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Abstract—In recent years, the field of pattern mining has
shifted to user-centered methods. In such a context, it is necessary
to have a tight coupling between the system and the user where
mining techniques provide results at any time or within a short
response time of only few seconds. Pattern sampling is a non-
exhaustive method for instantly discovering relevant patterns that
ensures a good interactivity while providing strong statistical
guarantees due to its random nature. Curiously, such an approach
investigated for itemsets and subgraphs has not yet been applied
to sequential patterns, which are useful for a wide range of mining
tasks and application fields. In this paper, we propose the first
method for sequential pattern sampling. In addition to address
sequential data, the originality of our approach is to introduce a
constraint on the norm to control the length of the drawn patterns
and to avoid the pitfall of the “long tail” where the rarest patterns
flood the user. We propose a new constrained two-step random
procedure, named CSSAMPLING, that randomly draws sequential
patterns according to frequency with an interval constraint on
the norm. We demonstrate that this method performs an exact
sampling. Moreover, despite the use of rejection sampling, the
experimental study shows that CSSAMPLING remains efficient
and the constraint helps to draw general patterns of the “head”.
We also illustrate how to benefit from these sampled patterns to
instantly build an associative classifier dedicated to sequences.
This classification approach rivals state of the art proposals
showing the interest of constrained sequential pattern sampling.
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I. INTRODUCTION

In recent years, the field of pattern mining has shifted to
user-centered methods [1]. Typically, the idea is to be able
to capture the feedback of the user during the analysis of
the first mined patterns to better choose the next ones. To
guarantee this tight coupling between the system and the user,
it is then necessary to use techniques that provide results at
any time [2] or within a short response time of only few
seconds. Pattern sampling is an efficient approach that instantly
returns patterns [3], [4], [5], which enables to produce pattern-
based models at any time [6]. Introduced in [7], pattern
sampling returns a small set of patterns randomly drawn with a
probability proportional to an interestingness measure specified
by the user. For instance, with frequency, a pattern twice as
frequent will be twice as likely to be picked. Sampling methods
are particularly efficient and have the advantage of returning
patterns with high diversity. To the best of our knowledge,
there is no work addressing pattern sampling in sequential
data [8]. Yet sequential pattern mining is useful for a wide
range of mining tasks and application fields [9] such as web
usage mining, text mining, fraud detection and so on.

Unfortunately, a naive pattern sampling according to fre-
quency is not relevant for sequential data because of the pitfall
of the long tail. In statistics and business, the long tail of a
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Fig. 1. Impact of the long tail on frequent sequential pattern sampling

distribution is its portion having a large number of occurrences
far from the central part of the distribution [10]. In our context,
the long tail designates the long and rare sequential patterns
far more numerous than the short and frequent ones (the
“head”). As a result, it is nearly impossible to draw the most
general patterns despite the bias of the frequency. This problem
is stronger with sequential data than with transactional data
because the number of sub-patterns in a sequence is much
higher than that in an itemset of the same length. Figure 1
illustrates the long tail problem on the toy dataset provided in
Section III. The top histogram shows the frequency of the 35
patterns of the toy dataset (i.e., bars in dark and light grays).
We observe that 23 patterns have a frequency of 1 (the tail).
Consequently, the bars in dark gray of the bottom histogram
show that 39.6% of the patterns drawn according to frequency
belong to this tail (with a frequency of only 1). The real-world
datasets reveal even much more problematic situations (see the
experimental study in Section V). For instance, each of the
10,000 patterns drawn randomly according to frequency on
bms dataset appears only in a single sequence of the dataset.
Of course, these patterns are useless because they correspond
more to noise than true patterns describing the data.

To circumvent the pitfall of the long tail, we propose to
sample patterns under a constraint on the maximum norm
(maximum number of items). This constraint will prevent
drawing too specific patterns because too long, but interest-



ingly, still allow to draw non-frequent patterns that describe
sequences of rare events. It is really crucial not to force
a minimal frequency in order to have a description of rare
objects [6]. In Figure 1, a maximum norm constraint of 2
removes all dark gray patterns. Interestingly, much of the
tail is cut off. As a result, the bottom histogram shows a
significant increase in the probability to draw patterns having
frequencies ranging from 2 to 4. Indeed, the probability to
draw a pattern with a frequency of 1 has been divided by 2
(the first bar in light gray). To achieve this goal, we would like
to use the two-step random procedure [11] which is the most
efficient pattern sampling approach in the literature. After a
preprocessing phase, this method extracts an exact sample of
patterns without rejection. However, extending this approach
to sequential patterns is a challenging problem. Indeed, its core
requires counting the number of distinct subsequences for each
sequence. This task is not easy because a sequence may contain
several occurrences of the same subsequence and we want to
consider only subsequences of a certain length.

The main contributions of the paper are as follows:

• We propose a new algorithm named CSSAMPLING
(Constrained Subsequence Sampling) that samples
sequential patterns proportionally to frequency with
an interval constraint on the norm. It relies on a
constrained two-step random procedure that requires
solving two sub-problems: (i) counting the number of
distinct subsequences having a maximum norm and
(ii) uniformly drawing subsequences. We demonstrate
that CSSAMPLING performs an exact sequential pat-
tern sampling according to frequency, and we analyze
its complexity on average.

• We present a large set of experimental results for
analyzing the behavior of CSSAMPLING. We show on
several datasets that our approach is efficient enough
to return hundreds of sequential patterns per second.
We also highlight the practical interest of norm con-
straints to better control the quality of the returned
patterns and avoid the curse of the long tail.

• Sequence classification is a crucial data mining task
useful in a wide range of applications. We investi-
gate how sequential pattern sampling lead to build
associative classifiers for sequences. Interestingly, the
accuracy of these sample-based classifiers built in
a short response time is comparable to that of the
methods of the state of the art. Experiments show that
it is again essential to use a constraint to draw general
patterns contained in the head, and not in the tail.

The outline of this paper is as follows. Section II reviews
some related work about pattern sampling methods. Section III
introduces basic definitions and the formal problem statement.
We present our constrained two-step random procedure for
sequential pattern sampling in Section IV. We evaluate our
approach in Section V and conclude in Section VI.

II. RELATED WORK

a) Instant discovery of sequential patterns: Sequential
pattern mining has been introduced by [8] two decades ago
and its usefulness has been widely proved as mentioned

in introduction. Since 1995, many methods have optimized
the mining of sequential patterns [12], [13], [14] and have
introduced variants with constraints [15], [16] or condensed
representations [17], [18]. Despite all these advances, sequen-
tial pattern mining remains a costly task that often generates
too many redundant patterns. Consequently, it is not possible
to discover patterns or to build pattern-based models in a short
response time. This limit, also reached by other language (e.g.,
itemset), was circumvented by Monte Carlo tree search [19]
or pattern sampling [7]. This kind of instantaneous methods is
at the core of many approaches that makes data mining more
interactive [3], [4], [5], [6]. But to the best of our knowledge,
all these methods have not been applied to sequential patterns.
The rest of the related work is devoted to the pattern sampling
techniques, which corresponds to our proposal.

b) Output space sampling: Importantly, it is necessary
to distinguish between input and output space sampling. The
input space sampling [20] consists in generating from a sample
of data all the patterns that would have been mined from
the complete dataset. The output space sampling [7] consists
in generating a sample of patterns among the patterns that
would have been mined from the complete dataset. More
formally, pattern sampling [7], [11] aims at accessing the
pattern space L by an efficient sampling procedure simulating
a distribution π : L → [0, 1] that is defined with respect to
some interestingness measure f , i.e., π(.) = f(.)/Z where
Z is a normalizing constant. As the pattern language is fully
addressed proportionally to f , this approach guarantees a
good variety of patterns returned to the user unlike heuristic
approaches. Several approaches have been proposed for input
space sampling of sequential patterns [21], [22], but to the
best of our knowledge, this paper proposes the first approach
to output space sampling of sequential patterns. Since the
complexity of pattern sampling is independent of the language
size, it is suitable for structured languages where there is
a combinatorial explosion of the number of patterns like
subgraphs [23] and even for infinite languages like numerical
data [24]. Note that in this paper, we restrict ourselves to
frequency as interestingness measure f because we focus more
on sequence-specific and constraint-specific issues. It would be
natural to extend our approach to other measures (e.g., area or
discriminative measures) as done in [11].

c) Pattern sampling techniques: Several procedures
have been proposed for the output space sampling of patterns.
The first kind of procedure [23], [25] randomly draws a pattern
from the search space using a heuristic to favor the patterns that
are most relevant according to the interestingness measure f .
In practice, these methods return interesting patterns but they
offer no guarantee on the quality of the outputted sample. The
second kind of procedure [7], [3], [26] is based on Markov
chain Monte Carlo algorithms. The idea is that the equilibrium
distribution of a random walk corresponds to the desired
probability distribution. The limit of such stochastic methods
is the convergence speed, which may be slow. The third kind
of procedure [11], [24], [27] consists in drawing an instance
of the dataset and then drawing a pattern contained in this
instance. By judiciously selecting the two draw distributions,
it is possible to obtain an exact sampling according to the
desired final distribution. Recently, [24] adds a third step for
taking into account numeric data where the pattern language
is infinite. We opted for such a multi-step random procedure



for its speed and accuracy. Section IV-A underlines specific
challenges for achieving this goal in the case of sequences.

Besides the inherent difficulty of addressing sequences
rather than itemsets, we also add an interval constraint on
the norm of the returned patterns. In the litterature, there
are few proposals adding a binary predicate to restrict the
sampling. [25] proposes a framework for sampling of maximal
itemsets from transactional datasets, but it relies on a heuristic
random walk with no guarantee. Based on the SAT framework,
[28] requires to have a solver integrating efficiently XOR
constraints and in practice, it has been implemented only for
itemsets. In addition, the authors emphasize that the efficiency
of this generic approach will hardly compete with approaches
dedicated to a single language and/or class of constraints. In
this paper, we propose an efficient method for integrating only
constraints on the norm.

III. PROBLEM STATEMENT

This section formalizes the problem of sequential pattern
sampling under norm constraints. Before, we recall some
preliminary definitions about sequences.

A. Basic definitions

Let I be a finite set of literals called items. An itemset X
is a subset of I. A sequence s = 〈X1 . . . Xn〉 defined over I
is an ordered list of non-empty itemsets Xi ⊆ I (1 ≤ i ≤ n,
n ∈ N). n is the size of the sequence s denoted by |s|. The
norm of the sequence s, denoted by ‖s‖, is the sum of the
cardinality of all its itemsets, i.e. ‖s‖ =

∑n
i=1 |Xi|. In the

following, sl denotes the prefix 〈X1X2 . . . Xl〉 of s (0 ≤ l ≤ n,
l ∈ N), s0 being the empty sequence (represented by 〈〉) and
s[j] = Xj denotes the j-th itemset of s (1 ≤ j ≤ n, j ∈ N).
Finally, we denote S the universal set of all the sequences
defined over I, and a sequential dataset S over I is a multi-
set of sequences defined over I. We recall the definitions of
subsequences and of occurrences of a subsequence:

Definition 1 (Subsequence): A sequence s′ =
〈X ′1 . . . X ′m〉 is a subsequence of a sequence s = 〈X1 . . . Xn〉,
denoted by s′ v s, if there exists an index sequence
1 ≤ i1 < i2 < · · · < im ≤ n such that for all j ∈ [1..m],
one has X ′j ⊆ Xij . We denote φ(s) the set of subsequences
of a sequence s, i.e. φ(s) = {s′ ∈ S : s′ v s}, and Φ(s) its
cardinality, i.e. Φ(s) = |φ(s)|.

Example 1: We use the sequential dataset S presented
in Table I as a running example. This dataset contains 4
sequences s1, s2, s3 and s4 defined over the set of items
I = {a, b, c, d}. For example, the size of s1 = 〈(ab)c〉
is equal to 2, i.e. |s1| = 2, whereas its norm is equal to
3, i.e. ‖s1‖ = 2 + 1 = 3. Moreover, we have s0

1 = 〈〉,
s1

1 = 〈(ab)〉, s2
1 = s1, s1[1] = (ab) and s1[2] = c.

Finally, the set φ(s1) of subsequences of s1 is defined by
φ(s1) = {〈〉, 〈a〉, 〈b〉, 〈c〉, 〈(ab)〉, 〈ac〉, 〈bc〉, 〈(ab)c〉}. Thus, we
have Φ(s1) = 1 + 3 + 3 + 1 = 8. The number of subsequences
Φ(si) of all sequences si ∈ S is detailed in Table I. The
notation Φ[m,M ](si) is formally defined in the Section IV-A.
Intuitively, it represents the number of subsequences of a
sequence si whose norm is between m and M .

It is important to note that a subsequence s′ = 〈X ′1 . . . X ′m〉
may occur several times in a sequence s = 〈X1 . . . Xn〉 if there

TABLE I. A SEQUENTIAL DATASET S WITH 4 SEQUENCES

Sid Sequence of itemsets #occurrences Φ(si) Φ[1,2](si)
s1 〈(ab)c〉 8 8 6
s2 〈(ab)c(ac)〉 32 25 12
s3 〈c(ac)〉 8 7 5
s4 〈(ab)(cd)〉 16 16 10

exist several index sequences 1 ≤ i1 < i2 < · · · < im ≤ n
such that for all j ∈ [1..m], one has X ′j ⊆ Xij . In that case,
there are several occurrences of the subsequence s′ in s. The
next definition explains how each occurrence is represented:

Definition 2 (Occurrence): An ordered list of n itemsets
o = 〈Z1 . . . Zn〉 is an occurrence of a subsequence s′ =
〈X ′1 . . . X ′m〉 in a sequence s = 〈X1 . . . Xn〉 if there exists
an index sequence 1 ≤ i1 < · · · < im ≤ n such that for
all j ∈ {i1, . . . , im}, one has Zij = X ′j ⊆ Xij , and for all
j ∈ [1..n]\{i1, . . . , im}, one has Zj = ∅. This index sequence,
called signature of o, is unique by definition.

Example 2: For the sequence s2 = 〈(ab)c(ac)〉, o1 =
〈(a)(c)∅〉 and o2 = 〈(a)∅(c)〉 are two occurrences of its
subsequence s′2 = 〈(a)(c)〉. Moreover, the index sequences
〈1, 2〉 and 〈1, 3〉 are the signatures of o1 and o2, respectively.
In Table I, the number of occurrences of all its subsequences
is given for each sequence (e.g., there are 32 occurrences for
25 distinct subsequences in s2).

B. Problem of sequential pattern sampling under constraint

A pattern sampling method aims at randomly drawing a
pattern X from a language L according to an interesting-
ness measure f . X ∼ π(L) denotes such a pattern where
π(.) = f(.)/Z is a probability dristribution over L. In
our case, we focus on the frequency which is an intuitive
interestingness measure for experts and is an essential atomic
element to build many other interestingness measures (like area
or discriminative measures):

Definition 3 (Frequency): The frequency of a subsequence
s ∈ S in the sequential dataset S, denoted by freq(s,S), is
defined by: freq(s,S) = |{s′ ∈ S : s v s′}|.

Our goal is to randomly draw sequential patterns according
to frequency under norm constraints. Given two integers m and
M such that m ≤M , we denote S[m,M ] the set of sequences
of S whose norm is between m and M , i.e. S[m,M ] = {s ∈ S :
m ≤ ‖s‖ ≤M}. The problem can finally be stated as follows:

Given a sequential dataset S, two integers m and M ,
we aim at randomly drawing a subsequence s ∈ S[m,M ]

with a probability distribution P (s) proportional to its
frequency in S i.e., P (s) = freq(s,S)∑

s′∈S[m,M]
freq(s′,S) .

One of the advantages of frequent pattern sampling [11] is
to remove the minimum frequency threshold (always difficult
to set) while our problem introduces two thresholds: m and
M . Nevertheless, they are easier to set because their range
is much smaller ([1..10] in our experiments) than that of the
minimum threshold of frequency.

Example 3: Table II represents the set of all subsequences
of sequences in S with a norm between m = 1 and M = 2,
and gives the frequencies in S of all these subsequences.



TABLE II. SUBSEQUENCES IN S[1,2] OF SEQUENCES IN S

Pattern s freq(s,S) Pattern s freq(s,S)
〈a〉 4 〈ac〉 3
〈b〉 3 〈ad〉 1
〈c〉 4 〈ba〉 1
〈d〉 1 〈bc〉 3
〈(ab)〉 3 〈bd〉 1
〈(ac)〉 2 〈ca〉 2
〈(cd)〉 1 〈cc〉 2
〈aa〉 1

For instance, because our problem is to draw a subsequence
proportionally to its frequency, and freq(〈ac〉,S) = 3 ×
freq(〈ba〉,S), our objective is to develop a sampling method
such that the probability to draw the subsequence 〈ac〉 is three
times greater than the probability to draw the subsequence
〈ba〉. But, even if the subsequence 〈(ab)c〉 has a frequency of
3, it will not be drawn because its norm is 3 (> M ).

IV. CONSTRAINED TWO-STEP RANDOM PROCEDURE

A. Overview of the algorithm

To address the problem stated in the previous section, we
propose to benefit from a two-step random procedure as done
in [11] for sampling itemsets proportionally to their support.
But, we constrain this random procedure to consider only the
patterns whose norm is satisfactory at both step.

Given a dataset S and two integers m and M such that
m ≤M , CSSAMPLING (Constrained Subsequence Sampling)
returns a sequential pattern having a norm between m and M :

a) Step 1: Sampling a sequence: In the first step (lines
1 and 2 of Algorithm 1), we start by counting for each
sequence s ∈ S the number of subsequences having a norm
between m and M , i.e. Φ[m,M ](s) = |φ[m,M ](s)| where
φ[m,M ](s) = {s′ v s : m ≤ ‖s′‖ ≤M}. To do this, we show
in Section IV-B how to extend the formula given in [29]. Then,
this first step continues with the drawing of a sequence s from
S proportionally to its weight w(s) = Φ[m,M ](s). For instance,
Table I provides the weight Φ[1,2](si) of each sequence si.
It is clear that this weight is different from the number of
occurrences 2‖si‖ or the number of distinct subsequences
Φ(si) and shows the importance of this calculation so as not
to bias the drawing of the subsequence.

b) Step 2: Sampling a subsequence: In the second
step, we randomly draw the norm k of the subsequence of
s which will be returned (line 3 of Algorithm 1). This number
k is randomly drawn with a probability proportional to the
number of subsequences in s having exactly k as norm, i.e.
according to the probability distribution P[m,M ] defined for all
k ∈ [m..M ] by: P[m,M ](k) =

Φ[k,k](s)

Φ[m,M](s) . Finally, Algorithm 1
returns at line 4 a subsequence s′ in s of norm k according to
a uniform distribution, meaning that each subsequence s′ from
s of norm k will be drawn with the same probability 1

Φ[k,k](s) .
We show in Section IV-C how to perform such a uniform
drawing thanks to a rejection sampling. The main challenge is
to avoid to pick more often subsequences that have multiple
occurrences within the sequence s. Typically, even if 〈(a)(c)〉
has two occurrences in s2, its drawing probability must be the
same as that of 〈(a)(a)〉 (that appears once within s2).

Note that the theoretical study of these two steps (sound-
ness and complexity) will be done in Section IV-D.

Algorithm 1 CSSAMPLING

Input: A sequential dataset S, and two integers m and M such that
m ≤M

Output: A sequence s ∈ S[m,M ] randomly drawn, i.e. s ∼
freq(S[m,M ],S)

// Step 1: Sampling a sequence
1: Compute for all s ∈ S, a weight w defined by w(s) = Φ[m,M ](s)
2: Draw a sequence s from S proportionally to w: s ∼ w(S)

// Step 2: Sampling a subsequence
3: Draw an integer k from m to M according to the distribution
P[m,M ](k)

4: return A subsequence s′ of norm k randomly drawn from s:
s′ ∼ u(φ[k,k](s)) where u is the uniform distribution

B. Subsequence counting for drawing a sequence

In this section, we show how to compute the number of
distinct subsequences of a sequence with an interval constraint
on the norm. We benefit from [29] where a formula counts
the number of distinct subsequences in a sequence without
constraint on the norm. The main difficulty is to avoid to
count the same subsequence several times, even if it has several
occurrences within the sequence.

To compute the number of distinct subsequences having
a norm less than or equal to j contained in a sequence s =
〈X1 . . . Xn〉, we start with the empty sequence and then, we
concatenate all itemsets Xi one by one. s ◦ Y denotes the
concatenation of s and Y : s ◦ Y = 〈X1 . . . XnY 〉. For each
new itemset Y concatenated to s, we count only subsequences
which have a norm less than j and which have not already
occurred previously in s. For instance, if we add the itemset ac
to 〈(ab)c〉 to count the number of subsequences having a norm
less than 2 in 〈(ab)c(ac)〉, then we avoid counting 〈(ab)a〉
whose norm (i.e., 3) is too large and we avoid counting 〈(a)c〉
which has already been counted previously (for 〈(ab)〉 ◦ c). It
is easy to see that the duplicates (here, only 〈(a)c〉) result from
previous occurrences of items in (ac) within sequences 〈(ab)c〉
(here, c occurs previously at position 2). For this reason, we
need the notion of position set:

Definition 4 (Position set [29]): Let s be a sequence and
Y be an itemset. L(s, Y ) = {i ∈ N : i ≤ |s| ∧ s[i] ∩ Y 6=
0 ∧ (∀j > i)(s[i] ∩ Y 6⊆ s[j] ∩ Y )} is the position set where
Y has a maximal intersection with the different itemsets of s.

Example 4: Let s = 〈(ab)c(ac)〉 be a sequence. We have
s1 = 〈(ab)〉, s[2] = (c) and L(s1, s[2]) = ∅ because s[2]
intersects no itemset of s1. Now, we are going to compute
L(s2, s[3]). s[3] = (ac) intersects at the same time the first
itemset s[1] = (ab) of s (s[1]∩s[3] = (a)) and the second item-
set s[2] = (c) of s (s[2]∩s[3] = (c)). As these two intersections
are disjoint, we obtain L(s2, s[3]) = {1, 2}. This means that
by concatenating subsets of s[3] to the subsequences in s2,
some subsequences of s2 might been counted twice as items
of s[3] are also present at positions 1 and 2 in s2.

Using the notion of position set and the inclusion-exclusion
principle, we propose a new recursive formula to count the
number of distinct subsequences in a sequence s considering
a maximum norm as constraint. Intuitively, to construct a



subsequence of s ◦ Y having a norm less than j, we can
concatenate any subset of size k of Y to a subsequence of
s having a norm less than j−k. Indeed, we are sure to obtain
a subsequence of s◦Y having a norm less than k+(j−k) = j,
and this principle is repeated for any possible size of a subset
of Y . Thus, we have: φ≤j(s ◦ Y ) = ∪jk=0φ≤j−k(s) ◦P=k(Y )
where P=k(Y ) = {X ⊆ Y : |X| = k}, which explains the
first term of the formula given by Theorem 1. The difficulty is
that a subsequence obtained by the concatenation of a subset of
Y to a subsequence of s may also occur in φ≤j(s). Therefore,
we have to take into account these possible redundancies to
count the exact number of distinct subsequences of s with a
norm less than j. This remark explains the correction term
R≤j(s, Y ) of the formula given by Theorem 1:

Theorem 1 (Subsequence number with a maximum norm):
Let s be a sequence, Y be an itemset and j be an integer, the
number of distinct subsequences having a norm less or equal
to j in s ◦ Y , denoted by Φ≤j(s ◦ Y ), is defined as follows1:

Φ≤j(s ◦ Y ) =

(
j∑

k=0

Φ≤j−k(s)×
(
|Y |
k

))
−R≤j(s, Y )

where R≤j(s, Y ) is the correction term defined by:

R≤j(s, Y ) =
∑

∅⊂K⊆L(s,Y )

(−1)|K|+1RK
≤j(s, Y )

with RK
≤j(s, Y ) =

∑j
k=1 Φ≤j−k(smin(K)−1) ×

(|s[K]∩Y |
k

)
where s[K] = ∩k∈Ks[k].

This Theorem 1 extends the proposal [29] by setting j =∞.

Proof: Let s be a sequence and Y be an itemset. We
already explain that to construct a subsequence of s◦Y having
a norm less than j, we can concatenate any subset of size k
of Y to a subsequence of s having a norm less than j − k.
Indeed, we are sure to obtain a subsequence of s ◦Y having a
norm less than k+ (j − k) = j. Thus, we have φ≤j(s ◦ Y ) =

∪jk=0φ≤j−k(s)◦P=k(Y ) and Φ≤j(s◦Y ) =
∑j

k=0 Φ≤j−k(s)×(|Y |
k

)
− R≤j(s, Y ) where R≤j(s, Y ) is a correction term (to

count the number of distinct subsequences).

Let t = 〈T1 . . . Tm〉 with |Tm| = k be a sequence that is
counted multiple times, i.e. t ∈ φ≤j(s) ∩ (φ≤j(s) ◦ P≥1(Y ))
where P≥1(Y ) = {X ⊆ Y : |X| ≥ 1}. Because t ∈ (φ≤j(s)◦
P≥1(Y )), we necessarily have Tm ∈ P≥1(Y ), i.e. Tm ⊆ Y .
Moreover, because t ∈ φ≤j(s), there exists an integer i ≤ |s|
such that Tm ⊆ s[i]. Let l = max{i ≤ |s| : Tm ⊆ s[i]}.
Since Tm ⊆ Y , we also have l = max{i ≤ |s| : Tm ⊆
(s[i] ∩ Y )}. We show now that l ∈ L(s, Y ). First, because
Tm 6= ∅, we have s[l] ∩ Y 6= ∅. Now, assume that there
exists l′ > l such that s[l] ∩ Y ⊆ s[l′] ∩ Y . Then, we
would have Tm ⊆ s[l′] ∩ Y , which contradicts that l is
maximal, and completes the proof that l ∈ L(s, Y ). At this
point, we proved that T ∈ φ≤j−k(sl−1) ◦ P=k(s[l] ∩ Y )
for an integer l ∈ L(s, Y ). Thus, we have R≤j(s, Y ) =
|
⋃

l∈L(s,Y )(∪
j
k=1φ≤j−k(sl−1) ◦ P=k(s[l] ∩ Y ))|.

Using the inclusion-exclusion principle, we rewrite
R≤j(s, Y ) as

∑
∅⊂K⊆L(s,Y )(−1)|K|+1RK

≤j(s, Y ) with
RK
≤j(s, Y ) = |

⋂
l∈K(∪jk=1φ≤j−k(sl−1) ◦ P=k(s[l] ∩ Y ))|.

1By convention, we consider that
(n
p

)
= 0 if p > n.

Now, let t = 〈T1 . . . Tm〉 be a sequence in the
set

⋂
l∈K(∪jk=1φ≤j−k(sl−1) ◦ P=k(s[l] ∩ Y )). We

necessarily have tm−1 ∈ φ≤j−k(smin(K)−1) and
Tm ∈ ∩l∈KP=k(s[l] ∩ Y ), i.e. Tm ∈ P=k(s[K] ∩ Y )
with s[K] = ∩l∈Ks[l]. It follows that RK

≤j(s, Y ) =

|∪jk=1φ≤j−k(smin(K)−1) ◦ P=k(s[K] ∩ Y ))|. Finally, because
the sets φ≤j−k(smin(K)−1) ◦ P=k(s[K] ∩ Y )) are disjoints,
we have RK

≤j(s, Y ) =
∑j

k=1 Φ≤j−k(smin(K)−1)×
(|s[K]∩Y |

k

)
,

which completes the proof of Theorem 1.

By continuing Example 4 with the sequence s =
〈(ab)c(ac)〉, the following example illustrates the principle of
the formula given by Theorem 1.

Example 5: The set φ≤2(s1) of subsequences of s1 =
〈(ab)〉 with a norm less than 2 is defined by φ≤2(s1) =
{〈 〉, 〈a〉, 〈b〉, 〈(ab)〉}. We have Φ≤2(s1) = 4, and it is easy
to see that Φ≤1(s1) = 3 (the subsequence 〈(ab)〉 having
a norm strictly greater than 1). As L(s1, s[2]) = ∅, we
have R≤2(s1, s[2]) = 0 and Φ≤2(s2) =

∑|(c)|
k=0 Φ≤2−k(s1) ×(|(c)|

k

)
= Φ≤2(s1) ×

(
1
0

)
+ Φ≤1(s1) ×

(
1
1

)
= 4 + 3 = 7. The

first term of the sum corresponds to 4 subsequences in s3

obtained by concatenating the empty set to subsequences of
s2, while the second term corresponds to 3 subsequences in s3

obtained by concatenating the itemset (c) to each subsequence
of s2 having a norm less than 1. Let us detail the calculation
of Φ≤2(s3) =

∑|(ac)|
k=0 Φ≤2−k(s2) ×

(|(ac)|
k

)
− R≤2(s2, s[3])

= Φ≤2(s2) + Φ≤1(s2) × 2 + Φ≤0(s2) − R≤2(s2, s[3]) =
7 + 4 × 2 + 1 − R≤2(s2, s[3]). For instance, the second term
of Φ≤2(s3), that equals to 4 × 2, refers to the number of
subsequences in s3 that are obtained by concatenating the
two subsets of size 1 of (ab) with a subsequence in s2

having a norm less that 1. Finally, the calculation of the
correction term R≤2(s2, s[3]) is as follows: R≤2(s2, s[3]) =
(−1)2Φ≤1(s0)×

(|(a)|
1

)
+(−1)2Φ≤1(s1)×

(|(c)|
1

)
= 1+3 = 4.

Thereby, we deduce that Φ≤2(s3) = 7 + 4× 2 + 1− 4 = 12.

The formula given by Theorem 1 is recursive. Nevertheless,
given a sequence s and a maximum norm M , this recursion
can easily be removed by calculating line by line the matrices
T and R defined by:

• T [i][j] = Φ≤j(s
i) for i ∈ [0..|s|] and j ∈ [0..M ].

T [i][j] is the number of subsequences with a norm
less than or equal to j in the sequence si.

• R[i][j] = R≤j(s
i−1, s[i]) for i ∈ [2..|s|] and j ∈

[0..M ]. This correction term is the term required
to correct the number of subsequences with a norm
less than j of si = si−1 ◦ s[i] using the number
of subsequences with a norm less than j of si by
concatenating the subsets of s[i].

Algorithm 2 details how the matrices T and R can be
computed for a sequence s and a maximum norm M . At each
iteration of the main loop (lines 5 to 19 of Algorithm 2), it
computes the number T [i][j] of subsequences si of s with a
norm less than or equal to j (for all j ∈ [1..M ]) using the
previous lines of matrices T and R. For each i ∈ [2..|s|] and
j ∈ [1..M ], Algorithm 2 first computes the correction term
R[i][j] (lines 7-13). Because K ⊆ L(si−1, s[i]), it is important
to note that m = min(K) ≤ i − 1 < i. Thus, at line 11,
it ensures that to calculate R[i][j], only previously calculated



terms T [m − 1][j − k] of T are used. Then, Algorithm 2
computes (lines 14-17) the value of T [i][j] using only the
previous line i − 1 of matrix T (line 15) and the correction
term R[i][j] (line 17). Examples of the matrices T and R
are provided by Table III for a sequence s = 〈(ab)c(ac)〉.
In particular, we find the values R[3][2] = R≤2(s2, s[3]) and
T [3][2] = Φ≤2(s3) computed in Example 5.

Algorithm 2 Number of subsequences with a maximum norm
Input: A sequence s and a maximal norm M ≤ ‖s‖
Output: A matrix T such that T [i][j] = Φ≤j(s

i)
1: T [0][0] := T [1][0] = 1
2: for j = 1 to M do
3: T [0][j] := 1 and T [1][j] := T [1][j − 1] +

(|s[1]|
j

)
4: end for
5: for i = 2 to |s| do
6: for j = 1 to M do
7: R[i][j] := T [i][j] = 0
8: for all K ∈ P≥1(L(si−1, s[i])) do
9: m := min(K) and kmax := |s[K] ∩ s[i]|

10: for k = 1 to kmax do
11: R[i][j] += (−1)|K|+1T [m− 1][j − k]×

(
kmax

k

)
12: end for
13: end for
14: for k = 0 to min{j, |s[i]|} do
15: T [i][j] += T [i− 1][j − k]×

(|s[i]|
k

)
16: end for
17: T [i][j] := T [i][j]−R[i][j]
18: end for
19: end for
20: return(T )

To conclude this section, using Theorem 1, note that we
calculate the number of distinct subsequences in a sequence
s having a norm between m and M as follows: Φ[m,M ](s) =
Φ≤M (s)− Φ≤m−1(s). In Algorithm 1, this formula makes it
possible to calculate the initial weight w(s) for each sequence
s of the sequential database S (see line 1 of Algorithm 1).

TABLE III. EXAMPLES OF MATRICES T AND R

T[i][j] ≤ 0 ≤ 1 ≤ 2 ≤ 3

s0 = 〈〉 1 1 1 1
s1 = 〈(ab)〉 1 3 4 4
s2 = 〈(ab)c〉 1 4 7 8
s3 = 〈(ab)c(ac)〉 1 4 12 21

R[i][j] ≤ 0 ≤ 1 ≤ 2

s1, s[2] = c 0 0 0
s2, s[3] = (ac) 2 4 5

C. Subsequence sampling by rejection

After randomly drawing a sequence s ∈ S proportionally
to its weight w(s) (line 2 of Algorithm 1) and an integer k
between m and M according to the distribution P[m,M ](k)
(line 3 of Algorithm 1), CSSAMPLING aims at returning a
subsequence of norm k drawn uniformly from the sequence
s (line 4 of Algorithm 1). The difficulty is not to favor
the subsequences that have multiple occurrences within the
sequence.

To cope with this difficulty, we use a rejection method
by uniformly drawing an occurrence of the sequence s and

rejecting it if this occurrence is not the first one. As each sub-
sequence has a unique first occurrence, this approach ensures
a uniform draw of subsequences. We start by formalizing the
notion of first occurrence:

Definition 5 (First occurrence): Given a sequence s, let o1

and o2 be two occurrences of a subsequence s′ within s, whose
signatures are 〈i11, i12, . . . , i1m〉 and 〈i21, i22, . . . , i2m〉 respectively.
o1 is less than o2, denoted by o1 < o2, if there exists an index
k ∈ [1..m] such that for all j ∈ [1..k − 1], one has i1j = i2j ,
and i1k < i2k. Finally, we call the first occurrence of s′ in s its
smallest occurrence w.r.t. the order defined previously.

Example 6: Let us continue Example 2 where 〈1, 2〉 and
〈1, 3〉 are the signatures of occurrences o1 = 〈(a)(c)∅〉
and o2 = 〈(a)∅(c)〉 of the subsequence s′ = 〈(a)(c)〉 in
s = 〈(ab)(cd)(ce)〉. As 〈1, 2〉 is less than 〈1, 3〉, we obtain that
o1 < o2. Finally, as o1 and o2 are the only two occurrences
of s′ in s, it means that o1 is the first occurrence of s′ in s.

In practice, we especially check if an occurrence of the
subsequence s′ v s is the first occurrence of s′ within the
sequence s. This can be done efficiently by using Property 1:

Property 1: Given an occurrence o of the subsequence
s′ v s whose signature is σ = 〈i1, i2, . . . , im〉, o is the first
occurrence of s′ if and only if for all ij ∈ σ, there is no index
l ∈ [ij−1 + 1..ij − 1] such that o[ij ] ⊆ s[l] (with i0 = 0).

Proof: Let σ = 〈i1, . . . , im〉 be the signature of an
occurrence o of s′ v s. We first show that if there exist ij ∈ σ
and l ∈ [ij−1+1..ij−1] such that o[ij ] ⊆ s[l], then o is not the
first occurrence of s′. Let 1 ≤ i′1 < i′2 < · · · < i′m ≤ n be the
index sequence defined by i′j = l and for all k ∈ [1..m] \ {j},
i′k = ik. Consider now the ordered list o′ of n itemsets defined
by o′[l] = o[ij ], o′[ij ] = ∅ and for all k ∈ [1..n] \ {l, ij},
o′[k] = o[k]. As o′ is an occurrence of s′ v s and o′ < o, it
proves that o is not the first occurrence of s′. Conversely, we
show that if o of signature σ is not the first occurence of s′ v s,
then there exist ij ∈ σ and l ∈ [ij−1 + 1..ij − 1] such that
o[ij ] ⊆ s[l]. By definition, if o is not the first occurrence of s,
then there exists another occurrence o′ of s′ such that o′ < o.
So, we know that there exists k ∈ [1..n] such that i′k < ik and
for all j ∈ [1..k− 1], i′j = ij . Thus, there exist indexes ik ∈ σ
and l = i′k ∈ [i′k−1 + 1..ik − 1] = [ik−1 + 1..ik − 1] such that
o[ik] = o[i′k] ⊆ s[i′k], i.e. o[ik] ⊆ s[l].

Thanks to Property 1, it is finally easy to draw uniformly a
subsequence of norm k in a sequence s. By randomly drawing
k distinct item positions between 1 and ‖s‖, we start by
uniformly drawing an occurrence containing k items from s. If
this occurrence is a first occurrence, it is accepted and returned.
Otherwise we reject it and perform another random draw of
a new occurrence of s. Although CSSAMPLING relies on a
rejection sampling technique, we show in the next section that
the average number of draws before acceptance is computable.
The experimental section also shows that this average number
of draws may be extremely low for real-world datasets.

Example 7: In Example 2, assume that we have drawn
item positions 1 and 5 within the sequence s = 〈(ab)(cd)(ce)〉
in order to build an occurence of a subsequence of s of norm
k = 2. In this way, we obtain the occurrence o = 〈(a)∅(c)〉
of signature 〈1, 3〉 of the subsequence s′ = 〈(a)(c)〉 in s. In
that case, as there exists l = 2 in [1 + 1..3 − 1] such that



o[3] = (c) ⊆ s[2] = (cd), we are sure that o is not the first
occurrence of s′ and this occurrence is rejected.

D. Theoretical analysis of the method

This property states that CSSAMPLING returns an exact
sample of subsequences with norm constraints:

Property 2 (Soundness): Let S be a sequential dataset, m
be a minimum norm and M a maximum norm, CSSAMPLING
draws a subsequence of S having a norm between m and M
according to a distribution proportional to frequency.

Proof: Let Z be the normalizing constant defined by
Z =

∑
s∈S w(s) =

∑
s∈S Φ[m,M ](s). Let t be a subsequence

in S[m,M ] and P (t) be the probability to draw subsequence
t using Algorithm 1. We have: P (t) =

∑
s∈S P (t, s) =∑

s∈S,tvs P (s) × P (t/s). Considering the second line of

Algorithm 1, we have P (s) = w(s)
Z =

Φ[m,M](s)

Z . Then,
considering the third and fourth lines of Algorithm 1, if t
is a subsequence of norm k, we have P (t/s) = P (k/s) ×
P (t/k, s) =

Φ[k,k](s)

Φ[m,M](s) ×
1

Φ[k,k](s) = 1
Φ[m,M](s) . Thus, we have

P (t) =
∑

s∈S,tvs P (s) × P (t/s) =
∑

s∈S,tvs
Φ[m,M](s)

Z ×
1

Φ[m,M](s) = freq(s,S)
Z , which shows that t is drawn propor-

tionnaly to its frequency and completes the proof.

We now study the complexity of our method by distinguish-
ing two main phases: the preprocessing (where the distribution
of subsequences according to the norm is calculated for each
sequence) and the drawing of subsequences.

a) Preprocessing complexity: The preprocessing is per-
formed in time O(|S| · L · M2 · 2P · T 2) where L is the
maximum length of a sequence, M is the maximum norm
of drawn subsequences, P is the maximum size of position
sets L(si−1, s[i]) and T is the maximum size of an itemset
in a sequence. It is important to note that P ≤ L may
be very small in practice (see the next section) and that
this preprocessing (line 1 of Algorithm 1) is achieved only
once before the drawing phase (where a large number of
subsequences are drawn from S). Moreover, it is important
to note that if the dataset S contains only sequences of items
(and not sequences of itemsets), then we have P = 1. Thus, in
that case, the preprocessing can be performed in polynomial
time O(|S| · L ·M2 · T 2).

b) Drawing complexity: The draw of subsequences is
less expensive. First, the draw of a sequence (line 2 of
Algorithm 1) is realized in O(ln |S|). It is more difficult to
estimate the complexity in the worst case for the draw of a
subsequence because the number of rejections is not bounded.
Nevertheless, a good way to measure the effectiveness of the
approach is to calculate the average number of draws, denoted
by µ[m,M ](S), required to derive a subsequence of S having a
norm between m and M . Intuitively, µ[m,M ](S) depends both
on the probability that a sequence s ∈ S is drawn and the
average number of draws, denoted by µ[m,M ](s), required to
find a first occurrence of a subsequence of s. The following
property shows how these terms can be calculated:

Property 3 (Average number of draws): The average
number of draws for the acceptance of a subsequence having
a norm between m and M in the sequential dataset S is

defined by: µ[m,M ](S) =
∑

s∈S
Φ[m,M](s)∑

s′∈S Φ[m,M](s′)
× µ[m,M ](s)

where µ[m,M ](s) =
∑M

k=m (‖s‖
k )

Φ[m,M](s) .

Proof: Using Algorithm 1, it is clear that µ[m,M ](S) =∑
s∈S P (s)×µ[m,M ](s) with P (s) =

Φ[m,M](s)∑
s′∈S Φ[m,M](s′)

. Then,
we have µ[m,M ](s) =

∑
k∈[m..M ] P (k/s) × Nk(s) where

Nk(s) is the average number of draws necessary to obtain a
subsequence s′ of s such that ‖s′‖ = k. When we draw a sub-
sequence s′ of norm k, the probability that this subsequence is
accepted (because it is a first occurrence) is P k

a (s) =
Φ[k,k](s)

(‖s‖
k )

.

Thus, we have Nk(s) =
∑∞

i=1 i× (1− P k
a (s))i−1 × P k

a (s) =
P k
a (s)×

∑∞
i=1 i× (1−P k

a (s))i−1 = P k
a (s)× 1

Pk
a (s)2

= 1
Pk

a (s)
.

It follows that µ[m,M ](s) =
∑

k∈[m..M ] P (k/s) × Nk(s) =∑
k∈[m..M ]

Φ[k,k](s)

Φ[m,M](s) ×
(‖s‖

k )
Φ[k,k](s) =

∑
k∈[m..M] (

‖s‖
k )

Φ[m,M](s) .

When the average number of draws is close to 1, it
means that the draw of a subsequence is achieved without
rejection. For a given sequence, there is no rejection if each
occurrence is the first occurrence i.e., there is no duplicate
within the sequence. In practice, the average number of draws
measured on real-world datasets is often very low. Finally,
as the temporal complexity of the draw of an occurrence
having a norm equal to k ∈ [m..M ] in a sequence s is in the
worst case in O(M2), the average complexity of drawing N
subsequences from a dataset S (after the preprocessing phase)
is in O(N ·M2 · µ[m,M ](S)).

V. EXPERIMENTAL STUDY

In the previous section, we proved that our sampling
algorithm CSSAMPLING is exact, and studied its complexity.
In this section, we evaluate the efficiency of the approach
and the interest of the sampled subsequences. More precisely,
Section V-A focuses on the speed of CSSAMPLING and its
ability to draw patterns that do not belong to the long tail. In
Section V-B, in order to illustrate the usefulness of sampled
patterns, we show how these patterns can be used to build
associative classifiers dedicated to sequences and that our
approach rivals state of the art proposal.

A. Analysis of CSSAMPLING method

This experimental section evaluates the speed of our
method and the impact of the norm constraint on the sampled
patterns. For this, we use 6 datasets including 2 real life
datasets bms and sign2 and 4 synthetic datasets generated by
IBM data generator3. One of the interests of using synthetic
datasets is to have examples where the average number of
draws µ[m,M ](S) is ensured to be greater than 1 by adding
multiple occurrences within a same sequences. Table V lists
basic statistics of all datasets and Table VI compares the
average number of draws per subsequence required to extract
a pattern with M ∈ {1, 2, 3, 5, 7} (while m is always fixed to
1 in all of our experiments). The prototype of our method is
implemented in Python and all experiments are performed on
a 2.71 GHz 2 Core CPU with 12 GB of RAM. All experi-
mental datasets used, as well as source code, are available at
https://github.com/LDIOPBSF/CSSampling.

2http://www.philippe-fournier-viger.com/spmf
3https://github.com/zakimjz/IBMGenerator



TABLE IV. EXECUTION TIME FOR SEQUENTIAL PATTERN SAMPLING (AVERAGE AND STANDARD DEVIATION)

Preprocessing time (s) Drawing time per pattern (ms)
Dataset M=1 M=2 M=3 M=5 M=7 M=1 M=2 M=3 M=5 M=7

bms 0.22±0.00 0.29±0.01 0.30±0.00 0.30±0.01 0.31±0.02 0.07±0.01 0.25±0.01 0.43±0.02 0.59±0.00 0.7±0.01
sign 0.01±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.03±0.00 0.15±0.01 0.17±0.01 0.19±0.01 0.22±0.00 0.24±0.00

D10K5S2T6I 0.81±0.33 2.02±0.02 2.92±0.03 5.02±0.05 7.36±0.06 0.05±0.00 0.07±0.00 0.09±0.00 0.17±0.00 0.24±0.01
D10K6S3T10I 1.38±0.04 3.11±0.10 5.16±0.04 9.33±0.18 14.56±0.10 0.06±0.01 0.09±0.01 0.14±0.01 0.24±0.02 0.37±0.01
D100K5S2T6I 5.86±0.26 12.34±0.11 18.8±0.21 32.88±0.27 49.24±0.29 0.05±0.01 0.07±0.01 0.09±0.00 0.13±0.01 0.20±0.02
D100K6S2T6I 8.44±0.55 17.48±0.26 27.33±0.74 49.48±0.90 74.89±0.56 0.06±0.01 0.07±0.02 0.10±0.01 0.15±0.01 0.21±0.01
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Fig. 2. Distribution of 10,000 sequential patterns according to frequency

TABLE V. STATISTICS OF BENCHMARK DATASETS

Dataset |S| |I| ‖S‖max ‖S‖mean P T
bms 59,601 497 267 2.5 1 1
sign 730 267 94 52.0 1 1

D10K5S2T6I 10,000 6 70 10.3 7 6
D10K6S3T10I 10,000 10 92 15.9 10 6
D100K5S2T6I 100,000 6 72 8.5 7 6
D100K6S2T6I 100,000 6 83 10.4 8 9

TABLE VI. AVERAGE NUMBER OF DRAWS PER SUBSEQUENCE

Dataset M=1 M=2 M=3 M=5 M=7

bms 1.0 1.0 1.0 1.0 1.0
sign 1.0 1.0 1.0 1.0 1.0

D10K5S2T6I 4.0 7.0 11.4 23.5 38.4
D10K6S3T10I 3.9 6.7 10.4 18.5 25.7
D100K5S2T6I 3.6 5.8 8.5 14.9 23.9
D100K6S2T6I 4.0 7.0 11.1 21.4 32.4

1) Pre-processing and sampling speed: Table IV indi-
cates the execution time of our method by distinguishing
the preprocessing time and the average number of draws of
a sequential pattern with M ∈ {1, 2, 3, 5, 7}. As expected,
the preprocessing time increases with the size of the dataset,
the maximum size P of position sets, the maximum size T
of an itemset in a sequence, and the maximum norm M of
drawn subsequences. However, even for D100K6S2T6I which
is large, the execution time of the preprocessing (which can be
prepared off-line) is quite reasonable. Regarding the sampling
phase, whatever the dataset and the maximum norm M , the
execution time is always under 1 millisecond. Despite an
average number of draws µ[m,M ](S) greater than 1 (and hence,
rejection), performances on synthetic datasets are good.

2) Impact of norm constraints: Figure 2 depicts the dis-
tribution of 10,000 sequential patterns sampled according to
frequency with a maximum norm constraint of 4, 7, and
without constraint for different datasets. In all cases, the
unconstrained method returns only very low frequent patterns
and in particular, with 1 as frequency on real-world datasets.
Conversely, the constrained sampling method returns sequen-
tial patterns with significantly higher frequency, which shows
the importance of introducing constraints on the norm to avoid
the problem of the long tail. More precisely, we can see that
the lower the value of the M constraint is, the more the
method allows to draw patterns with high frequency values. For
instance, for D100K6S2T6I, the mean frequency of sampled
patterns is equal to 3, 770 using M = 7, whereas it is equal to
19, 683 using M = 4. Note that for sign, the maximum norm
of 7 is not sufficient to return sampled patterns with frequency
greater than 1. A norm of at most 4 is necessary so that the
frequencies of the subsequences of the sample increase. In that
case, the mean frequency of sample patterns is equal to 8.65.

B. Accuracy of sampling-based classification

This section shows how sampled subsequences can be
used to build associative classifiers dedicated to sequences.
Our classification method, called CSSAMPLING+SVM, is a
standard two-step approach. In a first step, using a sample F =
{f1, . . . , fk} of k subsequences obtained using CSSAMPLING,
a labeled sequential dataset S is recoded into a numerical
dataset D. More precisely, for each sequence s ∈ S labeled by
a class c, D contains a tuple of k+ 1 values where t[j] = 1 if
fj v s (0 otherwise) for j ∈ [1..k], and t[k+ 1] = c. Then, in
a second step, using dataset D, we propose to use a SVM as
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Fig. 3. Comparison of accuracy results between CSSAMPLING with SVM and state-of-the-art sequence classification methods.

TABLE VII. STATISTICS OF BENCHMARK DATASETS

Dataset |S| |I| ‖S‖max ‖S‖mean |C|
aslbu 441 132 27 7.52 7
aslgt 3,493 87 88 22.83 40
auslan 200 12 24 10.00 10
blocks 210 8 12 6.75 8
context 240 48 123 45.20 5
pioneer 160 92 50 21.07 3
skater 530 41 120 25.06 6
speed 530 41 260 64.50 7

reuters 5,459 14,577 533 67.32 8
cade 15,000 100,197 15,318 112.70 12

classifier for predicting the class of new sequences. Note that
in our experiments, we use the SMO algorithm provided by
Weka 3.8 and its default options to build SVM classifiers.

In order to evaluate the efficiency of CSSAMPLING+SVM,
we use a set of real-world datasets [30]4 that have a wide va-
riety in the number of sequences, items, sequence lengths and
classes as well as application domains (see Table VII). For each
dataset, we calculate the accuracy of CSSAMPLING+SVM
with respect to varied sample sizes and norm constraints, by
performing a 10-fold cross-validation.

TABLE VIII. IMPACT OF THE NORM CONSTRAINT ON CLASSIFICATION

Dataset M=1 M=2 M=3 M=5 M=7 M=10 Best
aslbu 0.57 0.58 0.56 0.55 0.42 0.38 0.58
aslgt 0.73 0.75 0.75 0.72 0.59 0.43 0.75
auslan 0.24 0.24 0.34 0.32 0.32 0.32 0.34
blocks 0.86 1.00 0.99 0.99 0.99 0.99 1.00
context 0.94 0.96 0.97 0.97 0.96 0.95 0.97
pioneer 0.99 0.99 0.98 0.87 0.74 0.66 0.99
skater 0.84 0.90 0.92 0.92 0.88 0.73 0.92
speed 0.24 0.29 0.35 0.35 0.35 0.23 0.35
reuters 0.97 0.95 0.85 0.56 0.52 0.52 0.97
cade 0.46 0.33 0.25 0.22 0.22 0.21 0.46

Average 0.68 0.70 0.70 0.69 0.64 0.58 0.76

1) Importance of the norm constraint: As described in
previous sections, the norm constraint M is introduced to limit
the maximal length of sampled subsequences since too long
patterns have been proved less useful in pattern discovery.
Table VIII shows that the accuracy of CSSAMPLING+SVM
clearly depends on the norm constraint. While the total size of
sample is fixed (here, 10,000 patterns), the best classification
performance is generally obtained when the maximum norm

4The datasets reuters and cade are available at ana.cachopo.
org/datasets-for-single-label-text-categorization and
other ones, at www.mybytes.de/#data.

threshold is strictly larger than 1 (except for datasets reuters
and cade, as observed in [30]) and lower that 10. Given
a dataset, the optimal value of M (Best column in Table
VIII) can be easily identified using cross-validation (evaluating
the performance of CSSAMPLING+SVM for M ∈ [1..10]).
Finally, note that the performance of classifiers decreases with
M when M is greater that its optimal value, which shows
the importance to consider maximum norm thresholds to build
efficient classifiers. In particular, the performance of classifiers
that would be obtained without considering norm constraints
(i.e., M →∞) would therefore be very low.

2) Comparison with pattern-based sequence classifi-
cation methods: We finally compare the accuracy of
CSSAMPLING+SVM with the results of 7 state-of-the-art
sequence classification methods reported in [30] as baselines
with respect to the same datasets: MISERE, SQS, GOKRIMP,
CSPADE, SCII and DEFFED. Figure 3 shows that the best
accuracies obtained by CSSAMPLING+SVM (column Best of
Table VIII) are comparable, even better according to datasets,
to other pattern-based sequence classification methods reported
in [30]. Notice that the goal of this paper is not to propose a
new sequence classification method, we just want to illustrate
that subsequence sampling is useful in some applications.
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Fig. 4. Impact of the sample size on classification performance.

3) Impact of the sample size: Depending on applications,
in particular to classification tasks, the impact of sample size
shall not be ignored with our classification method. Obviously,
the accuracy of the classification increases with the sample
size because the sequences are more likely to be covered by
at least one subsequence. Figure 4 shows the classification



performance, considered as average accuracy values over all
datasets, obtained by different sample sizes with respect to
norm constraint values 1, 10 and Best mentioned in Table
VIII. It is easy to observe that the classification performance
increases while more sampled sequential patterns are involved
(which is useful for developing an anytime approach). Inter-
estingly, the accuracy increases very quickly with the sample
size. Thus a classifier built in a short response time considering
only 1,000 subsequences competes with methods of the state
of the art where all the pattern search space is explored.

VI. CONCLUSION

This paper proposes the first output space sampling method
for sequential patterns. It also allows to specify an interval
constraint on the norm of sequential patterns to better control
the returned patterns. We have demonstrated that our sampling
algorithm is exact and we have estimated its efficiency with
respect to the average number of rejections which increases
with the number of occurrences within a sequence. The ex-
perimental study shows that the approach is very efficient
on real-world datasets where the number of repetitions is
low. Moreover, the experiments show that the addition of
constraints on the norm avoids returning too many patterns too
rare and focuses the sampling on the patterns of the “head”
as desired. Finally, we illustrated how to build a classifier in a
very short response time by just drawing a sample containing
1,000 patterns. These models still have an accuracy comparable
to some methods achieving a complete enumeration of the
pattern search space.

We would like to extend our approach to other interesting-
ness measures and to any set system. First, the draw weight of
a sequence could be calculated for interestingness measures
u(s) × freq(s,S) (where the utility u depends only on the
sequence norm) because the utility can be integrated into the
subsequence counting formulas. Second, the uniform drawing
within complex structures made possible by a canonical form
(here the first occurrence) can be envisaged with other struc-
tured languages. As was the case with the itemsets, we think
that the results about associative classification are promising
for addressing other data mining tasks like detecting outliers
in sequential data [6] or for designing interactive systems
dedicated to sequential pattern discovery [3].
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