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Abstract. Many data exploration tasks require a target class. Unfortu-
nately, the data is not always labeled with respect to this desired class.
Rather than using unsupervised methods or a labeling pre-processing,
this paper proposes an interactive system that discovers this target class
and characterizes it at the same time. More precisely, we introduce a
new interactive pattern mining method that learns which part of the
dataset is really interesting for the user. By integrating user feedback
about patterns, our method aims at sampling patterns with a probabil-
ity proportional to their frequency in the interesting transactions. We
demonstrate that it accurately identi�es the target class if user feedback
is consistent. Experiments also show this method has a good true and
false positive rate enabling to present relevant patterns to the user.
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1 Introduction

Many data exploration tasks are intended to characterize a part of data over
another [9]. For instance, it is particularly the case to identify factors of a dis-
ease by comparing the data of ill patients to those of healthy ones, or to �nd
fraudulent behaviors by comparing the data of scammers to others. Unfortu-
nately, in practice, the collected data have not always the labels allowing to
know what class an individual (healthy or sick) or a behavior (normal or fraud-
ulent) belongs to. Of course, when the class label to characterize is absent, it is
possible to use unsupervised analysis techniques (such as clustering, association
rules or detection of outliers) to identify and characterize the target class. How-
ever, these techniques are often less e�ective because they focus on the majority
trends taking into account all the data. To address this problem, an approach
would consist in labeling data during the data preparation phase. Such a label-
ing process could be facilitated by an active learning method that can even be
dedicated to an analysis approach [13]. However, labeling remains a particularly
costly and tedious task, especially when the target class to study is really in mi-
nority. Furthermore, in many cases, the labeling can be di�cult because experts
have only an imperfect knowledge of the target class. Actually, this is another
reason for the experts want the use of data mining tools. In other words, we
are facing a vicious circle: data analysis requires labeling which itself requires



an analysis of data. Thus, the problem is how to label data to identify a target
class while characterizing this target class with patterns.

In order to solve this problem, we propose to use the interactive pattern
mining framework introduced in [7]. The central idea of this framework is to
alternate between three steps. During the mining step, our system mines an ini-
tial batch of patterns using an adaptation of the two-step random procedure
proposed in [3]. During the interactive step, the user provides feedback by evalu-
ating whether the patterns of the batch are good descriptors or not of the target
class. Then, during the learning step, the system updates a model of the target
class using the user feedback. Thus, after each interaction with the user, we have
a twofold challenge to overcome: i) How can we update the model of the target
class integrating the user feedback? and ii) How can we draw patterns from the
dataset taking into account the updated model of the target class?

In this paper, we propose a new interactive pattern sampling method to solve
these two challenges at the same time. The outline of this paper is as follows. Sec-
tion 2 reviews some work about active learning and interactive pattern mining.
We state precisely our problem in Section 3. Our algorithm proposal is detailed
in Section 4 where theoretical properties are presented (due to lack of space,
proofs are omitted). Indeed, if the user feedback is consistent with the target
class, we demonstrate that the transactions of the target class will be clearly
identi�ed and that the mined patterns will describe exactly these transactions.
Finally, experiments in Section 5 show that the accuracy of the interactive sys-
tem increases fairly quickly with the number of user feedback responses.

2 Related Work

To the best of our knowledge, there is no work on the mining of patterns char-
acterizing a target class not known in advance. However, we bene�t from the
framework of interactive pattern mining [7]. Its primary goal is to present in-
teresting patterns to the user. Even if user feedback is used for labeling data,
this problem therefore di�ers from traditional active learning problems [12], the
purpose of which is not to propose interesting queries to the user. This distinc-
tion is important for di�erent reasons. First, the queries provided to the user are
patterns, not transactions. In most active learning tasks, the feedback requested
from the user is directly related to the objects to be classi�ed and not a gen-
eralization of these objects (although there are few notable exceptions [10,1]).
Second, the selection of the query presented to the user cannot only target the
improvement of the classi�cation model unlike conventional active learning. In
order that the user continues to interact with the system, the latter has to mine
patterns that are interesting for him/her (i.e., that describe the target class).
Third, the query presented to the user at each iteration has to be computed in
few seconds to maintain a satisfactory interaction. In traditional active learning,
this constraint is not very strong because the query is selected from the dataset.
It is much more di�cult to mine the right pattern due to the huge search space.



In interactive pattern mining, one challenge is to select the relevant patterns
while improving the learned model. In case of preference learning, the early
methods [14,11] ignored the use of a criterion favoring the diversity of queries
for acquiring a complete view of preferences. A recent approach [5] nevertheless
showed interest to address this issue as done in active learning. It also showed
the importance of randomization to promote good diversity. This randomization
need justi�es the use of pattern sampling [2]. In this paper, we also take ad-
vantage of the statistical properties of sampling to better learn the classi�cation
model and to better choose the query (mined patterns) as done in [6].

Another challenge is to mine new patterns at each iteration in few seconds
to maintain a satisfactory interaction. This speed requirement is not satis�ed
by traditional methods of pattern mining. Thus, the �rst proposals [14,11] were
based on a preliminary mining step and then, they re-ranked this preliminary
collection of patterns according to the updated criterion stemming from the user
preference model. This post-processing approach did not allow the discovery of
new patterns. More recently, a beam search method [5] was proposed to extract at
each iteration the new patterns that maximize the updated criterion (combining
quality and diversity, in that case). Such an approach remains slow and it fails
to �nd various patterns. In this context, pattern sampling [2] is an attractive
technique because it gives a fast access to all the patterns, guaranteeing a very
good diversity. In this paper, rather than using a stochastic method [2] or a
SAT framework [4], we adopt the two-step procedure [3] that is linear with the
database size.

3 Problem Statement

This section formulates the problem of characterizing a class from an unlabeled
dataset, using pattern sampling and an interactive approach. Before, we remind
basic de�nitions about pattern mining and we introduce the notion of oracle.

3.1 Basic de�nitions

Let I be a set of distinct literals called items, an itemset (or a pattern) is a
subset of I and the language of itemsets L is 2I (where 2S denotes the powerset
of S). A transactional dataset D is a multi-set of itemsets of L. Each itemset,
usually called transaction, is a data observation. For instance, Table 1 gives a
transactional dataset with 4 transactions t1, . . . , t4 described by 5 items A, B,
C, D and E. ∆ denotes the set of all datasets.

Pattern discovery takes advantage of interestingness measures to evaluate the
relevancy of a pattern. More precisely, an interestingness measure for a pattern
language L is a function de�ned from L×∆ to <. For instance, the support of an
itemset X in a dataset D, denoted supp(X,D), is the proportion of transactions
containing X: supp(X,D) = |{t ∈ D : X ⊆ t}|/|D|. Pattern sampling aims at
accessing the pattern space L by a sampling procedure simulating a distribution
p : L → [0, 1] that is de�ned with respect to an interestingness measure m:



D
Trans. Items Class
t1 A B E +
t2 A B +
t3 B C D −
t4 B C −
Known in advance Unknown

Table 1: A toy dataset D

Trans. Init. B (−) BE (+) BD (−)
t1 0.50 ± 0.5 0.27 ± 0.5 0.51 ± 0.5 0.51 ± 0.5
t2 0.50 ± 0.5 0.27 ± 0.5 0.27 ± 0.5 0.27 ± 0.5
t3 0.50 ± 0.5 0.27 ± 0.5 0.27 ± 0.5 0.13 ± 0.3
t4 0.50 ± 0.5 0.27 ± 0.5 0.27 ± 0.5 0.27 ± 0.5

Table 2: Evolution of weights with feedback

p(.) = m(.)/Z where Z is a normalizing constant. In this way, with no parameter
(except possibly the sample size), the user has a fast and direct access to the
entire pattern language.

Assume now that the dataset D is partitioned into two subsets, denoted by
D+ and D−, such that D = D+ ∪ D− and D+ ∩ D− = ∅. We say that the sub-
dataset D+ contains the set of positive transactions, whereas the sub-dataset D−
contains the set of negative transactions. In our toy example (see Table 1), t1 and
t2 are positive transactions, whereas t3 and t4 are negative ones. In our approach,
we assume that the sub-datasets D+ and D− are not known in advance, whereas
the user want to discover patterns that characterize the subset D+ of positive
transactions. In our toy example (see Table 1), because supp(BE,D+) = 0.5 and
supp(BE,D−) = 0, the user is de�nitely interested by pattern BE. But, he/she
is less interested by pattern B since supp(B,D+) = supp(B,D−) = 1.

In that context, we assume that an oracle O : L → {−,+} models the user
feedback. It means that O(X) = + (resp. −) i� the oracle gives a positive
(resp. negative) feedback response for the pattern X. In Table 2, three patterns
are drawn (B, BE and BD) and the user feedback is indicated in parenthe-
ses. Since the user feedback about the same pattern X may change during the
process (the user may have an imperfect knowledge of the set D+ of positive
transactions), we consider that O is a random variable. Thereby, P(+|X) will
denote the probability of having a positive feedback given X when the oracle
is consulted. For instance, in our toy example, because supp(BE,D+) = 0.5
and supp(BE,D−) = 0, we could assume that P(+|BE) = 1, meaning that
the oracle always gives a positive feedback for BE. On the other hand, because
supp(B,D+) = supp(B,D−) = 1, we could assume that P(+|B) = 0.5, meaning
that the user could evaluate pattern B positively or negatively according to the
objective of the user (i.e., discrimination or characterization of the target class).

3.2 Problem Formulation

In our context, since the user is not interested in all transactions in D, but only
in positive transactions in D+, we do not want to sample the pattern space ac-
cording to the interestingness measurem evaluated on D, but on D+. Indeed, the
interestingness measure m evaluated on D+ is better suited because it enables
us to focus on the patterns describing the set of positive transactions. Unfortu-
nately, the set of positive transactions in D+ is not known in advance. Therefore,
our problem can be formalized as follows:



Algorithm 1 Interactive pattern sampling

Input: A dataset D and an oracle O
1: Let F be an empty sequence
2: Let ωF (t) := 0.5 for all t ∈ D
3: repeat
4: Draw a pattern X from D according to its weighted support suppω
5: Add the user feedback to the sequence F
6: Update the weight vector ωF using F
7: until The user stops the process

Problem 1 Given a dataset D containing an unknown set of positive transac-
tions D+ and an oracle O, our problem consists in building a sequence of patterns
〈X1, . . . , Xk〉 such that the probability to draw a pattern Xi at step i tends to
supp(Xi,D+)/Z when i tends to +∞ where Z is a normalizing constant.

Note that at each step i, the oracle O will be used to evaluate the interest-
ingness of the pattern Xi presented to the user. The next sections show how to
choose these patterns Xi and how the user feedback O(Xi) can be used by the
system to improve its knowledge of D+.

4 Interactive Pattern Sampling Algorithm

4.1 General Principles of the Approach

For addressing the problem formalized in Section 3.2, Algorithm 1 provides
a sketch of our interactive system. Its key idea is to associate a weight ωF (t)
to each transaction t ∈ D that maintains an estimation of the class conditional
probability P(+|t) (the probability that a transaction t belongs to D+). Of
course, all these weights ωF (t) are initialized to 0.5 because the class is unknown
at the beginning (line 2)1, as shown in the second column in Table 2. But, at
the end, the goal is to have ωF (t) = 1 i� t ∈ D+ (0 otherwise). For this purpose,
our system alternates between three steps as proposed in [7]:

� Mining step (line 4): This step provides patterns by favoring those which
are frequent in transactions with high weights ωF . More precisely, a pattern
X is sampled according to a weighted support suppω. Typically, after the
positive feedback on BE (see Table 2), AB will be more likely to be drawn
than BC because the total weight of t1 and t2 becomes higher than that of
t3 and t4.

� Interactive step (line 5): During this step, the user evaluates whether
the pattern X is a good descriptor or not of the unknown sub-dataset D+

of positive transactions.

1 It is also possible to set weights to 0 or 1 if the labels of some transactions are already
known.



Algorithm 2 Weighted Support-based Sampling

Input: A dataset D and a weight vector ω
Output: A random itemset X ∼ suppω(L,D)
1: Let weight vector ω′ be de�ned by ω′(t) := 2|t| × ω(t) for all t ∈ D
2: Draw a transaction t ∼ ω′(D)
3: return an itemset X ∼ u(2t)

� Learning step (line 6): The system updates the weight ωF (t) of each
transaction t containing X. Basically, if the user feedback is positive, the
weight ωF (t) is increased otherwise it is decreased (see Section 4.3 for more
details). For instance, in Table 2, the weight of t1 is increased after the draw
of BE while that of t3 is decreased after the draw of BD.

In order that our system works, it is necessary to link the user feedback given
on patterns (i.e., P(+|X)) to the class conditional probabilities on transactions
(i.e., P(+|t)). Our approach is based on this central result which is independent
of the mining and learning steps:

Property 1 (Class Conditional Probability). Given a transaction t in D and a
pattern langage L, we have: P(+|t) =

∑
X∈LP(X|t)×P(+|X).

It is impossible to calculate the exact class conditional probability of a trans-
action because its calculation depends on the entire pattern language L. Using
Property 1, we show in Section 4.3 how we can estimate P(+|t) given a se-
quence of user feedback responses. Previously, while P(+|X) is straightforwardly
provided by the oracle, the method used to a draw sequence of patterns X is
necessary to further detail P(X|t). This method is presented in the following
Section 4.2.

4.2 Pattern sampling according to the weighted support

In [3], the authors show how to sample patterns following a distribution propor-
tional to their support. In our approach, we propose to sample patterns follow-
ing a distribution proportional to their weighted support. More formally, given a
dataset D and a weight vector w, the weighted support of a pattern X in D, de-
noted suppω(X,D), is de�ned by: suppω(X,D) =

∑
t∈D,X⊆t ω(t)/

(∑
t∈D ω(t)

)
.

Algorithm 2 adapts the two-step random procedure [3] to sample patterns
according to their weighted supports. Using this algorithm, the weighted support
is similar to the usual support at the beginning (when all weights are equal to
0.5). More interestingly, it is easy to see that suppω(X,D) = supp(X,D+) (which
solves Problem 1) if all positive transactions in D+ have 1 as weight and other
transactions have 0 as weight after a long sequence of interactions with the user.
However, we still have to show how we can learn the weights of the transactions,
which is the goal of the following section.



Algorithm 3 Learning the weights

Input: A sequence F = {(X1, f1, s1), ..., (Xk, fk, sk)} of k user feedback responses
Output: A updated set of weights ω(t)
1: for all t ∈ D do

2: ω̄F (t) :=

∑
(Xj,fj,sj)∈F,Xj⊆t fj/sj∑
(Xj,fj,sj)∈F,Xj⊆t 1/sj

3: ωF (t) := infF (t)+supF (t)
2

4: if infF (t) > 0.5 then ωF (t) := 1
5: if supF (t) < 0.5 then ωF (t) := 0
6: end for

4.3 Learning the weights of transactions

In this section, we show how we can update the weights of the transactions from
the user feedback. Assuming that patterns are sampled using Algorithm 2, given
a transaction t ∈ D, we know that P(X|t) = 0 if X 6⊆ t and P(X|t) = 1

|2t| if

X ⊆ t. Thus, using Property 1, we �nally have:

P(+|t) =
∑
X∈L

P(X|t)×P(+|X) =
1

2|t|

∑
X⊆t

P(+|X) (1)

Using this equation, Algorithm 3 shows how the probabilities P(+|t) can be
estimated from a sequence of user feedback responses, and how these estimations
can be used to update the weights of the transactions. Let F = {(X1, f1, s1), ...,
(Xk, fk, sk)} be a sequence of k user feedback responses, where Xk is the pattern
drawn at step k in Algorithm 1, fk = 1 if O(Xk) = + (0 otherwise), and sk =
suppω(Xk,D). At step 2 of Algorithm 3, we start to compute a �rst estimation
ω̄F (t) of P(+|t) using a weighted arithmetic mean. The following property shows
that ω̄F (t) tends to P(+|t) when the number of user feedback responses tends
to in�nity.

Property 2 (Probability Estimations). Given a dataset D, for every transaction
t ∈ D, the weight ω̄F (t) converges to P(+|t) when the number of user feedback
responses |F | tends to in�nity.

In practice, this property means that the addition of new feedback responses
tends to improve the estimation of the probability P(+|t). In order to evalu-
ate the estimation error, we bene�t from a statistical result known as Bennett's
inequality which is true irrespective of the probability distribution [8]. After k
independent observations of a real-valued random variable r with range [0, 1],
Bennett's inequality ensures that, with a con�dence 1− δ, the true mean of r is
at least r−ε where r and σ are respectively the observed mean and standard de-

viation of the samples and ε =
√

2σ2 ln(1/δ)
k + ln(1/δ)

3k . We use this statistical result

to bound the true value of P(+|t) from a sequence of user feedback responses F :

Property 3 (Bounds). Given a dataset D, a sequence of user feedback responses
F and a con�dence 1− δ, the probability P(+|t) for a transaction t is bounded



as follows:
max {0, ω̄F (t)− ε}︸ ︷︷ ︸

infF (t)

≤ P(+|t) ≤ min {ω̄F (t) + ε, 1}︸ ︷︷ ︸
supF (t)

with ε =
√

2σ2 ln(1/δ)/k + ln(1/δ)/3k where σ =
√
ω̄F (t)− ω̄F (t)2 is the em-

pirical standard deviation of ω̄F (t).

This property is important because it gives information about the error of
the estimation ω̄F . In Algorithm 3, we use this property to compute ωF (t) =
infF (t)+supF (t)

2 , i.e. a corrected estimation of P(+|t). Since both bounds tend to
P(+|t), it is easy to see that the corrected estimation ωF (t) also tends to P(+|t)
when the number of feedback responses increases. Finally, at lines 4 and 5 of
Algorithm 3, we force the weight ωF (t) to tend to 1 (resp. 0) when it is certain
(with respect to the con�dence level) that the probability P(+|t) is higher than
0.5 (resp. P(+|t) < 0.5). For instance, after the evaluation of BD in Table 2,
the �nal weight ωF (t3) will be zero because 0.13 + 0.3 = 0.43 is below 0.5.

4.4 Convergence and Complexity

It may be that we do not properly learn the set of positive transactions from the
user feedback on the patterns if his/her feedback is not consistent. For instance,
if P(+|X) = 0 for all patterns X ⊆ t, then we compute P(+|t) = 0 even if t
is truly a positive transaction. Therefore, we introduce the notion of consistent
oracle:

De�nition 1 (Consistency). Given a set D+ ⊆ D of positive transactions , an
oracle O is consistent with D+ i� for all transaction t ∈ D, we have P(+|t) > 0.5
if t ∈ D+, and P(+|t) < 0.5 otherwise.

Using this de�nition of consistency, and Property 3, it is possible to conclude
on the good convergence of Algorithm 1:

Theorem 1 (Convergence). Given D with D+ ⊆ D and an oracle O consis-
tent with D+, for each transaction t ∈ D, the weight ωF (t) converges to 1 i�
t ∈ D+ (otherwise to 0) when the number of user feedback responses |F | tends
to in�nity. Consequently, the weighted support tends to the support in D+.

Under the assumption of consistency, Algorithm 1 clearly solves the problem
stated in Section 3.2. Interestingly, the time complexity of this approach in
O(k|D||I|) (where k is the number of mined patterns) is excellent. Finally, as
the weights can be calculated without keeping the details of all user feedback,
the space complexity of the algorithm is linear with the size of the dataset.

5 Experimental Study

This section has the twofold objective of evaluating the quality of the class
learning through user feedback and the quality of the patterns presented to the



D |D| |I| |D+
min| |D

+
min|/|D| D |D| |I| |D+

min| |D
+
min|/|D|

abalone 4,177 28 1,307 0.31 mushroom 8,124 119 3,916 0.48
chess 3,196 75 1,527 0.48 page 941 35 9 0.01
cmc 1,473 28 469 0.32 sick 2,800 58 171 0.06
german 1,000 76 300 0.30 vehicle 846 58 199 0.24
hypo 3,163 47 151 0.05

Fig. 1: Features of UCI benchmarks

user. Note that the Java source code of the implementation used for this study
is available at www.info.univ-tours.fr/~soulet/prototype/ida17/.

ProtocolWe report the experimental evaluations conducted on 9 datasets com-
ing from the UCI Machine Learning Repository (archive.ics.uci.edu/ml). Ta-
ble 1 provides the main features of each dataset. For each dataset D, the minority
class of D corresponds to the set of positive transactions. The cardinality of this
minority class, denoted D+

min, is indicated in the last column of Table 1. We �rst
perform experiments using a deterministic oracle (in the sense that its answer
is constant for a given pattern). Given a set of positive transactions D+ ⊆ D,
this deterministic oracle is de�ned as O(X) = + if supp(X,D+) > supp(X,D)
(− otherwise). Intuitively, a user is interested in a pattern if its support in the
set of positive transactions D+ is higher than its support in the dataset D.

First, we evaluate the quality of the mining step by considering the number of
interesting patterns, i.e patterns positively rated by the user. More precisely, we
compute the ratio of positive feedback responses over the last 50 patterns pro-
vided to the user i.e., P(+) =

∑k
i=k−49 fk/50 given a sequence of user feedback

responses F = 〈(X1, f1, s1), . . . , (Xk, fk, sk)〉 with k ≥ 50.

Second, a confusion matrix is used for evaluating the quality of the learning
step. More precisely, we consider that a transaction is classi�ed in the positive
class (resp. negative class) if its weight considering the margin of error is greater
than 0.5 (resp. < 0.5). Thus, we introduce two sets of transactions de�ned by:
P+ = {t ∈ D | infF (t) > 0.5} and P− = {t ∈ D | supF (t) < 0.5}. In the very
�rst iterations, it is clear that no class is predicted, i.e. P+ = P− = ∅. Then,
as the interactions progress, the proportion of classi�ed transactions, de�ned

by Completeness = |P+∪P−|
|D| , increases. In order to evaluate the quality of the

learning step, we also use the True Positive Rate (TPR) and the False Positive

Rate (FPR) measures de�ned respectively by: TPR = |D+∩P+|
|D+| and FPR =

|D−∩P+|
|D−| .

All experiments were repeated 100 times and the arithmetic mean is used
for averaging the values coming from those 100 measurements. Finally, the con-
�dence level 1− δ is set to 0.8.

Convergence The left part of Figure 2 gives the proportion of positive feedback
responses with respect to the number of iterations (i.e., the number of patterns
presented to the user). As expected, this quality measure increases as the number

www.info.univ-tours.fr/~soulet/prototype/ida17/
archive.ics.uci.edu/ml
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Fig. 2: Proportion of positive feedback responses and completeness
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Fig. 3: TPR and FPR with the number of iterations

of user feedback responses increases, which means that more relevant patterns
are presented to the user. Note that in the �rst iterations, the 4 datasets having
the largest ratio |D+

min|/|D| (i.e., abalone, chess, cmc, mushroom) are also those
having the best proportions of positive feedback responses. Indeed, it is easier
to �nd patterns that characterize an important class than a small class as it is
the case for page. However, after a su�cient number of iterations, the system is
e�cient to propose relevant patterns even for small positive classes. Furthermore,
we can see that the proportion of positive feedback responses does not converge
towards 1. This observation can be explained by the nature of the oracle used in
the experiments. Indeed, an oracle based on a contrast measure is unfavorable
to our sampling method based on a description measure (i.e., support). It can
also be explained by the nature of the dataset. Indeed, the set of items of the
dataset is in general not adequate to perfectly characterize the target class, i.e.
the class of positive transactions.

The right part of Figure 2 gives the completeness (proportion of classi�ed
transactions) with the number of iterations. As expected, the completeness con-
verges to 1 meaning that the method will arrive at classifying all transactions.
Importantly, we observe that the method quickly learns the class of a majority
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Fig. 4: Completeness and TPR according to an oracle with error on hypo

of transactions on most datasets. Indeed, after 300 patterns, the completeness
is greater than 0.5 for all datasets except chess and german (in this case, the
oracle does not discriminate the two classes well). In order to evaluate more pre-
cisely the quality of the learning step, Figure 3 plots the TPR and FPR with the
number of iterations. Except for chess and german datasets, we observe that
the TPR (proportion of positive transactions that are correctly classi�ed in P+)
increases and converges to their maximal value very fast. In particular, we can
emphasize that it is the case for the datasets hypo, page and sick, even though
the set of positive transactions for these datasets is very small (less than 6%
of the whole dataset). Concerning the FPR (proportion of negative transactions
incorrectly classi�ed), we �nally observe that it stabilizes to a low value (less
than 20%) very fast (in less than 200 iterations) except for abalone.
Non-deterministic oracle We now evaluate the impact of non-deterministic
oracle by introducing an error component to the oracle. Experiments are carried
out on hypo with 4 di�erent error probabilities 30%, 20%, 10% and 0% (it means
that the oracle gives an opposite feedback in x% of its answers). By observing
the Completeness and TPR in Figure 4, we observe that the convergence is
guaranteed, but the required time increases with the error rate. Importantly, it
is easy to see that the approach is robust because the error probability has no
signi�cant impact on the �nal value of the TPR, meaning that the set of positive
transactions is correctly identi�ed whatever the error probability.

6 Conclusion

This paper presents a new method of interactive pattern mining by bene�ting
from pattern sampling. Beyond its practical e�ciency, this technique o�ers statis-
tical guarantees on the learned class model and therefore, on the convergence of
the interactive process. Experiments highlight this good convergence on several
benchmarks. The number of classi�ed transactions increases rapidly while the
true and false positive rates remain satisfactory even if the target class consists
in only few transactions. Besides, even if an end user can only make a limited



number of feedback responses, the good convergence of the system is interesting
because it is possible to envisage such a system in a context of crowdsourcing.
We would intend to generalize this method to other interestingness measures
more sophisticated than support, including measures for identifying contrasts
between D+ and D−.
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