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Abstract. Semantic Web connects huge knowledge bases whose con-
tent has been generated from collaborative platforms and by integra-
tion of heterogeneous databases. Naturally, these knowledge bases are
incomplete and contain erroneous data. Knowing their data quality is
an essential long-term goal to guarantee that querying them returns reli-
able results. Having cardinality constraints for roles would be an impor-
tant advance to distinguish correctly and completely described individ-
uals from those having data either incorrect or insufficiently informed.
In this paper, we propose a method for automatically discovering from
the knowledge base’s content the maximum cardinality of roles for each
concept, when it exists. This method is robust thanks to the use of
Hoeffding’s inequality. We also design an algorithm, named C3M, for
an exhaustive search of such constraints in a knowledge base benefiting
from pruning properties that drastically reduce the search space. Exper-
iments conducted on DBpedia demonstrate the scaling up of C3M, and
also highlight the robustness of our method, with a precision higher than
95%.
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1 Introduction

With the rise of the Semantic Web, knowledge bases (that we will denote KB)
are growing and multiplying. At the worldwide level knowledge hubs are built
from collaborative platforms, either by extraction from Wikipedia as DBpedia [1]
or collaboratively collecting knowledge as for Wikidata [6], or integrating vari-
ous sources using information retrieval algorithms as for YAGO [21]. These very
large KBs represent a wealth of information for applications, as this is the case
with Wikipedia for human beings. On a smaller scale, more and more knowl-
edge bases are published on the Web, built from diverse data sources following
Extract-Transform-Load integration processes that are based on a shared ontol-
ogy (ontology-based data integration).

Due to the way they are generated, all of these KBs need to be enriched
with more information to evaluate their quality with respect to the represented
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reality, and reverse engineering techniques have already been considered to au-
tomatically obtain useful declarations such as keys [16,19]. In this paper we
propose to automatically discover another kind of useful declaration about the
represented data in a given KB: role maximum cardinalities. In knowledge rep-
resentation, numerical restrictions which specify the number of occurrences of a
role are particularly useful [2]. For example, a numerical restriction can be used
to describe a concept1 C as the set of individuals who have at most 3 children.
Moreover, a numerical restriction can be used to declare a maximum cardinality
constraint on the role R in the context C, for instance on the role parent in the
context Person, for declaring that individuals of concept Person have at most
twice the role parent. Such a declaration allows reasoners to infer whether all
the assertions on role R exist in the KB for any individual belonging to C. This
can be used to supplement the answers to queries with precise information on
their quality in terms of recall with respect to reality [20].

Person / birthYear

i ni τi τ̃i
1 159,841 0.999 0.996
2 91 0.928 0.775
3 4 0.571 0.000
4 2 0.667 0.000
5 1 1.000 0.000

Person / parent

i ni τi τ̃i
1 10,643 0.529 0.518
2 9,392 0.991 0.975
3 75 0.882 0.718
4 9 0.900 0.420
6 1 1.000 0.000

> / team

i ni τi τ̃i
1 1,221,202 0.901 0.900
2 20,505 0.153 0.148
3 16,876 0.148 0.144

. . . . . . . . . . . .
20 2 1.000 0.000

FootballMatch / team

i ni τi τ̃i
1 26 0.008 0.000
2 3,092 0.998 0.971
3 3 0.500 0.000
4 2 0.667 0.000
5 1 1.000 0.000

Table 1. Cardinality distributions for some contexts/roles in DBpedia (with the role
cardinality i, the number of individuals ni having i times this role, the likelihood τi
and the pessimistic likelihood τ̃i that are defined in Section 4.1)

To the best of our knowledge there is only one work dedicated to the ex-
traction of cardinality constraint from a KB [15], maybe because compared to
the traditional database framework, extracting significant cardinality constraints
from a KB is a far more challenging task. Indeed, we are facing three important
challenges. A first challenge is that a KB generally contains inconsistent data,
either because of errors or because of duplicate descriptions. Due to these in-

1 We use the Description Logics (DL) [2] terminology, as DL are the theoretical founda-
tions of OWL, so we use the terms concept (i.e. class), role (i.e. property), individual
and fact (i.e. instances).
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consistencies, the observed maximum cardinality for a role in a KB cannot be
considered to be its true maximum cardinality. For example, it is expected that
a person will have at most one birth year and two parents. However, considering
the roles birthYear and parent in DBpedia (see Table 1), some persons have 5
birth years or 6 parents. These few inconsistent assertions should not influence
the maximum cardinality discovery. Then, a second challenge is that a KB is
often incomplete for a given role. For this reason, the most frequently observed
cardinality for a role in a KB cannot be considered to be its true maximum car-
dinality. Typically, most people described in DBpedia have only one informed
parent. Nonetheless, we have to take into account that many people have two
informed parents for not underestimating the maximum cardinality of the role
parent. Finally, a third challenge is that the expected constraints depend on
a context. For instance in DBpedia the role team is used to inform the teams
to which a person has belonged and the teams of a football match. Thus, it is
not possible to determine the maximum cardinality of the role team in DBpedia
(context >), but its maximum cardinality is expected to be 2 in the context of
FootballMatch. Consequently, instead of exploring each role of a knowledge base,
we have to explore each role for each concept. This leads to a huge search space
and therefore it is necessary to prune it without missing relevant constraints.
But, conversely, we have to avoid extracting redundant constraints. If we iden-
tify that a person has at most one birth year, it would be a shame to overwhelm
the end user with the cardinality of birthYear for artists, scientists and so on.

Taking into account these challenges, we present in this paper two main
contributions. Our first contribution is to propose a method for computing a
significant maximum cardinality. The significance is guaranteed by the use of
Hoeffding’s inequality for computing corrected likelihood estimates of maximum
cardinality. We show with experiments using DBpedia that we extract only re-
liable maximum cardinalities. More precisely, contrary to [15] it is important to
note that we output a maximum cardinality if and only if it is actually signifi-
cant. Our second contribution is C3M2, an algorithm for enumerating the set of
all contextual maximum cardinalities that are minimal (Definition 2) and signif-
icant (Definition 4). We use two sound pruning criteria that drastically reduce
the exploration space, and ensure the scalability of C3M for large KBs. It is also
interesting to notice that we implemented C3M in such a way that it explores
Web KBs via their public SPARQL endpoints without centralizing data.

This paper is structured as follows. Section 2 reviews some related works. In
Section 3, we first introduce some basic notions and formalize the problem. Then,
in Section 4, we show how to detect a significant maximum cardinality of a role.
Next, in Section 5, we present our algorithm C3M. Section 6 provides experi-
mental results on DBpedia that shows its efficiency and its scalability, together
with the meaningfulness of discovered constraints. We conclude in Section 7.

2 The prototype and the results are available at https://github.com/asoulet/c3m, both
in CSV and in RDF (Turtle); we provide also the schema of our constraints expressed
in RDF.

https://github.com/asoulet/c3m
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2 Related Work

To increase knowledge about the quality of data contained in KB, some propos-
als calculate quality indicators like completeness [17] or representativeness [18],
while others are interested in the enrichment of individuals or concepts with
fine-grained assertions or constraints. Our proposal is in the line of these works,
which we detail in what follows.

Works on Mining Role Cardinality for Individuals Several works consist in en-
riching the set of assertions on individuals (ABox), and we can distinguish the
endogenous approaches [9] relying on the assertions already present in the ABox,
from the exogenous approaches [13] relying on external sources. [9] shows that it
is important to determine when a particular role (such as parent) is missing for
a particular individual (such as Obama). Their proposal of Partial Completeness
Assumption states that when at least one assertion about a role R is informed
for an individual s, then all assertions for this role R are informed for this indi-
vidual s. In [13], the authors benefit from text mining applied on Wikipedia for
improving the completeness of individuals described in Wikidata. This exogenous
approach relies on syntactical patterns to identify cardinalities on individuals.
More generally, in [8], the authors propose various kinds of endogenous and
exogenous heuristics for characterizing the completeness of individuals, called
Completeness Oracles, as for instance taking into account the popularity of in-
dividuals (i.e., a famous individual is more likely to have complete information).
Our proposal is endogenous as it processes the facts already contained in the
KB that we want to enrich. Nevertheless, it does not characterize the role car-
dinality for a specific individual but for a concept. It is therefore more general
as the constraints for concept C apply for all the individuals of C.

Works on Mining Role Cardinality for Concepts Other proposals have focused
on the enrichment of the schema part (TBox) with new assertions or axioms
allowing to partially or completely specify the cardinality of a role. In particular,
several works [16,19] address the automated discovery of contextual keys in RDF
datasets as it was done in relational databases. They find axioms stating that
individuals of a concept C must have only one tuple of values for a given tuple
of roles. The same kind of cardinality information is induced by [12]. Indeed, the
authors propose to discover roles that are mandatory for individuals of a concept
C. For this purpose, they compare the density of the role R for individuals of the
concept C with the densities of R for other concepts in the concept hierarchy. Our
proposal focuses on mining the maximum cardinality for a role R in a context
C (if it exists). But, contrary to the previous work, we can get information
about cardinalities greater than 1 (e.g., 2 parents for a child). To the best of
our knowledge, [15] is the only work explicitly dedicated to the detection of
minimum/maximum cardinalities. This approach proceeds in two stages: removal
of outliers and calculation of bounds. Unfortunately, KBs are so incomplete that
the filtering of outliers is ineffective (e.g., there are more children with only one
parent than children with 2 parents). Moreover, their filtering method implicitly
assumes that the cardinalities follow a normal distribution, or a distribution
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that is moderately asymmetric, which is not always the case (see the examples
of Table 1). Consequently, for DBpedia their approach finds that a person has at
most 2 years of birth (instead of 1) and 3 parents (instead of 2); and a football
match has 3 teams (instead of 2). It is also important to note that the method
extracts a cardinality constraint for every concept and role of the KB, whatever
the number of observations and the distribution (e.g., a constraint for team is
found in the context >). Thus, many of these constraints are not significant.
On the contrary, our approach benefits from Hoeffding’s inequality for ensuring
statisical significance. Finally, contrary to our approach, the authors do not
envisage an algorithm to systematically explore the roles and concepts of the
KB. An exploration strategy is yet crucial and not trivial in practice due to the
huge search space.

Interest of Role Cardinality Whatever the approach, all information extracted
about role cardinalities is useful for improving many methods, as they reduce
the uncertainty imposed by the open-world assumption. [9,20] show the necessity
of reducing this uncertainty for data mining applied to KB. In particular, [9,8]
propose to benefit from the previously mentioned Partial Completeness Assump-
tion for improving the confidence estimation of association rules. More recently,
[20] has further improved the confidence estimation of a rule by exploiting the
bounds on the cardinality for an individual. Data mining is not the only field
where insights about cardinalities are useful. [3,17,4] and more recently [10] pro-
pose to characterize query answers benefiting from the completeness degree of
the queried data. Most of these methods can therefore directly benefit from the
constraints that we investigate in this paper.

3 Preliminaries and Problem Formulation

3.1 Basic Notations

For talking about KB components, we use Description Logics (DL) [2] terminol-
ogy. For instance DBpedia is a KB K = (T ,A), where T denotes its TBox and
A denotes its ABox. One example of assertion in T is Artist v Person, meaning
that the concept Artist is subsumed by the concept Person, i.e. all artists are
persons. T also includes assertions like ∃birthYear v Person, meaning that the
role birthYear is defined for persons. Note that the only part of the TBox used
by our approach is the named hierarchies of concepts. Besides, Person(Obama)
and birthYear(Obama, 1961) are assertions of DBpedia’s ABox A. The former
indicates that Obama is a person, while the latter states that Obama was born
in 1961. In this paper, we assume that a KB K contains only one hierarchy of
concepts and we use the general top concept > which subsumes every concept in
K. In DL, a maximum cardinality M on the role R may be represented using the
numerical restriction constructor ≤ M R. K = (T ,A) implies3 the constraint
> v (≤ M R), if for all subjects s, the number of objects o such that R(s, o)

3 DL formal semantics are given in terms of interpretations, see [2].
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belongs to K (i.e., R(s, o) ∈ A or R(s, o) can be inferred from T and A) is equal
to or fewer than M .

We focus on cardinality constraints that are contextual, as stated in Defini-
tion 1. Intuitively, these constraints are not necessarily satisfied for all subjects
of a role R, but for all the subjects of R that belong to a concept C.

Definition 1 (Contextual Constraint). Given an integer M ≥ 1, a role R
and a concept C of a KB K, a contextual maximum cardinality constraint defined
on R for C is an expression of the form: C v (≤M R).

The concept C is called the context of the constraint C v (≤ M R).
For example, the contextual constraint Person v (≤ 1 birthYear) means that
each person has at most 1 birth year, while FootballMatch v (≤ 2 team) means
that a football match has at most 2 teams. Note that asserting that an artist
has at most one year of birth (i.e., Artist v (≤ 1 birthYear)) is true, but
less general than Person v (≤ 1 birthYear) because Artist @ Person. Simi-
larly, asserting that 1,000 is a maximum cardinality for the parent role (i.e.,
Person v (≤ 1, 000 parent)) is true, but less specific than Person v (≤ 2 parent).
We want to discover contextual maximum cardinality constraints that have a
context as general as possible and a cardinality as small as possible. For this
purpose, we introduce the notion of minimal contextual constraint:

Definition 2 (Minimal Contextual Constraint). The contextual constraint
γ1 : C1 v (≤M1 R) is more general than the contextual constraint γ2 : C2 v (≤
M2 R), denoted by γ2 @ γ1, iff C2 @ C1

4 and M1 ≤M2, or C2 ≡ C1 and M1 <
M2. For a given set of contextual constraints Γ , constraint γ1 ∈ Γ is minimal
in Γ if there is no constraint γ2 ∈ Γ more general than γ1: ( 6 ∃γ2 ∈ Γ )(γ1 @ γ2).

The notion of minimality restricts the mining to a set of constraints that is
not redundant, meaning that we do not want to extract a maximum cardinality
constraint γ2 if it is logically implied by another maximum cardinality constraint
γ1. More precisely, it is easy to see that if a maximum cardinality constraint
γ1 : C1 v (≤ M1 R) is more general than a maximum cardinality constraint
γ2 : C2 v (≤ M2 R), then for all interpretation I of a KB K, if I is a model
of γ1, then I is also a model of γ2. Indeed, if I is a model of γ1, we have
CI1 ⊆ {o : #{o′ : (o, o′) ∈ RI} ≤ M1}. Moreover, since γ1 is more general than
γ2, we have CI2 ⊆ CI1 and M1 ≤ M2. Thus, we have CI2 ⊆ CI1 ⊆ {o : #{o′ :
(o, o′) ∈ RI} ≤M1} ⊆ {o : #{o′ : (o, o′) ∈ RI} ≤M2}, which shows that I is a
model of γ2.

Note that our method relies on a named concept hierarchy for exploring
possible contexts and using their subsumption relations. However, it is possible
to generate such a hierarchy to explore more complex contexts in a pre-processing
step. Such an approach is useful to analyze data by expressing the background
knowledge of an expert through an analytical hierarchy.

4 We denote C @ C′ when C v C′ and C′ 6v C.
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3.2 Problem Statement

Considering the statistics in DBpedia provided by Table 1, we do not
want to discover the contextual constraints Person v (≤ 6 birthYear) or
Person v (≤ 5 parent) even if these constraints are satisfied and minimal in K.
We would intend to extract the contextual constraints Person v (≤ 1 birthYear)
or Person v (≤ 2 parent). Therefore, as defined in [14], we assume an ideal de-
scription of the world or ideal KB, denoted K∗, in the sense that K∗ is correct
(it does not contain any inconsistancies) and complete. Note that in general, we
have neither K ⊆ K∗, nor K∗ ⊆ K, because K is inconsistent or incomplete. In
this context, our problem can be formalized as follows:

Problem 1. Given a knowledge base K, we aim at discovering the set of all con-
textual maximum cardinality constraints C v (≤ M R) where C and R are
concept and role of K, that are satisfied in K∗ and minimal with respect to the
concept hierarchy of K.

In order to solve Problem 1 we have to deal with the two following challenges:
(i) discover constraints that would be satisfied in K∗ whereas this knowledge base
is hypothetical and unknown (see Section 4), and (ii) efficiently explore the search
space knowing that the number of possible contextual maximum cardinality
constraints is huge (see Section 5).

4 Detecting Significant Maximum Cardinalities

This section use a probability framework relying on the hypothesis that the de-
gree of completeness of a role is in general higher than its level of inconsistencies.
For instance, this assumption is reasonable for DBpedia. Indeed, even if it is diffi-
cult to evaluate the completeness and the semantic accuracy of a knowledge base
because it requires a gold standard [5], several results of the literature tend to
show that the semantic accuracy of DBpedia is better than its completeness [7].

More formally, let us assume that M is the true maximum cardinality of
the role R in the context C, meaning that the maximum cardinality constraint
γ : C v (≤ M R) is satisfied in K∗. In practice, the ideal KB K∗ is unknown
and we only have a sample K of the reality. Let X be the random variable
that denotes for a subject s the number of assertions R(s, o) observed in K. We
assume that:

– The level of inconsistencies in K is not significant, i.e. the probability P(X >
M) to observe a cardinality greater than M for role R is low. For example,
in Table 1, we can see that 85 individuals of context Person have more than
2 parents, but they represent less than 0.43% of the observed individuals.

– The degree of completeness (present roles) is significantly higher, i.e. the
probability P(X = M) to observe the maximum cardinality M is signifi-
cantly higher than P(X > M). For example, in Table 1, we can see that
9, 342 individuals of context Person have 2 parents, which represents more
than 46.7% of the observed individuals.
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Under these hypotheses, the following property states that if M is the true
maximum cardinality of the role R in the context C, then M is the integer i
that maximizes the conditional probability P(X = i|X ≥ i):

Property 1. Let M be the true maximum cardinality of the role R in the context
C. If P(X = M) ≥ λ and P(X > M) ≤ ε, then we have P(X = M |X ≥
M) ≥ λ

λ+ε and P(X = i|X ≥ i) ≤ (1 − λ) for i ∈ [1..M [. Moreover, if λ >

1/2(
√
ε2 + 4ε−ε), we have: M = arg maxi∈N+{P(X = i|X ≥ i) : P(X = i) > ε}.

Due to lack of space, we omit the proofs. Assuming an inconsistency level
ε equal to 0.1% (resp. 1%), Property 1 states that it is possible to detect
a true maximum cardinality if the degree of completeness λ is greater than
1/2(
√

0.0012 + 4 · 0.001−0.001) = 3.2% (resp. 9.5%). Moreover, a true maximum
cardinality constraint M will be detected if P(X = M |X ≥ M) ≥ λ

λ+ε ≥ 97%
(resp. 90%). Finally, note that when there is no inconsistency (i.e., P(X > M) =
0 and ε = 0), if M is a true maximum cardinality, then P(X = M |X ≥M) = 1.

Now, based on this assumption, we define in Section 4.1 the measure of
likelihood to detect maximum cardinality constraints, and show how to use Ho-
effding’s inequality to obtain more accurate decisions. Besides, we introduce in
Section 4.2 the notion of significant constraint.

4.1 Likelihood Measure

We now introduce the notion of likelihood to measure a frequency estimation of
the conditional probability P(X = i|X ≥ i) involved in Property 1 (for deciding
whether a cardinality i for the role R in the context C is likely to be maximum):

Definition 3 (Likelihood). Given a knowledge base K, the likelihood of the
maximum cardinality i of the role R for the context C is the ratio defined as

follows: τC,Ri (K) =
nC,Ri

nC,R≥i
if nC,R≥i > 0 (0 otherwise) where nC,Ri (resp. nC,R≥i ) is

the number of individuals s of the context C such that i facts R(s, o) (resp. i
facts or more) are stated in K.

When the context and the role are clear, we omit them in notations. In that
case, ni, n≥i and τi(K) respectively denote nC,Ri , nC,R≥i and τC,Ri (K).

For example, let us consider the context Person and the role parent. Using
Table 1, it is easy to see that n

Person,parent
≥2 = 9, 477 (9, 477 = 9, 392 + 75 + 9 + 1).

Thereby, the likelihood τ Person,parent2 (K) is 0.991 (i.e., 9, 392/9, 477). Note that
this measure ignores the 10, 643 persons that have only one informed parent (to
evaluate if 2 is the true maximum cardinality for parents). Then, it is also easy
to see that we have τ

Person,parent
6 (K) = 1, whereas 6 is not the true maximum

cardinality for the role parent. Intuitively, if the likelihood τ Person,parent6 (K) =
1 does not make sense, it is due to an insufficient number of individuals for
reinforcing this hypothesis (here, only 1 individual has 6 parents). In general,
the estimation of P(X = i|X ≥ i) by τi(K) must be corrected to be statistically
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valid. For this purpose, we benefit from the Hoeffding’s inequality [11] which has
the advantage of being true for any distribution. It provides an upper bound on
the probability that an empirical mean (in our case, a likelihood τi(K)) deviates
from its expected value (the conditional probability P(X = i|X ≥ i)) by more
than a given amount. More formally, we have the following property:

Property 2 (Lower bound). Given a knowledge base K and a confidence level
1− δ, assuming that all the observations are independently and identically dis-
tributed, the conditional probability θi = P(X = i|X ≥ i) is greater than the
pessimistic likelihood τ̃i(K) defined by (if n≥i > 0):

τ̃i(K) = max

{
ni
n≥i
−

√
log(1/δ)

2n≥i
, 0

}
with a probability greater than (1− δ), i.e. P(θi ≥ τ̃i(K)) ≥ (1− δ).

This property provides us an efficient tool to make confident decisions. For
instance, for the role parent in Table 1, we observe that the correction strongly
reduces the likelihood τi(K) for cardinalities 3, 4 and 6 (e.g., τ̃ Person,parent6 (K) =
0). Conversely, we have τ̃ Person,parent2 (K) = 0.975, a strong indicator to consider
that 2 is the true maximum cardinality for the role parent in the context Person.

4.2 Significant Maximum Cardinality

Using Property 1 and 2, we finally propose to detect a maximum cardinality M
for a confidence level 1 − δ if (i) the pessimistic likelihood τ̃M (K) is maximum,
i.e. τ̃M (K) = maxi>0 τ̃M (K), and (ii) the pessimistic likelihood τ̃M (K) is greater
than a minimum likelihood threshold minτ . Based on this heuristic, we introduce
the notion of significant maximum cardinality constraint:

Definition 4 (Significant Constraint). Given a minimum likelihood thresh-
old minτ , a confidence level 1−δ and a knowledge base K, a contextual maximum
cardinality constraint C v (≤ M R) is significant w.r.t. K iff τ̃M (K) ≥ minτ
and τ̃M (K) = maxi≥1τ̃i(K).

Compared to Property 1, note that in our heuristic, we do not test whether τ̃M

is greater than ε, or not. However, it is easy to see that if τ̃M = τM−
√

log(1/δ)
2n≥M

≥

minτ , then we necessarily have n≥M ≥ log(1/δ)
2(1−minτ )2 , which guarantees that we

will not make a decision if the number of observations n≥M is too low. For
example, with 1− δ = 99% and minτ = 0.97, we will consider that M is a true
maximum cardinality only if n≥M ≥ 2, 558.

In DBpedia for a confidence level 1− δ = 99% and a threshold minτ = 0.97,
we observe that the detected maximum cardinalities of the roles birthYear and
parent in the context Person are 1 and 2 respectively (bold values in Table 1).
Interestingly, with these same thresholds, no maximum cardinality is detected
for the role team when no context is considered. This is because this role is used
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both to inform the teams to which a player has belonged and the teams present
in a sport event. Thence, our method manages to detect the cardinality of 2 in
the context of football matches.

By Definition 4, if a constraint is significant w.r.t. K, it means that its pes-
simistic likelihood is greater than minτ and that it is probably satisfied in K∗
(using Property 1 and Property 2). Now, our problem is expressed as follows:

Problem 2. Given a knowledge base K satisfying the assumptions expressed in
Section 4 about its consistency and its completeness, a confidence level 1 − δ
and a minimum likelihood threshold minτ , we aim at discovering the set of all
contextual maximum cardinality constraints C v (≤ M R) where C and R
are concept and role of K, that are significant w.r.t. K and minimal w.r.t. the
concept hierarchy defined in the TBox of K.

5 Extracting Maximum Cardinality Constraints

5.1 Pruning Criteria

For discovering all the contextual constraints of a knowledge base K, a naive
approach would consist in testing each role for each concept with our detection
method. If NC is the number of concepts and NR the number of roles, this naive
approach would require NC × NR tests. This is unfeasible for large knowledge
bases such as DBpedia, containing more than 483k concepts and 60k roles. We
design two pruning criteria (Properties 3 and 4) taking advantage of the two
conditions that a constraint γ must satisfy to be mined: (i) the constraint γ
has to be significant i.e., its pessimistic likelihood has to be greater than the
minimum likelihood threshold minτ , and (ii) the constraint γ has to be minimal
with respect to the hierarchy of concepts defined in the TBox of K.

First, we show that a constraint C v (≤ M R) cannot be significant if the
number of individuals of the context C in K is too small. Indeed, if |C| is too
small, the confidence interval computed with Hoeffding’s inequality is very large
and consequently, the pessimistic likelihood is lower than the minimum threshold
minτ . This intuition is formally presented in this property:

Property 3 (Significance pruning). Given a confidence level 1−δ and a minimum

likelihood threshold minτ , if one has |C u (∃R.>)| < log(1/δ)
2(1−minτ )2 for the context

C and the role R, then no contextual constraint C ′ v (≤ M R) with C ′ v C
can be significant w.r.t. the knowledge base K.

This property is very important to reduce the search space because if the
number of individuals in A that belong to C u (∃R.>), for a context C and a
role R, is not large enough (if it is lower than log(1/δ)/2(1−minτ )2), then it is
impossible to find a significant constraint C ′ v (≤M R) where C ′ is a concept
more specific than C in the hierarchy of K. For example, we use a minimum
likelihood threshold minτ of 97% and a confidence 1 − δ of 99% to extract
constraints in DBpedia (see experimental sections), which means that at least
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2,558 observations are needed for a role R in a context C. For this reason, since
there are only 896 facts for the role beatifiedDate describing the context Person,
we are sure that it is not necessary to explore this role for the sub-concepts like
Artist or Scientist.

Assume now that we have extracted the constraint C v (≤ 1 R) from the
knowledge base K. It is not possible to find another minimal constraint C ′ v (≤
M ′ R) with a context C ′ more specific than C because the cardinality M ′ cannot
be smaller than 1. This property, which is a direct consequence of minimality
(see Definition 2), is formalized as follows:

Property 4 (Minimality pruning). Let Γ be a set of contextual maximum cardi-
nality constraints. If Γ contains a contextual constraint C v (≤ 1 R), then no
contextual constraint C ′ v (≤M ′ R) with C ′ @ C can be minimal in Γ .

Property 4 is also useful to reduce the search space because if a constraint
C v (≤ 1 R) has been detected as significant, then it is useless to explore
all the constraints C ′ v (≤ M ′ R) where C ′ @ C. As soon as the constraint
Person v (≤ 1 birthYear) has been detected (meaning than a person has at most
one birth year), it is no longer necessary to explore the constraint Artist v (≤
M birthYear) which is more specific.

5.2 C3M: Contextual Cardinality Constraint Mining

Properties 3 and 4 are implemented in our algorithm called C3M (C3M for Con-
textual Cardinality Constraint Mining). Its main function, called C3M-Main,
takes as input a knowledge base K, a confidence level 1 − δ and a minimum
likelihood threshold minτ . The exploration of the search space is performed
independently for each role R of the knowledge base K (see the main loop of
Algorithm 1 at line 2). In a first phase, given a role R of K, Algorithm 1 car-
ries out a depth-first exploration of cardinality constraints for R (line 4). This
exploration starts from the top concept of K, denoted by >, by calling the recur-
sive function C3M-Explore. Because the concepts of K may have multiple more
general concepts, the set ΓR of maximum cardinality constraints returned by
function C3M-Explore may contain constraints that are not minimal. Therefore,
in a second phase (line 6), the function C3M-Main checks for each constraint
γ ∈ ΓR if ΓR contains a constraint γ′ that is more general than γ. When it is
not the case constraint γ is added to the set of maximum cardinality constraints
Γm that are minimal. Γm is finally returned by function C3M-Main (line 8).

The recursive function C3M-Explore benefits from the pruning criteria pre-
sented in Properties 3 and 4 during a depth-first exploration of the search space.
First, it evaluates if the number of observations in C u (∃R.>) is sufficiently
important. If it is not the case, we know that there is no maximum cardinality
constraint C ′ v (≤ M R) with C ′ v C that can be significant w.r.t. K (see
Property 3) and the depth-first exploration is stopped (line 2 of Algorithm 2).
Otherwise, the pessimistic likelihood τ̃i is computed for each cardinality value
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Algorithm 1 C3M-Main

Input: A knowledge base K, a confidence level 1−δ and a minimum likelihood thresh-
old minτ

Output: The set Γm of all maximum cardinality constraints that are significant and
minimal w.r.t. K

1: Γm := ∅
2: for all role in K do
3: {Depth-first exploration of maximum cardinality constraints}
4: ΓR := C3M-Explore(K, R,>,∞, δ,minτ )
5: {Computation of maximum cardinality constraints that are minimal}
6: Γm := {γ ∈ ΓR : (6 ∃γ′ ∈ ΓR)(γ @ γ′)} ∪ Γm
7: end for
8: return Γm

i (lines 4-6) and the most likely cardinality iM is selected (line 7). If the corre-
sponding pessimistic likelihood τ̃iM is lower than minτ , it means that no maxi-
mum cardinality constraint is detected (for this level of the hierarchy of K) and
iM is set to ∞ (line 8). Otherwise, if iM is strictly lower than M (the maxi-
mum cardinality detected at a previous level of the hierarchy), it means that we
detect a maximum constraint cardinality γ : C v (≤ iM R) that is potentially
minimal. As already mentioned, as a concept of the knowledge base K may have
multiple super-concepts, we will have to check whether γ is really minimal in the
second phase of function C3M-Main. Finally, using Property 4, we know that if
iM = 1, it is not necessary to explore the descendants C ′ @ C to detect other
constraints C ′ v (≤ M ′ R). Otherwise, C3M-Explore is recursively called (line
12) to explore all the direct sub-concepts of C (identified using the hierarchy in
the TBox of K).

Theorem 1. Given a knowledge base K, a confidence level 1 − δ and a mini-
mum likelihood minτ , our algorithm C3M-Main returns the set of all contextual
cardinality constraints C v (≤ M R) that are significant w.r.t. K and minimal
w.r.t. the hierarchy of concepts defined in the TBox of K.

Theorem 1 straightforwardly stems from Properties 3 and 4. Although these
pruning criteria are not heuristic, we will see in the experimental section that
algorithm C3M-Main is efficient enough to handle knowledge bases as large as
DBpedia. Note that we have implemented the functions C3M-Main and C3M-
Explore (client side) such that they consume a SPARQL endpoint (server side)
to query the knowledge base K. More precisely, given a context C and a role R,
a SPARQL query is built and executed to compute the cardinality distribution
nC,Ri (i ∈ N), which is useful for calculating pessimistic likelihoods (see line 5 of
Algorithm 2). Therefore, for each role R in K, the server side executes NC queries
where NC represents the number of concepts in the hierarchy of concepts of K.
It means that the complexity of our approach in number of queries is in O(NC).
On the other hand, on the client side (where the functions C3M-Main and C3M-
Explore are executed), given a role R of K, the complexity of our approach (in



Mining Significant Maximum Cardinalities in KBs 13

Algorithm 2 C3M-Explore

Input: A knowledge base K, a role R, a context C, a cardinality M , a confidence level
1− δ and a minimum likelihood threshold minτ

Output: A set Γ of constraints
1: α := log(1/δ)

2(1−minτ )2
and nC,R≥0 := |C u (∃R.>)|

2: if (nC,R≥0 < α) then return ∅
3: Γ := ∅ and imax := arg maxi∈N{nC,Ri > 0}
4: for all i ∈ [1..min{M, imax}] do

5: τ̃i := max

{
n
C,R
i

n
C,R
≥i
−

√
log(1/δ)

2n
C,R
≥i

; 0

}
6: end for
7: iM := arg maxi∈[1..min{M,imax}]{τ̃i}
8: if (τ̃iM < minτ ) then iM :=∞
9: if (iM < M) then Γ := {C v (≤ iM R)}

10: if (iM > 1) then
11: for all direct sub-concept C′ @ C not yet explored do
12: Γ := Γ ∪ C3M-Explore(K, R, C′, iM , δ,minτ )
13: end for
14: end if
15: return Γ

number of operations) is in O(NC × imax) where imax = arg maxi∈N{n>,Ri > 0}.
Intuitively, imax represents the maximum integer for which there is at least one
subject s such that imax facts R(s, o) belong to K.

6 Experiments

The goal of this experimental study is mainly to evaluate the scaling of the
C3M algorithm with a large knowledge base, the interest of minimality and the
precision of the mined constraints. In this paper, we present and analyze experi-
mental results using DBpedia, which contains more than 500 million triples with
more than 480k distinct concepts and 60k distinct roles. The Github repository
of C3M (see footnotes) also provides results obtained from 3 other SPARQL
endpoints: YAGO, BNF and EUROPEANA.

Our algorithm is implemented in Java with the Apache Jena Library, and
directly queries the KB via its SPARQL endpoint5. Note that we virtually add
an element > that subsumes all concepts without parents including owl:Thing,
and the confidence level is 1− δ = 99% for all experiments6. Figure 1 varies the
minimum likelihood threshold minτ from 0.90 to 0.99 to observe the evolution
of the collection of contextual maximum cardinality constraints.

5 http://jena.apache.org and https://dbpedia.org
6 The results for minτ = 0.97 and the ground truth used to evaluate the precision are

available at https://github.com/asoulet/c3m.

http://jena.apache.org
https://dbpedia.org
https://github.com/asoulet/c3m
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Fig. 1. Impact of the minimum likelihood threshold

Scalability Figure 1 (left top) reports the execution time, which increases very
rapidly when the likelihood threshold decreases. This is due to a very rapid in-
crease of the size of the search space because the pruning properties are less
selective. As a result, the number of extracted contextual constraints also in-
creases with the decrease of the threshold minτ as shown in Figure 1 (right
top). More precisely, it reports the total number of mined constraints, the num-
ber of constraints with a non-> context (i.e., with context different from >), and
the number of non-1 constraints (i.e., with maximum cardinality greater than
1). First, it is clear that a majority of constraints have 1 as cardinality. For a
minimum likelihood threshold equal to 0.97, there are 1,979 constraints with 1
as maximum cardinality (see Figure 2 (left) that details the distribution of con-
straints with cardinality). Second, we also observe that most of constraints have
a non-> context that shows the usefulness of our approach based on contexts.
For minτ = 0.97, Figure 2 (right) plots the distribution of the constraints with
the level of their context in the DBpedia hierarchy.

Minimality Figure 1 (left bottom) plots the compression ratio due to minimality
(i.e., number of minimal and non-minimal constraints divided by the number of
minimal constraints) by varying the likelihood threshold. Interestingly, the re-
duction of the number of constraints thanks to minimality is important regard-
less of the threshold (between 2 and 3 times smaller). It is slightly less effective
when the likelihood threshold is high, but much fewer constraints are identified.
As a reminder, the non-minimal pruned constraints are not informative because
redundant with more general ones. In other words, they are not useful for an
inference system and in addition, they reduce the readability of the extraction
for end users.
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Fig. 2. Distribution of constraints for minτ = 0.97

Precision In order to evaluate the quality of the mined constraints, we built a
ground truth from a set C∗ of 5,041 constraints selected from the 13,313 con-
straints extracted with minτ = 0.90. We first used common sense knowledge and
information from the DBpedia pages to determine the maximum cardinalities
of certain relations. For instance, since we have a single birth, the maximum
cardinality for all birth dates and places has been set to 1. For some relations
like rdfs:label or rdfs:abstract, the maximum cardinality has been set to 12
according to the documentation7. In a second step, we automatically extended
the maximum cardinality constraints to the different contexts. The set C∗ covers
667 distinct roles and 2,150 distinct concepts. Thereby, the precision of a set
of constraints C corresponds to the proportion of correct constraints out of the
number of constraints that are annotated (i.e., C ∩ C∗). Figure 1 (right bottom)
plots the precision of the set of constraints returned by C3M according to the
minimum likelihood threshold minτ

8. We observe that precision increases with
this threshold, but drops off for thresholds greater than 0.96. This is due to
correct cardinality constraints which are not recognized as the needed number
of individuals is too high. However, it is important to note that this decrease
is not very significant because the number of mined constraints becomes very
small for thresholds greater than 0.96. Interestingly, for a threshold greater than
or equal to 0.94, the precision of our approach is excellent since about 95% of
the constraints are correct.

We also qualitatively analyzed the maximum cardinality constraints for a
minimum likelihood threshold equal to 0.97. We observe that the erroneous con-
straints often result from construction or representation biases. For instance, the
method found the constraint http://schema.org/School v (≤ 2 country) that is
wrong because a school is located in a single country. But we observe in DBpedia
that many English schools are attached to both England and the United King-
dom. It is clear that a single affiliation to England (part of the United Kingdom)
would have been sufficient. Besides, at physical level, while each individual has

7 https://wiki.dbpedia.org/services-resources/datasets/dbpedia-datasets
8 We do not compare our method with [15] because in the case of DBpedia, this

method systematically returns a wrong maximum cardinality for all constraints.

https://wiki.dbpedia.org/services-resources/datasets/dbpedia-datasets


16 A. Giacometti et al.

a unique date of birth,we identify a cardinality of 2 because many dates are
represented with two distinct encoding formats.

To summarize, our approach scales well on DBpedia with about 500 million
triples thanks to the advanced pruning techniques used by C3M. The majority of
the extracted constraints have a context demonstrating the interest of benefiting
from the concept hierarchy of the knowledge base. Importantly, the precision of
the mined constraints is about 95% for minτ ≥ 0.94.

7 Conclusion

This paper provides the first proposal for a complete exploration of significant
constraints of maximum cardinality in a knowledge base. We show how to find,
from a knowledge base K that satisfies assumptions about its completeness and
consistence degrees, a minimal set of contextual constraints C v (≤M R) that
are significant, i.e. that can be expected to occur in reality. Our experiments
demonstrate the feasibility of a systematic exploration of large knowledge bases
such as DBpedia (about 500 million triples) for the discovery of minimal con-
textual constraints of maximum cardinality thanks to the C3M algorithm. With
a high minimum likelihood threshold, the precision of the mined constraints is
about 95%, which is excellent. Additionally, the minimality exploited by our al-
gorithm drastically reduce the number of obtained constraints, so that they can
be manually analyzed by end users. In future work, we would intend to extend
our approach to minimum cardinality constraints. This task is not completely
symmetrical because under the open-world assumption, it is difficult to know
if facts are missing or if the minimum cardinality is reached. For instance, a
majority of people have only one informed parent in DBpedia but, of course,
the true minimum cardinality is 2. Another future work is to improve C3M by
benefiting more from reasoning capabilities. For the moment, we take into ac-
count the hierarchy of concepts to reduce the set of constraints, but we could
improve our approach by fully exploiting OWL (e.g., with equivalent classes or
properties).

Acknowledgements This work was partially supported by the grant ANR-18-CE38-

0009 (“SESAME”).

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: The semantic web, pp. 722–735. Springer
(2007)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York, NY, USA (2003)

3. Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness statements about rdf
data sources and their use for query answering. In: Proc. of International Semantic
Web Conference. pp. 66–83. Springer Berlin Heidelberg (2013)



Mining Significant Maximum Cardinalities in KBs 17

4. Darari, F., Razniewski, S., Prasojo, R.E., Nutt, W.: Enabling Fine-Grained RDF
Data Completeness Assessment. In: Proc. of International Conference on Web En-
gineering. pp. 170–187. Springer International Publishing, Cham (2016)

5. Debattista, J., Lange, C., Auer, S., Cortis, D.: Evaluating the quality of the LOD
cloud: An empirical investigation. Semantic Web 9(6), 859–901 (2018)
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16. Pernelle, N., Säıs, F., Symeonidou, D.: An automatic key discovery approach for
data linking. Web Semantics: Science, Services and Agents on the World Wide
Web 23, 16–30 (2013)

17. Razniewski, S., Korn, F., Nutt, W., Srivastava, D.: Identifying the extent of com-
pleteness of query answers over partially complete databases. In: Proc. of the ACM
SIGMOD. pp. 561–576. ACM (2015)

18. Soulet, A., Giacometti, A., Markhoff, B., Suchanek, F.M.: Representativeness of
knowledge bases with the generalized benford’s law. In: Proc. of International
Semantic Web Conference. pp. 374–390. Springer (2018)
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