q(T)), denoted α̃(T), is γA1,...,An,ÃGG(B)(T), where

C̃OUNT = SUM and ÃGG = AGG otherwise.

For example, with MAX as aggregate function, we have α̃max ≡
γprop,MAX(obj)→max(T) (because M̃AX = MAX). The aggregator version of a query
serves to combine the results of an analytical query on two triplestores. For
example, we can compute α̃card(αcard(TCaesar)∪αcard(TdaVinci)). In this expres-
sion, α̃card will just copy all rows of its argument, and merge any two rows that
concern the same property and the same cardinality by summing up the two
count values. Since TCaesar and TdaVinci have no subject in common, the result
is equivalent to αcard(TCaesar ∪ TdaVinci) (see again Table 2). Thus, instead of
computing αcard on the union of TCaesar and TdaVinci, we can compute αcard on
each of the triplestores and aggregate the results by α̃card.

3.3 Fair use policy

The fair use policy of a triplestore T , denoted by PT , is the set of limits imposed
by the data provider. Formally, Q |= PT means that the set of queries Q satisfies
the fair use policy of T . The execution time between two queries is often an
important criterion for such policies. Let Q be a set of queries. Given two queries
q1 ∈ Q and q2 ∈ Q, t(q1, q2) denotes the delay between the execution of two
queries. For instance, for DBpedia3, there is a limit on the number of connections
per second you can make, as well as restrictions on result set sizes and query time.
The restriction on the result set size is usually not a problem: We can simply
execute the same query several times, and use the OFFSET clause to retrieve
different parts of the result. It is the restriction on the query execution time
that usually spoils the query, because the query will use up the time budget and
then abort without a result.

To deal with this difficulty, our approach requires the policies to have two
properties. First, a policy P is monotone iff for all Q1 |= P and Q2 |= P,
there exists a delay d such that Q1 ∪ Q2 |= P if minq1∈Q1,q2∈Q2

t(q1, q2) ≥
d. A monotone behavior for a policy means that if some queries have been
successfully executed, it will be possible to execute them again (observing a
delay d). Consequently, if a query is rejected because the query number per time
limit is reached, the monotone property guarantees that we can successfully fire
a new query after a short waiting time. Second, a policy P is consistent iff any
query q that satisfies the policy of a triplestore T also satisfies the policy on a

3 https://wiki.dbpedia.org/public-sparql-endpoint

https://wiki.dbpedia.org/public-sparql-endpoint

αcard
prop card count

gender 1 9
parentOf 1 4
parentOf 3 1

→

αcard
. . . count

. . . 9/14 = 0.64

. . . 4/14 = 0.29

. . . 1/14 = 0.07

Aαcard

prop card count

gender 1 4
parentOf 1 2

→

Aαcard

. . . count

. . . 4/6 = 0.66

. . . 2/6 = 0.33

(a) αcard (b) Approximation of αcard

Table 4. αcard(TCaesar ∪ TdaVinci) and its approximation

smaller portion: ∀T ′ ⊆ T : (q(T) |= P)⇒ (q(T ′) |= P). A consistent behavior for
a policy means that if a query has been successfully executed on a set of triples,
the same query can be executed on a subset of these triples. In the following,
we assume that all policies are both monotone and consistent. In practice, we
found that these two assumptions are satisfied by most triplestores, including
DBpedia. The following sections will show how to use these properties in order
to overcome the restriction on query time.

3.4 Problem statement

In most cases, it is not possible to execute an analytical query directly on the
SPARQL endpoint of a large triplestore due to the fair use policy. For instance,
αcard executed on DBpedia with the public SPARQL endpoint leads to a timeout
error. Therefore, our goal is to split an analytical query into a set of queries
that each respect the policy. Then, we will combine the different answers in
order to approximate the original query answer. We formalize the notion of
approximation by introducing a distance between two analytical queries:

Definition 3 (Distance). Given two relations R1[A1, . . . , An, B] and
R2[A1, . . . , An, B] where B is a numerical attribute, the distance between
R1 and R2, denoted by ||R1 −R2||2, is the Euclidean distance between the
normalized vectors of values stemming from each group 〈a1, . . . , an, v〉:

||R1 −R2||2 =

√ ∑
〈a1,...,an〉∈γA1,...,An (R1∪R2)

(vR1 − vR2)
2

where the value vR is computed as πB(σA1=a1∧···∧An=an(R)) divided by
γSUM(B)(R). If R does not contain a tuple 〈a1, . . . , an, ·〉, vR is zero.

This distance computes the Euclidean distance between the normalized relations
R1 and R2 where R = γA1,...,An,B×s−1(R), with s = γSUM(B)(R). The rest of this

work could be naturally extended to any distance between R1 and R2. In the
sequel, we will compute the distance between the exact result of an analytical
query and an approximate answer. Then the normalization will make sure that
two proportional analytical queries will be judged equivalent. For instance, in
Table 4, Aαcard

(which contains only 4 subjects with 1 gender, and 2 subjects

with 1 child) is an approximation of the analytical query αcard executed on
TCaesar∪TdaVinci with ||Aαcard

− αcard||2 =
√

0.022 + 0.042 +−0.072 = 0.083. In
practice, the proportionality of results is often as important as absolute values
– e.g., for ranking groups 〈a1, . . . , an〉. Besides, it is possible to reconstruct the
absolute values, if necessary, by querying the triplestore to obtain the absolute
value for one group 〈a1, . . . , an〉. For instance, the approximation Aαcard

ranks
〈gender, 1〉 and 〈parentOf, 1〉 in the same order as αcard. By computing the
absolute value of count for 〈gender, 1〉 (here: 9), it is possible to also estimate the
count value for 〈parentOf, 1〉: 9× 0.33/0.66 = 4.5, which slightly overestimates
the correct value of 4.

With this, we can now state our goal: Given a set of triplestores LOD =
{T1, . . . , TN} with monotone and consistent policies and an analytical query
α, find a set of queries Q = {q1, . . . , qk} such that Q |= PLOD and
limk→+∞ ||F (q1(T), . . . , qk(T))− α(T)||2 = 0, where F is a query aggregator
and T = T1 ∪ · · · ∪ TN .

4 Our Approach

In Section 4.1, we show how to rewrite an analytical query to satisfy a fair use
policy. In Section 4.2, we will use this rewriting strategy to develop an algorithm
that scales to the LOD cloud.

4.1 Analytical query rewriting

Partitioning. In the following, we will first treat analytical queries on a single
triplestore. The key idea of our approach is to partition the input triplestore
so that the analytical query can be executed on each part. Of course, the size
of each part of the partition has to be small enough for the query to satisfy
the fair use policy of the triplestore (policy constraint). At the same time, the
partitioning must not corrupt the reconstruction of the correct result of the
query on the entire triplestore (validity constraint). In our running example, it
is possible to partition the triplestore according to the subject (shown on the
left-hand side of Table 5) to calculate the number of subjects per cardinality
and property with αcard. On the other hand, it is not possible to partition it
according to the objects (shown on the right-hand side of Table 5), because it
would not be feasible to reconstruct the number of objects associated with each
subject: The three children of Gaius would be in separate groups, and we would
wrongly count 3 times that Gaius had only one child.
The notion of α-partition attributes formalizes this compromise on the partition:

Definition 4 (α-partition). Given an analytical query of the form α(T) ≡
γA1,...,An,AGG(B)(q(T)), a set of attributes {P1, . . . , Pm} ⊆ sch(T) is an α-
partition if it satisfies the following two constraints:

1. Validity constraint:
α(T) = γA1,...,An,AGG(B)(

⋃
〈p1,...,pm〉∈γP1,...,Pm (T) q(σP1=p1∧···∧Pm=pm(T)))

Partition on subj

subj prop obj

Gaius parentOf Julius
Gaius parentOf JuliaTheE.
Gaius parentOf JuliaTheY.
Gaius gender male

Marcus parentOf Atia
Marcus gender male

JuliaTheY. parentOf Atia
JuliaTheY. gender female

Julius gender male

JuliaTheE. gender female

Atia gender female

Partition on obj

subj prop obj

Gaius parentOf Julius

Gaius parentOf JuliaTheE.

Gaius parentOf JuliaTheY.

Marcus parentOf Atia
JuliaTheY. parentOf Atia

Marcus gender male
Julius gender male
Gaius gender male

JuliaTheY. gender female
JuliaTheE. gender female
Atia gender female

Table 5. Examples of partitions on TCaesar

2. Policy constraint:
q(σP1=p1∧···∧Pm=pm(T)) |= P for all 〈p1, . . . , pm〉 ∈ γP1,...,Pm

(T).

In our running example, the partitioning by subjects γsubj(TCaesar) =
{Gaius,Marcus, JuliaTheY., . . . } or by properties γprop(TCaesar) = {parentOf,
gender} are two valid partitions. We can also combine several α-partitions:

Property 1 Given an analytical query of the form α(T) ≡ γA1,...,An,AGG(B)(q(T)),
and two α-partitions P ⊆ sch(T) and Q ⊆ sch(T), P ∪Q is also an α-partition.

This property follows from the fact that we consider only consistent fair
use policies. The partition P ∪ Q leads to a smaller set of triples in each
group than groups resulting from P or Q. In our running example, as
{subj} and {prop} are two αcard-partitions, {subj, prop} is also an αcard-
partition. It leads to the groups γsubj,prop(TCaesar) = {〈Gaius, parentOf〉,
〈Gaius, gender〉, 〈Marcus, parentOf〉, . . . }.
Rewriting. At this point, we could consider running the inner query q on
each part of an α-partition, and then aggregate the results. However, this
would require a large storage capacity. In our running example, let us con-
sider the α-partition prop: γprop(TCaesar) = {gender, parentOf}. We would
have to store 9 (= 6 + 3) rows materializing the result from the query
q = γsubj,prop,COUNT(obj)→card(R) applied on each part σprop=gender(TCaesar) and
σprop=parentOf (TCaesar). The following property shows that it is possible to apply
the analytical query directly on each part instead:

Property 2 (Partition rewriting) An analytical query of the form α(T) ≡
γA1,...,An,AGG(B)(q(T)) with an α-partition {P1, . . . , Pm} ⊆ sch(T) can be com-
puted as follows:

α(T) ≡ α̃

 ⋃
〈p1,...,pm〉∈γP1,...,Pm (T)

α(σP1=p1∧···∧Pm=pm(T))

This property follows from Definition 1 with the following rewriting rule (for
an α-partition): α(T ∪ T ′) = α̃(α(T) ∪ α(T ′)). With the above example, we ob-
tained three rows (instead of 9), split into 2 parts: αcard(σprop=gender(TCaesar)) =
{〈gender, 1, 6〉} and αcard(σprop=parentOf(TCaesar)) = {〈parentOf, 1, 2〉, 〈parentOf,
3, 1〉}. The query α̃card merges them into one result.
Approximating. Property 2 gives us an exact method for answering an analyt-
ical query. This method can be parallelized by running the queries corresponding
to different parts in parallel. However, the computation risks being slow if the
number of parts is high. If one interrupts the query execution, the intermediate
result will be biased by the order in which the parts of T were queried. We pro-
pose to remedy both problems by drawing the parts randomly. For this purpose,
we rely on the sampling operator ψk(R) [28], which randomly draws k tuples
from R (with replacement). We can then reformulate Property 2 as follows:

Property 3 (Sampling approximation) An analytical query of the form
α(T) ≡ γA1,...,An,AGG(B)(q(T)) can be approximated by sampling k groups re-
sulting from an α-partition {P1, . . . , Pm} ⊆ sch(T):

lim
k→+∞

∣∣∣∣∣∣
∣∣∣∣∣∣α̃
 ⋃
〈p1,...,pm〉∈ψk(γP1,...,Pm (T))

α(σP1=p1∧···∧Pm=pm(T))

− α(T)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= 0

This follows from the fact that a uniform random sampling tends to the orig-
inal distribution when its size increases. This result is very important be-
cause it provides an efficient method for approximating an analytical query.
First, the sampling operator avoids materializing the partition, which would
incur a cost of computation that might not satisfy the fair use policy. Sec-
ond, because of the replacement, the same part may be drawn several times.
Interestingly, this does not prevent a correct approximation of the result.
On the contrary, this replacement is interesting because it avoids the ne-
cessity to remember which parts have already been drawn – thus lead-
ing to lower space complexity. In our running example, consider the αcard-
partition {subj}, which leads to γsubj(TCaesar ∪ TdaVinci) = {Gaius, Marcus,
JuliaTheY., Julius, JuliaTheE., Atia, Piero, Caterina, Leonardo}. We can ran-
domly draw 4 groups: Marcus, JuliaTheE., JuliaTheY. and Leonardo. We ob-
tain αcard(σsubj=Marcus(TCaesar)) = {〈gender, 1, 1〉, 〈parentOf, 1, 1〉} (idem for
JuliaTheY.) and αcard(σsubj=JuliaTheE.(TCaesar)) = {〈gender, 1, 1〉} (idem for
Leonardo). We can then construct the approximation Aαcard

(see Table 4) by
aggregating these four results with α̃card. Even if Property 3 provides no guar-
antee on the convergence speed, we will see in the experimental section that in
practice this convergence is fast.

4.2 Anytime algorithm

In this section, we show how to algorithmically implement Property 3 efficiently
at LOD scale. For this, we have two main challenges to overcome. First, each

Algorithm 1 Sample-and-Aggregate

Input: A set of triplestores LOD = {T1, . . . , TN}, an analytical query α and a com-
patible α-partition{P1, . . . , Pm}

Output: An approximate answer of α(T1 ∪ · · · ∪ TN)
1: Ans0 := ∅
2: k := 0
3: Define weights ω(T) = |γP1,..,Pn(T)| for all T ∈ LOD
4: repeat
5: Draw a triplestore T ∼ ω(LOD)
6: Draw a tuple 〈p1, . . . , pm〉 ∼ u(γP1,..,Pn(T))
7: Ansk+1 := α̃(Ansk ∪ α(σP1=p1∧···∧Pm=pm(T)))
8: k := k + 1
9: until The user stops the process

10: return Ansk

query q has to be executed on a set of triplestores and not on a single triplestore.
Second, the sampling operator is not natively implemented in SPARQL.

Let us consider the first problem: If we have the set of triplestores LOD =
{T1, . . . , TN}, we have to create T =

⋃
i∈[1..N] Ti (e.g., TCaesar ∪ TdaVinci in our

example of Table 1). Thus, a single query has to be run onN triplestores, which is
very expensive. In practice, however, a part usually resides in a single triplestore.
We formalize this notion as follows:

Definition 5 (Compatible α-partition). Given a set of triplestores LOD =
{T1, . . . , TN}, an α-partition {P1, . . . , Pm} is compatible with LOD if for
all 〈p1, . . . , pm〉 ∈ γP1,...,Pn

(T), there exists T ∈ LOD such that
σP1=p1∧···∧Pm=pm(T1 ∪ · · · ∪ TN) ⊆ T .

Let us consider again our running example T = TCaesar ∪ TdaVinci. It is
clear that the partition γsubj(T) = {Gaius,Marcus, . . . } is compatible with
{TCaesar, TdaVinci} because each part σsubj=x(T) is entirely contained in the tu-
ples of one triplestore. In the following, we make the assumption that all α-
partitions are compatible with the LOD cloud. In some cases, α-partitions are
provably compatible with the LOD cloud (see Sections 5.1 and 5.2), unless two
triplestores contain the same triple. But even if our assumption does not hold
for a small proportion of parts, this does not significantly degrade the overall
quality of the approximation.

We use the idea of compatible partitions in Algorithm 1. It takes as input a
set of triplestores LOD = {T1, . . . , TN}, an analytical query α and a compatible
α-partition {P1, ..., Pn}. It returns an approximation of this analytical query that
can be requested at any time. The main loop (Lines 4-9) is repeated until the
user stops the process in order to obtain the last answer Ansk (Line 10). Each
iteration refines the previous answer using a sampling phase and an aggregation
phase. The sampling phase is implemented as follows: We first compute a weight
for each triplestore corresponding to the partition size (Line 3). If the size of a
partition is not computable, we can use the size of the triplestore as a pessimistic

estimate. The sampling draws a fragment at random4 by first choosing a triple-
store T in proportion to its number of fragments ω(T) (Line 5) and then uni-
formly drawing a fragment from this triplestore (Line 6). This uniform drawing
is implemented by using the query γP1,...,Pn(T) with LIMIT 1 OFFSET r, where r
is a random number uniformly drawn from [0..ω(T)]. The draw is rejected if the
answer is empty (i.e., r > |γP1,...,Pn

(T)|) due to a pessimistic estimate in Line 3.
Finally, the aggregation phase (Line 7) merges the previous answer Ansk with
the query on the fragment that has just been selected α(σP1=p1∧···∧Pm=pm(T)).
With Property 3, it is easy to show that our algorithm is correct:

Theorem 1 (Correctness). Given a set of triplestores LOD = {T1, . . . , TN}
with monotone policies, an analytical query α and a compatible α-partition
{P1, . . . , Pm}, Algorithm 1 returns an approximate answer Ansk of α(T1 ∪
· · · ∪ TN) that aggregates k queries q(σP1=p1∧···∧Pm=pm(Ti)) |= P such that
limk→+∞ ||Ansk − α(T1 ∪ · · · ∪ TN)||2 = 0.

This theorem means that the user can obtain an approximation with any de-
sired precision by granting a sufficient time budget. Our method is therefore
an anytime algorithm [35]. Another advantage of this algorithm is that it is
easily parallelizable. It is possible to execute M sampling phases in parallel
(to reduce the time complexity linearly). In this case, the aggregation phase
must either group together the results in a unique answer Ansk, or main-

tain M answers Ans
(i)
k in parallel, which will then be merged in the end (i.e.,

Ansk = α̃
(⋃

i∈[1..M]Ans
(i)
k

)
). The first solution saves storage space, but the

second solution also has a reasonable space complexity. This is because there is
no intermediate result to store:

Property 4 (Space complexity) Given a set of triplestores LOD =
{T1, . . . , TN}, an analytical query α, and a compatible α-partition, Algorithm 1
requires O(|α(T1 ∪ · · · ∪ TN)|) space.

This property is crucial, because it means that the number of iterations (and
thus the achieved precision) does not influence the required storage space.

5 Experiments

The goal of this experimental section is to answer the following questions: (i)
How fast does our algorithm converge to the exact result? and (ii) How does
the method perform on the LOD to approximate simple and complex analytical
queries? We have implemented our algorithm in Java in a multi-threaded version
to perform multiple parallel samplings. The result of each thread is aggregated
with a relational database. For the time measurements, we did not count the
preprocessing step executed once for all threads (Line 3 of Algorithm 1) because

4 Given a set Ω with a probability distribution P , x ∼ P (Ω) denotes that the element
x ∈ Ω is drawn at random with a probability P (x).

it does not take longer than a few minutes. All experimental data (the list of
endpoints and the experimental results), as well as the source code, are available
at https://github.com/asoulet/iswc19analytics.

5.1 Efficiency of the approach

This section evaluates the convergence speed of our algorithm with the query
αprop (Table 3). We ran the experiment on DBpedia, because its triplestore is
small enough (58,333 properties for 438,336,518 triples) to compute the exact an-
swer to the query. We evaluate our algorithm with the partition {subj, prop, obj}.
We use only 8 threads to avoid overwhelming DBpedia with too many queries
and violating its fair use policy. To estimate the difference between our approx-
imation and the exact query, we use 3 evaluation measures: the L1-norm, the
L2-norm and the Kullback–Leibler divergence. We compute the proportion of
top-k properties that are truly in the most k ∈ {50, 100} used properties in the
ground truth. We also count the number of sampled queries and the size of the
approximate answer (number of approximated properties). We repeated the ex-
periments 5 times, and report the arithmetic mean of the different measurements
every minute. We cut off the computation after 100 minutes.

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

Q
ua

lit
y

of
 a

pp
ro

xi
m

at
io

n

Time (minutes)

L1−norm
L2−norm

KL deviation

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Time (minutes)

Top−50
Top−100

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

N
um

be
r

of
 r

ow
s

Time (minutes)

Nb of rows

Fig. 1. Performance of our algorithm for the query αprop on DBpedia

Figure 1 (left) plots the approximation quality over time (lower is better).
As expected, we observe that the approximation converges to the exact query.
Interestingly, this convergence is very fast (note that y-axis is a logscale). From
the first minutes on, the frequency estimation of the properties is sufficiently
close to the final result to predict the order of the most frequent properties (see
Figure 1, middle). Figure 1 (right) shows the size of the approximate answer
(i.e., the number of tuples). Of course, the size increases to tend to the size of
the result of the exact query (which is 58,333). However, during the first 100
minutes, the number of rows remains very small (just 415). Indeed, the final
approximation has been calculated with a very low communication cost of only
3,485 triples (0.0008% of DBpedia).

https://github.com/asoulet/iswc19analytics

5.2 Use case 1: Property and class usage on the LOD cloud

In the following, we tested our algorithm on the scale of the LOD cloud. We
used https://lod-cloud.net/ to retrieve all SPARQL endpoints of the LOD
cloud that contain the property rdf:type (which is required for our queries, see
Table 3). This yielded 114 triplestores that were functional, including Linked-
GeoData [4], DBpedia [2], EMBL-EBI [18] and Bio2RDF [6]. Together, these
triplestores contain more than 51.2 billion triples.

Our first experiment evaluates our algorithm on the queries αprop and αclass,
which measure property usage and class usage, respectively (see Table 3 again).
We used again γsubj,prop,obj(T) as partition, and the algorithm ran with 32 par-
allel sampling threads. To obtain an estimation of the ground truth, we ran the
algorithm for 250 hours. After this time, the result does not change much any
more, and we thus believe that we are not too far off the real ground truth. We
then measured the precision of the result after every minute of execution with
respect to our assumed ground truth.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
re

ci
si

on
 T

op
−

10
0

Time (hours)

Property usage
Class usage

Fig. 2. Property and class usage (queries αprop and αclass) on the LOD cloud

Figure 2 shows the top-100 precision for both queries. We observe that both
queries have the same behavior: After 25 hours, 50% of the 100 most used prop-
erties and classes are found by our algorithm. After 100 hours, 90 properties
(or classes) are accurately found with a sample of only 179k triples. These ap-
proximations require less than 3k rows as storage cost and 179k queries as com-
munication cost – i.e., 0.00035% of the cost of a traditional data centralization
approach.

5.3 Use case 2: Representativeness of the LOD

Our next experiment evaluates our algorithm on a very complex query, αFSD.
This query yields, for each property, a distribution over the frequency of the

https://lod-cloud.net/

first significant digit of the number of objects per subject. We used the method
proposed in [34] to convert this distribution into a score between 0 and 1 that
measures the “representativeness” of the triplestores. A score of 1 means that the
data is representative of the distribution in the real world (see [34] for details).
We also computed the proportion of the LOD cloud that conforms to Benford’s
law, and the number of distinct properties that are stored, and that are involved
in the calculation of the representativeness. We partitioned by subject, γsubj(T),
and used again 32 parallel sampling threads during 100 hours.

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

N
um

be
r

of
 p

ro
pe

rt
ie

s

Time (hours)

Stored property
Involved property

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

Time (hours)

Representativeness
Proportion

Fig. 3. Computation of representativeness of Linked Open Data

The results are shown in Figure 3. We note that the indicators converge
rapidly to a first approximation that evolves only little afterwards. In particular,
60.7% of the properties needed to calculate the results (see the solid line) are
already known after 20 hours of calculation. As a side result, our approach
estimates that the representativeness of the LOD cloud is 48.7%, which concerns
24.2% of the LOD cloud. From these numbers, we can estimate [34] that at
least 13.1 billion triples are missing from the LOD cloud in order for it to be a
representative sample of reality.

6 Conclusion

In this paper, we have presented a new paradigm for computing analytical queries
on Linked Open Data: Instead of centralizing the data, we aggregate the results of
queries that are fired directly on the SPARQL endpoints. These queries compute
only small samples, so that they have short execution times, and thus respect the
fair use policies of the endpoints. Our algorithm is an anytime algorithm, which
can deliver approximate results already after a very short execution time, and
which provably converges to the exact result over time. The algorithm is easily
parallelizable, and requires only linear space (in the size of the query answer). In

our experiments, we have shown that our approach scales to the size of the LOD
cloud. We have also seen that it rapidly delivers a good approximation of the
exact query answer. For future work, we aim to investigate how our approach
could be endowed with OWL reasoning capabilities, to respect equivalences be-
tween resources.

Acknowledgements. This work was partially supported by the grant ANR-16-
CE23-0007-01 (“DICOS”).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases: the logical level.
Addison-Wesley Longman Publishing Co., Inc. (1995)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A nucleus for a Web of open data. In: ISWC (2007)

3. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – An extensible frame-
work for high-performance dataset analytics. In: EKAW. Springer (2012)

4. Auer, S., Lehmann, J., Hellmann, S.: Linkedgeodata: Adding a spatial dimension
to the Web of data. In: ISWC. Springer (2009)

5. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF
streams with c-SPARQL. ACM SIGMOD Record 39(1) (2010)

6. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: to-
wards a mashup to build bioinformatics knowledge systems. Journal of biomedical
informatics 41(5) (2008)

7. Bienvenu, M., Deutch, D., Martinenghi, D., Senellart, P., Suchanek, F.M.: Dealing
with the Deep Web and all its quirks. In: VLDS (2012)

8. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL – Extending SPARQL
to process data streams. In: ESWC. Springer (2008)

9. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
ACM Sigmod record 26(1) (1997)

10. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (on-line analytical process-
ing) to user-analysts: An IT mandate. Codd and Date 32 (1993)

11. Colazzo, D., Goasdoué, F., Manolescu, I., Roatiş, A.: RDF analytics: lenses over
semantic graphs. In: WWW (2014)

12. Costabello, L., Villata, S., Vagliano, I., Gandon, F.: Assisted policy management
for SPARQL endpoints access control. In: ISWC demo (2013)

13. Cyganiak, R.: A relational algebra for SPARQL. Digital Media Systems Laboratory
HP Laboratories Bristol. HPL-2005-170 35 (2005)

14. Forchhammer, B., Jentzsch, A., Naumann, F.: LODOP – Multi-Query optimization
for linked data profiling queries. In: PROFILES@ESWC (2014)

15. Franke, C., Morin, S., Chebotko, A., Abraham, J., Brazier, P.: Distributed semantic
Web data management in hbase and mysql cluster. In: CLOUD (2011)

16. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting complete-
ness in knowledge bases. In: WSDM (2017)

17. Gottron, T.: Of sampling and smoothing: Approximating distributions over linked
open data. In: PROFILES@ ESWC (2014)

18. Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., Lopez,
R.: A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic acids
research 38(suppl 2) (2010)

19. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: Acm Sigmod
Record. vol. 26, pp. 171–182. ACM (1997)

20. Ibragimov, D., Hose, K., Pedersen, T.B., Zimányi, E.: Processing aggregate queries
in a federation of SPARQL endpoints. In: ESWC (2015)

21. Khan, Y., Saleem, M., Iqbal, A., Mehdi, M., Hogan, A., Ngomo, A.C.N., Decker,
S., Sahay, R.: SAFE: policy aware SPARQL query federation over RDF data cubes.
In: Workshop on Semantic Web Applications for Life Sciences (2014)

22. Kim, H., Ravindra, P., Anyanwu, K.: From SPARQL to MapReduce: The journey
using a nested triplegroup algebra. VLDB journal 4(12) (2011)

23. Kotoulas, S., Urbani, J., Boncz, P., Mika, P.: Robust runtime optimization and
skew-resistant execution of analytical SPARQL queries on PIG. In: ISWC (2012)

24. Lajus, J., Suchanek, F.M.: Are all people married? Determining obligatory at-
tributes in knowledge bases. In: WWW (2018)

25. Manolescu, I., Mazuran, M.: Speeding up RDF aggregate discovery through sam-
pling. In: Workshop on Big Data Visual Exploration (2019)

26. Munoz, E., Nickles, M.: Statistical relation cardinality bounds in knowledge bases.
In: TLDK 39. Springer (2018)

27. Nirkhiwale, S., Dobra, A., Jermaine, C.: A sampling algebra for aggregate estima-
tion. VLDB journal 6(14) (2013)

28. Olken, F.: Random sampling from databases. Ph.D. thesis, University of California,
Berkeley (1993)

29. Pietriga, E., Gözükan, H., Appert, C., Destandau, M., Čebirić, Š., Goasdoué, F.,
Manolescu, I.: Browsing linked data catalogs with LODAtlas. In: ISWC (2018)

30. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In:
ESWC. Springer (2008)

31. Saleem, M., Hasnain, A., Ngomo, A.C.N.: Largerdfbench: a billion triples bench-
mark for SPARQL endpoint federation. Journal of Web Semantics 48 (2018)

32. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF query-
ing with SPARQL on spark. VLDB journal 9(10) (2016)

33. Sejdiu, G., Ermilov, I., Lehmann, J., Mami, M.N.: DistLODStats: Distributed com-
putation of RDF dataset statistics. In: EKAW. Springer (2018)

34. Soulet, A., Giacometti, A., Markhoff, B., Suchanek, F.M.: Representativeness of
knowledge bases with the generalized Benford’s law. In: ISWC. Springer (2018)

35. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI magazine 17(3)
(1996)

	Anytime Large-Scale Analytics of Linked Open Data

