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Abstract. Constraint-based mining is an active field of research which is a necessary step to achieve interactive and successful
KDD processes. The limitations of the task lies in languages being limited to describe the mined patterns and the ability
to express varied constraints. In practice, current approaches focus on a language and the most generic frameworks mine
individually or simultaneously a monotone and an anti-monotone constraints. In this paper, we propose a generic framework
dealing with any partially ordered language and a large set of constraints. We prove that this set of constraints called primitive-
based constraints not only is a superclass of both kinds of monotone ones and their boolean combinations but also other classes
such as convertible and succinct constraints. We show that the primitive-based constraints can be efficiently mined thanks to
a relaxation method based on virtual patterns which summarize the specificities of the search space. Indeed, this approach
automatically deduces pruning conditions having suitable monotone properties and thus these conditions can be pushed into
usual constraint mining algorithms. We study the optimal relaxations. Finally, we provide an experimental illustration of the
efficiency of our proposal by experimenting it on several contexts.
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1. Introduction

Many data mining methods have been designed to support constraint-based pattern discovery. A
constraint expresses by a declarative way the viewpoint of the analyst and guarantees the a priori
interestingness of the extracted patterns. This task is important to achieve interactive and successful
Knowledge Discovery in Databases (KDD) processes. Constraint-based patterns are used in a lot of
domains as medicine [25], business data analysis [2], XML document analysis [42]. The form of the
constraints allows users to describe the rules that they would like to uncover, thereby making the data
mining process more effective. Constraints can also include interestingness measures as statistical [30]
or others as the area (cf. Section 2.4) to capture relationships in data. This is very useful in real-
world applications. For instance, in genomics, constraint-based knowledge discovery supported by
the area measure has demonstrated that it allows to generate new biological hypotheses with clinical
implications [23].

A lot of works address the design of sound and complete solvers on several classes of constraints.
The soundness and completeness of the extraction ensure that the collection of extracted patterns is
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respectively correct and exhaustive with respect to the constraint. It remains a challenge due to the huge
size of the search space which has to be explored. In practice, works are devoted to a specific language
describing the patterns (e.g., itemsets for transactional data [2]) and to a class of constraints (e.g.,
monotone [27], convertible [33], succinct [31]) or a combination of a monotone and an anti-monotone
constraints [26]. In this paper, we cope with these limitations by designing a generic framework to define
constraints and automatically deduce pruning conditions which can be efficiently pushed into usual
constraint mining algorithms. The key ideas are to use a set of primitives which can be extended to get
a broad spectrum of constraints and a relaxation approach based on virtual patterns to take into account
both the specificities of the data and the original constraint q given by the user to automatically deduce
outstandingly pruning conditions. The relaxation enables us to approximate the collection of patterns
satisfying q by a larger collection corresponding to a solution space of a slightly weaker constraint. Then,
we benefit suitable monotonicity properties from the relaxed constraint which can be exploited by usual
constraint mining algorithms to output the correct and complete collection of constrained patterns. The
approach strongly differs from the usual methods which seek to straightforwardly push q.

The contribution of this paper is twofold. First we propose a general framework (called primitive-
based framework) for constraint-based pattern discovery. This framework deals with any partially
ordered language describing the patterns (e.g., itemsets, sequences, graphs, trees). It allows the user
to define in a flexible way by combining monotone primitives (e.g., syntactic, aggregate) a large set of
constraints, the so-called primitive-based constraints. A preliminary version of this framework has been
presented in [39,40], but it was restricted to the itemsets for transactional data. In Section 3, we show
that this framework not only is a superclass of both kinds of monotone constraints and their boolean
combinations but also other classes such as convertible and succinct constraints (a result about the scope
of the primitive-based framework was given in [40] but it was limited to the itemsets and monotone
constraints). The second contribution tackles the mining of constraint patterns. The main idea has been
given above: instead of trying to directly push the constraint q itself given by the user, we propose to use
a relaxed form of q to provide suitable pruning conditions. The great interest of this approach is that we
are able to automatically infer monotone and anti-monotone properties which can be efficiently pushed
by usual constraint mining algorithms, even if q does not satisfy such properties. For this purpose, we
define and use two virtual patterns as a trick in order to automatically achieve the pruning conditions
from any primitive-based constraint. These virtual patterns synthesize the search space by taking into
account both the specificities of the data mining context and the constraint q. Furthermore, our approach
enables us to simultaneously push these (anti-)monotone constraints, which is generally more efficient
than handling them sequentially. We have introduced in [39] the idea of virtual patterns, but they were
only linked to the data and defined for the itemsets. In this paper, we first generalize this idea to any
pattern language and second, by considering also the specificities of q, we get more powerful pruning
conditions. Furthermore, as a theoretical result, we show in which situations these pruning conditions
are optimal.

The paper is organized in the following way. Section 2 introduces the motivations, the related work
on constraint-based mining and the key idea of the relaxation. The primitive-based framework and its
scope are given in Section 3. Section 4 provides the bounding operators which are necessary to relax
the primitive-based constraints. The virtual patterns are defined in Section 5. Section 6 shows how the
virtual patterns, combined with the bounding operators yield monotone relaxations and suitable pruning
conditions. Moreover, we show in which cases the relaxation is optimal. Finally, Section 8 gives
experimental results showing the effectiveness of our approach. Section 9 concludes.
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2. Context and motivations

2.1. Constraint-based pattern mining problem

The task of mining patterns under constraints has been formalized by the framework of Mannila and
Toivonen [27]. Given a database r, a language L gathering all the patterns, and a selection predicate q
(called constraint) to evaluate the interestingness of a pattern, constraint-based mining aims at extracting
all the patterns of L satisfying the constraint q in r. The set of mined patterns, denoted by T h(L, r, q),
is called theory. The result of the constraint q for a given pattern ϕ generally depends on the database r
(e.g., the minimal frequency constraint). So, we should write q(ϕ, r). To alleviate the notations, unless
otherwise indicated, q(ϕ) refers to q(ϕ, r).

Let us provide a few examples covering several pattern languages. We start with the problem of itemset
mining originally introduced so as to derivate association rules [1].

Example 1 Itemset mining. Given a set of items I , the itemset language LI is the powerset of items 2I
and a dataset is a multi-set of patterns in LI . Each database entry is called a transaction. For instance,
I = {A,B,C,D,E, F} and D = {{A,B,E, F}, {A,E}, {A,B,C,D}, {A,B,C,D,E}, {D,E},
{C,F}}. The aim is to extract all the itemsets of LI occurring in D and satisfying a given constraint.
The minimal frequency constraint (i.e., patterns occurring in r more than a fixed threshold) is likely the
most usual constraint.

The empty set is usually removed from LI and an itemset is denoted by a string notation (e.g., ABC
denotes {A,B,C}).

The next example addresses sequential data. Sequential pattern mining has been introduced in [3]. It
is useful whenever database entries depend on an order.

Example 2 Sequence mining. Given a set of items I , a sequence is an ordered multi-set of itemsets.
Thereby, the language of sequences LS corresponds to the set of the all possible sequences and a
dataset is a multi-set of sequences belonging to LS . For instance, I = {A,B,C,D,E, F} and
D = {〈(C)(A)〉, 〈(AB)(C)(ADF )〉, 〈(ACE)〉, 〈(C)(AD)(A)〉, 〈(B)〉}. The sequence mining task
aims at discovering all the sequences present inD and satisfying a given constraint. Again, the minimal
frequency constraint (i.e., sequences occurring in D bigger than a fixed threshold) is very usual.

The language L may be infinite as in Example 2 where an item can be indefinitely repeated. There
is also no limitation about the database r and no particular relation between L and r even if in practice
a database is often composed of a multi-set of patterns of L (see Examples 1 and 2). Additional tables
of values are required for some constraints as the average constraint, as shown in Example 3. Such
constraints are very useful for guiding the discovering task.

Example 3 Average constraint. Given a function val : I → 
+ (see below the table of values), we
extend val to an itemset X and note X.val the multi-set {val(a) | a ∈ X}. For a sequence, we append
together the multi-sets corresponding to each individual itemset. This kind of function is used with the
usual SQL-like primitives: sum, min, avg and so on.

Item A B C D E F
val 50 30 75 10 30 15
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Thereby, the average constraint corresponds to avg(X.val) � α where avg(X.val) is the average value
of the multi-set X.val and α is the minimal average threshold. For instance, the itemset AB whose
average equals 40 (= (50 + 30)/2), satisfies the constraint avg(X.val) � 40.

Finally, let us say that constraint-based mining addresses many other patterns, generally more complex,
such as graphs [37], molecules [25] or strings [16].

2.2. Monotonicity

Mining patterns under constraints requires the exploration of the search space depicted by L. Unfor-
tunately, this space is generally huge and it is necessary to use pruning conditions. A lot of pruning
conditions are based on the property of monotonicity. This property requires a partial order on L to
structure it and we need to recall the specialization/generalization relation proposed by Mitchell [29]
in the field of concept-learning. A specialization relation is a partial order  on the patterns in L. ϕ
is said to be more general (resp. more specific) than γ, iff ϕ  γ (resp. γ  ϕ). When ϕ  γ and
ϕ �= γ, ϕ is said strictly more general than γ and we write ϕ ≺ γ. For instance, the set inclusion
⊆ is a specialization relation (e.g., A is more general than AB and we have A ⊆ AB). Similarly, a
sequence X = 〈x1x2 . . . xn〉 is more general than another Y = 〈y1y2 . . . ym〉 (denoted by X S Y
whereS is the specialization relation onLS) if there exist integers i1 < i2 < . . . < in such as x1 ⊆ yi1 ,
x2 ⊆ yi2 ,. . . , xn ⊆ yin .

A constraint q is monotone with respect to (w.r.t.) the specialization  iff whenever γ  ϕ and
q(γ, r) = true, we have q(ϕ, r) = true. Dually, a constraint q is anti-monotone w.r.t.  iff whenever
γ  ϕ and q(ϕ, r) = true, we have q(γ, r) = true. For instance, the constraint of minimal frequency
(introduced in Examples 1 and 2) is anti-monotone w.r.t. We give now a more formal definition of this
constraint.

The frequency of a pattern X (denoted freq(X)) is the number of transactions in D containing X
w.r.t. the specialization relation. For instance, freq(AB) = 3 (see Example 1) and freq(〈(AB)〉) = 1
(see Example 2). Let γ be the minimal frequency threshold, freq(X) � γ designates the minimal
frequency constraint. Continuing Example 1, the itemset AB satisfies the constraint freq(X) � 3
because AB occurs in 3 transactions inD. On the contrary, the itemset F does not satisfy this constraint
(its frequency is only 2). As the minimal frequency is anti-monotone and AB satisfies it with γ = 3, the
generalizations of AB (i.e., A and B) also satisfy this constraint.

The next section indicates the main methods for constraint-based mining and points out the great role
of the monotonicity during the mining step.

2.3. Methods for constraint-based mining

Most constraint-based mining algorithms take advantage of monotonicity which offers pruning con-
ditions to safely discard patterns from the search space. Indeed, when a pattern X does not satisfy
a monotone (resp. anti-monotone) constraint, any generalization (resp. specialization) of X does
not satisfy the constraint either. Several frameworks exploit this principle to mine a monotone or an
anti-monotone constraint.

The levelwise algorithm [27] generalizes the generate-and-test approach originally proposed by the
APRIORI algorithm [2]. Another generic algorithm is presented in [47] with sharp details about
implementation of general data structures. The inductive databases framework [21] combines several
constraints having suitable properties of monotonicity to build more complex constraints. In particular,
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a randomized method [14] mines a conjunction of one monotone and one anti-monotone constraints
whose solution space corresponds to a version space in the field of machine learning [29]. For example,
the mining of emerging patterns can be expressed as a disjunction of version spaces [11]. An algebra is
proposed to evaluate and optimize such inductive queries [26]. In [18], the answers are completed by a
measure function (by considering its monotonicity).

More efficient algorithms have been designed to specific languages or classes of constraints. For
the itemset language, several methods have been proposed to extract a conjunction of one monotone
constraint and one anti-monotone constraint. They are based on direct approaches [8,10,13] or pre-
processing techniques [7]. They benefit from specific data structures (e.g., trie [24], FP-tree [20],
COFI-tree [12]) or properties as the dualization [19]. Some other approaches are devoted to specific
kinds of patterns such as the “closed patterns” [32,34]. Nevertheless, such tricks are difficult to generalize
for any language. For instance, even if the notion of “closed pattern” is extended to few popular languages
(e.g., sequences [43] or trees [42]), the corresponding closure operator cannot be trivially defined for any
language.

Several classes of constraints cover a larger set of queries than the previous ones. Figure 4 depicts
the succinct [31], convertible [33] and loose anti-monotone [9] classes of constraints. But, these
classes are confined to the itemset language (except for the convertible one which is extended to
sequences [36]) and their algorithms are incompatible with another language. Moreover, in some
cases, like the class of convertible constraints, the algorithm needs a total order over itemsets to mine
the patterns. For instance, the minimal average constraint (see Example 3) is convertible anti-monotone
with C < A < B < E < F < D. Given an order relation R over items, whenever an itemset X satisfies
a convertible anti-monotone constraint, any prefix of X w.r.t. R also satisfies this constraint. On our
example, as the itemset AB satisfies avg(X.val) � 40, we are sure that its prefix A also satisfies the
constraint. Let us note that B is not a prefix of AB. Convertibility exploits an order relation through its
specialization relation (based on prefixes), but it is basically similar to monotonicity.

As we have seen above, the most generic frameworks in term of languages are restricted to constraints
satisfying a monotone property. In fact, these approaches are pruning oriented: they are efficient to
reduce the search space. But, they strongly reduce the expressiveness of the user and its expectancies
are not satisfied [31]. At the same time, mining algorithms dedicated to large classes of user-specified
constraints are only limited to several particular languages. To the best of our knowledge, there is no
method to process the pattern mining task for any language with a constraint which is not a boolean
formulae of monotone constraints. This paper copes with this problem using the relaxation of constraints.

2.4. Problem statement and constraint relaxation

A lot of useful constraints such as the minimal area constraint (cf. Example 4) do not deal with the
classes of constraints presented above and are very tough. Let X be an itemset and count(X) its number
of items (or its cardinality). Similarly, the length of a sequence is the sum of the lengths of its itemsets.
For instance, count(AB) = 2 and count(〈(AB)(A)〉) = 3.

Example 4 Minimal area constraint. The minimal area constraint is defined as freq(X)× count(X) �
ρ where ρ is the minimal area threshold. area(X) directly refers to freq(X)× count(X).

The minimal area constraint does not satisfy monotonicity properties: it is neither monotone
(area(ABC) � 6 but area(ABCDE) < 6), nor anti-monotone (area(BC) < 6 but area(ABC) � 6).
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Fig. 1. A relaxation q′ of constraint q.
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Fig. 2. Monotone and anti-monotone relaxations of a constraint q.

We will see that the minimal area constraint and many others (see Example 5) belong to the primitive-
based framework (cf. Section 3.1) and consequently can be efficiently mined thanks to our framework.
Let us note that many works extract closed patterns [32] (also named tiles [17] or blocks [15]). Closed
patterns are a subset of the patterns satisfying the minimal area constraint and mining the closed patterns
does not provide the complete collection of patterns satisfying the minimal area constraint. In our
approach, we preserve the completeness for the minimal area constraint and more generally for any
constraint.

A “naive” idea to mine constraint patterns is to enumerate all the patterns of any languageL occurring
at least once in r (with a levelwise algorithm) and to test whether they satisfy or not the desired
constraint. This approach naturally fails whenever the considered dataset contains an overwhelming
number of patterns. In this paper, we suggest to approximate the theory of the original constraint q by
a larger collection corresponding to the solution space of a slightly weaker constraint q ′: T h(L, r, q) ⊆
T h(L, r, q′). The less restrictive constraint q ′ induced by q, is called a relaxation, and we have the
following implication q ⇒ q′. Figure 1 depicts the theory of q (i.e., the gray shape) and its relaxation q ′
(i.e., the hatched shape).

The key idea is to get a relaxed constraint having suitable monotonicity properties in order to re-use
usual algorithms as the levelwise one. More precisely, given a language L, a database r and a constraint
q, we want to automatically find one monotone relaxation and one anti-monotone relaxation of q as
there are efficient algorithms for such a pair of constraints (see Section 2.3). Figure 2 depicts the desired
anti-monotone qAM and monotone qM relaxations of q. Then a simple filter selects the patterns satisfying
q. Such an approach is discovery preserving [5] since the pruning coming from the relaxation does not
remove patterns satisfying q.

In literature, relaxation is used to discover more unexpected patterns [4] or introduce softness in order
to avoid the crisp effect of the boolean selection [6]. This concept is also artfully exploited to extract
constrained itemsets in wide datasets by means of transposition [22]. In our context, the relaxation is a
technical method to make feasible extractions under complex constraints and can be seen as a kind of
pre-processing of the user-specified constraint.
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Fig. 3. An anti-monotone relaxation (on left) and a monotone relaxation (on right) of the constraint area(X) � 6 (itemsets in
bold satisfy this constraint).

The non-trivial problem of relaxation is partially solved in specific cases. Regular expression con-
straints are relaxed into anti-monotone relaxations for mining significant sequences [16]. Two constraints
based on chi-squared and correlation are relaxed to find itemsets [30]. In the field of itemsets, a collection
of boolean formulae of monotone constraints [40] and aggregate constraints [44] can also be relaxed.
Compared to these approaches, this paper provides a more general answer to the relaxing problem by
focusing on the primitive-based constraints for any language.

Figure 3 illustrates the effectiveness of the relaxation by coming back to our example of the minimal
area constraint. Assuming that we are interested in all the itemsets present in the datasetD (see Example 1)
and satisfying the minimal area constraint with the threshold ρ = 6 (bold itemsets). The naive approach
requires to mine T h(LI , r, freq(X) � 1) corresponding to 40 itemsets. The anti-monotone constraint
freq(X) � 2 and the monotone constraint count(X) � 2 are relaxations of area(X) � 6. These
relaxations lead to three different mining strategies: T h(LI , r, freq(X) � 2) (21 itemsets, on left),
T h(LI , r, count(X) � 2) (34 itemsets, on right) and T h(LI , r, freq(X) � 2 ∧ count(X) � 2) (15
itemsets). The theory of area(X) � 6 has 8 itemsets: AB, AE, ABC , ABD, ABE, ACD, BCD,
and ABCD. We will give in Section 6.1 the relaxations of the minimal area constraint achieved thanks
to the primitive-based framework. These relaxations lead to examine only the 15 itemsets corresponding
to T h(LI , r, freq(X) � 2 ∧ count(X) � 2).

3. The primitive-based framework

This section first defines the primitive-based framework for any partially ordered language (i.e., a
language with its specialization relation). Then we show that the primitive-based framework defines a
superset of the usual classes of constraints, allowing us to define numerous and varied constraints.

3.1. The primitive-based constraints

We call “primitive-based constraints” the set of constraints defined by the primitive-based framework.
Contrary to the usual classes of constraints (e.g. monotone, convertible) the primitive-based constraints
are based on a set of primitives as defined in Definition 1:

Definition 1 Primitive. A primitive p is a monotone function according to any variable when the others
remain constant.

There is no restriction about the arity of the primitives. But, for a given primitive, Definition 1 implies
that the domain of each variable and its range have to be partially (or totally) ordered sets (e.g., the
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language L, 
+). The set of primitives is denoted by P. For instance, freq and count (cf. Example 4)
are primitives of our framework because they are respectively a decreasing and an increasing function
w.r.t. their variable. Thus they are monotone functions.

Many primitives evaluate a pattern of the languageL (e.g., freq or count) and these primitives are said
terminal. The other primitives (e.g., × or �) are useful to combine the previous ones (see Examples 3
and 4). Even if the evaluation of a primitive p often depends on the database r, we omitted r by writing
p(ϕ) instead of p(ϕ, r). A primitive may also have different meanings according to L. For instance,
in Example 4, count has a different meaning according to the itemset language LI or the sequence
language LS .

In practice, more complex primitives are useful to the user. For instance, the area function is not
monotone, but it is a combination of several primitives of P: the area is decomposed into freq(X) ×
count(X). This kind of combination can be seen as a high-level primitive:

Definition 2 High-level primitive. A high-level primitive h defined over language L is a recursive com-
bination of several primitives in P.

The setHL denotes all the high-level primitives on L. For a given high-level primitive h, the highest
number of combinations is called the degree and noted deg h. More precisely, the high-level primitives of
degree 0 put together all the unary functions defined over L (i.e., the terminal primitives). Besides, each
high-level primitive h of degree n is compounded of one primitive p with k high-level primitives hi of
inferior degree such that we haveh = p(h1, . . . , hk). The form p(h1, . . . , hk) is called the decomposition
of h. The degree of at least one high-level primitive hi has to equal n − 1 in order to ensure that any
expression has a unique decomposition. To sum up, whenever a high-level primitive h is a terminal one,
its degree is 0 and otherwise, its degree corresponds to 1 + max i∈{1,...,k} deg hi where p(h1, . . . , hk) is
the decomposition of h. For instance, as freq and count are monotone primitives from LI or LS to

+, their degree is 0. Thus, the degree of area is equal to 1 (i.e., deg area = 1) because its prefix
decomposition is ×(freq, count) and P contains×.

Finally, a primitive-based constraint (PBC in summary) is a constraint which is a high-level primitive
defined from L to B = {true, false}:

Definition 3 Primitive-based constraint. A primitive-based constraint is a high-level primitive defined
from language L to booleans B.

The set of such constraints defined overL is denoted byQL. Following on, if the specified language is
clear,Q refers toQL. Table 1 provides an example of a set of constraints recursively defined correspond-
ing to the particular primitives {∧,∨,¬, <,≤,⊂,⊆,+,−,×, /, freq, count, sum,max,min,∪,∩, \}.

Let freq(X,Di) be the frequency of pattern X on the sub-dataset Di ⊆ D. Example 5 provides
examples of primitive-based constraints belonging to QLI or QLS .

Example 5 Primitive-based constraints. Examples of PBC:
q1(X) ≡ freq(X)× count(X) � γ
q2(X) ≡ (minX + maxX)/2 � 50
q3(X) ≡ sumX/count(X) � 25
q4(X) ≡ AE ⊆ X
q5(X) ≡ freq(X) � 2
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Table 1
A subset of the primitive-based constraints QLI

Constraint q ∈ QLI Primitive(s) Operand(s)

q1θq2 θ ∈ {∧,∨} (q1, q2) ∈ Q2
LI

θq1 θ ∈ {¬} q1 ∈ QLI
e1θe2 θ ∈ {<,≤} (e1, e2) ∈ ε2

s1θs2 θ ∈ {⊂,⊆} (s1, s2) ∈ S2

constant b ∈ B – –
Aggregate expression e ∈ ε Primitive(s) Operand(s)

e1θe2 θ ∈ {+,−,×, /} (e1, e2) ∈ ε2

θ(s) θ ∈ {freq, count} s ∈ S
θ(s.val) θ ∈ {sum, max, min} s ∈ S
constant r ∈ �+ – –
Syntactic expression s ∈ S Primitive(s) Operand(s)
s1θs2 θ ∈ {∪,∩, \} (s1, s2) ∈ S2

variable X ∈ LI – –
constant l ∈ LI – –

q6(X) ≡ freq(X)/count(X) � ρ
q7(X) ≡ 2× count(X)− count(X) � ρ
q8(X) ≡ (q5(X) ∨ q6(X)) ∧ q4(X)
q9(X) ≡ (|D2|/|D1|)× freq(X,D1)/freq(X,D2) � ρ

The monotone primitives are of a great interest. Most of the desired primitives are monotone functions
and this property does not appear in practice as an important restriction. Besides, a non-monotone
primitive can often be split into several monotone ones [44].

3.2. Varied and meaningful constraints

This section gives some insights into the primitive-based framework and shows how the expectations
of end-users are fulfilled. A key point is the flexibility which is offered to express a large and rich variety
of constraints.

Usual approaches are based on a dictionary of constraints. Grammars are often simple enumerations
of atomical constraints [9,31]. Such lists of predefined constraints reduce expressiveness and then,
the interest of the constraint-based mining. On the contrary, the primitive-based constraints are based
on a dictionary of primitives which is combinatorially richer than a dictionary of constraints. Solvers
performing the primitive-based framework implement an infinity of varied atomical constraints which
can be easily specified.

Moreover, even if each primitive has a simple semantic, their combination enables us to express
constraints having a rich global semantic. On the one hand, the user accurately specifies which type
of patterns is wished (e.g., exceptions, regularities, contrasts between several classes). A type is often
followed by an aggregate constraint based on SQL-like primitives (e.g., freq, sum, max). On the
other hand, syntactical constraints (e.g., size and content of patterns) is a way to interpret background
knowledge into the constraint in order to eliminate trivial or inconsistent patterns. The primitive-based
constraints allow the user to use both syntactical and aggregate constraints simultaneously. In practice,
most of the special constraints depicted by the literature are primitive-based constraints: constraint
revealing emerging patterns q9 [11], item constraint q4 [41], etc.
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3.3. A general class of constraints

In this section, we compare the primitive-based constraints w.r.t. the current classes of constraints.
We start by linking the notion of monotonicity to primitive-based constraints:

Property 1 Superclass of monotone constraints. A monotone (or anti-monotone) constraint is also a
primitive-based one.

Proof. Let q be a monotone constraint according to the specialization, we have ∀ϕ  γ ∧ q(ϕ) ⇒ q(γ).
With respect to false < true, we obtain that q(ϕ) � q(γ) for all ϕ  γ i.e. q is an increasing function
defined on booleans. Thus, q is a monotone primitive for our framework. We obtain the same result for
the anti-monotone constraints. ✷

Therefore, the class of primitive-based constraints is more general than the monotone constraints and
the anti-monotone constraints. Actually, several primitive-based constraints described in Example 5 are
anti-monotone (q5, q6 and q7) or monotone (resp. q4).

The next property even proves that different atomical primitive-based constraints can be combined to
get a more sophisticated one:

Property 2 Closure by boolean operators. All the boolean combinations of primitive-based constraints
are primitive-based constraints.

Proof. Let q1 and q2 be two primitive-based constraints. As we have {∧,∨,¬} ⊆ P, we can combine the
boolean operators with the constraints q1 or/and q2 by definition of primitive-based constraints. Thus,
q1 ∧ q2, q1 ∨ q2 and ¬q1 are primitive-based constraints. ✷

In other words, Property 2 says that the primitive-based constraints constitute a Bool algebra. It means
that in practice a user can improve a query by adding other atomical primitive-based constraints. Then,
he focuses on few interesting patterns by means of highly selective multi-criteria.

The conjunction of Property 1 and Property 2 expresses that the primitive-based constraints constitute a
larger class than inductive queries composed from both monotone and anti-monotone constraints. Thus,
from our point of view, the primitive-based framework encompasses the abilities of the levelwise and
inductive frameworks. Typically, the inductive query q8 (see Example 5) belongs to our framework.

Although the monotone and anti-monotone constraints are only the general classes for any language
L, specific comparisons hold for the classes dedicated for specific languages. At first, a convertible
constraint [33] is also a primitive-based constraint because it is only a monotone constraint by considering
the languageLI and the specialization relation based on prefixes (see Section 2.3). Secondly, any succinct
constraint (which theory can be expressed in terms of strict powersets of sets of items using union and
minus [31]) is always expressible in terms of monotone primitives. Then, any succinct constraint is a
primitive-based constraint. Figure 4 summarizes these comparisons. The comparison of the primitive-
based constraints with loose anti-monotone [9] or separable constraints [44] is still an open issue.

In addition to the rich semantic brought by the primitive-based constraints, Properties 1 and 2 show
that these constraints are a superclass of all the combinations of both monotone and anti-monotone
constraints. The relaxing approach proposed in the next sections is very general and it can be applied to
numerous and varied constraints. Thereby, we can handle inductive queries and more complex constraints
to deduce monotone and anti-monotone relaxations.
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QCAM

QM

QS

QAM

QCM

Q

Q M : monotone constraints
Q AM : anti-monotone constraints
Q S : succinct constraints
Q CM : convertible monotone constraints
Q CAM : convertible anti-monotone constraints
Q : primitive-based constraints

Fig. 4. Comparison between the classes of constraints (for itemset language LI).

4. Handling the primitive-based constraints

After depicting the paradigm which is at the core of our framework, this section offers the operators
enabling us to achieve monotone relaxed constraints.

4.1. Principle

As indicated above, primitive-based constraints enable the end-user to specify unusual constraints or
unimaginable ones for the computer scientist. Very new and unexpected nuggets of knowledge may be
extracted. Unfortunately, defining varied constraints and relaxing them are antagonist aims. Starting
from singular and varied elements, we are looking for one general method which can be automated to
reach these two aims.

Our framework handles primitives instead of handling constraints. The key idea is to take advantage
of the local properties of each primitive in order to build global properties on constraints. This principle
is performed in many tasks (e.g., itemset mining [38], detecting monotone constraints [40], etc.). In
our context, we decline the same approach to automatically relax constraints. We mainly focus on the
monotonicity of the primitives P to deduce sufficient conditions about the monotonicity of the high-level
primitives H (including constraints Q). Formally, we introduce two recursive operators to achieve and
analyze relaxations.

Our method has several assets. First, it can be used with any language. As mentioned above, the
primitives deeply depends on the languageL and the database r. But their manipulations are independent
from these parameters. Second, the implementation of this paradigm is often natural. Briefly, the
constraint handlers implementing each formal operator are based on two key points: (1) disposing of a
dictionary of primitives with their own local properties and (2) recursively combining them to make a
global property on the constraint.

4.2. The lower and upper bounding operators

This section gives the key operators which are necessary to relax primitive-based constraints for any
language L.

The interval between the patterns ϕ and γ (denoted [ϕ, γ]) corresponds to the set {θ ∈ L|ϕ ⊆ θ ⊆ γ}.
Given such an interval, we succeed to bound the constraint by using the principle described above: we
bound primitives on this interval by observing their monotonicity and then, for any high-level primitive,
we combine these local bounds in order to find a global one.
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We start by giving the definition of the bounding operators denoted "�# and $�%1:

Definition 4 Bounding operators. Let h be a high-level primitive and [ϕ, γ] be an interval, "h#〈ϕ, γ〉
and $h%〈ϕ, γ〉 are defined as below:

– if deg h = 0: "h#〈ϕ, γ〉 = h(ϕ) and $h%〈ϕ, γ〉 = h(γ) iff h is an increasing function. Otherwise h
decreases, "h#〈ϕ, γ〉 = h(γ) and $h%〈ϕ, γ〉 = h(ϕ).

– if deg h � 1: "h#〈ϕ, γ〉 = p(h′1, . . . , h
′
k) and $h%〈ϕ, γ〉 = p(H ′

1, . . . ,H
′
k) where p(h1, . . . , hk) is

the decomposition of h and for each variable i ∈ {1, . . . , k}:


h′i = "hi#〈ϕ, γ〉 and H ′
i = $hi%〈ϕ, γ〉 if p increases with

the ith variable
h′i = $hi%〈ϕ, γ〉 and H ′

i = "hi#〈ϕ, γ〉 otherwise

Property 3 will show that "q#〈ϕ, γ〉 (resp. $q%〈ϕ, γ〉) is a lower bound (resp. an upper bound) of the
interval [ϕ, γ] for q. In other words, these operators enables us to automatically compute the lower and
upper bounds of [ϕ, γ] for q. This result stems from the properties of increasing and decreasing of the
primitives. Example 6 illustrates "�# and $�% on the minimal area constraint.

Example 6 Bounding the minimal area constraint. As � increases in B according to the first variable
and decreases according to the second one, we have "area(X) � 6#〈X,Y 〉 = "area(X)#〈X,Y 〉 �
$6%〈X,Y 〉. As 6 is a constant and × increases with each variable, we obtain respectively
that $6%〈X,Y 〉 = 6 and "area(X)#〈X,Y 〉 = "freq(X)#〈X,Y 〉 × "count(X)#〈X,Y 〉. Finally,
"area(X) � 6#〈X,Y 〉 is equal to freq(Y ) × count(X) � 6 because freq decreases and count
increases. In the same way, $area(X) � 6%〈X,Y 〉 is equal to freq(X)× count(Y ) � 6.

Starting from h and [ϕ, γ], the bounding operators are recursively applied and lead to automatically
compute a lower and an upper bounds of [ϕ, γ] for h. Property 3 is a major result to get the relaxations
in Section 6.

Property 3 Bounds of an interval. "q# and $q% are respectively a lower bound and an upper bound of
primitive-based constraint q. Given an interval [ϕ, γ] and a pattern θ ∈ [ϕ, γ], we have "q#〈ϕ, γ〉 �
q(θ) � $q%〈ϕ, γ〉.

We start by giving Lemma 1 which facilitates the understanding of this property. This lemma expresses
that the accuracy of the bounding operators increases when the size of the interval decreases.

Lemma 1 [39]. Let h ∈ H and [ϕ1, γ1] ⊆ [ϕ2, γ2], we have "h#〈ϕ1, γ1〉 � "h#〈ϕ2, γ2〉 and
$h%〈ϕ1, γ1〉 � $h%〈ϕ2, γ2〉.

According to the language gathering all the intervals with the specialization relation ⊆, Lemma 1
means that the lower and the upper bounding operators are respectively anti-monotone and monotone.
We can now prove Property 3:

Proof. Let q be a primitive-based constraint and θ be a pattern of [ϕ, γ]. As we have [θ, θ] ⊆ [ϕ, γ], Lem-
ma 1 gives that "h#〈θ, θ〉 � "h#〈ϕ, γ〉 and $h%〈θ, θ〉 � $h%〈ϕ, γ〉. Obviously, "h#〈θ, θ〉 = $h%〈θ, θ〉 =

1To alleviate the notations, we replace ���([ϕ, γ]) by ���〈ϕ, γ〉.
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q(θ) and then, we deduce that "h#〈ϕ, γ〉 � h(θ) � $h%〈ϕ, γ〉. In the particular case of constraint, we
conclude that Property 3 is right. ✷

Property 3 justifies the name of the bounding operators "�# and $�%. These bounds of a constraint are
effective in practice thanks to the monotone primitives. First, we claim that the bounds are quite accurate.
In the particular case of (anti-)monotone constraints, these bounds are even exact (see Section 7.1).
Second, the two functions "q# and $q% (which map an interval to a boolean) do not vary with the database
or the interval. In other words, practical utilization of these functions requires only one computation
before the beginning of the pattern extraction and then, has a very low computational cost. Third, as
the boolean operators are monotone primitives, our framework allows us to directly use constraints
containing conjunctions or disjunctions of other constraints.

These top-level operators are useful to obtain efficient pruning conditions of a primitive-based con-
straint on an interval [38]. Basically, if an upper bound of q on [ϕ, γ] is equal to false, no pattern of [ϕ, γ]
satisfies q (because they are all less than false) and then, we can prune this interval. MUSIC [38] exploits
this interval pruning in order to drastically reduce the search space for a primitive-based constraint.

Our pruning strategy (cf. Section 6) uses the bounding operators on intervals gathering all the
generalizations or all the specializations of ϕ. Indeed, whenever any specialization of ϕ is less than
false, we can safely prune ϕ. For instance, for the specific itemset language, [X,I] clearly describes the
more specific itemsets than X. Unfortunately, the most specific pattern I (or analog one) does not exist
for any language. Next section shows how to get appropriate intervals by introducing artificial patterns
named virtual patterns.

5. The most general and specific virtual patterns of a version space

5.1. Definition of virtual patterns

This section introduces two artificial patterns which summarize a version space leading to efficient
intervals for our relaxation strategy. These patterns are said virtual because they have unexpected
properties.

Let us recall that a version space [29] is a convex collection of patterns. It corresponds exactly to the
theory of the conjunction of one monotone and one anti-monotone constraints. In term of intervals, a set
V S ⊆ L is a version space iff whenever ϕ ∈ V S and γ ∈ V S such that ϕ  γ, we have [ϕ, γ] ⊆ V S.
For instance, the collection of the patterns present at least once in a database is a version space (whenever
this collection is finate). Indeed, if ϕ and γ are present in r, all the patterns θ between ϕ and γ are also
in r. Thereafter, this collection, denoted by C, is extensively used.

We start by giving the definition of the virtual patterns:

Definition 5 The most general and specific virtual patterns. Let V S be a version space, the most general
virtual pattern⊥(V S) and the most specific virtual pattern((V S) are defined as follow for each function
p : L → S (where S is a totally ordered set):

p(⊥(V S)) =
{

minϕ∈V S p(ϕ), if p is an increasing function
maxϕ∈V S p(ϕ), if p is a decreasing function

p(((V S)) =
{

maxϕ∈V S p(ϕ), if p is an increasing function
minϕ∈V S p(ϕ), if p is a decreasing function
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The virtual patterns synthesize the specificities of a version space (e.g., stemmed from r) according
to the different primitives. Indeed, any pattern of the version space has a value of a given primitive p
between the values of the virtual patterns.

The virtual patterns ⊥(V S) and ((V S) only depend on the version space V S and the database r.
For instance, Example 7 presents the most and the least specific virtual itemsets of the patterns present
in D. The values of sum, min or max for each virtual pattern is linked to the table of values given in
Example 3.

Example 7 Virtual itemsets of C. We consider here the most general and specific virtual itemsets of
the collection C (i.e., C = T h(LI , r, freq(X) � 1)). Considering the database of Example 1 and
Example 3, we have count(⊥(C)) = minX∈C count(X) because the count is an increasing function on
LI . As the size of the shortest patterns is equal to 1, we obtain that count(⊥(C)) = 1. With similar
reasonings, we obtain the following table:

Primitive p p(⊥(C)) p(((C))
freq 4 1
count 1 5
sum 10 185
min 75 10
max 10 75
. . . . . . . . .

Following on, the closure of the version space V S, denoted V S, corresponds to the version space V S
completed with the most general and specific virtual patterns: V S = V S ∪ {⊥(V S),((V S)}. The
specialization relation  is extended to V S by assuming that the most general virtual pattern ⊥(V S) is
more general than any pattern of V S. Dually, the most specific virtual pattern ((V S) is more specific
than any pattern of V S. Then, any pattern of the version space V S is included between ⊥(V S) and
((V S) (i.e., V S ⊆ [⊥(V S),((V S)]). We also have V S = [⊥(V S),((V S)]. From Example 7, we
show that the virtual patterns have unexpected properties:

Example 8 Unexpected properties of virtual itemsets. ⊥(C) is more general than each item (e.g.,
⊥(C) ⊆ A and ⊥(C) ⊆ B). Thereby, ⊥(C) would be the empty set because A ∩ B = ∅. This re-
sult contradicts that its length (i.e., its cardinality) is equal to 1 (see the second line in Example 7). In
the same way, each transaction of the datasetD is included in ((C) i.e., ABEF ⊆ ((C), AE ⊆ ((C),
ABCD ⊆ ((C), etc. So, ((C) would equal ABCDEF , but its length is only 5. Same observations
hold for the sequences.

Example 8 clearly highlights that the most general and specific virtual patterns have non-realistic
behaviors. We will see in Section 6 that these unexpected properties will lead to better intervals for the
pruning strategy based on the relaxation. [37] also introduced an artificial element ( to find molecular
fragments, but the latter has expected properties.

5.2. Properties of virtual patterns

In this section, we show that the computation of virtual patterns is efficient thanks to the borders of a
version space. It is an important point because our relaxing strategy requires these patterns.
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A version space can be represented by two borders (or boundaries). The set G of the most general
patterns of the version space (i.e., G(V S) = {ϕ ∈ V S| there is no γ ∈ V S such that γ ≺ ϕ}) and
dually, the set of the most specific patterns of the version space (i.e., S(V S) = {ϕ ∈ V S| there is no γ ∈
V S such that ϕ ≺ γ}). Together, the sets G and S delimit the version space. Therefore, any pattern of
a version space is comprised between a pattern of G and another one of S.

As borders G and S sum up a version space, it is expected that the virtual patterns of a version space
can be deduced from its borders. Property 4 established this link:

Property 4 Border summary. The most general and specific virtual patterns of a version space V S are
respectively equal to the most general virtual pattern of the border G(V S) and the most specific virtual
pattern of the border S(V S).

Proof. Let p : L → S be an increasing function. For each pattern ϕ ∈ V S, there exists γ ∈ G(V S)
such that γ  ϕ. As p increases, we obtain that p(γ) � p(ϕ) and minγ∈G(V S) p(γ) � minϕ∈V S p(ϕ).
As G(V S) ⊆ V S, we conclude that minϕ∈V S p(ϕ) = minγ∈G(V S) p(γ). The three other relations are
proved with a similar reasoning. ✷

Property 4 expresses that we have ⊥(V S) = ⊥(G(V S)) and ((V S) = ((S(V S)). These relations
highlight that the most general (resp. specific) virtual patterns summarizes the knowledge about the
most general (resp. specific) patterns w.r.t. the relation . The virtual patterns form a more condensed
representation of the version space than their respective borders, which is a helpful representation for
our relaxing problem (see Section 6). Besides, this property ensures that the patterns which belong to
the borders, are sufficient to compute the virtual patterns. In practice, instead of enumerating all the
patterns of the version space V S to compute ⊥(V S) and ((V S), we only analyze the borders G(V S)
and S(V S). Whenever the borders are moderately small, the computation of virtual patterns is efficient.
For instance, computing ⊥(C) (resp. ((C)) in Example 7 only requires to consider the different items
(resp. transactions).

Now we study the particular case where a virtual pattern is “real”:

Property 5. If the border G(V S) contains only one pattern ϕ, then the most general virtual pattern of
version space V S is exactly ϕ. Similarly, if the border S(V S) contains only one pattern ϕ, then the
most specific virtual pattern of version space V S is exactly ϕ.

Proof. Let G(V S) be equal to {ϕ}. Let p : L → S be an increasing function. As p(⊥(V S)) is equal
to minϕ∈G(V S) p(ϕ), we obtain p(⊥(V S)) = p(ϕ). The same result holds for a decreasing function p.
Thereby,⊥(V S) = ϕ. The other relation is proved with a similar reasoning. ✷

In other words, Property 5 expresses that if a border of V S is reduced to one element, the corresponding
virtual pattern really belongs to V S. In particular, as the borders G(V S) and S(V S) respectively
correspond to {⊥(V S)} and {((V S)}, the virtual patterns from the closure of a version space equals

the virtual patterns of this version space and obviously, we obtain that V S = [⊥(V S),((V S)] = V S.
Using ⊥(V S) and ((V S) instead of ⊥(V S) and ((V S) is exactly equivalent. Thus, in Section 6, we
simply use virtual patterns ⊥(V S) and((V S).

5.3. Virtual patterns in the primitive-based framework

This section shows that the most general and specific virtual patterns can naturally be integrated in the
primitive-based framework even if they have been defined separately. But, we show that the use of V S
enables us to recover the theory in V S. It is necessary because V S are used by our relaxing strategy.
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Fig. 5. Representations of intervals [⊥(V S), ϕ] and [ϕ,�(V S)] on virtual lattices.

Property 6. A monotone primitive p on V S is a monotone primitive on V S.

Proof. Let p : L → S be an increasing primitive on V S. Let ϕ and γ be two patterns of V S such that
ϕ ≺ γ. First, if ϕ and γ belong to V S, p(ϕ) is less than p(γ) because p increases on V S. Second, if ϕ
belongs to V S, γ is equal to ((V S). Then, as p(((V S)) = maxθ∈V S p(θ), we obtain that p(γ)ep(ϕ).
Third, if ϕ corresponds to ⊥(V S), ϕ minimalizes p: p(ϕ) = minθ∈V S p(θ). Thereby, as γ is a simple
pattern of V S or maximilizes p (by being ((V S)), we have p(γ) � p(ϕ). We conclude that p is an
increasing function on V S. A similar proof holds with a decreasing primitive. ✷

Any primitive p defined on a version space V S can be extended to its closure V S. Moreover, by
definition, the evaluation of this primitive p coincides on both spaces for any pattern ϕ in V S. Thus, the
theory of q in version space V S corresponds exactly to the theory of q in its closure V S excluding the
two virtual patterns ⊥(V S) and ((V S): T h(V S, r, q) = T h(V S, r, q)\{⊥(V S),((V S)}.

6. Relaxing the primitive-based constraints

6.1. Finding monotone and anti-monotone relaxations

This section depicts our relaxation method to get (anti)-monotone relaxations for the primitive-based
constraints. It is achieved thanks to the joint use of the virtual patterns and the bounding operators.

The key idea of the relaxation is to benefit from the summarization due to the virtual patterns. It
associates a constraint to the patterns present in the database. Intuitively, for any pattern ϕ, we assume
that all its specializations have the most favorable specificities to satisfy the constraint. In such conditions,
if no more specific pattern than ϕ satisfies the constraint, the anti-monotone relaxation returns false.
The monotone relaxation is based on an analog principle. Let us consider the minimal area constraint.
In the best case, a specialization of a given pattern X (i.e., Y ⊃ X) can have a frequency which
equals freq(X). The cardinality of Y cannot exceed the cardinality of the largest transaction of D (i.e.,
count(((C)) = 5). Thus, the area of any specialization is smaller than freq(X) × 5 and as soon as
this value is lower than the minimal area threshold, no specialization of X can satisfy the minimal area
constraint.

We formalize these intuitions by means of virtual patterns and bounding operators. As the patterns
have to be present in the database, they belong to the collection C. We recall that whenever this collection
contains a finite number of patterns, the latter is a version space. Thereby, we can consider its closure C.
In this space, all the generalizations (resp. specializations) of a pattern ϕ are described by the interval
[⊥(C), ϕ] (resp. [ϕ,((C)]), see Fig. 5. As the virtual patterns belong to the primitive-based framework
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(see the previous section), the bounding operators can be applied on intervals of C. Then, we consider
the two following primitive-based constraints for any pattern ϕ ∈ C:

{
$q%⊥〈ϕ〉 ≡ $q%〈⊥, ϕ〉
$q%�〈ϕ〉 ≡ $q%〈ϕ,(〉

As we mainly focus on the version space C, the virtual patterns ⊥ and ( respectively refer to ⊥(C)
and((C). Theorem 1 justifies that the operators $�%⊥ and $�%� are named monotone and anti-monotone
relaxing operators. It is the main result of this paper:

Theorem 1 Monotone and anti-monotone relaxations. The primitive-based constraints $q%⊥ and $q%�
are respectively a monotone and an anti-monotone relaxations of q.

Proof. First, we prove that $q%� is anti-monotone. Let q ∈ Q and ϕ be a pattern such that $q%�〈ϕ〉 is
true. Let γ be a pattern such that γ  ϕ. As we have $q%� = $q%〈ϕ,(〉 and [ϕ,(] ⊆ [γ,(], we obtain
that $q%〈ϕ,(〉 � $q%〈γ,(〉 = true (Lemma 1). Thus $q%� is anti-monotone. Besides, we will check
that $q%� is a relaxation of q. Assuming that $q%�〈ϕ〉 is false (i.e., $q%〈ϕ,(〉 = false), Property 3
gives that for any pattern θ ∈ [ϕ,(] (i.e., ϕ  θ, we have $q%〈ϕ,(〉 � q(θ) = false. Finally, ¬$q%�
implies ¬q and then, we conclude that the constraint $q%� is an anti-monotone relaxation of q. A similar
reasoning is applied on $q%⊥. Thus, Theorem 1 is proved. ✷

Theorem 1 ensures that we achieve a monotone and an anti-monotone relaxation of any primitive-based
constraint by applying the relaxing operators $�%⊥ and $�%�. These relaxations inherit from the good
properties of the bounding operators. As these operators deal with boolean operators, relaxations benefit
from the specificities of the whole constraint thanks to the combination of the relaxations stemming from
the atomical constraints. Besides, the relaxations are computed only once before the mining step as well
as the bounds of the constraint.

Example 9. Let us come back to our example of the area constraint by applying the operator $�%� to this
constraint. We have $area(X) � 6%� = freq(X)× count(() � 6 because $area(X) � 6%〈X,Y 〉 =
freq(X) × count(Y ) � 6 (see Section 4.2) and $q%�〈X〉 ≡ $q%〈X,(〉. As count(() = 4, we
obtain that freq(X) � 6/4 which is the anti-monotone relaxation. Symmetrically, we also deduce the
monotone relaxation count(X) < 6/5 given in Section 2.4 stemming from $area(X) � 6%⊥〈⊥,X〉 =
freq(⊥)× count(X) � 6 = 5× count(X) � 6.

Finally, for any primitive-based constraint, our approach automatically gives an answer to the relaxing
problem stated in Section 2.4. Furthermore, constraint-based mining tasks can be performed on very
difficult contexts previously unfeasible without this optimization (see Section 8).

6.2. Other version spaces

Up to now, the relaxation approach only considers virtual patterns relying on the version space of
the patterns present in the database. In particular, the version space remains the same with different
constraints. Sometimes, we can go further by optimizing the version space thanks to constraints in
order to improve the pruning process. Assuming that we want to relax a constraint having monotone
or anti-monotone atomical constraints, they can be used to restrain the version space C. The values



126 A. Soulet and B. Crémilleux / Mining constraint-based patterns using automatic relaxation

corresponding to terminal primitives will be closer to the patterns and the virtual patterns stemmed from
this new version space will be more accurate. Thus, the relaxations based on these virtual patterns are
more selective and they again reduce the search space during the mining step. For instance, admitting
that the length of the requested patterns does not exceed l, we can deal with the new version space
delimited by freq(X) � 1 ∧ count(X) � l. Changing the collection C is also necessary when it is
infinite in order to be able to define virtual patterns. Typically, mining an unlimited sequence of events
requires to limit the length of the maximal episodes [28].

The quality of the relaxations is also shown by theoretical and practical investigations in the next
sections.

7. Theoretical analysis of relaxations

This section aims at analyzing the efficiency of our relaxation approach stemmed from relaxing
operators. First, we propose to detect most monotone and anti-monotone constraints. Second, we prove
that these constraints are optimally relaxed.

7.1. Monotonicity testing operators

The automatic analysis of the monotone properties of a constraint is a non trivial task. In the case
of the minimal frequency constraint, the anti-monotone property clearly stems from the fact that the
more general a pattern is, the more frequent is. With the constraint q6, the anti-monotone property is
less intuitive and more difficult to deduce. Besides, how can it be explained that q 6 is anti-monotone
and not q1 whereas q1 is very similar to q6? Intuitively, the monotone properties of the primitives
seem to be fundamental. Indeed, the only difference between q6 ≡ count(X)/freq(X) < ρ and
q1 ≡ count(X)×freq(X) < ρ is the arithmetical operator applied to the length and the frequency. One
can note that × is an increasing function according to the second operand (on positive reals) while / is a
decreasing one. Similarly, there is the same difference between + and−, and count(X)−freq(X) < ρ
is anti-monotone whereas count(X) + freq(X) < ρ does not have good property.

Let us now formalize this intuition for any constraint q of Q. We start by defining (anti-)monotone
testing operators. Given a primitive-based constraint q, we state:

"q#M =
{
true, if "q#〈γ, ϕ〉 is equivalent to q(ϕ)
false, otherwise

$q%M =
{
true, if $q%〈γ, ϕ〉 is equivalent to q(ϕ)
false, otherwise

The operator "�#M (resp. $�%M ) is named the anti-monotone (resp. monotone) testing operator according
to the specialization. Theorem 2 justifies their name:

Theorem 2 Correction of testing operators. A primitive-based constraint satisfying "q#M (resp. $q%M )
is anti-monotone (resp. monotone).

Proof. Let q ∈ Q satisfying "q#M (i.e., "q#〈γ, ϕ〉 ≡ q(ϕ)). Assuming that γ  ϕ and q(ϕ) = true,
we have "q#〈γ, ϕ〉 = q(ϕ) = true. As γ ∈ [γ, ϕ] and "q#〈γ, ϕ〉 � q(γ) (Property 3), we obtain that
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q(γ) = true and conclude that q is anti-monotone. Dually, a primitive-based constraint q satisfying
$q%M is monotone. ✷

Thus, Theorem 2 shows that "�#M and $�%M give a partial characterization based on primitives, whether
anti-monotone or monotone properties. Whenever the answer of "q#M or $q%M is true, q is respectively
anti-monotone and monotone. Otherwise, the answer is false and nothing can be asserted about the
constraint. For instance, even if q7 is an anti-monotone constraint, we have "q7#M = false.

Example 10 Testing monotonicity of constraints. Applying the anti-monotone testing operator on the
constraint q6. We first compute its lower bound with the operator "�#. As � increases inB according to the
first variable and decreases according to the second one, we have "freq(X)/count(X) � ρ#〈X,Y 〉 =
"freq(X)/count(X))#〈X,Y 〉 � $ρ%〈X,Y 〉. As ρ is a constant, we obtain that $ρ%〈X,Y 〉 =
ρ. / increases with the first variable and decreases with the second one, we find that
"freq(X)/count(X)#〈X,Y 〉 = "freq(X)#〈X,Y 〉/$count(X)%〈X,Y 〉. Finally, "q6#〈X,Y 〉 is equal
to freq(Y )/count(Y ) � ρ because freq decreases and count increases. We conclude that "q#M is
true and q6 is anti-monotone (its lower bound on [X,Y ] equals to q(Y )). On the contrary, we obtain
that "q1#M is equal to false.

In what follows, "Q#M (resp. $Q%M ) designates the set of constraints which has a true answer for the
anti-monotone (resp. monotone) testing operator (in particular, {q5, q6} ⊂ "Q#M and {q4} ⊂ $Q%M ).
We say that "Q#M and $Q%M are respectively the set of all the detectable anti-monotone constraints and
all the detectable monotone constraints. These detectable constraints verify particular properties. For
instance, the bounds of a detectable anti-monotone constraint q are exact because "q#〈ϕ, γ〉 = q(γ) and
of course, γ belongs to [ϕ, γ] (dually, $q%〈ϕ, γ〉 = q(ϕ)).

7.2. Optimal relaxations

This section theoretically proves that our relaxing approach is optimal for detectable monotone and
anti-monotone constraints.

Numerous monotone (or anti-monotone) relaxations can be defined for a same constraint. But their
quality depends on the size of the corresponding theory. More precisely, the closer the relaxation is to
the original constraint, the better the theory of a relaxation. Thus, an optimal (anti-)monotone relaxation
of a constraint is its most restrictive (anti-)monotone relaxation:

Definition 6. A monotone (or anti-monotone) relaxation q ′ of a constraint q is optimal iff for any
monotone (or anti-monotone) relaxation q ′′ of q, q′′ is also a relaxation of q ′.

The optimal monotone (or anti-monotone) relaxation of q selects the smallest theory larger than that
of q and having a monotone (or anti-monotone) property. A constraint has many monotone or anti-
monotone relaxations, but only one optimal monotone and one anti-monotone relaxations. With the
minimal frequency constraint q5, each operator produces its optimal relaxation. Indeed, it is its own
anti-monotone relaxation. On the contrary, the relaxations of minimal area constraint are not optimal.
Figure 6 depicts the theory of relaxation freq(X) � 6/4 in gray shape. F and DE belong to the
relaxation computed by our operators whereas the bold line defines a more restrictive anti-monotone
relaxation.

Property 7 indicates that our approach provides the optimal (anti-)monotone relaxations for the de-
tectable (anti-)monotone constraints:
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Fig. 6. Optimality of anti-monotone relaxation of minimal area constraint.

Property 7 Optimality of relaxation. The monotone and anti-monotone relaxations $q%⊥ and "q#⊥ of a
detectable monotone (or an anti-monotone) constraint q are optimal.

Proof. Let q ∈ "Q#M . By definition of relaxing operators, we have $q%�〈ϕ〉 ≡ $q%〈ϕ,(〉 and
$q%⊥〈ϕ〉 ≡ $q%〈⊥, ϕ〉. The definition of "�#M ensures that $q%〈γ, ϕ〉 is equivalent to q(ϕ). Thus,
$q%�〈ϕ〉 ≡ q(() which is a constant (often equals to true). This result is optimal as q is monotone,
there is no better anti-monotone relaxation. Besides, $q%⊥〈ϕ〉 ≡ q(ϕ) i.e., the detectable mononotone
constraint is its own monotone relaxation. This result is again optimal because a relaxation of q cannot
be better than q. Dually, we conclude also that our relaxations of a detectable anti-monotone constraint
are the optimal relaxations. ✷

Property 7 ensures that most of monotone and anti-monotone constraints are optimally relaxed by our
operators. For other constraints, finding the optimal relaxations remains an open issue. Nevertheless,
experimental analysis shows the impressive practical benefit of many non-optimal relaxations.

8. Experimental analysis

The aim of our experiments is to measure the runtime benefit brought by the anti-monotone relaxation
obtained thanks to the virtual patterns. We deal with itemset and sequence databases. All the experiments
were conducted on a 2.2 GHz Xeon processor with Linux operating system and 3GB of RAM memory.

8.1. Itemset mining

We use the mushroom dataset coming from the FIMI repository.2 The constraints using numeric
values were applied on a table of values randomly generated within the range [0,100]. Table 2 provides
the definition of the virtual patterns ⊥ and ( with the used table of values. Experiments are based on
APRIORI [2] and ECLAT [46] algorithms implemented by Borgelt’s.

Figure 7 plots extractions of patterns with and without anti-monotone relaxation. On the left, the curves
give runtimes for mining all the patterns satisfying the minimal area constraint according to the area

2http://fimi.cs.helsinki.fi/data/.
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Table 2
The most general and specific virtual
patterns with the mushroom dataset

Primitive p p(⊥) p(�)

freq 8124 1
count 1 23
sum 0 1166
min 97 0
max 0 97
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Fig. 7. Runtime performances with itemsets.

threshold. APRIORI and ECLAT curves without relaxations are not reported because their extractions fail.
On the right, the curves correspond to runtime performances of mining of patterns satisfying the minimal
average constraint according to the average threshold. In addition, a minimal frequency threshold of 1%
is added to make feasible extractions. This threshold is used for APRIORI and ECLAT.

The curves of Fig. 7 show that in all cases, using virtual patterns drastically reduces extraction times.
However, relaxations are more efficient whenever the constraint is very selective (here,when the threshold
is high).

8.2. Sequential pattern mining

We now study the impact of anti-monotone relaxations on algorithms of sequential frequent pat-
tern mining. We use two implementations: PREFIXSPAN [35] dedicated to frequent sequences and
CLOSPAN [45] dedicated to closed frequent sequences. The implementations are available on the website
http://illimine.cs.uiuc.edu/.

The synthetic dataset used for our experiments were generated using standard procedure described
in [3]. We tested both the algorithms on dataset C100T2.5S10I2.5. In this dataset, the number of
items is set to 1,000, and there are 10,000 sequences in the dataset. The average number of items within
itemsets is set to 2.5 (denoted as T2.5). The average number of itemsets per sequence is set to 10
(denoted as S10).

Figure 8 reports runtimes needed for extracting all the sequences satisfying the minimal area constraint
according to the area threshold. We recall that the area definition is freq(X)×count(X) where freq(X)
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is the frequency of X and count(X) is the number of items belonging to X (e.g., count(〈(AB)(A)〉) =
3). As for itemset mining, without a minimal frequency constraint, the mining is unfeasible and then,
the approach without relaxation fails.

Efficiency of anti-monotone relaxations for sequence mining is comparable to performances observed
with itemsets. The efficiency of the pruning depends on the selectivity of the constraint. The more
selective the constraint is, the faster the mining is.

The above experiments demonstrate that the large scope of our relaxing approach. First, the relaxations
stemmed from our method are useful for different kinds of languages such as itemsets (in Section 8.1) or
sequences (in Section 8.2). Second, the relaxed constraints are independent from the choice of the mining
algorithm. The extraction step can be efficiently performed with a breadth-first search (e.g., APRIORI)
or a depth-first search manner (e.g., ECLAT and PREFIXSPAN). Finally, note that prototypes as CLOSPAN

extract only closed patterns whereas any kind of pattern according the primitive-based framework are
successfully addressed by our method.

9. Conclusion

In this paper, we have presented a very general approach for constraint-based pattern mining relying
on any partially ordered language describing the patterns. The user is able to define in a flexible way
a large set of useful constraints. The primitive-based constraints are a super-class of classes such as
monotone, anti-monotone, convertible and succinct constraints. We introduced the notion of virtual
patterns to summarize the specificities of the data mining context in order to automatically achieve
monotone and anti-monotone relaxations. Efficient pruning conditions stemmed from these relaxations
and usual constraint mining algorithms can be reused to push them whereas the constraint does not
satisfy monotonicity properties. Experiments show that these relaxations are very efficient for reducing
the search space during the mining step leading to mining tasks which were unfeasible before. As
expected, the more selective the constraint is, the faster the mining. More generally, our automated
method has several assets. Firstly, we demonstrate that computed relaxations are optimal with detectable
monotone and anti-monotone constraints. Secondly, this pre-processing approach on the constraint is
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independent from the choice of the algorithm. In practice, many existing algorithms can use these
relaxations to mine different kinds of patterns under constraints.

Further work addresses the refinement of the most specific and general virtual patterns to take into
account more accurately the contiguous subsets and supersets. In the same way, we would like to revisit
mining problems by introducing other virtual patterns which appear to be an elegant and efficient trick.
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