Recognizing Named Entities using Automatically Extracted Transduction Rules

D. Nouvel, J.Y. Antoine, N. Friburger, A. Soulet

Université François Rabelais Tours Laboratoire d'Informatique Equipe BDTLN

< A > < E >

Named Entity Recognition

- Named Entity Recognition (NER) task :
 - Proprer Nouns : person, location, organization (movie, brand...)
 - Definite Descriptions : time expression, amount, function (...)
- Named Entities Recognition (NER) by :
 - Detecting / delimiting NEs (determining frontiers, boundaries)
 - Categorizing / classifying / assigning a type to detected NEs
 - ⇒ Finding markers as NEs boundaries

Example

The *<prod>* iPhone 4 *</prod>* was announced during the *<time>* 7th of june, 2010 *</time>* keynote by *<pers>* Steve Jobs *</pers>*, *<fonc>* chief executive officer *</fonc>* of the *<org>* Apple *</org>* company.

< A > < E >

1. General Context

- 2. Mining Patterns from Corpus
- 3. NER using Informative Rules
- 4. Experimental Results
- 5. Conclusion

Context of work

- Main approaches of NER :
 - Knowledge-based systems (difficult to attain good recall)
 - Machine learning systems (generally not easy to customize)
 - \Rightarrow We try to find a common ground for combining / hybriding systems
- Existing system : CasEN [Fri06] (transducer / rule-based system)
- Available corpus : Ester2 [GGC09], corpus of transcription of French radio broadcasts annotated in NEs :

Corpus	Tokens	Sentences	NEs
Ester2-corr	40 167	1 300	2 798
Ester2-held	48 143	1 683	3 074

TABLE: Characteristics of Ester2 corpora

⇒ Our objective : from Ester2 corpus (as train), mine pattern and find informative rules that may enhance CasEN for NER

< A > < B >

General Context

Data Flow for NER Learning and Evaluating

▲ 御 ▶ ▲ 臣 ▶

1. General Context

- 2. Mining Patterns from Corpus
- 3. NER using Informative Rules
- 4. Experimental Results
- 5. Conclusion

Extracting Patterns

- Finding rules that help detecting and categorizing simultaneously by determining markers of NEs
 - he flies to Poznan \rightarrow he flies to </oc> Poznan <//oc>
 - president Obama → president <pers> Obama </pers>
 - the *benefits* of Apple → the benefits of *<org>* Apple *</org>*

Preprocessings : tokens, lemmas, POS-tagging (TreeTagger)

- \Rightarrow Regular tokens : we only keep the lemma (generalized patterns)
- ⇒ Proper Nouns (PN), we only keep POS (avoids overfitting)
- Pattern Mining considerations :
 - Exhaustively looking for patterns on pre-annotated corpus
 - Extracting and filtering patterns correlated to NEs markers
 - Apply patterns on unseen (test) corpus

< A > < B >

Building hierarchy of items

From Corpus to Patterns : concrete example

Corpus pre-annotated sentence

- ► (...) As he *travels to* Poznan by plane, he thought (...)
- ► (...), this time, we *come to* Barcelona with (...)

Extracted Patterns

Filtering Patterns as Informative Rules

Transduction Rule

- A Transduction Rule is a morpho-syntactic pattern (relying on the POS-tagging hierarchy) containing NEs markers for which are defined the standard parameters in pattern mining :
 - Support : number of occurrences in corpus
 - Confidence : in what proportion pattern appears with its markers

Informative Transduction Rule

- By exhaustively mining corpus, we obtain a very large set of rules
- \Rightarrow We need to filter out rules
- \Rightarrow For two rules which are generalization one of each other, we keep :
 - The most specific one in terms of POS-tagging hierarchy
 - The most informative according to markers

< A > < E >

- 1. General Context
- 2. Mining Patterns from Corpus
- 3. NER using Informative Rules
- 4. Experimental Results
- 5. Conclusion

Probability model

- Many rules are triggered at a given position
- Define a random variable to define probability of markers

$$P(Mi = m_{j_i})$$

Annotation probability for a sentence (assumption : markers are independent) :

$$P(M_1 = m_{j_1}, M_2 = m_{j_2}, \dots, M_n = m_{j_n})$$

 $\approx \prod_{i=1\dots n} P(M_i = m_{j_i})$

- Probability learned by Maximum Entropy modeling
- Use dynamic programming to search annotation (XML-like / flat)

Dynamic programming

< (2) → (1) ●)

- 1. General Context
- 2. Mining Patterns from Corpus
- 3. NER using Informative Rules
- 4. Experimental Results
- 5. Conclusion

Ester2 Corpus

Pattern extraction results over Ester2-Corr (40K tokens, 3K NEs)

Corpus	Sup.	Conf.	Rules	Inf. Rules	Gain
Ester2-corr	10	.5	2 270	1 119	2.03
	5	.5	28 047	3 673	7.63
	3	.3	458 875	12 653	36.27

TABLE: Extraction over Ester2 corpus at support and confidence thresholds

Interpretation

- Number of patterns is very large when support / confidence thresholds are lowered
- Filtering pattern is effective and allows to keep a reasonnable number of rules

Predicting Markers

	Predicted markers											
ers		tot	0	<pers></pers>		<loc></loc>		<org></org>		<fonc></fonc>		rec.
ž	Ø	27803	27168	46	5	114	68	91	75	28	28	0.98
ŝ	<pers></pers>	583	86	430		20	1	26	1		18	0.74
a		592	48		470		45		27			0.79
ct	<loc></loc>	700	162	20	2	394		114	1		2	0.56
◄		698	137	2	16	2	407		127			0.58
	<org></org>	448	203	30		45		157		2	6	0.35
		443	176		59		69		122		2	0.27
	<fonc></fonc>	225	84	1	2	3		2		129		0.57
		219	112	27	6		10		14		48	0.22
	prec.		0.94	0.77	0.83	0.68	0.66	0.40	0.33	0.81	0.46	

TABLE: Confusion matrix between rule markers using a MaxEnt classifier

Interpretation

- Great ambiguity org/pers and org/loc (known problem)
- Beginning of a NE is not necessarily easier to find (cf pers, loc)

< 17 × 4

Predictions NEs

FIGURE: Evaluating (SER, to be minimized) NER annotations

Interpretation

MaxEnt accurately weights rules (even less frequent/confident)

Nouvel et al. (François Rabelais Tours)

Hybriding Symbolic and Mining Systems

	Ins.	Del.	Тур.	Ext.	SER
Symbolic	43	348	171	257	29.0
fonc	0	-1	+1	0	28.8
loc	+4	-15	+3	+1	16.8
org	0	-13	+11	0	52.8
pers	+1	-20	0	+8	15.3
time	0	-2	0	0	24.6
total	+5	-51	+19	+8	-1.3
Coupled	48	297	190	265	27.7

TABLE: Using informative rules to enhance a symbolic system

Interpretation

- Coupling systems improves system with generic rules
 - from <pers> PN PN
 - to <loc> PN
 - for <time> / years </time> ("for a few years")

- 1. General Context
- 2. Mining Patterns from Corpus
- 3. NER using Informative Rules
- 4. Experimental Results
- 5. Conclusion

Conclusion

Contributions

- Extracting rules using a morpho-syntactic hierarchy
- Filtering specific and informative patterns as rules
- Using patterns to annotate a texte (Named Entities)
- Hybriding systems

Further investigations

- Better filtering patterns to be integrated in the knowledge base?
- How to enrich patterns (syntax, semantics, anaphora)
- Assess performance with other models to predict markers
- Involved in NER task of project Etape (French National Research Agency, ANR)

Thank you

Rakesh Agrawal and Ramakrishnan Srikant.
Mining sequential patterns.
In International Conference on Data Engineering (ICDE'95), pages

3–14, 1995.

Nathalie Friburger.

Linguistique et reconnaissance automatique des noms propres. *Meta : Translators' Journal*, 51-4 :637–650, 2006.

Sylvain Galliano, Guillaume Gravier, and Laura Chaubard. The ester 2 evaluation campaign for the rich transcription of french radio broadcasts.

In 10th Conference of the International Speech Communication Association (INTERSPEECH'2009), 2009.