
Anytime Algorithm for Frequent
Pattern Outlier Detection

Arnaud Giacometti, Arnaud Soulet

Abstract Outlier detection consists in detecting anomalous observations
from data. During the past decade, pattern-based outlier detection meth-
ods have proposed to mine all frequent patterns in order to compute the
outlier factor of each transaction. This approach remains too expensive de-
spite recent progress in pattern mining �eld. In this paper, we provide exact
and approximate methods for calculating the frequent pattern outlier factor
(FPOF) without extracting any pattern or by extracting a small sample. We
propose an algorithm that returns the exact FPOF without mining any pat-
tern. Surprisingly, it works in polynomial time on the size of the dataset. We
also present an approximate method where the end-user controls the maxi-
mum error on the estimated FPOF. Experiments show the interest of both
methods for very large datasets where exhaustive mining fails to provide the
exact solution. The accuracy of our approximate method outperforms the
baseline approach for a same budget in time or number of patterns.

1 Introduction

Outlier detection consists in detecting anomalous observations from data [Hawkins, 1980].
The outlier detection problem has important applications, such as detection
of credit card fraud or network intrusions. Recently, outlier detection meth-
ods were proposed for categorical data using the concept of frequent pat-
terns [He et al., 2005, Otey et al., 2006, Koufakou et al., 2011]. The key idea
of such approaches is to consider the number of frequent patterns supported
by each data observation. A data observation is unlikely to be an outlier if

Université François Rabelais Tours, LI EA 6300
3 place Jean Jaurès, F-41029 Blois, France
firstname.lastname@univ-tours.fr

1

2 Arnaud Giacometti, Arnaud Soulet

it supports many frequent patterns since frequent patterns correspond to the
�common features� of the dataset. Frequent pattern outlier detection methods
�rst extract all frequent itemsets from the data and then assign an outlier
score to each data observation based on the frequent itemsets it contains.
These outlier detection methods follow the schema of pattern-based two-step
methods.

Pattern-based two-step methods [Knobbe et al., 2008] aim at exhaustively
mine all patterns (�rst step) in order to build models (second step) like pat-
tern sets (e.g., classi�er [Liu et al., 1998]) or pattern-based measures (e.g.,
FPOF [He et al., 2005] or CPCQ index [Liu and Dong, 2012]). The complete-
ness of pattern mining is often considered as a crucial advantage for construct-
ing accurate models or measures. However, it also leads to three important
issues that hinders the user interaction with the system:

1. Threshold issue: The completeness of the �rst step requires to adjust
thresholds which is recognized as being very di�cult. Typically, if the
minimal support threshold is too low, the extraction becomes unfeasible.
If it is too high, some essential patterns are missed.

2. Accuracy issue: Completeness leads to huge pattern volumes without
guaranteeing not missing important patterns. For a smaller budget (in
time or number of patterns), we claim that non-exhaustive methods can
produce collections of patterns better adapted to the task of the second
step. Interestingly, a non-exhaustive method can even guarantee a certain
quality on the second step.

3. Anytime issue: The exhaustive mining of all patterns requires to explore
the search space in a certain fashion that extracts either very general pat-
terns �rst (breadth-�rst search) or very similar patterns to each other
(depth-�rst search). For having patterns regularly covering the search
space, it is necessary to wait for �nishing the extraction step before start-
ing the model construction. As this �rst step is very time consuming, it
prevents the user to have an immediate answer.

In order to develop an e�ective and anytime approach for pattern-based out-
lier detection, we propose not to have an exhaustive mining.
[modi�er les contributions]

This paper revisits the calculation of the Frequent Pattern Outlier Fac-
tor (FPOF) by bene�ting from recent pattern sampling techniques. We �rst
propose a method for calculating the exact FPOF of each transaction. Sur-
prisingly, our method is non-enumerative in the sense that no pattern is
generated (a fortiori, this is also a non-exhaustive method). For this, we re-
formulate the FPOF by operating directly on transaction pairs. This method
calculates the FPOF in polynomial time on the number of transactions and
items of the dataset. Experiments show that this method manages to cal-
culate the exact FPOF where the usual approach fails. We also propose a
non-exhaustive approximate method that exploits a pattern sample instead

Anytime Algorithm for Frequent Pattern Outlier Detection 3

of the complete collection of frequent patterns. Using Bennett's inequality,
this method selects the sample size so as to guarantee a maximum error for
a given con�dence. Experiments show its e�ciency with reasonable error.

The outline of this paper is as follows. Section 2 reviews some related work
about outlier detection, pattern sampling and anytime algorithms. Section 3
introduces the basic de�nitions about the FPOF and states the problem of
its exact and anytime approximate calculation. In Section ??, we propose
our exact non-enumerative method for calculating FPOF. We introduce our
approximate method based on sampling in Section 5. Section 6 provides ex-
perimental results. We conclude in Section 7.

2 Related Work

2.1 Pattern-based outlier detection

In this paper, we focus on the outlier detection methods based on frequent
patterns [He et al., 2005, Otey et al., 2006, Koufakou et al., 2011]. A broader
view of outlier detection is provided by surveys including [Hawkins, 1980].
Pattern-based methods bene�t from the progress of pattern mining made
over the past two decades. Such methods have a double interest. On the
one hand, they are well suited to handle categorical data unlike most other
methods dedicated to numerical data. In addition, they also remain e�cient
for high-dimensional spaces. The �rst approach [He et al., 2005] introduced
the frequent pattern outlier factor that exploits the complete collection of fre-
quent itemsets (while [Otey et al., 2006] uses an opposite approach by consid-
ering non-frequent itemsets). More recently, [Koufakou et al., 2011] replaces
the collection of frequent itemsets by the condensed representation of Non-
Derivable Itemsets (NDI) which is more compact and less expensive to mine.
We would go further by showing that the frequent pattern outlier factor pro-
posed in [He et al., 2005] can be calculated without extracting any pattern
or by extracting a small sample.
[mettre ici un tableau avec la plupart des complexitÃ c©s des autres
approches pour montrer que celle-ci n'est pas moins e�cace que les
autres]

2.2 Pattern sampling

Recently, there has been a resurgence in pattern mining for non-exhaustive
methods through pattern sampling [Chaoji et al., 2008, Boley et al., 2011].

4 Arnaud Giacometti, Arnaud Soulet

Pattern sampling aims at accessing the pattern space L by an e�cient sam-
pling procedure simulating a distribution π : L → [0, 1] that is de�ned
with respect to some interestingness measure m: π(.) = m(.)/Z where Z
is a normalizing constant (formal framework and algorithms are detailed in
[Boley et al., 2011]). In this way, the user has a fast and direct access to the
entire pattern language and with no parameter (except possibly the sam-
ple size). Pattern sampling has been introduced to facilitate interactive data
exploration [van Leeuwen, 2014]. In this paper, we investigate the use of pat-
tern sampling for assigning an outlier score to each transaction. With a lower
(pattern or time) budget than that of an exhaustive method, we obtain a
higher quality with a bounded error.
[ajouter ici les mÃ c©thodes utilisant le sampling pour construire
des modÃ�les (tiling)]

2.3 Anytime algorithm for pattern mining

3 Frequent Pattern Based Outlier Detection

3.1 Basic de�nitions

Let I be a set of distinct literals called items, an itemset (or a pattern) is a
subset of I. The language of itemsets corresponds to L = 2I . A transactional
dataset is a multi-set of itemsets of L. Each itemset, usually called transac-
tion, is a data observation. For instance, Table 1 gives three transactional
datasets with 4 or 5 transactions ti described by until 4 items A, B, C and
D.

D
Trans. Items

t1 A B
t2 A B
t3 A B
t4 C

D′

Trans. Items

t1 A B
t2 A B
t3 A B
t4 C

t5 A B

D′′

Trans. Items

t1 A B D
t2 A B D
t3 A B D
t4 C

Table 1 Three toy datasets with slight variations

Pattern discovery takes advantage of interestingness measures to evalu-
ate the relevancy of a pattern. The support of a pattern X in the dataset
D is the proportion of transactions covered by X [Agrawal et al., 1994]:
supp(X,D) = |{t ∈ D : X ⊆ t}|/|D|. A pattern is said to be frequent when

Anytime Algorithm for Frequent Pattern Outlier Detection 5

its support exceeds a user-speci�ed minimal threshold. The set of all fre-
quent patterns for σ as minimal threshold in D is denoted by Fσ(D):
Fσ(D) = {X ∈ L : supp(X,D) ≥ σ}.

In the following, we manipulate pattern multisets which are collections of
patterns admitting several occurrences of the same pattern. The representa-
tiveness of a pattern multiset P, denoted by Supp(P,D), is the sum of the
support of each pattern in P: Supp(P,D) =

∑
X∈P supp(X,D). The range of

Supp(P,D) is [0, |P|]. Given a cardinality, high representativeness means the
multiset contains very common patterns of the dataset. For comparing the
content of two pattern multisets, we use the semi-join, denoted by P2.P1, that
returns all the patterns of P2 occurring in P1: P2.P1 = {X ∈ P2 : X ∈ P1}.
For instance, {A,AB,A,D}.{C,A,B} = {A,A}.

3.2 Frequent Pattern Outlier Factor

Intuitively, a transaction is more representative when it contains many pat-
terns which are very frequent within the dataset. In contrast, an outlier con-
tains only few patterns and these patterns are not very frequent. The frequent
pattern outlier factor [He et al., 2005] formalizes this intuition:

De�nition 1 (FPOF). The frequent pattern outlier factor of a transaction
t in D is de�ned as follows:

fpof(t,D) = Supp(2t,D)
maxu∈D Supp(2u,D)

The range of fpof is [0, 1] where 1 means that the transaction is the most
representative transaction of the dataset while a value near 0 means that the
transaction is an outlier. Other normalizations (denominator) are possible
like Supp(L,D) or

∑
t∈D Supp(2

t,D). Whatever the normalization method,
two transactions remain ordered in the same way (so it does not a�ect the
Kendall's tau that we use to evaluate our method). Under a certain Markov
model, the score fpof(t,D) is also the proportion of time that an analyst
would dedicate to study the transaction t considering the collection of fre-
quent itemsets [Giacometti et al., 2014].

In the �rst dataset provided by Table 1, t1 is covered by ∅ (supp(∅,D) = 1)
and, A, B and AB whose support equals to 0.75 (Supp({∅, A,B,AB},D) =
3.25) while t4 is only covered by ∅ and C (Supp({∅, C},D) = 1.25). Conse-
quently, fpof(t1,D1) = 3.25/3.25 and fpof(t4,D1) = 1.25/3.25. In this exam-
ple, t4 appears to be an outlier. It is easy to see that increasing the frequency
of the patterns covering the �rst transactions (e.g., dataset D′) decreases the
FPOF of t4. Similarly, increasing the number of patterns covering the �rst
transactions also decreases the FPOF factor of t4 (e.g., dataset D′′).

6 Arnaud Giacometti, Arnaud Soulet

4 Problem Formulation

4.1 Exact FPOF computation

Given a dataset D, the outlier detection problem consists in computing the
FPOF for each transaction t ∈ D. In practice, this exact calculation of fre-
quent pattern outlier factor was performed by mining all patterns appearing
at least once in the dataset (i.e., with σ = 1/|D|). Of course, this expensive
task is not possible for very large datasets. Recently, it has been demonstrated
that the FPOF can be reformulated in order to calculate the exact FPOF in
polynomial time.

To calculate the FPOF of a transaction t, De�nition 1 formulates the prob-
lem in terms of frequent patterns appearing in t. The idea is to reformulate
this factor by considering what each transaction u brings to the transac-
tion t. For instance, in dataset D, the FPOF of the �rst transaction relies on
Supp({∅, A,B,AB},D) which is equal to |{∅, A,B,AB, ∅, A,B,AB, ∅, A,B,AB, ∅}|/4.
Each subset {∅, A,B,AB} or {∅} results from the intersection of pat-
terns covering t1 with those covering another transaction u ∈ D. Thereby,
Supp({∅, A,B,AB},D) = |{

⋃
u∈D 2t1 ∩ 2u}|/|D| = |{

⋃
u∈D 2t1∩u}|/|D|. Given

a dataset D, this observation leads to reformulate the frequent pattern outlier
factor as follows for all transaction t ∈ D:

fpof(t,D) =
∑
u∈D 2|t∩u|

maxv∈D
∑
u∈D 2|v∩u|

From a conceptual point of view, it is interesting to note that ultimately,
the FPOF of a transaction is just the sum of its similarity with each of trans-
actions (where similarity between t and u is 2|t∩u|). This measure is therefore
very close to traditional methods relying on pair-wise distance among data
observations.

D |D| |I| Exh. Time (s) Non-enum. Time (s)

chess 3,196 75 439.5 1.1

connect 67,557 129 748.5 577.7

mushroom 8,124 119 0.4 5.9
pumsb 49,096 7,117 time out 1,970.5

retail 88,162 16,470 8.7 5,969.9
sick 2,800 58 0.8 0.5

Table 2 Time comparison of the di�erent methods

Table 2 reports the running time required for calculating the exact FPOF
using the exhaustive and the non-enumerative methods (respectively the 4th
and the 5th column). Note that the exact exhaustive method (as baseline)
bene�ts from lcm which is one of the most recognized frequent itemset mining

Anytime Algorithm for Frequent Pattern Outlier Detection 7

algorithm. The non-enumerative method is e�ective and rivals the exact ex-
haustive one. Its main advantage is to calculate the exact FPOF with datasets
where the exact exhaustive method fails (e.g., pumsb where the execution was
aborted after 5h).

However, even with a polynomial method, the exact calculation remains
time-consuming. It is clear that the exact FPOF calculation cannot be guar-
anteed in a short time response. Then, it makes sense to approximate the
FPOF.

4.2 Anytime approximate FPOF computation

Instead of using the complete collection of patterns, FPOF is usually ap-
proximated with a collection of frequent patterns i.e., with a higher minimal
support threshold:

De�nition 2 (σ-Exhaustive FPOF). Given a minimal support threshold
σ, the σ-exhaustive FPOF of a transaction t in D is de�ned as follows:

fpofσ(t,D) =
Supp(Fσ(D).2t,D)

maxu∈D Supp(Fσ(D).2u,D)

[Variante: prendre les k motifs les plus frÃ c©quents pour calculer
l'approximation]

The approximation becomes accurate with very low minimal support
thresholds. Figure 1 plots on the left-hand side, the Kendall's tau of fpofσ in
comparison with fpof for some benchmarks1. Unfortunately, when the min-
imal support threshold becomes very low, the number of patterns (see the
right plot of Figure 1) and the extraction time explode. Furthermore, the
approximation error is not estimated. With a smaller (time or pattern) bud-
get, we claim that it is possible to approximate more precisely FPOF while
having a bound on the error.

The Kendall's tau varies signi�cantly depending on the dataset for a same
minimal support threshold. This threshold is not easy to �x for obtaining a
good compromise between e�ciency and quality. Therefore, it seems interest-
ing that the user sets the maximum error that he/she tolerates on the result
rather than a threshold related to the method:

Problem 1 (Approximate Problem). Given a dataset D, two reals δ and
ε, �nd a function approximating the frequent pattern outlier factor such that

for each transaction t ∈ D |fpof(t,D)− f̃pof(t,D)| ≤ ε with con�dence 1− δ.

1 It is the proportion of pairs of transactions which would be ranked similarly with the
approximate FPOF and with the true FPOF (see Section 6 for a formal de�nition).

8 Arnaud Giacometti, Arnaud Soulet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K
en

da
ll’

s
ta

u

Minimal support threshold

chess
connect

mushroom
pumsb

sick
 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 p

at
te

rn
s

Minimal support threshold

chess
connect

mushroom
pumsb

sick

Fig. 1 Kendall's tau and number of patterns with minimal support threshold

Algorithm 1 Support-based Sampling [Boley et al., 2011]
Input: A dataset D
Output: A random itemset X ∼ supp(L,D)
1: Let weights w be de�ned by w(t) = 2|t| for all t ∈ D
2: Draw a transaction t ∼ w(D)
3: return an itemset X ∼ u(2t)

This problem aims at assigning an approximate FPOF to each transaction
with the probability 1 − δ that the error is less than ε. Problem ?? is a
particular case of Problem 1 by �xing ε = 0 and δ = 0.

5 Anytime Sampling Method

This section addresses Problem 1 by using pattern sampling. First, we propose
a method for approximating FPOF from a pattern sample drawn according
to frequency. Then we show how to choose the sample size to control the
error.

5.1 Pattern Sampling for FPOF

In Section 4, we showed that the use of the most frequent patterns is
insu�cient to approximate accurately FPOF. The most frequent patterns
do not measure the singularity of each transaction that also relies on more
speci�c patterns (whose frequency varies from small to average). Conversely
do not considering frequent patterns would also be a mistake because they
contribute signi�cantly to FPOF. A reasonable approach is to select patterns
randomly with a probability proportional to their weight in the calculation of

Anytime Algorithm for Frequent Pattern Outlier Detection 9

FPOF. Typically, in the dataset D of Table 1, the itemset AB is 3 times more
important than itemset C in the calculation of FPOF due to their frequency.

In recent years pattern sampling techniques have been proposed to ran-
domly draw patterns in proportion to their frequency [Boley et al., 2011] (see
Algorithm 1). Such approaches are ideal to bring us a well-adapted collection
of patterns. Of course, it remains the non-trivial task of approximating FPOF
starting from this collection. This is what provides the following de�nition:

De�nition 3 (k-Sampling FPOF). Given an integer k > 0, a k-sampling
frequent pattern outlier factor of a transaction t in D is de�ned as follows:

fpofk(t,D) =
|Sk(D).2t|

maxu∈D |Sk(D).2u|

where Sk(D) is a sample of k patterns drawn from D according to support:
Sk(D) ∼ supp(L,D).

It is important to note that |�| is used here instead of Supp(�,D) as in
De�nition 1. As the sampling technique already takes into account the fre-
quency when it draws patterns, it is not necessary to involve the support
here. Indeed, the draw is with replacement for the correct approximation of
FPOF (without this replacement the most frequent patterns would be dis-
advantaged). It induces that the same pattern can have multiple occurrences
within the sample Sk(D).

For the same sample size k and for the same transaction t, it is possible
to calculate di�erent values of a k-sampling FPOF due to Sk(D). But, the
higher the threshold k, the less the di�erence between values stemming from
two samples is high. Furthermore, the greater the sample size k, the better
the approximation:

Property 1 (Convergence). Given a dataset D, a k-sampling FPOF converges
to the FPOF for all transaction t ∈ D.

Proof. Sk(D) ∼ supp(L,D) means that there exists a constant α > 0
such that ∀X ∈ L, limk→∞ |Sk(D).{X}| = αsupp(X,D). Then, for each
transaction t, we obtain that: limk→∞ |Sk(D).2t| = α

∑
X∈2t supp(X,D) =

αSupp(2t,D). By injecting this result into De�nition 3, we conclude that
Property 1 is right. ut

Beyond convergence, the interest of this approach is the speed of conver-
gence far superior to that of the σ-exhaustive frequent pattern outlier factor
as shown in the experimental study (see Section 6). This speed is accompa-
nied by a good e�ciency due to a reasonable complexity of pattern sampling:

Property 2 (Complexity). A k-sampling FPOF of all transactions can be cal-
culated in time O(k × |I| × |D|).

10 Arnaud Giacometti, Arnaud Soulet

Algorithm 2 Anytime FPOF Computation
Input: A dataset D, a con�dence 1− δ
Output: A k-sampling frequent pattern outlier factor of all transactions in D with an

error bounded by ε for a con�dence 1− δ
1: ε̃← 1 ; S ← ∅
2: repeat
3: S ← S ∪ {X} where X ∼ supp(L,D) // add a pattern in the sample
4: m← argmaxt∈D covS (t) // select the most covered transaction

// estimate the maximal error on covS
5: et ←

√
2σt ln(1/δ)/|S|+ ln(1/δ)/(3|S|) for each t ∈ D

// estimate the maximal error on FPOF
6: ε̃← maxt∈D{min{1; (covS (t) + et)/(covS (m)− em)} − covS (t)/covS (m)}
7: ε̃← maxt∈D{covS (t)/covS (m)−max{0; (covSk

(t)− et)/(covS (m) + em)}; ε̃}
8: Print the estimated maximal bound as feedback
9: until The user stops the process
10: return 〈covS (t)/maxu∈D covS (u)〉t∈D

Proof. Pattern sampling according to frequency is performed in time O(|I|×
|D|+k(|I|+ln |D|)) [Boley et al., 2011] and the FPOF of all transactions con-
sists in computing the transactions containing each sampled pattern. Thus,
it is calculated in time O(k × |I| × |D|). ut

Given a number of patterns k, a k-sampling FPOF is therefore e�ective to
calculate. However, the choice of the sample size k is both di�cult and essen-
tial in order to achieve a desired approximation as suggested by Problem 1.
The next section presents an iterative method for �xing this sample size.

5.2 Bounding the Error

This section shows how to determine the right sample size k for computing
a k-sampling FPOF satisfying user speci�ed parameters (a maximum error
with a given con�dence). The idea is to draw a sample and to bound the max-
imum error of FPOF using a statistical result known as Bennett's inequality.
If this error is less than that allowed by the user, the algorithm returns a sam-
pling FPOF based on the current sample. Otherwise, it increases the sample
size by drawing more patterns and so on.

We use Bennett's inequality to estimate the current error because it is true
irrespective of the probability distribution. After k independent observations
of real-valued random variable r with range [0, 1], Bennett's inequality ensures
that, with con�dence 1− δ, the true mean of r is at least r − ε where r and
σ are respectively the observed mean and variance of the samples and

ε =

√
2σ ln(1/δ)

k
+

ln(1/δ)

3k

Anytime Algorithm for Frequent Pattern Outlier Detection 11

In our case, the random variable is the average number of patterns within
a sample Sk ∼ supp(L,D) that cover the transaction t. It is denoted by
covSk

(t) and de�ned as follows: covSk
(t) = |Sk.2t|/k. It is easy to see

that a k-sampling FPOF factor can be rewritten using covSk
: fpofk(t,D) =

covSk
(t)/maxu∈D covSk

(u). Using Bennett's inequality and the above de�ni-
tion enables us to bound FPOF:

Property 3 (FPOF Bound). Given a datasetD and con�dence 1−δ, the FPOF
of transaction t is bounded as follows:

max

{
0,
covSk

(t)− εt
covSk

(u) + εu

}
≤ fpof(t,D) ≤ min

{
covSk

(t) + εt
covSk

(u)− εu
, 1

}
where Sk ∼ supp(L,D), u = argmaxv∈D covSk

(v) and εt =
√
2σt ln(1/δ)/k+

ln(1/δ)/(3k).

Algorithm 2 returns the approximate FPOF of all transactions by guar-
anteeing a bounded error of ε with con�dence 1− δ. Basically, the main loop
is iterated until that the maximal error ε̃ is inferior to the expected bound
ε. Lines 4-7 calculate the maximal error ε̃ using Property 3. If the maximal
error is less than ε, Line 9 returns the k-sampling FPOF with the current
sampling S. Otherwise, one more pattern is drawn (Line 3).

As desired by Problem 1, Algorithm 2 approximates the FPOF of all trans-
actions:

Property 4 (Correctness). Given a dataset D, a con�dence 1− δ, a bound ε,
Algorithm 2 returns a k-sampling frequent pattern outlier factor of a transac-
tion t in D approximating FPOF with an error bounded by ε with con�dence
1− δ.

6 Experimental Study

This experimental study aims to compare the speed of the non-enumerative
method with that of the exact exhaustive method (i.e., 1/|D|-exhaustive)
and to estimate the error quality of the ε-approximate sampling method
faced to the σ-exhaustive method. Due to the lack of space, we do not pro-
vide new experiments showing the interest of FPOF for detecting outliers as
this aspect is already detailed in literature [He et al., 2005, Otey et al., 2006,
Koufakou et al., 2011]. Experiments are conducted on datasets coming from
the UCI Machine Learning repository (archive.ics.uci.edu/ml) and the
FIMI repository (http://fimi.ua.ac.be/). Table 2 gives the main features
of datasets in �rst columns. All experiments are performed on a 2.5 GHz
Xeon processor with the Linux operating system and 2 GB of RAM mem-
ory. Each reported evaluation measure is the arithmetic mean of 10 repeated
measurements (interval con�dence are narrow enough to be omitted).

archive.ics.uci.edu/ml
http://fimi.ua.ac.be/

12 Arnaud Giacometti, Arnaud Soulet

6.1 Approximate Sampling Method

−0.3

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
iff

er
en

ce
 o

f K
en

da
ll’

s
ta

u

Minimal support threshold

chess
connect

mushroom
pumsb

sick
 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f a
ve

ra
ge

 e
rr

or
 p

er
 tr

an
sa

ct
io

n

Minimal support threshold

chess
connect

mushroom
pumsb

sick

Fig. 2 Error of σ-exhaustive FPOF and k-sampling FPOF with σ

This section compares our sampling method with the traditional heuristic
based on frequent patterns as baseline. For this purpose, we use the Kendall's
tau for comparing the ranking stemming from an approximate method f with
that stemming from the FPOF (calculated with an exact method):

τ(f,D) =
|{(t, u) ∈ D2 : sgn(f(t,D)− f(u,D)) = sgn(fpof(t,D)− fpof(u,D)}|

|D|2

and in the same way, we also compute the average error per transaction:
ε(f,D) =

∑
t∈D |f(t,D)− fpof(t,D)|/|D|.

The left chart of Figure 2 plots the di�erence between the Kendall's tau of
k-sampling FPOF and that of σ-exhaustive FPOF (when the curve is above
0, it means that the ranking of k-sampling FPOF is better than the ranking of
σ-exhaustive FPOF). The right chart reports the average error of σ-sampling
FPOF divided by that of k-sampling FPOF (when the curve is above 1, it
means that the average error of k-sampling FPOF is smaller than that of
σ-exhaustive FPOF). For each point, the minimal support threshold σ is
used as parameter of the σ-exhaustive FPOF method. At the same time, the
sample size k is �xed with the number of patterns mined with the minimal
support threshold σ: k = |Fσ(D)|. The k-sampling FPOF is clearly more
accurate than the σ-exhaustive FPOF for a same pattern budget. For some
datasets (e.g., chess or sick), the di�erence is always greater than 0. For
other datasets, as soon as the number of patterns in the sample increases, the
di�erence becomes positive. The average error ratio clearly shows that our
method gives a better approximation of FPOF (especially, when the number
of patterns is high).

Figure 3 plots the number of patterns and the average error per transac-
tion of the ε-approximate method with bound ε (for δ = 0.1). As expected,
the smaller the error bound ε, the greater the number of patterns in the sam-
ple. Therefore, the longer the execution time. It is interesting to note that

Anytime Algorithm for Frequent Pattern Outlier Detection 13

the approximate method (with ε = 0.1) is regularly faster than the exact
methods (see Table 2). Finally, the real average error per transaction of the
approximate method is always much lower than the requested bound ε (e.g.,
ε = 0.1 actually gives an error less than 0.01). This di�erence results from
the Bennett's inequality that makes no assumption about the distribution.

 1

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

P
at

te
rn

 n
um

be
r

(k
)

Maximal error

chess
connect

mushroom
pumsb

retail
sick

 1e−08

 1e−07

 1e−06

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 e
rr

or
 p

er
 tr

an
sa

ct
io

n

Maximal error

chess
connect

mushroom
pumsb

retail
sick

Fig. 3 Number of patterns and average error per transaction with maximum error ε

7 Conclusion

We revisited the FPOF calculation in extracting the least possible patterns
or no pattern. Despite this constraint, the proposed exact method has a
complexity better suited to certain datasets. Our approximate method using
a sampling technique provides additional guarantees on the result with a
maximum bound on the error. The experiments have shown the interest of
these two approaches in terms of speed and accuracy compared to the usual
exhaustive approach where all frequent patterns are mined.

Our proposal therefore combines the proven power of pattern-based meth-
ods by adding a guarantee on the quality of results without sacri�cing speed
thanks to sampling techniques. We think it can be generalized to other mea-
sures involving patterns or pattern-based models. We would also like to adapt
this approach to build anytime algorithms. In the case of FPOF, it consists
in extending the pattern sample inde�nitely until the end-user wants to stop
the process. Then, the algorithm returns the FPOF achieved with the current
sample while estimating its error.

Acknowledgements. This work has been partially supported by the Prefute project,

PEPS 2015, CNRS.

14 Arnaud Giacometti, Arnaud Soulet

References

Agrawal et al., 1994. Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining
association rules. In International conference on Very Large Data Bases, volume 1215,
pages 487�499.

Boley et al., 2011. Boley, M., Lucchese, C., Paurat, D., and Gärtner, T. (2011). Direct
local pattern sampling by e�cient two-step random procedures. In ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 582�590.

Chaoji et al., 2008. Chaoji, V., Hasan, M. A., Salem, S., Besson, J., and Zaki, M. J. (2008).
ORIGAMI: A novel and e�ective approach for mining representative orthogonal graph
patterns. Statistical Analysis and Data Mining, 1(2):67�84.

Giacometti et al., 2014. Giacometti, A., Li, D. H., and Soulet, A. (2014). Balancing the
analysis of frequent patterns. In Advances in Knowledge Discovery and Data Mining,
pages 53�64. Springer.

Hawkins, 1980. Hawkins, D. M. (1980). Identi�cation of outliers, volume 11. Springer.
He et al., 2005. He, Z., Xu, X., Huang, Z. J., and Deng, S. (2005). FP-outlier: Frequent
pattern based outlier detection. Computer Science and Information Systems, 2(1):103�
118.

Knobbe et al., 2008. Knobbe, A., Crémilleux, B., Fürnkranz, J., and Scholz, M. (2008).
From local patterns to global models: The lego approach to data mining. In From local
patterns to global models: proceedings of the ECML PKDD 2008 Workshop, pages 1�16.

Koufakou et al., 2011. Koufakou, A., Secretan, J., and Georgiopoulos, M. (2011). Non-
derivable itemsets for fast outlier detection in large high-dimensional categorical data.
Knowledge and information systems, 29(3):697�725.

Liu et al., 1998. Liu, B., Hsu, W., and Ma, Y. (1998). Integrating classi�cation and as-
sociation rule mining. In International conference on Knowledge Discovery and Data
mining.

Liu and Dong, 2012. Liu, Q. and Dong, G. (2012). CPCQ: contrast pattern based clus-
tering quality index for categorical data. Pattern Recognition, 45(4):1739�1748.

Otey et al., 2006. Otey, M. E., Ghoting, A., and Parthasarathy, S. (2006). Fast distributed
outlier detection in mixed-attribute data sets. Data Mining and Knowledge Discovery,
12(2-3).

van Leeuwen, 2014. van Leeuwen, M. (2014). Interactive data exploration using pattern
mining. In Interactive Knowledge Discovery and Data Mining in Biomedical Informatics,
pages 169�182. Springer.

	Anytime Algorithm for Frequent Pattern Outlier Detection
	Arnaud Giacometti, Arnaud Soulet
	Introduction
	Related Work
	Pattern-based outlier detection
	Pattern sampling
	Anytime algorithm for pattern mining

	Frequent Pattern Based Outlier Detection
	Basic definitions
	Frequent Pattern Outlier Factor

	Problem Formulation
	Exact FPOF computation
	Anytime approximate FPOF computation

	Anytime Sampling Method
	Pattern Sampling for FPOF
	Bounding the Error

	Experimental Study
	Approximate Sampling Method

	Conclusion
	References

