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Named Entity Recognition
I Named Entity Recognition (NER) task :

• Proprer Nouns : person, location, organization (movie, brand. . .)
• Definite Descriptions : time expression, amount, function (. . .)

I Named Entities Recognition (NER) by :
• Detecting / delimiting NEs (determining frontiers, boundaries)
• Categorizing / classifying / assigning a type to detected NEs
⇒ Finding markers as NEs boundaries

Example
The <prod> iPhone 4 </prod> was announced during the <time> 7th of june,
2010 </time> keynote by <pers> Steve Jobs </pers>, <fonc> chief executive
officer </fonc> of the <org> Apple </org> company.
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General Context

Context of work
I Main approaches of NER :

• Knowledge-based systems (difficult to attain good recall)
• Machine learning systems (generally not easy to customize)
⇒ We try to find a common ground for combining / hybriding systems

I Existing system : CasEN [Fri06] (transducer / rule-based system)
I Available corpus : Ester2 [GGC09], corpus of transcription of

French radio broadcasts annotated in NEs :
Corpus Tokens Sentences NEs

Ester2-corr 40 167 1 300 2 798
Ester2-held 48 143 1 683 3 074

TABLE: Characteristics of Ester2 corpora

⇒ Our objective : from Ester2 corpus (as train), mine pattern and
find informative rules that may enhance CasEN for NER
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General Context
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Mining Patterns from Corpus
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Mining Patterns from Corpus

Extracting Patterns
I Finding rules that help detecting and categorizing

simultaneously by determining markers of NEs
• he flies to Poznan→ he flies to <loc> Poznan </loc>
• president Obama→ president <pers> Obama </pers>
• the benefits of Apple→ the benefits of <org> Apple </org>

I Preprocessings : tokens, lemmas, POS-tagging (TreeTagger)
⇒ Regular tokens : we only keep the lemma (generalized patterns)
⇒ Proper Nouns (PN), we only keep POS (avoids overfitting)

I Pattern Mining considerations :
• Exhaustively looking for patterns on pre-annotated corpus
• Extracting and filtering patterns correlated to NEs markers
• Apply patterns on unseen (test) corpus
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Mining Patterns from Corpus

Building hierarchy of items

the a this

DET CN

president

presidents

head officer . . .

PN

PoznanApple . . .
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Mining Patterns from Corpus

From Corpus to Patterns : concrete example

he

we

PRO

travels

VER

come

to

PRP

<loc> PoznanPN </loc> by

PRP

with

Corpus pre-annotated sentence
I (. . .) As he travels to Poznan by plane, he thought (. . .)
I (. . .) , this time, we come to Barcelona with (. . .)

Extracted Patterns
I

I

I

I

I he travel to <loc> PN </loc> by

I PRP <loc> PN

I PRO travel PRP <loc> PN </loc>

I we come to <loc> PN </loc> with (frequency : 1)

I VER to <loc> PN (frequency : 2)

I to PN </loc> PRP (frequency : 2)
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Mining Patterns from Corpus

Filtering Patterns as Informative Rules

Transduction Rule
I A Transduction Rule is a morpho-syntactic pattern (relying on

the POS-tagging hierarchy) containing NEs markers for which are
defined the standard parameters in pattern mining :
• Support : number of occurrences in corpus
• Confidence : in what proportion pattern appears with its markers

Informative Transduction Rule
I By exhaustively mining corpus, we obtain a very large set of rules

⇒ We need to filter out rules
⇒ For two rules which are generalization one of each other, we keep :

• The most specific one in terms of POS-tagging hierarchy
• The most informative according to markers
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NER using Informative Rules

Probability model
I Many rules are triggered at a given position
I Define a random variable to define probability of markers

P(Mi = mji )

I Annotation probability for a sentence (assumption : markers are
independant) :

P(M1 = mj1,M2 = mj2, . . . ,Mn = mjn)

≈ ∏
i=1...n

P(Mi = mji )

I Probability learned by Maximum Entropy modeling
I Use dynamic programming to search annotation (XML-like / flat)
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NER using Informative Rules

Dynamic programming

the

DET

/0 0.3

<time> 0.3

<org> 0.3

<pers> ∼ 0

<loc> ∼ 0

3rd

NUM

/0 0.2

<pers> 0.4

<loc> 0.2

Guggenheim

PN

/0 0.5

<org> 0.2<org> 0.2

</pers> 0.2

Museum

CN

/0 0.1

</org> 0.6

</loc> 0.2

spent

VER
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Experimental Results

Ester2 Corpus
Pattern extraction results over Ester2-Corr ( 40K tokens, 3K NEs)

Corpus Sup. Conf. Rules Inf. Rules Gain

Ester2-corr
10 .5 2 270 1 119 2.03
5 .5 28 047 3 673 7.63
3 .3 458 875 12 653 36.27

TABLE: Extraction over Ester2 corpus at support and confidence thresholds

Interpretation
I Number of patterns is very large when support / confidence

thresholds are lowered
I Filtering pattern is effective and alllows to keep a reasonnable

number of rules
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Experimental Results

Predicting Markers

Predicted markers

A
ct

ua
lm

ar
ke

rs tot /0 <pers> </pers> <loc> </loc> <org> </org> <fonc> </fonc> rec.
/0 27803 27168 46 5 114 68 91 75 28 28 0.98

<pers> 583 86 430 20 1 26 1 18 0.74
</pers> 592 48 470 45 27 0.79
<loc> 700 162 20 2 394 114 1 2 0.56
</loc> 698 137 2 16 2 407 127 0.58
<org> 448 203 30 45 157 2 6 0.35
</org> 443 176 59 69 122 2 0.27
<fonc> 225 84 1 2 3 2 129 0.57
</fonc> 219 112 27 6 10 14 48 0.22

prec. 0.94 0.77 0.83 0.68 0.66 0.40 0.33 0.81 0.46

TABLE: Confusion matrix between rule markers using a MaxEnt classifier

Interpretation
I Great ambiguity org/pers and org/loc (known problem)
I Beginning of a NE is not necessarily easier to find (cf pers, loc)
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Experimental Results

Predictions NEs

FIGURE: Evaluating (SER, to be minimized) NER annotations

Interpretation
I MaxEnt accurately weights rules (even less frequent/confident)
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Experimental Results

Hybriding Symbolic and Mining Systems
Ins. Del. Typ. Ext. SER

Symbolic 43 348 171 257 29.0

fonc 0 -1 +1 0 28.8
loc +4 -15 +3 +1 16.8
org 0 -13 +11 0 52.8

pers +1 -20 0 +8 15.3
time 0 -2 0 0 24.6
total +5 -51 +19 +8 -1.3

Coupled 48 297 190 265 27.7

TABLE: Using informative rules to enhance a symbolic system

Interpretation
I Coupling systems improves system with generic rules

• from <pers> PN PN
• to <loc> PN
• for <time> / years </time> (“for a few years”)
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Conclusion

Conclusion

Contributions
I Extracting rules using a morpho-syntactic hierarchy
I Filtering specific and informative patterns as rules
I Using patterns to annotate a texte (Named Entities)
I Hybriding systems

Further investigations
I Better filtering patterns to be integrated in the knowledge base ?
I How to enrich patterns (syntax, semantics, anaphora)
I Assess performance with other models to predict markers
I Involved in NER task of project Etape (French National Research

Agency, ANR)
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Conclusion
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