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Abstract

Mining frequent itemsets in large datasets has received much attention, in recent years,
relying on MapReduce programming models. Many famous FIM algorithms have been
parallelized in a MapReduce framework like Parallel Apriori, Parallel FP-Growth and
Dist-Eclat. However, most papers focus on work partitioning and/or load balancing but
they are not extensible because they require some memory assumptions. A challenge in
designing parallel FIM algorithms is thus finding ways to guarantee that data structures
used during mining always fit in the local memory of the processing nodes during all
computation steps.

In this paper, we propose MapFIM, a two-phase approach for frequent itemset min-
ing in very large datasets relying both on a MapReduce-based distributed Apriori method
and a local in-memory method. In our approach, MapReduce is first used to generate
local memory-fitted prefix-projected databases from the input dataset benefiting from the
Apriori principle. Then an optimized local in-memory mining process is launched to gen-
erate all frequent itemsets from each prefix-projected database. Performance evaluation
shows that MapFIM is more efficient and more extensible than existing MapReduce based
frequent itemset mining approaches.

Keywords: Frequent itemset mining, MapReduce programming model, Distributed
file systems, Hadoop framework.

1 Introduction

Frequent pattern mining [2] is an important field of Knowledge Discovery in Databases. This
task aims at extracting a set of events (called itemsets) that occur frequently within database
entries (called transactions). For more than 20 years, a large number of algorithms have been
proposed to mine frequent patterns as efficiently as possible |1]. In big data era, proposing
efficient algorithms that handle huge volumes of transactions remains an important challenge
due to the memory space required to mine all frequent patterns. To tackle this issue, several
proposals have been made to work in distributed environments where the major idea is to
distinguish two phases: a global one and a local one. A first global phase uses MapReduce
distributed techniques for mining the most frequent patterns whose calculation requires a large
part of the data that does not fit in memory. Then, a second local phase mines on a single
machine all the supersets of a pattern obtained at the previous phase. Indeed, these supersets
can be mined using only a part of the data that can fit in the memory of a single machine.
Intuitively the first phase guarantees the possibility of working on a large volume of data while
the second phase preserves a reasonable execution time. Unfortunately the current proposals
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Figure 1: Maximum length of frequent itemsets in dataset Webdocs

fail to be fully extensible, i.e. mining becomes intractable as soon as the number of transactions
is too large or the minimum frequency threshold is too low.

Indeed, a major difficulty consists in determining the balance between the global phase
and the local phase. If an approach relies too heavily on the local phase, it can only deal
with high minimum frequency thresholds where the amount of candidate patterns or the pro-
jected database fit in memory. For instance, Parallel FPF algorithm in [7] where the projected
databases are distributed cannot deal with low minimum thresholds when at least one projected
database does not fit in the memory of a machine. Conversely, if an approach relies too heavily
on the global phase, it will be very slow because the cost of communication is high. For in-
stance, Parallel Apriori [8] is quite slow for low thresholds because all patterns are extracted in
the global phase. In BigFIM [14], the user sets a minimum length & below which the itemsets
are mined globally while the larger itemsets are mined locally as they cover a smaller set of
transactions that can fit in memory. The problem is that this length is difficult to determine
for the user as it varies, depending on the dataset and on the available memory. To illustrate
this issue encountered with the threshold k, Figure [1| plots the maximum length of frequent
itemsets with the dataset Webdocs (see Section [5| for details) varying the minimum frequency
threshold. In [14], it is suggested to use a global phase with itemsets of size k = 3 and for larger
itemsets, it is assumed that the conditional databases will fit in the memory. However, from
Figure [} it is easy to see that 3 is not a sufficiently high threshold because there is at least
one itemset of size 4 that covers more than 40% of transactions. Moreover, it does not take
into account the fact that two patterns of the same size may have very different frequencies. In
this paper, we propose a fine-grained method depending on the frequency of each itemset for
determining whether it is possible to switch from the global phase to the local phase.
Contributions of the paper. We propose the algorithm MapFIM (Memory aware parallelized
Frequent Itemset Mining) which is, to the best of our knowledge, the first algorithm extensible
with respect to the number of transactions. The advantage of this extensibility is that it is
possible to process large volumes of data (although the addition of machines does not necessarily
improve run-time performance as it is the case with scalability). The key idea is to introduce a
maximum frequency threshold 8 above which frequency counting for an itemset is distributed
on several machines. We prove that there exists at least one setting of 3 for which the algorithm
is extensible under the conditions that the FIM algorithm used locally takes a memory space
bounded with respect to the size of a projected database and that the set of items holds in
memory. We show how to empirically determine this parameter in practice. Indeed, the higher
this threshold, the faster the mining (because more patterns are mined locally). Finally, an
experimental section illustrates the extensibility and the efficiency of MapFIM compared to the
state-of-the-art algorithms.

Section 2] formulates the problem of frequent itemset mining in an extensible way in order to



transaction items transaction items

t1 a tﬁ a, d
to a,b tr b, c
ts3 a,b,c tg c,d
ty a,b,c,d to c, e
t5 a,c th
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deal with huge volumes of transactions. Section [3|shows that existing proposals in literature are
not extensible. In Section [4] we present how our algorithm MapFIM works and in particular,
we detail the two phases (global and local ones) and the switch between the two. In Section
we empirically evaluate MapFIM against the state-of-the-art methods by comparing execution
times and memory consumption. Section [6] briefly concludes.

2 Problem Formulation

2.1 Frequent Itemset Mining problem

Let T = {i; < ia < ... < in} be a set of n ordered literals called items. An itemset (or a
pattern) is a subset of Z. The language of itemsets corresponds to 2Z. A transactional database
D = {t1,t2,...,ty} is a multi-set of itemsets of 2. Each itemset t;, usually called a transaction,
is a database entry. For instance, Table [T] gives a transactional database with 10 transactions
t; described by 6 items Z = {a,b,c,d, e, f}.

Pattern discovery takes advantage of interestingness measures to evaluate the relevancy of
an itemset. The frequency of an itemset X in the transactional database D is the number
of transactions covered by X [2]: freq(X,D) = [{te€D:X Ct}| (or freq(X) for sake of
brevity). Then, the support of X is its proportion of covered transactions in D: supp(X,D) =
freq(X,D)/|D|. An itemset is said to be frequent when its support exceeds a user-specified
minimum threshold a. Given a set of items Z, a transactional database D and a
minimum support threshold, frequent itemset mining (FIM) aims at enumerating
all frequent itemsets.

2.2 The MapReduce Programming Model

MapReduce is a simple yet powerful framework for implementing distributed applications with-
out having extensive prior knowledge of issues related to data redistribution, task allocation or
fault tolerance in large scale distributed systems.

Google’s MapReduce programming model presented in [6] is based on two functions: map
and reduce, that the programmer is supposed to provide to the framework. These two functions
should have the following signatures:

map: (k1,v1) — list(ka,v2),
reduce: (ka, list(ve)) — list(vs).

The map function has two input parameters, a key k; and an associated value vy, and
outputs a list of intermediate key/value pairs (k2,v2). This list is partitioned by the MapReduce
framework depending on the values of ko, with the constraint that all elements with the same
value of ks belong to the same group.



The reduce function has two parameters as inputs: an intermediate key ko and a list of
intermediate values list(ve) associated with ko. It applies the user defined merge logic on
list(v2) and outputs a list of values list(vs).

In this paper, we use an open source version of MapReduce, called Hadoop, developed by
The Apache Software Foundation. Hadoop framework includes a distributed file system called
HDFS! designed to store very large files with streaming data access patterns.

MapReduce excels in the treatment of data parallel applications, where computation can be
decomposed into many independent tasks, involving large input data. However MapReduce’s
performance may degrade in the case of dependent tasks or in the presence of skewed data due
to the fact that, in Map phase, all the emitted key-value pairs (kg,vs) corresponding to the
same key ko are sent to the same reducer. This may induce a load imbalance among processing
nodes and also can lead to task failures whenever the list of values corresponding to a specific
key ko cannot fit in processing nodes available memory [3,/4]. For scalability, MapReduce
algorithm’s design must avoid load imbalance among processing nodes while reducing disks I/0
and communication costs during all stages of MapReduce jobs computation.

2.3 The challenge of extensibility

Guaranteeing the correct execution of a method whatever the volume of input data is a classic
challenge in MapReduce framework through the notion of scalability. Scalability refers to the
capacity of a method to perform similarly even if there is a change in the order of magnitude of
the data volume, in particular by adding new machines (as mapper or reducer). We introduce
the notion of extensibility, which refers to the capacity of a method to deal with an increase in
the data volume but without performance guarantees.

More precisely, our goal is to efficiently process transaction databases whatever the number
of transactions when the set of items remains unchanged. This situation covers many practical
use cases. For instance, in a supermarket the set of products is relatively stable while new
transactions are added continuously. We then formalize the notion of extensibility with respect
to the number of transactions as follows:

Definition 1 (Transaction-extensible). Given a set of items I, a FIM method is said to be
transaction-extensible iff it manages to mine all frequent itemsets whatever the number of trans-
actions in D = {t1,...,tm} (wheret; CT) and the minimum support threshold «.

This definition is particularly interesting for a pattern discovery task. Indeed, the transaction-
extensible property guarantees that for a given set of items Z, the method will always be able
to mine all the frequent itemsets whatever the number of transactions in D and the minimum
frequent threshold a.

In the remainder of the paper, we aim at proposing the first transaction-extensible FIM
method. This goal is clearly a challenge because it is difficult to control the amount of memory
required for a frequent itemset mining. The following section reviews the shortcomings of the
various literature proposals.

3 Related Work

Due to the explosive growth of data, many parallel methods of frequent pattern mining (FPM)
algorithms have been proposed in the literature, mainly to extract frequent itemsets [7-9,[15(

LHDFS: Hadoop Distributed File System.



17,/20], but also to extract frequent sequences [5,|13]. In this section, we only consider related
work involving the parallelization of FPM algorithms on the MapReduce framework.

A first category of approaches includes works that are specific parallelizations of existing
FPM algorithms. For example, different adaptations of Apriori on MapReduce have been
proposed [8,|9]. These implementations of Apriori are not transaction-extensible since they
assume that at each level, the set of candidate itemsets can be stored in the main memory of
the worker nodes (mappers or reducers). In Section we show how this limitation can be
overcome using HDFS to store the set of candidates. Different implementations of FP-Growth
on MapReduce also exist [7,/20]. The main idea of these implementations is to distribute the
conditional databases of the frequent items to the mappers. However, these proposals do not
guarantee that the conditional databases can be stored in the worker nodes, and therefore, these
parallelizations of FP-Growth are also not transaction-extensible. More recently, Makanju et
al. [12] propose to use Parent-Child MapReduce (a new feature of IBM Platform Symphony)
to overcome the limitations of the previous implementations of FP-Growth. The authors show
that their method can provide significant speed-ups over Parallel FP-Growth [7]. However, their
method requires to predict the processing loads of a FP-Tree which is a particularly difficult
challenge.

A second category of approaches includes works that are independent of a specific FPM
algorithm, meaning that after a data preparation and partitioning phase, they can use any
existing FPM methods to locally extract patterns. In this category, we can distinguish two
sub-categories of approaches. At a high-level, the methods in the first sub-category carefully
partitions the original dataset in such a way that each partition can be mined independently
and in parallel [13,[15[16]. Once partitions have been constructed (in a first global phase), an
arbitrary FPM algorithm can be used to mine each partition (in this second local phase, the
partition are mined independently and in parallel). In order to maintain completeness, it is
important to note that some partitions built by these approaches can overlap and that some
interesting pattern can be generated several times. However, these approaches are more efficient
than SON Algorithm [17] because locally frequent itemsets are necessarily globally frequent.
Thus, compared to SON Algorithm, after the local phase, it is not necessary to compute the
supports of the locally frequent itemsets with respect to the whole dataset. Finally, because
these approaches cannot guarantee that all the partitions will fit in main memory (of the
mappers or reducers), it is important to note that they are not transaction-extensible.

The approaches in the second sub-category do not initially partition the dataset, but the
search space (the pattern language), thereby ensuring that each interesting pattern is only
generated once. We can consider that Parallel FP-Growth (PFP) [§] also belongs to this second
sub-category of methods. However, because PFP partitions the search space only considering
single frequent items, it is not efficient. In order to overcome this type of limitation, Moens et
al. [14] propose to use longer frequent itemsets as prefixes for partitioning the search space. In
a first and global phase, their algorithm (called BigF'IM) mines the frequent k-itemsets using
a MapReduce implementation of Apriori. Then, in a second phase, subset of prefixes of length
k are passed to worker nodes. These worker nodes use the conditional databases of prefixes to
mine interesting patterns that are more specific, assuming that the conditional databases can
fit in the main memory of the worker nodes. In practice, note that the choice of the parameter
k can be very difficult. Indeed, if the user chooses a value of k that is too low, then BigFIM
will not pass (because a conditional database will not fit in main memory). On the other hand,
if the user chooses a value of k that is too high, then the first global phase of BigFIM (which
computes the frequent k-itemsets) will be time consuming and not efficient. It explains why we
propose in this paper a new approach that do not require the involvement of the user to fix a



parameter such as k, and automatically detect when it is possible to switch from a global phase
to a local phase.

4 MapFIM: a MapReduce approach for frequent itemset
mining
4.1 Overview of the approach

The key idea of our proposal is to enumerate in a breadth-first search manner all itemsets
using distributed techniques (global mining phase) until one reaches a point of the search space
where all its supersets can be mined on a single machine (local mining phase). This point of
the search space is reached as soon as an itemset has a support sufficiently low to guarantee
that the projected database (plus the amount of memory required to enumerate the itemsets)
holds in memory. To do this, we introduce a maximum frequency threshold S to indicate when
it is possible to switch to the local mining phase. Given a transactional database D and a
maximum support threshold £, an itemset X is said to be overfrequent if its support exceeds
B: supp(X, D) > B. In the following, we denote:

L the set of frequent itemsets, e.g. set of itemsets X such that supp(X,D) > a.

e L5 the set of overfrequent itemsets, e.g. set of itemsets X such that supp(X,D) > f.

o L5 the set of frequent but not overfrequent itemsets, e.g. set of itemsets X such that
a < supp(X,D) < B. It is clear that £ = £\ £>F.

o Ly, £,§ﬂ , EEB are respectively the set of frequent, overfrequent, frequent but not overfre-
quent k-itemsets.

e C the set of candidates. Cj the set of candidate k-itemsets. Cj is generated by the join
L1 X Ly_4.

e D’ the compressed database from D, by removing infrequent items, e.g. items that are

not in L.

More precisely, given a set of items Z, a transactional database D, a minimum support
threshold o and a maximum support threshold 3, the algorithm MapFIM (for Memory aware
parallelized Frequent Itemset Mining) enumerates all frequent itemsets by using three phases:

1. Data preparation: This phase initializes the process by compressing the transactional
database based on frequent 1-itemsets. Let o = 20% and 8 = 50%. Considering the
example given by Table as only a, b, ¢ and d are frequent, the original dataset is
compressed as shown by Table Transactions are updated for removing non-frequent
items. Transactions ¢; and t19 are removed because they cannot contain an itemset of
size 2 (or greater). At the end of this phase, we have £7° = {a,c} and ngﬁ = {b,d}.

2. Global mining: This phase mines all potentially overfrequent itemsets using Apriori
algorithm. An itemset is potentially overfrequent whenever at least one direct subset
is overfrequent. For instance, four candidates of size 2 are generated from overfrequent
items in £1>ﬂ7 e.g. C2>B = {ab,ac,ad,cd} (these candidate 2-itemsets are potentially
overfrequent). The support of all candidates in C2> # are evaluated during this global
phase. But, as their support is greater than «, but below g, £2> P s empty. No more
candidates are generated and MapFIM moves to the next phase.
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Table 2: Compressed dataset Table 3: Conditional datasets

3. Local mining: This phase mines itemsets from non overfrequent itemsets. In our
running example, the prefix-based supersets generated from Lfﬁ = {b,d} and EQSB =
{ab, ac,ad, cd} will be evaluated during this phase. Each prefix is considered individually
by using a projected database as given in Table [3| Typically, abc will be generated from
the prefix ab.

Of course, the maximum support threshold 3 is a very crucial parameter for balancing the
mining process. Section 5.2 will show how to set 8 in practice. Note that varying this parameter
enables us to unify different state-of-the-art methods. By choosing f = a, MapFIM algorithm
is very similar to parallel Apriori [§] as the local mining phase is ignored. At the opposite,
with 8 = 100%, MapFIM is similar to parallel FP-Growth algorithm [7] which only relies on
a local mining phase after the data preparation. Interestingly, when the maximum support
threshold 3 is between o and 100%, MapFIM benefits from the same ideas as BigFIM with the
important difference that we are sure that all prefixes examined by the local mining phase are
not overfrequent. Consequently, we are sure that they can be locally processed in-memory.

Sections [1.2] [£.3] and [£.4] detail respectively the three main phases of MapFIM: data prepa-
ration, global mining and local mining. Finally, Section demonstrates its completeness and
its extensibility with respect to the number of transactions.

4.2 Data Preparation

In this phase, frequent items, e.g. items in £; are found. This can be achieved by adapting
the Word Count problem [6]. Each item is considered as a word and by using a MapReduce
phase for Word Counting problem, we get the support of every item. Then, by using « and
parameters, L’lgﬂ and Lfﬁ are constructed. Finally, the compressed data D’ is generated and
put in HDFS. This can be solved by a simple Map phase, where each mapper reads a block of
data and removes items which are not in £, then emits transactions with at least two frequent
items.

4.3 Global mining based on Apriori

This phase is similar to the parallel implementation of Apriori algorithm [8]. The key difference
is on the way candidates are generated. In Apriori algorithm, at each iteration, the set of
candidates Cj, is generated by the join L£y_1 X Li_1 2. From the definition of £/ and £>5,

2In our work, in order to generate each candidate once, we use a prefix-based join operation. More precisely,
given two set of k-itemsets Lp_1 and L} _,, the join of £p_; and L) _, is defined by: Li_1 X L] | =

{1, sik) | Gy sip,in—1) € Le—a A (1, ip—2,k) € L N1 < - <idp1 < i}



we have:

Cr=Lra XLy
= (L3P, M Ly 1) U(L75) ™ Ly )

We define C=” = £, M £,y and €77 = £7%, X £, and thus: ¢, =" U’

The idea developed in this paper is to use MapReduce framework to globally mine candidates
in Ck> o , and then locally mine Ckgﬁ in a local phase. Algorithm (I presents this algorithm.

At each iteration in Main() function, Ck> Bis computed by the join ,C;f 1 M L1 and sent to
all Mappers. The Map function counts the frequency of all the candidates belonging to Ck> % in
a parallel way. Let us precise that the counting of the frequency is performed at the end of each
Mapper, when the combine function summarizes the emission of 1 for each itemset. Then, the
Reduce function sums the frequency obtained by each mapper. If a candidate X is frequent,
it is put into E?ﬁ or E;ﬁ depending on whether it is overfrequent or not. In case C;B is too
large to be handled by Mappers, we partition this set into, for example, [ subsets and we run
| MapReduce phases instead of one. Finally, the global mining achieves a good load balance
because the compressed database D’ is distributed equally among mappers and all mappers
handle the same candidate set.

4.4 Local Mining of Frequent Itemsets

As described in the previous sections, the two-phase mining strategy guarantees the efficiency of
MapFIM. Indeed, once it is estimated, through the use of the parameter 3, that each projected-
database with respect to a prefix generated can always be handled by a single node in the cluster,
MapFIM switches to the local mining phase.

In the local mining phase, the frequent itemset enumeration is completed by using efficient
algorithms (for instance, Eclat or LCM) that fit the memory constraints required by single
nodes. This step is still MapReduce driven: local memory-fitted projected-databases are dis-
patched to each node (as Reducers) that allow to run any local FIM algorithm. The complete
local mining process is shown in Algorithm

In the Map phase, we consider frequent itemsets X € L7 as prefixes and construct their
projected databases. For each X € L£=F let i denote the last item in X. The projected-
database D’ is built by: (1) pruning every transaction ¢t € D’ that does not contain X (2)
pruning every item j < i since these items cannot expand X due to the prefix-based join. As
shown in Algorithm [2| each Mapper reads a block of data, then for each X € £=°, it emits
every transaction t that contains X after pruning unnecessary items.

In the Reduce phase, a local FIM algorithm is independently called to enumerate all the
frequent itemsets for each projected-database. More precisely, in the Reduce phase, each key is
a frequent itemset X € £5F and each list of values contains all transactions of the projected-
database of X. They are saved to a local file so that the local FIM algorithm can work on it. For
each itemset X’ being frequent in the projected-database, the itemset X" = X U X’ is frequent
in D. Notice that in the case L7 is too large to fit in memory of Mappers, we partition this
set, for example, into [ subsets and repeat the local mining in | MapReduce phases until every
itemset in £=7 is handled.

An algorithm adapted to the local mining phase must be able to enumerate all the itemsets
corresponding to a given prefix in a bounded memory space. Level-wise algorithms will therefore
not be adapted since it is difficult to limit themselves to a given prefix and the amount of memory
required is very variable. Similarly, approaches based on FP-trees do not guarantee a bounded
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Algorithm 1: Global Mining

1 Function Main():

2 k=2

3 | while |£7”]|>0do

4 crl =70 W Ly

5 Send C,?B to all Mappers;

6 Map phase;

7 Reduce phase;

8 k=k+1;

9 | return;

10 Function Map (String key, String value):
11 // key: input name, value: input contents;
12 foreach transaction t € value do

13 foreach itemset X € C;B do

14 if X Ct then

15 L Emit(X, 1);

16 return;

17 Function Reduce (String key, Iterator values):

18 // key: a candidate X, values: a list of counts;
19 frequency = 0;
20 foreach v € values do

21 L frequency = frequency + v;
22 if a*|D| < frequency then

23 L =L, U {XV}7

24 if frequency < 8+ |D| then
25 L ,C,%ﬁ = E%B U{X}

26 else

27 L L;ﬁ = E,?ﬁ U{X};

28 return;

amount of memory for tree storage. However vertical database layout based approaches such
as Eclat or LCM fit well the requirement of bounded memory usage.

Due to the difference in size among projected databases, the local mining can lead to a
load imbalance among reducers. In [14], the authors of BigFIM algorithm have experimented
different strategies to assign the prefixes and it is shown that a random method can achieve
a good workload balancing. Following this way, we decide in our implementation to assign
randomly projected databases to reducers.

4.5 Completeness and Extensibility

Thanks to the complementarity of global and local mining phases, this section demonstrates
that MapFIM is correct and complete, but also is transaction-extensible:



Algorithm 2: Local Mining

1 Function Map (String key, String value):
// key: input name, value: input contents;
foreach itemset X € L=# do
Let 4 = the last item in X;
foreach transaction t € value that contains X do
Create t' = t;
Remove every item j in ¢’ such that j < i;
Emit(X,t)

o N o ok WoN

9 return;

10 Function Reduce (String key, Iterator values):

11 // key: an itemset X, values: a list of transactions;

12 Create an empty file f;, in local disk;

13 Save values to fin;

14 Run a local FIM program with input=f;,, output=f,.:, support=c * |m|gfsl :
15 foreach frequent itemset X' € fy; do

16 X"=XUX

17 L=LU{X"};

18 return;

Proposition 1. MapFIM is correct, i.e., all itemsets returned by the algorithm are frequent
and complete, i.c., all frequent itemsets are returned by the algorithm.

Idea of the proof: The algorithm counts the support of each itemset and returns only frequent

itemsets, therefore it is correct. We give here an idea of the proof of the completeness. Let I

be a k-frequent itemset, Z = (i1, ..., %), with i1 <ig... <ig. Let I; denote I = (i1,...,%;).
If K =1, then [ is computed during data preparation. If k£ > 1, then we have two cases:

o supp(Iy_1,D) > B, I 1 € Eifl. Then, since i > ix_1, I is generated and evaluated
during the global mining phase.

o supp(Ily—1,D) < B. Let j be the smallest index such that supp(I;,D) < B, i.e., I; € /.ngﬁ.
Then frequent itemsets starting by I; will be mined in the local mining step, from the
conditional database with respect to I;. It is built by considering all transactions in D
containing I; and removing from these transactions all items ¢ with ¢ < ¢;. Since I is
ordered, if I is frequent in D then {ij41,...,4;} is frequent in the conditional database
w.r.t I; and will be found during the local mining phase.

The main challenge faced by MapFIM is to deal with a very large number of transactions.
This is possible because the preparation and the scanning of this transactional database is
distributed on several mappers and the set of generated candidates that is potentially huge is
stored on the distributed file system. Therefore, in addition to being complete, MapFIM is
transaction-extensible as introduced by Definition
Proposition 2 (Transaction-extensible). Assuming the distributed file system has an infi-
nite storage capacity, the algorithm MapFIM is transaction-extensible when the set of items I
holds in memory and the local frequent itemset mining method takes space O(I x B) where 1 is
the length of the longest transaction.
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Dataset ~ # Transactions  # Items Avg length  FileSize

Webdocs 1,692,082 5,267,656 177 1.48 GB
Synthetic 10,000,000 10,000 50 2.47 GB

Table 4: Characteristic of the two used datasets

Idea of the proof: The first step of data preparation is not a problem as it is similar to a
word counting. The second step is also transaction-extensible because the set of frequent items
holds in memory as we make the assumption that the set of all items holds in memory. Global
mining phase does not raise any problem because all candidates are stored on the distributed
file system (which has an infinite storage capacity) and can be partitioned into independent
subsets of candidates. For local mining phase, the mining algorithm for a prefix takes a memory
space proportional to the size of its projected database so there is at least one § such that each
projected database holds in memory.

5 Experiments

We have chosen the dataset Webdocs [10], one of the largest commonly used datasets in Frequent
Itemset Mining. It is derived from real-world data and has a size of 1.48 GB. It was obtained
from the Frequent Itemset Mining Implementations Repository at http://fimi.ua.ac.be/
data/. We have also generated a synthetic dataset by using the generator from the IBM
Almaden Quest research group. Their program can no longer be downloaded and we have used
another implementation at https://github. com/zakimjz/IBMGenerator. The command used
to generate our dataset is: ./gen 1lit -ntrans 10000 -tlen 50 -nitems 10 -npats 1000
-patlen 4 -fname Synthetic -ascii
The characteristics of the two datasets are given in Table [4]

5.1 Performance Results

To evaluate the performance of MapFIM presented in this paper, we compared it to Parallel
FP-Growth (PFP) (7] and BigFIM algorithms [14]. We believe that PFP and BigFIM are
the best approaches for itemset mining in Hadoop MapReduce framework. We implemented
MapFIM in Hadoop 2 and for the local mining step, we use a local program based on Eclat/LCM
algorithm |18]/19]. The program is implemented in C++ by Borgelt at http://www.borgelt.
net/eclat.html. PFP implementation is present in the library Apache Mahout 0.8 [11] and
BigFIM implementation based on Hadoop 1 is provided by the authors at https://gitlab.
com/adrem/BigFIM-sa.

All the experiments were performed on a cluster of 3 machines. Each machine has 2 Xeon
Cpu E5-2650 @ 2.60 GHz with 32 cores and 64 GB of memory. MapFIM and PFP were tested
in Hadoop 2.7.3 while BigFIM was experimented in Hadoop 1.2.1. We configured Hadoop envi-
ronment to use up to 30 cores and 60 GB of memory for each machine 2. We have experimented
the three approaches with different values of the minimum support threshold «.

In all the experiments, the time was limited to 72 hours and we report the total execution
time in seconds. PFP program was tested with its default parameter and BigFIM program
was configured with parameter kK = 3 as suggested by the authors. With this configuration,

3In our configuration, there is no real difference of performance between Hadoop 1.2.1 and Hadoop 2.7.3
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Figure 2: Performance with the Synthetic dataset
! MapFIM BigFIM PFP
B=100% | B=50% | B=30% | B=a

20% 162 360 641 280 421 1278
15% 211 684 1960 466 3370 3882
10% 454 1357 5183 2349 26258 | Out of Memory
9% 477 1691 7109 4869 45665 | Out of Memory
8% 581 2117 10558 12975 80858 | Out of Memory
% 674 2760 15249 44075 | Out of Time | Out of Memory
6% 967 4107 23807 215402 | Out of Time | Out of Memory
5% 1804 6705 40832 | Out of Time | Out of Time | Out of Memory

Table 5: Performance with the Webdocs dataset

BigFIM uses a parallel Apriori approach to mine all 3-frequent itemsets before switching to
global mining. It is shown in |14] that with k = 3, BigFIM achieves good performance.

For the dataset Synthetic The value of the minimum support threshold a varies from 1%
to 2%. In this dataset, there is no itemset whose support is greater than 30% and for that
reason, MapFIM with 8 = 30% or 8 = 50% or 3 = 100% takes the same amount of execution
time. All three approaches can enumerate all the frequent itemsets without running out of
memory and the results of MapFIM (with 8 = 30%), BigFIM and PFP are shown in Figure
It is clear that PFP is the slowest while MapFIM and BigFIM are comparable. This dataset
is generated randomly and there is no long frequent itemsets. Indeed, most of the frequent
3-itemset appears in only 9% of transactions. As a consequence, both BigFIM and MapFIM
can achieve a good workload balancing and a good performance.

For the dataset Webdocs The three programs were tested with various values of the min-
imum support threshold c. In MapFIM, we set the value of 8 to 100%, 50%, 30% and 8 = a.
As shown in Figure [I} this dataset is expected to be hard to mine as it has long frequent
itemsets as well as itemsets that are very frequent. For example, in this dataset, there exists a
frequent 7-itemset that occurs in 20% of the transactions and at least one frequent 3-itemset
that appears in more than 60% of transactions.

The results with the dataset Webdocs are shown in Table[5] It is surprising that PFP cannot
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solve the dataset Webdocs with a support below to 15%, but it requires a huge memory for the
Reduce phase: with o = 15%, each reducer in PFP can take as much as 60 GB of memory. On
the contrary, both MapFIM and BigFIM are effective in memory and never run out of memory
in our setup. The results show that MapFIM outperforms both BigFIM and PFP, especially
for low values of support. As expected, our algorithm works better with higher value of f.
However, in case when the support « is equal or higher than 9%, MapFIM with 8 = 30% has
a worse performance than with 8 = « . Indeed, MapFIM with 8 = « ignores completely the
Local Mining step and it is similar to parallel Apriori algorithm. With a high value of support,
the Apriori approach is still effective because the number of candidates is not huge. However,
when « is lower, applying the Local Mining step is efficient, as shown in our experiment.

5.2 Estimating § Parameter

In our algorithm, a good value of 8 is important for getting high performance. The higher the
value of (8 is, the better performance we get in general but more memory is required. In this
subsection, we present a method for estimating a good value of 3.

It is proven in [18] that LCM algorithm requires an amount of memory linear to the input
size. As we use a local program based on Eclat/LCM algorithm [18//19], we expect that the
program requires a maximum of f(input_size) of memory, where f() is a linear function. To
simplify the estimation, we suppose that the maximum memory needed by the program is
v X input_size, where input_size is measured as the total length of all transactions in the
dataset. We try to figure out the value of v by experiments with various datasets. With
each dataset, we run the program with support = 0% to report the maximum memory used
during one hour by the program. Then we compute v = % and report the result in
Table[6] In these experiments, we use datasets from Frequent Itemset Mining Implementations

Repository at http://fimi.ua.ac.be/data/.

From experiments, the value of v varies from 0.017 to 0.043, with an average value of 0.023
and a standard deviation of 0.00785. For instance, the value of « for dataset Webdocs is 0.018.
Next, we test if v = 0.018 is a good value to estimate 8 with dataset Webdocs. We run MapFIM
with different values of 8 from 100% to 20% and the minimum support threshold o = 10%.
The approximate memory required is computed by: v x 8 X input_size, where input_size is the
total length of the transactions in the compressed data D’. We report the approximate memory
required w.r.t v = 0.018 and the real value of maximum memory used by the local program
during the mining.

The result is expressed in Figure [3|and as expected, the real value of max memory is always
lower but not much lower than the approximate memory calculated.

From those observations, we propose to set the value of 5 in MapFIM by:

ﬂ _ MReduce _ Mred?ce,task (1)
v X input_size

where Mpeguce is the limit of memory of a Reducer, M cquce_task is the memory required for
a reduce task without running the local mining program* and input_size is the total length of
transactions in the compressed dataset D’.

4In our implementation, M, cqyce_task is around 300 MB
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Dataset input_size  max_memory (in Kilobyte) ~
accidents 11500870 228400 0.020
connect 2904951 58160 0.020
kosarak 8019015 193644 0.024
pumsb 3629404 63332 0.017
retail 908576 25588  0.028
T40I110D100K 3960507 71988 0.018
T1014D100K 1010228 25916 0.026
chess 118252 5100 0.043
pumsb_star 2475947 47424  0.019
webdocs 299887139 5422024 0.018

Table 6: the v value with Borgelt’s implementation of Eclat/LCM
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Memory (in GB)

Figure 3: Memory on the Webdocs dataset

6 Conclusion and future work

In this paper, we present MapFIM, a MapReduce based two-phase approach to efficiently mine
frequent itemsets in very large datasets. In the first global mining phase, MapReduce is used
to generate local memory-fitted prefix-projected databases from the input dataset benefiting
from the Apriori principle. Then, in a local mining phase, an optimized in-memory mining
process is launched to enumerate in parallel all frequent itemsets from each prefix-projected
database. Compared to other existing approaches, our algorithm implements a fine-grained
method to switch from global phase to the local phase. Moreover, we show that our method
is transaction-extensible, meaning that given a fixed set of of items, it can mine all frequent
itemsets whatever the number of transactions and the minimum support threshold. To the best
of our knowledge, our algorithm is the first to guarantee this property.

Our experimental evaluations show that MapFIM outperforms the best existing MapReduce
based frequent itemset mining approaches. Moreover, we show how to calibrate and set the
unique parameter 5 of our algorithm. This point is particularly important, since an optimal
value of parameter § guarantees a high performance level.

Future work will be devoted to make MapFIM scalable. This can be achieved by using similar
approaches, based on randomized key redistributions introduced in [3}/4] for join processing,
allowing to avoid the effects of data skew while guaranteeing perfect balancing properties during
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all the stages of join computation in large scale systems even for a highly skewed data.
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