
Under consideration for publication in Knowledge and Information
Systems

Sequential Pattern Sampling with
Norm-based Utility

Lamine Diop1,2, Cheikh Talibouya Diop1, Arnaud Giacometti2,

Dominique Li2 and Arnaud Soulet2

1University of Gaston Berger of Saint-Louis, Senegal

Email: {diop.lamine3, cheikh-talibouya.diop}@ugb.edu.sn
2University of Tours, France

Email: {arnaud.giacometti, dominique.li, arnaud.soulet}@univ-tours.fr

Abstract. Sequential pattern mining has been introduced by [1] two decades ago and
its usefulness has been widely proved for di�erent mining tasks and application �elds
such as web usage mining, text mining, bioinformatics, fraud detection and so on. Since
1995, despite numerous optimization proposals, sequential pattern mining remains a
costly task that often generates too many patterns. This limit, also reached by itemset
mining, was circumvented by pattern sampling. Pattern sampling is a non-exhaustive
method for instantly discovering relevant patterns that ensures a good interactivity
while providing strong statistical guarantees due to its random nature. Curiously, such
an approach investigated for di�erent kinds of patterns including itemsets and sub-
graphs has not yet been applied to sequential patterns. In this paper, we propose the
�rst method dedicated to sequential pattern sampling. In addition to address sequential
data, the originality of our approach is to introduce a class of interestingness measures
relying on the norm of the sequence, named norm-based utilities. In particular, it en-
ables to add constraints on the norm of sampled patterns to control the length of the
drawn patterns and to avoid the pitfall of the �long tail� where the rarest patterns
�ood the user. We propose a new two-step random procedure integrating this class of
measures, named NUSSampling, that randomly draws sequential patterns according
to frequency weighted by a norm-based utility. We demonstrate that this method per-
forms an exact sampling according to the underlying measure. Moreover, despite the
use of rejection sampling, the experimental study shows that NUSSampling remains
e�cient. We especially focus on the interest of norm constraints and exponential de-
cays that help to draw general patterns of the �head�. We also illustrate how to bene�t
from these sampled patterns to instantly build an associative classi�er dedicated to
sequences. This classi�cation approach rivals state of the art proposals showing the
interest of sequential pattern sampling with norm-based utility.
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Fig. 1. Impact of the long tail on frequent sequential pattern sampling

1. Introduction

Sequential pattern mining has been introduced by [1] two decades ago and its
usefulness has been proved for a wide range of mining tasks and application
�elds [2] such as web usage mining, text mining, fraud detection and so on. Since
1995, many methods have optimized the mining of sequential patterns [3, 4, 5]
and have introduced variants with constraints [6, 7] or condensed representa-
tions [8, 9]. Despite all these advances, sequential pattern mining remains a
costly task that often generates too many redundant patterns. Consequently,
it is not possible to discover patterns or to build pattern-based models in a
short response time. This limit, also reached by other languages (e.g., itemset or
subgraph), was circumvented by Monte Carlo tree search [10] or pattern sam-
pling [11]. Introduced in [11], pattern sampling returns a small set of patterns
randomly drawn with a probability proportional to an interestingness measure
speci�ed by the user. For instance, with frequency, a pattern twice as frequent
will be twice as likely to be picked. Sampling methods are particularly e�cient
and have the advantage of returning patterns with high diversity. This kind of
instantaneous methods is at the core of many approaches that make data mining
more interactive [12, 13, 14, 15, 16]. To the best of our knowledge, there is no
work addressing pattern sampling in sequential data.

Unfortunately, a naive pattern sampling according to frequency is not relevant
for sequential data because of the pitfall of the long tail. In statistics and business,
the long tail of a distribution is its portion having a large number of occurrences
far from the central part of the distribution [17]. In our context, the long tail
designates the long and rare sequential patterns far more numerous than the
short and frequent ones (the �head�). As a result, it is nearly impossible to draw
the most general patterns despite the bias of the frequency. This problem is
stronger with sequential data than with transactional data because the number
of sub-patterns in a sequence is much higher than that in an itemset of the same
length. Figure 1 illustrates the long tail problem on the toy dataset provided in
Section 3. The top histogram shows the frequency of the 35 patterns of the toy
dataset (i.e., bars in dark and light grays). We observe that 23 patterns have
a frequency of 1 (the tail). Consequently, the bars in dark gray of the bottom
histogram show that 39.6% of the patterns drawn according to frequency belong
to this tail (with a frequency of only 1). The real-world datasets reveal even
much more problematic situations (see the experimental study in Section 5). For
instance, each of the 10,000 patterns drawn randomly according to frequency on
bms dataset appears only in a single sequence of the dataset. Of course, these
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patterns are useless because they correspond more to noise than true patterns
describing the data. Other relevant interestingness measures like the area (which
is the frequency of a pattern times its size) su�er from the same di�culties.
Of course, we could use another interestingness measure such as a power of the
frequency to mitigate the long tail issue, but this kind of measures are more
expensive due to preprocessing time (as discussed in Sections 2 and 6). Is it
possible to simply keep the frequency or the area to assess the interest of a
pattern while cutting this long tail?

To circumvent the pitfall of the long tail, we propose in [18] to sample pat-
terns under a constraint on the maximum norm (maximum number of items).
This constraint will prevent drawing too speci�c patterns because too long, but
interestingly, it still allows to draw non-frequent patterns that describe sequences
of rare events. It is really crucial not to force a minimal frequency in order to
have a description of rare objects [15]. In Figure 1, a maximum norm constraint
of 2 removes all dark gray patterns. Interestingly, much of the tail is cut o�. As
a result, the bottom histogram shows a signi�cant increase in the probability to
draw patterns having frequencies ranging from 2 to 4. Indeed, the probability to
draw a pattern with a frequency of 1 has been divided by 2 (the �rst bar in light
gray). Rather than using a binary constraint on the norm to limit the e�ect of
the long tail, it is also possible to use a fuzzy constraint by using an exponential
decay to mitigate the long tail. Therefore, we show in this paper how to con-
sider a larger class of interestingness measures taking into account the norm of
sequences. To achieve this goal, we propose to use the two-step random proce-
dure [19] which is the most e�cient pattern sampling approach in the literature.
After a preprocessing phase, this method extracts an exact sample of patterns
without rejection. However, extending this approach to sequential patterns is a
challenging problem. Indeed, its core requires counting the number of distinct
subsequences for each sequence. This task is not easy because a sequence may
contain several occurrences of the same subsequence and we want to consider a
class of measures using utility functions that requires to count subsequences of
a certain length.

The main contributions of the paper are as follows:

� We introduce a new class of interestingness measures based on norm-based util-
ity functions. This class of measures enables us to consider classical measures
like the frequency or the area. But, it also allows us to consider constraints
(i.e., function whose range is 0 or 1) on the norm to remove too long patterns
and to prevent the long tail issue.

� We propose a new algorithm named NUSSampling (Norm-based Utility Sub-
sequence Sampling) that samples sequential patterns proportionally to fre-
quency weighted by a norm-based utility. It relies on a two-step random pro-
cedure that requires solving two sub-problems: (i) counting the number of dis-
tinct subsequences for a given norm and (ii) uniformly drawing subsequences.
We demonstrate that NUSSampling performs an exact sequential pattern
sampling according to the underlying norm-based utility, and we analyze its
complexity on average.

� We present a large set of experimental results for analyzing the behavior of
NUSSampling. We show on several datasets that our approach is e�cient
enough to return hundreds of sequential patterns per second whatever the
norm-based utility. We also highlight the practical interest of norm constraints
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or exponential decays to better control the quality of the returned patterns
and to avoid the curse of the long tail (for the frequency or the area).

� Sequence classi�cation is a crucial data mining task useful in a wide range
of applications. We investigate how sequential pattern sampling leads to build
associative classi�ers for sequences. Interestingly, the accuracy of these sample-
based classi�ers built in a short response time is comparable to that of the
methods of the state of the art. Experiments show that it is again essential to
use a constraint to draw general patterns contained in the head, and not in
the tail.

This paper is an extended version of [18] that generalizes the notion of fre-
quent sequential pattern sampling under constraint to any norm-based utility.
Consequently, we extend our algorithm to this class and perform additional ex-
periments. There is also a comparison of the class of norm-based utility functions
with other existing classes in the literature and several improvements are dis-
cussed.

The outline of this paper is as follows. Section 2 reviews some related work
about pattern sampling methods. Section 3 introduces basic de�nitions, the class
of norm-based utilities and the formal problem statement. We present our con-
strained two-step random procedure for sequential pattern sampling in Section 4.
We evaluate our approach in Section 5 by carrying out a study on real-world and
benchmark datasets, and by comparing the accuracy of a sample-based classi�er
with the state of the art methods. Then, Section 6 explores some limits and
possible improvements of the proposed approach, in particular for dealing with
discriminative measures. Finally, we conclude and introduce some perspectives
in Section 7.

2. Related Work

After discussing in Section 2.1 the usefulness of pattern sampling to develop
user-centered pattern mining methods, we present in Section 2.2 a brief overview
of the di�erent classes of output space pattern sampling methods proposed in
the literature. In particular, we underline the advantages of multi-step methods
compared with the methods using a random walk or the SAT framework.

2.1. Interest of output space pattern sampling

In recent years, the �eld of pattern mining has shifted to user-centered methods
[29]. Typically, the idea is to capture the feedback of the user during the analysis
of the �rst mined patterns to better choose the next ones. To guarantee this tight
coupling between the system and the user, it is then necessary to use techniques
that provide results at any time [30, 31] or within a short response time of
only a few seconds. Pattern sampling is an e�cient approach that instantly
returns patterns, which enables to design interactive systems [12, 13, 14] or to
produce pattern-based models at any time [15]. For instance, [15] shows how to
approximate the Frequent Pattern Outlier Factor [32] with guarantees by using
frequent itemset sampling. Importantly, it is necessary to distinguish between
input and output space sampling. The input space sampling [33] consists in
generating from a sample of data all the patterns that would have been mined
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Table 1. Typology of outspace pattern sampling methods
Type Guarantees Reference Language Measure Constraint

Random walk:
MCMC

convergence

[11, 12] graphs frequency no
[20] itemsets any strictly positive

measure
closed

[21] itemsets frequency minimal

Random walk:
Heuristics

no
[22] itemsets frequency maximal
[23] graphs weighted relative

accuracy
valid

SAT bounds
[24, 25] itemsets any strictly positive

measure
any con-
straint

Multi-step exact

[19] itemsets frequency, area, dis-
criminative, power
of frequency

no

[26] itemsets frequency, area, dis-
criminative, power
of frequency, rare

no

[27] itemsets exceptional model no
[28] numerical density no

from the complete dataset. The output space sampling [11] consists in generating
a sample of patterns among the patterns that would have been mined from the
complete dataset. More formally, pattern sampling [11, 19] aims at accessing
the pattern space L by an e�cient sampling procedure simulating a distribution
π : L → [0, 1] that is de�ned with respect to some interestingness measure f ,
i.e., π(.) = f(.)/Z where Z is a normalizing constant. As the pattern language
is fully addressed proportionally to f , this approach guarantees a good variety
of patterns returned to the user unlike heuristic approaches. Several approaches
have been proposed for input space sampling of sequential patterns [34, 35], but
to the best of our knowledge, this paper proposes the �rst approach to output
space sampling of sequential patterns. Since the complexity of pattern sampling
is independent of the language size, it is suitable for structured languages where
there is a combinatorial explosion of the number of patterns like subgraphs [23]
and even for in�nite languages like numerical data [28].

2.2. Pattern sampling techniques

Three main classes of methods have been proposed for the output space sampling
of patterns (see Table 1 for an overview).

The �rst class of methods uses random walks in the search space to sample
interesting patterns. In this class, most of the methods [11, 12, 20, 21] are based
on Markov Chain Monte Carlo algorithms (MCMC). The idea is to construct
a Markov chain that has the desired probability distribution as its equilibrium
distribution. This means that a sampled pattern according to the desired distri-
bution is obtained by observing the Markov chain after a number of iterations.
The problem is that MCMC methods often take a large number of iterations
before converging to the desired stationary distribution, i.e. the convergence is
guaranteed but may be very slow. Therefore, heuristic methods [23, 22] have
been proposed to accelerate the convergence and favor the patterns that are the
most relevant (according to a given interestingness measure). In practice, it has
been shown that these methods are more e�cient in terms of computation time.
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However, as they use heuristics to simulate a random walk and explore the pat-
tern language, they o�er no guarantee on the quality of the outputted sample.
Note �nally that [22, 20] consider constraints to restrict the sampling space and
return only maximal and closed itemsets, respectively.

The second class of methods [24] bene�ts from the SAT framework (Boolean
SATis�ability problem framework) to restrict the sampling using any kind of
constraints. For example, it has been used to sample only closed frequent item-
sets, frequent itemsets with a minimum length and minimum support, etc. Based
on the SAT framework, [24] requires to have a solver integrating e�ciently XOR
constraints and in practice, it has been implemented only for itemsets. Com-
pared to the class of methods based on MCMC, it is important to note that
the performed sampling is not exact. Nevertheless, the class of methods based
on SAT o�ers interesting theoretical guarantees. More precisely, the probability
that the method samples a random pattern that satis�es a given constraint lies
within a bounded range determined by the quality of the pattern (according
to an interestingness measure) and an error tolerance. Finally, the authors [24]
emphasize that the e�ciency of their generic approach will hardly compete with
approaches dedicated to a single language and/or class of constraints. Recently,
[25] has improved the performance of this approach by executing it on an FPGA.

The third class of methods [19, 28, 27] consists in drawing an instance of the
dataset and then drawing a pattern contained in this instance. By judiciously
selecting the two sampling distributions, it is possible to obtain an exact sam-
pling according to the desired �nal distribution. Recently, [28] adds a third step
for taking into account numerical data where the pattern language is in�nite.
In this paper, we opted for such a multi-step random procedure for its speed
and accuracy. Section 4.1 underlines speci�c challenges for achieving this goal
in the case of sequences. Note that one of the shortcomings of multi-step ran-
dom procedures is the preprocessing stage, which is quadratic with the size of
the dataset for discriminative measures (and even worse with other speci�c in-
terestingness measures). However, it is possible to use a stochastic technique,
named coupling from the past, to accelerate this preprocessing [26]. In this pa-
per, we will not bene�t from this technique because we focus on the class of
norm-based utilities whose preprocessing remains linear (for both frequency and
area). In [26], the authors show how to handle a very large set of measures to
evaluate the interestingness of an itemset X, i.e. the set of measures of the form
f(X,S) = u?(X) × πK

i=1qi(X,Si) where u?(X) = Fx∈Xb(x) with F ∈ {Π,
∑
}

and qi is either the positive or negative frequency of X in a speci�c portion Si
of the input dataset S.

Besides the inherent di�culty of addressing sequences rather than itemsets,
using a two-step procedure, we already showed in [18] how to sample subse-
quences under a norm constraint with a probability proportional to their fre-
quency. In this paper, we show how to handle a larger set of measures to evaluate
the interestingness of a sequence s. Compared to [26], these measures have the
form f(s,S) = u(s) × freq(s,S) where u is a norm-based utility, i.e. a utility
function that depends only on the norm of the sequence s, and freq(s,S) is the
frequency of s in the input dataset S. This class of measures contains interest-
ingness measures such as frequency or area as already done [19]. However, we
cannot consider discriminative measures [19] or individual utilities on items [20].
Nevertheless, this class of measures allows to incorporate constraints on the norm
of sampled sequences, which is crucial to reduce the long tail e�ect. Finally, in
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Table 2. A sequential dataset S with 4 sequences
Sid Sequence #occurrences Φ(si) wfreq(si) warea(si) w∈[1..2](si) wdecay(si)

s1 〈(ab)c〉 8 8 8 12 6 3.38
s2 〈(ab)c(ac)〉 32 25 25 65 11 5.72
s3 〈c(ac)〉 8 7 7 11 5 2.88
s4 〈(ab)(cd)〉 16 16 16 32 10 5.06

Section 6, we compare more precisely our class of measures with the class of
measures introduced in [26], and we discuss its possible extensions.

3. Problem Statement

This section formalizes the problem of sequential pattern sampling with norm-
based utilities. Before, we recall some preliminary de�nitions about sequences
and we introduce the class of norm-based utilities.

3.1. Basic de�nitions

Let I be a �nite set of literals called items. An itemset X is a subset of I. A
sequence s = 〈X1 . . . Xn〉 de�ned over I is an ordered list of non-empty itemsets
Xi ⊆ I (1 ≤ i ≤ n, n ∈ N). n is the size of the sequence s denoted by |s|.
The norm of the sequence s, denoted by ‖s‖, is the sum of the cardinality of
all its itemsets, i.e. ‖s‖ =

∑n
i=1 |Xi|. In the following, sl denotes the pre�x

〈X1X2 . . . Xl〉 of s (0 ≤ l ≤ n, l ∈ N), s0 being the empty sequence (represented
by 〈〉) and s[j] = Xj denotes the j-th itemset of s (1 ≤ j ≤ n, j ∈ N). Finally, we
denote S the universal set of all the sequences de�ned over I, and a sequential
dataset S over I is a multi-set of sequences de�ned over I. We now recall the
de�nitions of subsequences and occurrences of a subsequence:

De�nition 1 (Subsequence). A sequence s′ = 〈X ′1 . . . X ′m〉 is a subsequence
of a sequence s = 〈X1 . . . Xn〉, denoted by s′ v s, if there exists an index sequence
1 ≤ i1 < i2 < · · · < im ≤ n such that for all j ∈ [1..m], one has X ′j ⊆ Xij . We
denote φ(s) the set of subsequences of a sequence s, i.e. φ(s) = {s′ ∈ S : s′ v s},
and Φ(s) its cardinality, i.e. Φ(s) = |φ(s)|.
Example 1. We use the sequential dataset S presented in Table 2 as a running
example. This dataset contains 4 sequences s1, s2, s3 and s4 de�ned over the
set of items I = {a, b, c, d}. For example, the size of s1 = 〈(ab)c〉 is equal to
2, i.e. |s1| = 2, whereas its norm is equal to 3, i.e. ‖s1‖ = |(ab)| + |(c)| =
2 + 1 = 3. Moreover, we have s0

1 = 〈〉, s1
1 = 〈(ab)〉, s2

1 = s1, s1[1] = (ab) and
s1[2] = c. Finally, the set φ(s1) of subsequences of s1 is de�ned by φ(s1) =
{〈〉, 〈a〉, 〈b〉, 〈c〉, 〈(ab)〉, 〈ac〉, 〈bc〉, 〈(ab)c〉}. Thus, we have Φ(s1) = |φ(s1)| = 8.
The number of subsequences Φ(si) of all sequences si ∈ S is detailed in Table 2.
The de�nition and the purpose of the four weights wfreq(si), warea(si), w∈[1,2](si)
and wdecay(si) are explained in Section 4.

It is important to note that a subsequence s′ = 〈X ′1 . . . X ′m〉may occur several
times in a sequence s = 〈X1 . . . Xn〉 if there exist several index sequences 1 ≤
i1 < i2 < · · · < im ≤ n such that for all j ∈ [1..m], one has X ′j ⊆ Xij . In that
case, there are several occurrences of the subsequence s′ in s. The next de�nition
explains how each occurrence is represented:
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De�nition 2 (Occurrence). An ordered list of n itemsets o = 〈Z1 . . . Zn〉 is
an occurrence of a subsequence s′ = 〈X ′1 . . . X ′m〉 in a sequence s = 〈X1 . . . Xn〉
if there exists an index sequence 1 ≤ i1 < · · · < im ≤ n such that for all
j ∈ {i1, . . . , im}, one has Zij = X ′j ⊆ Xij , and for all j ∈ [1..n]\{i1, . . . , im}, one
has Zj = ∅. This index sequence, called signature of o, is unique by de�nition.

Example 2. For the sequence s2 = 〈(ab)c(ac)〉, o1 = 〈(a)(c)∅〉 and o2 =
〈(a)∅(c)〉 are two occurrences of its subsequence s′2 = 〈(a)(c)〉. Moreover, the
index sequences 〈1, 2〉 and 〈1, 3〉 are the signatures of o1 and o2, respectively.
In Table 2, the number of occurrences of all its subsequences is given for each
sequence (e.g., there are 32 occurrences for 25 distinct subsequences in s2).

3.2. Norm-based utilities

Pattern discovery is based on interestingness measures that evaluate the qual-
ity of a pattern. One of the most popular interestingness measures is the fre-
quency which is an intuitive interestingness measure for experts and is an essen-
tial atomic element to build many other interestingness measures (like area or
discriminative measures). The frequency of a subsequence s ∈ S in the sequential
dataset S, denoted by freq(s,S), is de�ned by: freq(s,S) = |{s′ ∈ S : s v s′}|.
It is also common to associate a utility according to the pattern norm as it is the
case with the area measure area(s,S) = freq(s,S)×‖s‖. For this reason, we are
interested in the class of interestingness measures of the form freq(s,S) × u(s)
where u is a norm-based utility:

De�nition 3 (Norm-based utility). A utility function u is a norm-based
utility i� there exists a function fu : N → R such that for every pattern s ∈ S,
one has u(s) = fu(‖s‖).

The set of all norm-based utilities is denoted by U . In the remainder of the
paper, for sake of simplicity, any utility implicitly refers to a norm-based utiliy.
For instance, the utility uarea(s) = ‖s‖ allows us to consider the area measure
area(s,S) = freq(s,S)× ‖s‖ and in that case, one has fuarea(`) = `. Obviously,
let us notice that the norm-based utility ufreq(s) = 1 enables us to consider
the frequency as interestingness measure. Besides, the utility u≤M (resp. u≥m)
de�ned as 1 if ‖s‖ ≤ M (resp. ‖s‖ ≥ m) and 0 otherwise simulates a maxi-
mum (resp. minimum) norm constraint. Indeed, with the induced interestingness
measure freq(s,S)×u≤M (s) (resp. freq(s,S)×u≥m(s)), a pattern with a norm
strictly greater than M (resp. lower than m), is judged useless (whatever its
frequency). ≥ m and ≤ M are said to be norm-based utility constraints (where
1 means true and 0 means false). Finally, the utility udecay(s) = α‖s‖, named
exponential decay, is useful for penalizing long sequences but in a smooth way
in comparison with u≤M .

Interestingly, it is possible to combine norm-based utilities thanks to arith-
metical operations:

Property 1 (Arithmetical closure). The class of norm-based utilities is
closed under arithmetical operations i.e., u1(s) ? u2(s) is a norm-based utility
if u1 ∈ U , u2 ∈ U and ? ∈ {+,−,×, /}.

This straightforward property enable us to combine several norm-based util-
ities for building complex ones. For instance, if q1 and q2 are two norm-based
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Table 3. Examples of subsequences in S considering sequences in S
Pattern s u∈[1..2](s) freq(s,S) uarea(s) Pattern s u∈[1..2](s) freq(s,S) uarea(s)

〈a〉 1 4 1 〈ac〉 1 3 2

〈b〉 1 3 1 〈ad〉 1 1 2

〈c〉 1 4 1 〈ba〉 1 1 2

〈d〉 1 1 1 〈bc〉 1 3 2

〈(ab)〉 1 3 2 〈bd〉 1 1 2

〈(ac)〉 1 2 2 〈ca〉 1 2 2

〈(cd)〉 1 1 2 〈cc〉 1 2 2

〈aa〉 1 1 2 〈c(ac)〉 0 2 3

〈〉 0 4 0 〈(ab)c〉 0 3 3

utility constraints (i.e., norm-based utilities with {0, 1} as range), then q1 ∧ q2

and q1 ∨ q2 are also norm-based utility constraints because q1 ∧ q2 = q1 × q2

and q1 ∨ q2 = q1 + q2 − q1 × q2. Consequently, in the following, we consider the
norm-based utility u∈[m..M ] = u≥m× u≤M for focusing the pattern discovery on
patterns having a norm between m and M .

3.3. Problem of frequent sequential pattern sampling with a
norm-based utility

A pattern sampling method aims at randomly drawing a pattern X from a
language L according to an interestingness measure f . X ∼ π(L) denotes such
a pattern where π(.) = f(.)/Z is a probability dristribution over L (with Z as
nomalizing constant). Our goal is to randomly draw sequential patterns according
to frequency under a norm-based utility:

Given a sequential dataset S, a norm-based utility u ∈ U , we aim at
randomly drawing a subsequence s ∈ S with a probability distribution
π(s) proportional to its frequency in S weighted by u i.e.,

π(s) =
freq(s,S)× u(s)∑

s′∈S freq(s
′,S)× u(s′)

One of the advantages of frequent pattern sampling [19] is to remove the min-
imum frequency threshold (always di�cult to set) while our problem introduces
two thresholds in the case of u∈[m..M ]: m and M . Nevertheless, they are easier
to set because their range is much smaller ([1..10] in our experiments) than that
of the minimum threshold of frequency.

Example 3. Table 3 provides a set of subsequences considering the sequential
dataset S, and gives the frequencies in S of all these subsequences. Additionally,
we also give the norm-based utilies u∈[1..2](s) and uarea(s) for each subsequence
s. For instance, because our problem is to draw a subsequence proportionally to
its frequency times a norm-based utility, and freq(〈ac〉,S) = 3 × freq(〈ba〉,S),
our objective is to develop a sampling method such that the probability to draw
the subsequence 〈ac〉 is three times greater than the probability to draw the
subsequence 〈ba〉 (because 〈ac〉 and 〈ba〉 has the same norm and u(〈ac〉) = u(〈ba〉)
whatever the norm-based utility u). But, even if the subsequence 〈(ab)c〉 has a
frequency of 3, it will not be drawn if we consider the utility u∈[1..2] (because its
norm is 3 and greater than M = 2).



10 Diop et al

4. Two-Step Random Procedure With a Norm-based

Utility

In this section, we present our algorithm called NUSSampling (for Norm-based
Utility Subsequence Sampling) that samples sequential patterns This algorithm
relies on a two-step random procedure presented in Section 4.1. We explain in
Section 4.2 how to count the number of distinct subsequences for a given norm,
and we show in Section 4.3 how this result can be used to sample a sequence
with a probability proportional to its weight. Then, we present in Section 4.4
a rejection method to uniformly draw a subsequence from a sequence. Finally,
in Section 4.5, we demonstrate that NUSSampling performs an exact sequential
pattern sampling, and we analyze its complexity on average.

4.1. Overview of the algorithm

To address the problem stated in the previous section, we propose to bene�t from
a two-step random procedure as done in [19] for sampling itemsets proportionally
to their support. But, we adapt this random procedure to consider a norm-based
utility on each pattern at both step.

Algorithm 1 NUSSampling
Input: A sequential dataset S and a norm-based utility u
Output: A sequence s ∈ S randomly drawn w.r.t freq(s,S) × u(s), i.e. s ∼ π(S) where

π(s) = freq(s,S)× u(s)
// Step 1: Sampling a sequence

1: Compute the weight w de�ned by w(s) :=
∑
s′vs u(s′) for all s ∈ S

2: Draw a sequence s from S proportionally to w: s ∼ w(S)
// Step 2: Sampling a subsequence

3: Compute the weight de�ned by w`(s) :=
∑
s′vs∧‖s′‖=` u(s′) for all ` ∈ [0..‖s‖]

4: Draw an integer ` proportionally to w`(s): ` ∼ w[0..‖s‖](s)

5: return A subsequence s′ of norm ` randomly drawn from s:
s′ ∼ unif({s′ v s : ‖s′‖ = `}) where unif is the uniform distribution

Given a dataset S and a norm-based utility u, NUSSampling (Norm-based
Utility Subsequence Sampling) returns a sequential pattern drawn proportionally
to freq(s,S)× u(s):

Step 1: Sampling a sequence In the �rst step (lines 1 and 2 of Algorithm 1),
we start by summing for each sequence s ∈ S the norm-based utility of each
subsequence, i.e. w(s) =

∑
s′vs u(s′). We show in Section 4.3 that the calculation

of w(s) requires to count the number of subsequences in s having a norm `. For
this reason, we show in Section 4.2 how to extend the formula given in [36]. Then,
this �rst step continues with the drawing of a sequence s from S proportionally
to its weight w(s). For instance, Table 2 provides the weights w∈[1,2](si) and
warea(si) of each sequence si. It is clear that this weight is di�erent from the
number of occurrences 2‖si‖ or the number of distinct subsequences Φ(si) and
shows the importance of this calculation so as not to bias the drawing of the
subsequence.



Sequential Pattern Sampling with Norm-based Utility 11

Step 2: Sampling a subsequence In the second step, we randomly draw the
norm ` of the subsequence of s that will be returned (line 4 of Algorithm 1).
This number ` is randomly drawn with a probability proportional to the sum of
norm-based utilities of subsequences in s having exactly ` as norm, i.e. according
to the probability distribution w`(s) de�ned for all ` ∈ [0..‖s‖] by: w`(s) =∑

s′vs∧‖s′‖=` u(s′). Finally, Algorithm 1 returns at line 5 a subsequence s′ in s

of norm ` according to a uniform distribution, meaning that each subsequence s′

from s of norm ` will be drawn with the same probability. We show in Section 4.4
how to perform such a uniform drawing thanks to a rejection sampling. The
main challenge is to avoid to pick more often subsequences that have multiple
occurrences within the sequence s. Typically, even if 〈(a)(c)〉 has two occurrences
in s2, its drawing probability must be the same as that of 〈(a)(a)〉 (that appears
once within s2).

Note that the theoretical study of these two steps (soundness and complexity)
will be done in Section 4.5.

4.2. Counting the number of distinct subsequences

In this section, we show how to compute the number of distinct subsequences
of a sequence with an interval constraint on the norm. We bene�t from [36]
where a formula counts the number of distinct subsequences in a sequence with-
out constraint on the norm. The main di�culty is to avoid to count the same
subsequence several times, even if it has several occurrences within the sequence.

To compute the number of distinct subsequences having a norm less than
or equal to j contained in a sequence s = 〈X1 . . . Xn〉, we start with the empty
sequence and then, we concatenate all itemsets Xi one by one. s ◦ Y denotes
the concatenation of s and Y : s ◦ Y = 〈X1 . . . XnY 〉. For each new itemset Y
concatenated to s, we count only subsequences that have a norm less than j
and that have not already occurred previously in s. For instance, if we add the
itemset ac to 〈(ab)c〉 to count the number of subsequences having a norm less
than 2 in 〈(ab)c(ac)〉, then we avoid counting 〈(ab)a〉 whose norm (i.e., 3) is too
large and we avoid counting 〈(a)c〉 which has already been counted previously
(for 〈(ab)〉◦c). It is easy to see that the duplicates (here, only 〈(a)c〉) result from
previous occurrences of items in (ac) within sequences 〈(ab)c〉 (here, c occurs
previously at position 2). For this reason, we need the notion of position set:

De�nition 4 (Position set [36]). Let s be a sequence and Y be an itemset.
L(s, Y ) = {i ∈ N : i ≤ |s| ∧ s[i] ∩ Y 6= 0 ∧ (∀j > i)(s[i] ∩ Y 6⊆ s[j] ∩ Y )} is the
position set where Y has a maximal intersection with the di�erent itemsets of s.

Example 4. Let s = 〈(ab)c(ac)〉 be a sequence. We have s1 = 〈(ab)〉, s[2] = (c)
and L(s1, s[2]) = ∅ because s[2] intersects no itemset of s1. Now, we are going
to compute L(s2, s[3]). s[3] = (ac) intersects at the same time the �rst itemset
s[1] = (ab) of s (s[1] ∩ s[3] = (a)) and the second itemset s[2] = (c) of s (s[2] ∩
s[3] = (c)). As these two intersections are disjoint, we obtain L(s2, s[3]) = {1, 2}.
This means that by concatenating subsets of s[3] to the subsequences in s2, some
subsequences of s2 might been counted twice as items of s[3] are also present at
positions 1 and 2 in s2.

Using the notion of position set and the inclusion-exclusion principle, we
propose a new recursive formula to count the number of distinct subsequences in
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a sequence s considering a maximum norm as constraint. Intuitively, to construct
a subsequence of s◦Y having a norm less than j, we can concatenate any subset
of size k of Y to a subsequence of s having a norm less than j−k. Indeed, we are
sure to obtain a subsequence of s◦Y having a norm less than k+(j−k) = j, and
this principle is repeated for any possible size of a subset of Y . Thus, we have:
φ≤j(s◦Y ) = ∪jk=0φ≤j−k(s)◦P=k(Y ) where P=k(Y ) = {X ⊆ Y : |X| = k}, which
explains the �rst term of the formula given by Theorem 1. The di�culty is that
a subsequence obtained by the concatenation of a subset of Y to a subsequence
of s may also occur in φ≤j(s). Therefore, we have to take into account these
possible redundancies to count the exact number of distinct subsequences of s
with a norm less than j. This remark explains the correction term R≤j(s, Y ) of
the formula given by Theorem 1:

Theorem 1 (Subsequence number with a maximum norm). Let s be a
sequence, Y be an itemset and j be an integer, the number of distinct subse-
quences having a norm less or equal to j in s ◦ Y , denoted by Φ≤j(s ◦ Y ), is
de�ned as follows1:

Φ≤j(s ◦ Y ) =

(
j∑

k=0

Φ≤j−k(s)×
(
|Y |
k

))
−R≤j(s, Y )

where R≤j(s, Y ) is the correction term de�ned by:

R≤j(s, Y ) =
∑

∅⊂K⊆L(s,Y )

(−1)|K|+1RK
≤j(s, Y )

with RK
≤j(s, Y ) =

∑j
k=1 Φ≤j−k(smin(K)−1)×

(|s[K]∩Y |
k

)
where s[K] = ∩k∈Ks[k].

This Theorem 1 extends the proposal [36] by setting j = ∞. Note that Φ`(s)
denotes Φ≤`(s)− Φ≤`−1(s) if ` > 0 and 1, otherwise.

Proof. Let s be a sequence and Y be an itemset. We already explain that to
construct a subsequence of s ◦ Y having a norm less than j, we can concatenate
any subset of size k of Y to a subsequence of s having a norm less than j − k.
Indeed, we are sure to obtain a subsequence of s ◦ Y having a norm less than
k + (j − k) = j. Thus, we have φ≤j(s ◦ Y ) = ∪jk=0φ≤j−k(s) ◦ P=k(Y ) and

Φ≤j(s◦Y ) =
∑j

k=0 Φ≤j−k(s)×
(|Y |

k

)
−R≤j(s, Y ) where R≤j(s, Y ) is a correction

term (to count the number of distinct subsequences).
Let t = 〈T1 . . . Tm〉 with |Tm| = k be a sequence that is counted multiple

times, i.e. t ∈ φ≤j(s) ∩ (φ≤j(s) ◦ P≥1(Y )) where P≥1(Y ) = {X ⊆ Y : |X| ≥ 1}.
Because t ∈ (φ≤j(s) ◦ P≥1(Y )), we necessarily have Tm ∈ P≥1(Y ), i.e. Tm ⊆ Y .
Moreover, because t ∈ φ≤j(s), there exists an integer i ≤ |s| such that Tm ⊆
s[i]. Let l = max{i ≤ |s| : Tm ⊆ s[i]}. Since Tm ⊆ Y , we also have l =
max{i ≤ |s| : Tm ⊆ (s[i] ∩ Y )}. We show now that l ∈ L(s, Y ). First, because
Tm 6= ∅, we have s[l] ∩ Y 6= ∅. Now, assume that there exists l′ > l such that
s[l] ∩ Y ⊆ s[l′] ∩ Y . Then, we would have Tm ⊆ s[l′] ∩ Y , which contradicts that
l is maximal, and completes the proof that l ∈ L(s, Y ). At this point, we proved
that T ∈ φ≤j−k(sl−1) ◦ P=k(s[l] ∩ Y ) for an integer l ∈ L(s, Y ). Thus, we have

R≤j(s, Y ) = |
⋃

l∈L(s,Y )(∪
j
k=1φ≤j−k(sl−1) ◦ P=k(s[l] ∩ Y ))|.

1 By convention, we consider that
(n
p

)
= 0 if p > n.
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Using the inclusion-exclusion principle, we rewrite R≤j(s, Y )

as
∑
∅⊂K⊆L(s,Y )(−1)|K|+1RK

≤j(s, Y ) with RK
≤j(s, Y ) =

|
⋂

l∈K(∪jk=1φ≤j−k(sl−1) ◦ P=k(s[l] ∩ Y ))|. Now, let t = 〈T1 . . . Tm〉 be a

sequence in the set
⋂

l∈K(∪jk=1φ≤j−k(sl−1) ◦ P=k(s[l] ∩ Y )). We nec-

essarily have tm−1 ∈ φ≤j−k(smin(K)−1) and Tm ∈ ∩l∈KP=k(s[l] ∩ Y ),
i.e. Tm ∈ P=k(s[K] ∩ Y ) with s[K] = ∩l∈Ks[l]. It follows that

RK
≤j(s, Y ) = |∪jk=1φ≤j−k(smin(K)−1) ◦ P=k(s[K] ∩ Y ))|. Finally, because

the sets φ≤j−k(smin(K)−1) ◦ P=k(s[K] ∩ Y )) are disjoints, we have

RK
≤j(s, Y ) =

∑j
k=1 Φ≤j−k(smin(K)−1) ×

(|s[K]∩Y |
k

)
, which completes the

proof of Theorem 1.

By continuing Example 4 with the sequence s = 〈(ab)c(ac)〉, the following
example illustrates the principle of the formula given by Theorem 1.

Example 5. Let s = 〈(ab)c(ac)〉 be a sequence. The set φ≤2(s1) of subsequences
of s1 = 〈(ab)〉 with a norm less than 2 is de�ned by φ≤2(s1) = {〈 〉, 〈a〉, 〈b〉, 〈(ab)〉}.
Thus, we have Φ≤2(s1) = 4. It is also easy to see that Φ≤1(s1) = 3 (the number
of subsequences of 〈(ab)〉 having a norm less than 1). As L(s1, s[2]) = ∅ (see Ex-
ample 4), we have R≤2(s1, s[2]) = 0 and Φ≤2(s2) =

∑|(c)|
k=0 Φ≤2−k(s1)×

(|(c)|
k

)
=

Φ≤2(s1) ×
(

1
0

)
+ Φ≤1(s1) ×

(
1
1

)
= 4 + 3 = 7. The �rst term of the sum corre-

sponds to 4 subsequences in s2 obtained by concatenating the empty set to the
subsequences of s1, while the second term corresponds to 3 subsequences in s2

obtained by concatenating the itemset (c) to each subsequence of s1 having a

norm less than 1. Let us detail the calculation of Φ≤2(s3) =
∑|(ac)|

k=0 Φ≤2−k(s2)×(|(ac)|
k

)
− R≤2(s2, s[3]) = Φ≤2(s2) + Φ≤1(s2) × 2 + Φ≤0(s2) − R≤2(s2, s[3]) =

7 + 4 × 2 + 1 − R≤2(s2, s[3]). For instance, the second term of Φ≤2(s3), that
equals to 4× 2, refers to the number of subsequences in s3 that are obtained by
concatenating the two subsets of size 1 of (ab) with a subsequence in s2 having a
norm less that 1. Finally, the calculation of the correction term R≤2(s2, s[3]) is as

follows: R≤2(s2, s[3]) = (−1)2Φ≤1(s0)×
(|(a)|

1

)
+(−1)2Φ≤1(s1)×

(|(c)|
1

)
= 1+3 = 4.

Thereby, we deduce that Φ≤2(s3) = 7 + 4× 2 + 1− 4 = 12.

The formula given by Theorem 1 is recursive. Nevertheless, given a sequence
s and a maximum norm M , this recursion can easily be removed by calculating
row by row the matrices T and R de�ned by:

� T [i][j] = Φ≤j(s
i) for i ∈ [0..|s|] and j ∈ [0..M ]. T [i][j] is the number of

subsequences with a norm less than or equal to j in the sequence si.

� R[i][j] = R≤j(s
i−1, s[i]) for i ∈ [2..|s|] and j ∈ [0..M ]. This correction term

is the term required to correct the number of subsequences with a norm less
than j of si = si−1 ◦ s[i] using the number of subsequences with a norm less
than j of si by concatenating the subsets of s[i].

Algorithm 2 details how the matrices T and R can be computed for a sequence
s and a maximum norm M . At each iteration of the main loop (lines 5 to 19 of
Algorithm 2), it computes the number T [i][j] of subsequences si of s with a norm
less than or equal to j (for all j ∈ [1..M ]) using the previous lines of matrices
T and R. For each i ∈ [2..|s|] and j ∈ [1..M ], Algorithm 2 �rst computes the
correction term R[i][j] (lines 7-13). Because K ⊆ L(si−1, s[i]), it is important
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Table 4. Examples of matrices T and R

T[i][j] ≤ 0 ≤ 1 ≤ 2 ≤ 3

s0 = 〈〉 1 1 1 1

s1 = 〈(ab)〉 1 3 4 4

s2 = 〈(ab)c〉 1 4 7 8

s3 = 〈(ab)c(ac)〉 1 4 12 21

R[i][j] ≤ 0 ≤ 1 ≤ 2

s1, s[2] = c 0 0 0

s2, s[3] = (ac) 2 4 5

to note that m = min(K) ≤ i − 1 < i. Thus, at line 11, it ensures that only
previously calculated terms T [m − 1][j − k] of T are used to calculate R[i][j].
Then, Algorithm 2 computes (lines 14-17) the value of T [i][j] using only the
previous line i − 1 of matrix T (line 15) and the correction term R[i][j] (line
17). Examples of the matrices T and R are provided by Table 4 for the sequence
s = 〈(ab)c(ac)〉. In particular, we �nd the values R[3][2] = R≤2(s2, s[3]) and
T [3][2] = Φ≤2(s3) computed in Example 5.

Algorithm 2 Number of subsequences with a maximum norm
Input: A sequence s and a maximal norm M ≤ ‖s‖
Output: A matrix T such that T [i][j] = Φ≤j(s

i)
1: T [0][0] := T [1][0] := 1
2: for j = 1 to M do

3: T [0][j] := 1 and T [1][j] := T [1][j − 1] +
(|s[1]|

j

)
4: end for
5: for i = 2 to |s| do
6: for j = 1 to M do
7: R[i][j] := T [i][j] := 0
8: for all K ∈ P≥1(L(si−1, s[i])) do
9: m := min(K) and kmax := |s[K] ∩ s[i]|
10: for k = 1 to j do

11: R[i][j] += (−1)|K|+1T [m− 1][j − k]×
(kmax

k

)
12: end for
13: end for
14: for k = 0 to min{j, |s[i]|} do
15: T [i][j] += T [i− 1][j − k]×

(|s[i]|
k

)
16: end for
17: T [i][j] := T [i][j]−R[i][j]
18: end for
19: end for
20: return(T )
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4.3. Step 1: Sequence sampling

This �rst step aims to draw a sequence with a probability proportional to its
weight w(s). Of course, it is not possible to calculate this weight for each sequence
s by naively summing one by one the weight of each subsequence s′ v s as
suggested by line 1 of Algorithm 1. In fact, it is more e�cient to break down
this weight according to the norm of the subsequences by observing that w(s) =∑‖s‖

`=0 w`(s). Indeed, as all subsequences of the same norm have the same utility,
it is su�cient to count the number of subsequences of norm ` and to multiply this
quantity by the utility fu(`). The following property formalizes this intuition:

Property 2 (Computing w`(s)). Given a sequence s and a norm-based util-
itly u, the weight of subsequences having ` as norm, in s is de�ned by:

w`(s) =
∑

s′vs∧‖s′‖=`

u(s′) = Φ`(s)× fu(`)

Proof. Using De�nition 3, we have
∑

s′vs∧‖s′‖=` u(s′) =
∑

s′vs∧‖s′‖=` fu(‖s′‖)
=
∑

s′vs∧‖s′‖=` fu(`) =
(∑

s′vs∧‖s′‖=` 1
)
× fu(`). We conclude that Property 2

is correct because
∑

s′vs∧‖s′‖=` 1 is exactly the number of distinct subsequences

of norm ` in s.

This property strongly relies on Theorem 1 providing the number of subse-
quences of norm ` i.e., Φ`(s) = Φ≤`(s) − Φ≤`−1(s). Thus, the formula of Prop-

erty 2 makes it possible to calculate the initial weight w(s) =
∑‖s‖

`=0 w`(s) for
each sequence s of the sequential database S (see line 1 of Algorithm 1).

Example 6. Let us come back on the example of Table 2. As fufreq
(`) = 1 for

all l ∈ N, the weight wfreq(si) equals to the number of distinct subsequences
Φ`(si). We now detail the calculation for the �rst sequence s1 with three other
utilities:

�With fuarea
(`) = l, we have warea(s1) = Φ0(s1) × 0 + Φ1(s1) × 1 + Φ2(s1) ×

2 + Φ0(s3)× 3 = 1 · 0 + 3 · 1 + 3 · 2 + 1 · 3 = 12.

�With fu∈[1..2]
(`) = 1 i� l ∈ [1..2] (0 otherwise), we have w∈[1..2](s1) = Φ0(s1)×

0 + Φ1(s1)× 1 + Φ2(s1)× 1 + Φ0(s3)× 0 = 1 · 0 + 3 · 1 + 3 · 2 + 1 · 0 = 6.

�With fudecay
(`) = αl and α = 0.5, we have wdecay(s1) = Φ0(s1)×0.50+Φ1(s1)×

0.51 + Φ2(s1)×0.52 + Φ0(s3)×0.53 = 1 ·1 + 3 ·0.5 + 3 ·0.25 + 1 ·0.075 = 3.375.

Computing the number of distinct subsequences smaller than a given length
` is expensive as we will see in Section 4.5. Fortunately, with the norm-based
utility u≤M (that we recommend to use for dealing with the long tail), we have

fu≤M
(`) = 0 for all ` > M and consequently, w(s) =

∑‖s‖
`=0 w`(s) =

∑M
`=0 w`(s).

4.4. Step 2: Subsequence sampling by rejection

After randomly drawing a sequence s ∈ S proportionally to its weight w(s) (line 2
of Algorithm 1) and an integer ` between 0 and ‖s‖ according to the distribution
w`(s) (line 4 of Algorithm 1), NUSSampling aims at returning a subsequence
of norm ` drawn uniformly from the sequence s (line 5 of Algorithm 1). The
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di�culty is not to favor the subsequences that have multiple occurrences within
the sequence.

To cope with this di�culty, we use a rejection method by uniformly drawing
an occurrence of the sequence s and rejecting it if this occurrence is not the �rst
one. As each subsequence has a unique �rst occurrence, this approach ensures
a uniform draw of subsequences. We start by formalizing the notion of �rst
occurrence:

De�nition 5 (First occurrence). Given a sequence s, let o1 and o2 be two
occurrences of a subsequence s′ within s, whose signatures are 〈i11, i12, . . . , i1m〉
and 〈i21, i22, . . . , i2m〉 respectively. o1 is less than o2, denoted by o1 < o2, if there
exists an index k ∈ [1..m] such that for all j ∈ [1..k − 1], one has i1j = i2j , and

i1k < i2k. Finally, we call the �rst occurrence of s′ in s its smallest occurrence
w.r.t. the order de�ned previously.

Example 7. Let us continue Example 2 where 〈1, 2〉 and 〈1, 3〉 are the signatures
of occurrences o1 = 〈(a)(c)∅〉 and o2 = 〈(a)∅(c)〉 of the subsequence s′ = 〈(a)(c)〉
in s = 〈(ab)(cd)(ce)〉. As 〈1, 2〉 is less than 〈1, 3〉, we obtain that o1 < o2. Finally,
as o1 and o2 are the only two occurrences of s′ in s, it means that o1 is the �rst
occurrence of s′ in s.

In practice, we especially check if an occurrence of the subsequence s′ v s is
the �rst occurrence of s′ within the sequence s. This can be done e�ciently by
using Property 3:

Property 3. Given an occurrence o of the subsequence s′ v s whose signature
is σ = 〈i1, i2, . . . , im〉, o is the �rst occurrence of s′ if and only if for all ij ∈ σ,
there is no index l ∈ [ij−1 + 1..ij − 1] such that o[ij ] ⊆ s[l] (with i0 = 0).

Proof. Let σ = 〈i1, . . . , im〉 be the signature of an occurrence o of s′ v s. We
�rst show that if there exist ij ∈ σ and l ∈ [ij−1 + 1..ij−1] such that o[ij ] ⊆ s[l],
then o is not the �rst occurrence of s′. Let 1 ≤ i′1 < i′2 < · · · < i′m ≤ n be the
index sequence de�ned by i′j = l and for all k ∈ [1..m] \ {j}, i′k = ik. Consider
now the ordered list o′ of n itemsets de�ned by o′[l] = o[ij ], o

′[ij ] = ∅ and for all
k ∈ [1..n]\{l, ij}, o′[k] = o[k]. As o′ is an occurrence of s′ v s and o′ < o, it proves
that o is not the �rst occurrence of s′. Conversely, we show that if o with signature
σ is not the �rst occurence of s′ v s, then there exist ij ∈ σ and l ∈ [ij−1+1..ij−1]
such that o[ij ] ⊆ s[l]. By de�nition, if o is not the �rst occurrence of s, then there
exists another occurrence o′ of s′ such that o′ < o. So, we know that there exists
k ∈ [1..n] such that i′k < ik and for all j ∈ [1..k − 1], i′j = ij . Thus, there exist
indexes ik ∈ σ and l = i′k ∈ [i′k−1 + 1..ik − 1] = [ik−1 + 1..ik − 1] such that
o[ik] = o[i′k] ⊆ s[i′k], i.e. o[ik] ⊆ s[l].

Thanks to Property 3, it is �nally easy to draw uniformly a subsequence of
norm ` in a sequence s. By randomly drawing ` distinct item positions between
1 and ‖s‖, we start by uniformly drawing an occurrence containing ` items from
s. If this occurrence is a �rst occurrence, it is accepted and returned. Otherwise
we reject it and perform another random draw of a new occurrence of s. Al-
though NUSSampling relies on a rejection sampling technique, we show in the
next section that the average number of draws before acceptance is computable.
The experimental section also shows that this average number of draws may be
extremely low for real-world datasets.
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Example 8. In Example 2, assume that we have drawn item positions 1 and
5 within the sequence s = 〈(ab)(cd)(ce)〉 in order to build an occurence of a
subsequence of s of norm k = 2. In this way, we obtain the occurrence o =
〈(a)∅(c)〉 of signature 〈1, 3〉 of the subsequence s′ = 〈(a)(c)〉 in s. In that case,
as there exists l = 2 in [1 + 1..3 − 1] such that o[3] = (c) ⊆ s[2] = (cd), we are
sure that o is not the �rst occurrence of s′ and this occurrence is rejected.

4.5. Theoretical analysis of the method

This property states that NUSSampling returns an exact sample of subse-
quences with norm-based utility:

Property 4 (Soundness). Let S be a sequential dataset and u be a norm-
based utility, NUSSampling draws a subsequence of S according to a distribu-
tion proportional to frequency times its norm-based utility.

Proof. Let Z be the normalizing constant de�ned by Z =
∑

s∈S w(s). Let t be
a subsequence in S and P (t) be the probability to draw subsequence t using
Algorithm 1. We have: P (t) =

∑
s∈S P (t, s) =

∑
s∈S,tvs P (s)× P (t/s). Consid-

ering the second line of Algorithm 1, we have P (s) = w(s)
Z . Then, considering

the third and fourth lines of Algorithm 1, if t is a subsequence of norm k, we

have P (t/s) = P (k/s)× P (t/k, s) =
Φk(s)×fu (s)

w(s) × 1
Φk(s) =

fu (s)
w(s) . Thus, we have

P (t) =
∑

s∈S,tvs P (s)×P (t/s) =
∑

s∈S,tvs
w(s)
Z × fu (s)

w(s) =
freq(s,S)×fu (s)

Z , which

shows that t is drawn proportionnaly to its frequency times its norm-based utility
and completes the proof.

We now study the complexity of our method by distinguishing two main
phases: the preprocessing (where the distribution of subsequences according to
the norm is calculated for each sequence) and the drawing of subsequences.

Preprocessing complexity The preprocessing is performed in time O(|S| ·L ·
M2 · 2P · T ) where L is the maximum length of a sequence, M is the maximum
norm of drawn subsequences (if there is no norm constraint M equal to the
maximum norm of the sequences in S), P is the maximum size of position sets
L(si−1, s[i]) and T is the maximum size of an itemset in a sequence. It is im-
portant to note that P ≤ L may be very small in practice (see the next section)
and that this preprocessing (line 1 of Algorithm 1) is achieved only once before
the drawing phase (where a large number of subsequences are drawn from S).
Moreover, it is easy to see that if the dataset S contains only sequences of items
(and not sequences of itemsets), then we have P = 1. Thus, in that case, the
preprocessing can be performed in polynomial time O(|S| · L ·M2 · T ).

Drawing complexity The draw of subsequences is less expensive. First, the
draw of a sequence (line 2 of Algorithm 1) is realized in O(ln |S|). It is more
di�cult to estimate the complexity in the worst case for the draw of a subse-
quence because the number of rejections is not bounded. Nevertheless, a good
way to measure the e�ectiveness of the approach is to calculate the average num-
ber of draws, denoted by µu(S), required to derive a subsequence of S having a
norm-based utility u. Intuitively, µu(S) depends both on the probability that a
sequence s ∈ S is drawn and the average number of draws, denoted by µu(s),
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required to �nd a �rst occurrence of a subsequence of s. The following property
shows how these terms can be calculated:

Property 5 (Average number of draws). Given a norm-based utility u, the
average number of draws for the acceptance of a subsequence in the sequen-

tial dataset S is de�ned by: µu(S) =
∑

s∈S
w(s)∑

s′∈S w(s′) × µu(s) where µu(s) =∑‖s‖
k=0 (‖s‖k )×fu (k)

w(s) and w(s) =
∑‖s‖

k=0 Φk(s)× fu(k).

Proof. Using Algorithm 1, it is clear that µu(S) =
∑

s∈S P (s) × µu(s) with

P (s) = w(s)∑
s′∈S w(s′) . Then, we have µu(s) =

∑
k∈[0..‖s‖] P (k/s) × Nk(s) where

Nk(s) is the average number of draws necessary to obtain a subsequence s′ of s
such that ‖s′‖ = k. When we draw a subsequence s′ of norm k, the probability
that this subsequence is accepted (because it is a �rst occurrence) is P k

a (s) =
Φk(s)

(‖s‖k )
. Thus, we have Nk(s) =

∑∞
i=1 i × (1 − P k

a (s))i−1 × P k
a (s) = P k

a (s) ×∑∞
i=1 i × (1 − P k

a (s))i−1 = P k
a (s) × 1

Pk
a (s)2 = 1

Pk
a (s)

. It follows that µu(s) =∑
k∈[0..‖s‖] P (k/s)×Nk(s) =

∑
k∈[0..‖s‖]

wk(s)
w(s) ×

(‖s‖k )
Φk(s) . As wk(s) = Φk(s)×fu(k),

we �nally obtain µu(s) =
∑

k∈[0..‖s‖] (
‖s‖
k )×fu (k)

w(s) .

When the average number of draws is close to 1, it means that the draw
of a subsequence is achieved without rejection. For a given sequence, there is
no rejection if each occurrence is the �rst occurrence, meaning that there is no
duplicate within the sequence. In practice, the average number of draws measured
on real-world datasets is often very low. Finally, as the temporal complexity of
the draw of an occurrence in a sequence s is O(‖s‖2) in the worst case, the average
complexity of drawing N subsequences from a dataset S (after the preprocessing
phase) is in O(N ·M2 · µu(S)).

5. Experimental Study

This experimental study aims to evaluate the e�ciency of our approach and
the interest of the sampled subsequences using di�erent norm-based utilities.
More precisely, we consider the three below interestingness measures involving
norm-based utilities:

� M-frequency combines the frequency measure with the norm-based utility
constraint de�ned for every sequence s by u≥1(s)× u≤M (s),

� M-area combines the frequency measure with the utility function de�ned for
every sequence s by uarea(s)× u≥1(s)× u≤M (s), and

� α-frequency combines the frequency measure with the exponential decay
utility udecay(s) = α‖s‖.

Section 5.1 focuses on the speed ofNUSSampling and its ability to draw pat-
terns that do not belong to the long tail. In particular, we compare the impact of
using norm-based utility contraint u≤M or exponential decay utility udecay. Sec-
tion 5.2 compares the sampled sequential patterns returned byNUSSampling in
the context of sequence classi�cation, where the accuracy performs an objective
measure.
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Table 5. Statistics of benchmark datasets
Dataset |S| |I| ‖S‖max ‖S‖mean P T |C|
bms 59,601 497 267 2.5 1 1 −
sign 730 267 94 52.0 1 1 −
D10K5S2T6I 10,000 6 70 10.3 7 6 −
D10K6S3T10I 10,000 10 92 15.9 10 6 −
D100K5S2T6I 100,000 6 72 8.5 7 6 −
D100K6S2T6I 100,000 6 83 10.4 8 9 −
aslbu 441 132 27 7.5 1 1 7
aslgt 3,493 87 88 22.8 1 1 40
auslan 200 12 24 10.0 1 1 10
blocks 210 8 12 6.7 1 1 8
context 240 48 123 45.2 1 1 5
pioneer 160 92 50 21.1 1 1 3
skater 530 41 120 25.1 1 1 6
speed 530 41 260 64.5 1 1 7
reuters 5,459 14,577 533 67.3 1 1 8

Note that the prototype of our method is implemented in Python and all
experiments are performed on a 2.71 GHz 2 Core CPU with 12 GB of RAM.
All used experimental datasets, as well as source code, are available at https:
//github.com/LDIOPBSF/NUSSampling under the GPLv3 license.

5.1. Analysis of NUSSampling method

This experimental section evaluates the speed of our method and the impact of
di�erent norm-based utilities on the sampled patterns. For this purpose, we use
15 datasets including 11 real life datasets 2 and 4 synthetic datasets generated
by IBM data generator 3. The main interest of using synthetic datasets is to
have examples of sequences with itemsets instead of sequences containing only
items (i.e., with T > 1). Table 5 lists basic statistics of all datasets: the num-
ber of sequences, the number of items, the maximum/mean sequence norm, the
maximum size of position sets P , the maximum size of itemsets T and the num-
ber of classes. Table 6 compares the average number of draws per subsequence
required to extract a pattern when there is a contraint utility u≥1 × u≤M with
M ∈ {1, 2, 3, 5, 7}. Table 6 is obtained using Property 5. It shows that bms and
sign datasets do not contain multiple occurrences within a same subsequence,
while the number of multiple occurrences increases withM for the other datasets.

5.1.1. Preprocessing and sampling speed

In this section, we analyze the preprocessing and sampling speed of
NUSSampling considering three di�erent interestingness measures M -
frequency, M -area and α-frequency.

Norm constraint Figure 2 plots the average execution time of our method by
distinguishing the preprocessing time (left-hand side) and the average number of
draws of a sequential pattern (right-hand side) using M -frequency measure with
M ∈ {1, 2, 3, 5, 7}. Note that we do not report these results for M -area measure

2 The datasets bms and sign are available at http://www.philippe-fournier-viger.com/spmf
and other ones at http://www.mybytes.de/#data
3 https://github.com/zakimjz/IBMGenerator

https://github.com/LDIOPBSF/NUSSampling
https://github.com/LDIOPBSF/NUSSampling
http://www.philippe-fournier-viger.com/spmf
http://www.mybytes.de/#data
https://github.com/zakimjz/IBMGenerator
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Table 6. Average number of draws per subsequence
Dataset M=1 M=2 M=3 M=5 M=7

bms 1.0 1.0 1.0 1.0 1.0
sign 1.0 1.0 1.0 1.0 1.0
D10K5S2T6I 4.0 7.0 11.4 23.5 38.4
D10K6S3T10I 3.9 6.7 10.4 18.5 25.7
D100K5S2T6I 3.6 5.8 8.5 14.9 23.9
D100K6S2T6I 4.0 7.0 11.1 21.4 32.4
aslbu 1.2 1.3 1.3 1.4 1.5
aslgt 1.4 1.9 2.8 5.8 12.6
auslan 2.6 3.5 4.8 8.2 10.4
blocks 1.4 1.9 2.4 3.7 4.5
context 2.5 6.3 17.5 159.5 1,652.7
pioneer 1.1 1.3 1.5 2.0 2.6
skater 1.7 3.3 8.3 81.3 837.0
speed 3.3 7.0 15.9 99.4 554.2
reuters 1.6 2.4 3.4 5.9 8.6

because it has exactly the same behavior as M -frequency for all experiments.
As expected, the preprocessing time increases with the size of the dataset, the
maximum size P of position sets, the maximum size T of an itemset in a se-
quence, and the maximum norm M of drawn subsequences. However, even for
D100K6S2T6I which is large, the execution time of the preprocessing (which can
be prepared o�-line) is quite reasonable (less than 80 seconds). Regarding the
sampling phase, whatever the dataset, the measure and the maximum norm M ,
the execution time is always under 1.5 millisecond, despite an average number
of draws µ[m,M ](S) greater than 1 (and hence, rejection).

Exponential decay Figure 3 plots the preprocessing (left-hand side) and sam-
pling (right-hand side) time of our method using the α-frequency measure with
di�erent values of α ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Given a dataset, we �rst see
that the preprocessing time remains constant with α. Indeed, the computation
of the weight of a sequence in a dataset is clearly independent of α, i.e. without
constraint, for each sequence s ∈ S, we just have to compute the number of dis-
tinct subsequences of s. Conversely, the right-hand side of Figure 3 shows that
the sampling speed varies with α. When α increases, the probability to draw a
subsequence with a higher norm increases, and the computation time to draw
an occurrence of a subsequence increases with its norm. However, when we draw
an occurrence, the probability that it is not a �rst occurrence (i.e., rejection)
decreases with its norm. This explains why the sampling time starts to increase
with α, and then, decreases. Finally, it is interesting to see that both the pre-
processing and sampling time are lower when we use a norm constraint. More
precisely, by comparing Figure 2 with Figure 3, we observe that they are at least
two times lower when a maximum norm constraint u≤M is used with M ∈ [1..7].

5.1.2. Distribution of sampled patterns

We now consider the bene�t of using a norm-based utility function to limit the
e�ect of the long tail.

Norm constraint We �rst compare the distribution of the sampled pattern
using the frequency and area measures with or without using a maximum norm
constraint u≤M (with M ∈ {4, 7}). Figures 4 and 5 represent the distribution
of 10, 000 sequential patterns sampled according to the M -frequency and M -
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Fig. 2. Execution time for sequential pattern sampling with M -frequency

area measures for di�erent datasets, with or without constraint. For all datasets,
without constraint, the sampling method returns only patterns with very low
interestingness. With the frequency measure, we notice in Figure 4 that without
constraint, most of the sampled sequences have a frequency equal to 1. More
precisely, with the area measure, we also see that in most of the cases, without
constraint, the sampling method returns sequences with very low areas. Note that
this is not the case with bms dataset, because this dataset contains a very long
sequence, and that we mainly sample subsequences of this sequence. Thus, even if
the frequency of these subsequences is very low, the mean of their norm is large.
Conversely, with a maximum norm constraint, the sampling method returns
sequential patterns with signi�cantly higher frequency or areas, which shows the
importance of introducing constraints on the norm to avoid the problem of the
long tail. Note that for sign, the maximum norm of 7 is not su�cient to return
sampled patterns with frequency greater than 1. A norm of at most 4 is necessary
so that the frequencies of the subsequences of the sample increase.

Exponential decay Figure 6 shows the distribution of 10, 000 sequential pat-
terns sampled according to the α-frequency measure with di�erent values of α.
When α equals to 1.0, it means that there is no exponential decay �ltering.
Consequently, the results are as bad as those obtained without maximum norm
constraint. Besides, it is easy to see that when α decreases, the frequency of
the drawn sequential patterns increases as it was the case when M increases.
However, the drawn subsequences do not have exactly the same form as those
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Fig. 3. Execution time for sequential pattern sampling with α-frequency

obtained with norm constraints. Indeed, Figure 7 compares the distribution of
10,000 sampled patterns with respect to their norm considering M -frequency,
M -area (M ∈ {4, 7}) and α-frequency (α ∈ {0.10, 0.05, 0.01}) as interestingness
measures for two sequential datasets (sign and D10K6S3T10I). First, we see on
the charts of the �rst two rows that with M -frequency and M -area, most of the
sampled patterns have a norm equals to the maximum norm constraint M . By
comparison, we observe in Figure 7 (last row) that with the α-frequency mea-
sure, the norm diversity of the sampled subsequences is higher when α is not too
low (i.e., 0.10 or 0.05). If the value of α is low (i.e., 0.01 in our experiments), we
only obtain subsequences with very low norms between 1 and 4.

5.2. Accuracy of sampling-based classi�cation

This section shows how sampled subsequences can be used to build associative
classi�ers dedicated to sequences and the bene�t to use norm constraints or expo-
nential decays to obtain better classi�cation models. Our classi�cation method,
called NUSSampling+SVM, is a standard approach relying on two phases as
done in [37]:

1. Feature extraction: In a �rst phase, using NUSSampling, we build a sam-
ple F = {f1, . . . , fK} of K subsequences. Then, this sample is used to trans-
form a training dataset S that is a labeled sequential dataset into a binary
dataset D. More precisely, for each sequence si ∈ S labeled by a class ci, D
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Fig. 4. Distribution of 10,000 sequential patterns according to M -frequency

contains a tuple ti of K + 1 values where ti[j] = 1 if fj v si (0 otherwise)
for j ∈ [1..K], and ti[K + 1] = ci. Figure 8 illustrates this principle where
a labeled sequential dataset with 4 sequences in class A or B is transformed
into a binary dataset using a sample of K = 3 subsequences. For example,
considering the third sampled subsequence 〈ac〉, we have t1[3] = 1 because
the sequence s1 contains the subsequence 〈ac〉, whereas t3[3] = 0 because the
sequence s3 does not contain the subsequence 〈ac〉.

2. Model construction: Then, in a second phase, we create a SVM classi�er
C from the transformed training dataset. Note that in our experiments, we
use the SMO algorithm provided by Weka 3.8 and its default options to build
SVM classi�ers.

After the model construction, in order to predict the class of an unlabeled se-
quence, we �rst transform this sequence into a binary vector using the sample
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Fig. 5. Distribution of 10,000 sequential patterns according to M -area

F of K subsequences. Then, we use the SVM classi�er C to predict the class of
the sequence previously transformed into a binary vector.

We evaluate the e�ciency ofNUSSampling+SVM on real-world datasets [37]4

that have a wide variety in the number of sequences, items, sequence lengths and
classes as well as application domains (see Table 5). For each dataset, we calcu-
late the accuracy of NUSSampling+SVM with respect to various sample sizes
and norm constraints, by performing a 10-fold cross-validation.

4 The dataset reuters is available at ana.cachopo. org/
datasets-for-single-label-text-categorization and other ones, at www.mybytes.de/
#data.

ana.cachopo.
org/datasets-for-single-label-text-categorization
org/datasets-for-single-label-text-categorization
www.mybytes.de/#data
www.mybytes.de/#data
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Fig. 6. Distribution of 10,000 sequential patterns according to α-frequency

5.2.1. Importance of the norm constraint and exponential decay

As described in the previous sections, the norm-based utility constraint u≤M
and udecay can be used to limit the maximal length of sampled subsequences.
In this section, we evaluate the impact of using these norm-based utilities to
improve the performance of our classi�ers. More precisely, we �rst build clas-
si�ers using subsequences sampled with M -frequency or M -area measures con-
sidering di�erent values of M ∈ [1..10]. Then, we also build classi�ers using
subsequences sampled with the α-frequency measure considering values of α ∈
{0.01, 0.025, 0.05, 0.075, 0.1, 0.5}. Note that we reduce the preprocessing time for
the exponential decay utility by adding a maximum norm constraint u≤10. This
norm constraint has no e�ect on the sampled subsequences because even if no
constraint was considered, the probability of drawing a subsequence with a norm
greater than 10 would be almost zero with α ≤ 0.5.



26 Diop et al

2000

4000

6000

8000

10000

 0  1  2  3  4  5  6  7  8

N
um

be
r 

of
 p

at
te

rn
s

Norm

SIGN (freq)

M=4
M=7

2000

4000

6000

8000

10000

 0  1  2  3  4  5  6  7  8

Norm

D10K6S3T10I (freq)

M=4
M=7

2000

4000

6000

8000

10000

 0  1  2  3  4  5  6  7  8

Norm

speed (freq)

M=4
M=7

2000

4000

6000

8000

10000

 0  1  2  3  4  5  6  7  8

N
um

be
r 

of
 p

at
te

rn
s

Norm

SIGN (area)

M=4
M=7

2000

4000

6000

8000

10000

 0  1  2  3  4  5  6  7  8

Norm

D10K6S3T10I (area)

M=4
M=7

2000

4000

6000

8000

10000

 0  1  2  3  4  5  6  7  8

Norm

speed (area)

M=4
M=7

2000

4000

6000

8000

10000

 0  2  4  6  8  10  12  14

N
um

be
r 

of
 p

at
te

rn
s

Norm

SIGN (α−freq)

α=0.10
α=0.05
α=0.01

2000

4000

6000

8000

10000

 0  2  4  6  8  10  12  14

Norm

D10K6S3T10I (α−freq)

α=0.10
α=0.05
α=0.01

2000

4000

6000

8000

10000

 0  5  10  15  20  25  30

Norm

speed (α−freq)

α=0.10
α=0.05
α=0.01

Fig. 7. Distribution of 10,000 sequential patterns according to norm with di�erent
norm-based utilities

Fig. 8. NUSSampling+SVM classi�cation method

For all experiments and each dataset, we use a di�erent paired Student's t-
test (with a con�dence level β = 95%) to evaluate if the best mean accuracy
(obtained with the optimal value of M or α) is signi�cantly di�erent from the
other mean accuracies (obtained with non-optimal values of parameters M or
α). Indeed, the optimal values of parametersM or α are not necessarily the same
for each dataset.

Table 7. Impact of the norm constraint using M -frequency
Dataset M=1 M=2 M=3 M=5 M=7 M=10 Best

aslbu 0.649* 0.601 0.608 0.539 0.396 0.373 0.649
aslgt 0.668 0.688* 0.680 0.634 0.505 0.364 0.688
auslan 0.230 0.250 0.320 0.320 0.330* 0.330* 0.330
blocks 0.857 1.000* 0.995 0.995 0.995 0.995 1.000
context 0.984* 0.984 0.971 0.975 0.967 0.959 0.984
pioneer 1.000* 0.975 0.969 0.858 0.691 0.656 1.000
skater 0.883 0.930 0.944* 0.919 0.889 0.874 0.944
speed 0.257 0.281 0.306 0.366* 0.326 0.301 0.366
reuters 0.949* 0.901 0.765 0.531 0.523 0.519 0.949
Average 0.720 0.734 0.729 0.682 0.625 0.597 0.734



Sequential Pattern Sampling with Norm-based Utility 27

Table 8. Impact of the norm constraint using M -area
Dataset M=1 M=2 M=3 M=5 M=7 M=10 Best

aslbu 0.649* 0.623 0.588 0.452 0.370 0.375 0.649
aslgt 0.668 0.688* 0.680 0.634 0.505 0.359 0.688
auslan 0.250 0.255 0.355* 0.350 0.345 0.325 0.355
blocks 0.857 1.000* 0.995 0.990 0.995 0.991 1.000
context 0.964 0.984* 0.966 0.983 0.971 0.971 0.984
pioneer 0.994* 0.975 0.962 0.801 0.701 0.645 0.994
skater 0.887 0.930 0.945* 0.925 0.866 0.805 0.945
speed 0.266 0.273 0.339 0.371* 0.329 0.272 0.371
reuters 0.952* 0.904 0.545 0.522 0.520 0.518 0.952
Average 0.721 0.737 0.708 0.670 0.622 0.584 0.737

Norm constraint Considering the M -frequency or M -area measures,Tables 7
and 8 show that the accuracy of NUSSampling+SVM clearly depends on the
norm constraint. The best mean accuracy is marked for each dataset with a star,
whereas the comparable accuracies (identi�ed with a paired Student's t-test)
are in bold. While the total size of sample is �xed (here, 10,000 patterns), we
can see that the best classi�cation performance is generally obtained when the
maximum norm threshold is strictly larger than 1 and lower that 10. However,
this result is less signi�cant when the classi�cation problem to be solved is rather
simple (for accuracy greater than 95%), i.e. for the datasets blocks, context,
pioneer and reuters. For these datasets, a good performance can generally be
obtained with a maximum norm constraint M equal to 1 (i.e., the features are
subsequences with only one item). For the other datasets, the performance of
classi�ers decreases with M when M is greater than its optimal value. For this
reason, it is important to consider maximum norm thresholds to build e�cient
classi�ers. In particular, the performance of classi�ers that would be obtained
without considering norm constraints (i.e., M → ∞) would therefore be very
low.

Exponential decay For the α-frequency measure, Table 9 also shows that the
performance of NUSSampling+SVM clearly depends on the value of the pa-
rameter α. First, we can observe that if the value of α is too high (i.e., α = 0.5 or
above), then the performance of the classi�ers is generally not satisfactory. This
phenomenon can be easily explained because when the value of α is too high,
we mainly sample large subsequences with very low frequencies. Then, compared
with the search of the optimal maximum norm constraint M , we might think
that �nding the optimal value of α is more di�cult because it is a real parameter.
However, we can observe in Table 9 that the accuracy is not very sensitive to
the value of α between 0.01 and 0.1.

5.2.2. Pattern Sampling vs Top-k Pattern Mining method with norm
constraints

This section compares NUSSampling+SVM with M-frequency with the TKS
algorithm [38], which returns the k most frequent sequential patterns having a
norm smaller than M . Interestingly, these two approaches use a parameter k to
control the number of mined patterns and a parameter M to limit their size. To
build a classi�er, we use TKS for extracting features from the same dataset as
NUSSampling+SVM. Then, as with our approach, we use the SMO algorithm
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Table 9. Impact of the exponential decay using α-frequency
Dataset α=0.010 α=0.025 α=0.050 α=0.075 α=0.100 α=0.500 Best

aslbu 0.635* 0.602 0.618 0.618 0.611 0.592 0.635
aslgt 0.683* 0.681 0.683 0.679 0.682 0.471 0.683
auslan 0.265 0.335 0.335 0.355* 0.345 0.325 0.355
blocks 0.995 0.995 0.990 0.995 1.000* 0.995 1.000
context 0.987* 0.983 0.975 0.975 0.975 0.975 0.987
pioneer 0.994* 0.994* 0.981 0.975 0.987 0.688 0.994
skater 0.925 0.934 0.947* 0.940 0.943 0.843 0.947
speed 0.289 0.319 0.345 0.347* 0.328 0.260 0.347
reuters 0.950* 0.899 0.544 0.520 0.519 0.519 0.950
Average 0.747 0.749 0.713 0.712 0.710 0.630 0.749

Table 10. Comparison of accuracy between NUSSampling (M -freq) and TKS
NUSSampling(Mfreq) TKS

Dataset Optimal M Best accuracy Optimal M Best accuracy
aslbu M=1 0.649* M=1 0.623

aslgt M=2 0.688* M=2 0.659
auslan M=7 0.330* M=1 0.230
blocks M=2 1.0* M=1 0.976

context M=1 0.984* M=1 0.980

pioneer M=1 1.0* M=1 0.994

skater M=3 0.944* M=1 0.870
speed M=5 0.366* M=1 0.249
reuters M=1 0.950* M=1 0.950*

to build a SVM classi�er. The classi�cation approaches are therefore extremely
comparable because only the mined features di�er.

Table 10 reports the accuracy of our approach compared with those of TKS
on all classi�cation datasets. More precisely, for both approaches, using cross-
validation, we select the optimal value of the parameter M (M varying between
1 and 7) and report the best obtained accuracy. Note that for TKS the optimal
value of the parameterM is always 1 except on aslgt. Then, using a paired Stu-
dent's t-test (with a con�dence level β = 95%), we evaluate if the best accuracies
obtained with NUSSampling+SVM and TKS are comparable or not.

First, we note that NUSSampling+SVM always has a better accuracy than
TKS (except on reuters where the best accuracies are equal). Then, we observe
that the accuracy gap between the two methods is generally higher when the
best accuracy of NUSSampling+SVM is for a value M greater than 1 (except
on blocks). In this case, a good classi�cation requires complex features based
on combinations of items. This feature space then becomes larger and pattern
sampling better covers this feature space than TKS. For this reason, in 4 datasets
where the best accuracy requires to set M > 1 (aslgt, auslan, skater and
speed), the accuracy of NUSSampling+SVM is signi�cantly better than the
accuracy obtained by TKS.

5.2.3. Comparison with pattern-based sequence classi�cation methods

We �nally compare the accuracy of NUSSampling+SVM with the results of
7 state-of-the-art sequence classi�cation methods reported in [37] as baselines
with respect to the same datasets: MiSeRe, SQS, GoKrimp, cSPADE, SCII
and DeFFeD. Using the three measures M -frequency, M -area and α-frequency,
Figure 9 shows that the best accuracies obtained by NUSSampling+SVM (col-
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umn Best of Tables 7, 8 and 9) are comparable to other pattern-based sequence
classi�cation methods reported in [37], even better for datasets auslan, context,
speed and skater.

To compare more precisely the di�erent methods, we apply the Friedman test
and a post-hoc Nemenyi test as suggested by [39] for comparisons of classi�ers
over multiple datasets (with a con�dence level β = 95% for all tests). First, the
Friedman test is used to evaluate if the measured average ranks of the di�erent
classi�ers are signi�cantly di�erent from the mean rank expected under the null-
hypothesis. In our case, since FF = 11.06 is greater than the critical value 2.01
(obtained for β = 95%), we reject the null-hypothesis that all methods are
comparable. Then, we use the Nemenyi test for pairwise comparisons. With
p = 0.05, the Critical Di�erence CD is equal to 4.52. Thus, we can distinguish in
Figure 10 two groups of methods: NUSSampling+SVM, MiSeRe, cSPADE
and SQS build better classi�ers than SCII, GoKrimp and DeFFeD.

Thus, even if the goal of this paper is not to propose a new sequence classi�-
cation method, these experiments show how subsequence sampling can be used
to build classi�ers, and that our NUSSampling+SVM method is competitive
with the best methods of the literature. Finally, it is important to recall that the
complexity of our sampling method is very low (only linear with |S| during the
preprocessing step, and logarithmic with |S| during the drawing phase), which
means that our method could be used with larger datasets than the datasets in
our benchmark.

5.2.4. Impact of the sample size

Depending on applications, in particular to classi�cation tasks, the impact of
sample size shall not be ignored with our classi�cation method. Obviously, the
accuracy of the classi�cation increases with the sample size because the sequences
are more likely to be covered by at least one subsequence. In this section, in order
to evaluate the impact of the sample size, we only perform experiments using
the M -frequency measure. In this context, Figure 11 shows the classi�cation
performance, considered as average accuracy values over all datasets, obtained
by di�erent sample sizes with respect to norm constraint values 1, 10 and Best
mentioned in Table 7. It is easy to observe that the classi�cation performance in-
creases continuously when more sampled sequential patterns are involved (which
is useful for developing an anytime approach). Interestingly, the accuracy in-
creases very quickly with the sample size. Thus, a classi�er built in a short
response time considering only 1,000 subsequences competes with methods of
the state of the art where all the pattern search space is explored.

6. Discussions and Possible Extensions

This section compares the expressivity of our class of measures with that of the
literature in Section 6.1. Then, we extend our class of measures by considering
the squared frequency and the discriminativity introduced in Section 6.2. For
this purpose, Section 6.3 shows how to calculate the number of common distinct
subsequences between two sequences and Section 6.4 analyzes its complexity.
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Fig. 9. Comparison of accuracy results between NUSSampling with SVM and
state-of-the-art sequence classi�cation methods.
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Fig. 10. Critical di�erence of performance between di�erent classi�ers.
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6.1. Di�erent classes of measures

In [19, 26], the authors show how to consider a very large set of interestingness
measures to draw itemsets in a transactional dataset. More precisely, given an
itemset X and a transactional dataset S, they consider the set of all measures
of the form f(X,S) = u?(X) × πK

i=1qi(X,Si) where u?(X) = Fx∈Xb(x) with
F ∈ {Π,

∑
} and qi is either the positive or negative frequency of X in a speci�c

portion Si of the input dataset S.
In our approach, we only consider utility functions u that are norm-based, i.e.

such that for all sequence s, u(s) = fu(‖s‖). Thus, by comparison with [19, 26],
we cannot consider utility functions u?(s) de�ned by u?(s) = Πx∈sb(x) where b
is not a constant function (for any item x ∈ I). On the other hand, it is easy
to see that our utility functions uarea and udecay can be considered by [19, 26].
Indeed, given an itemset X, we have uarea(X) =

∑
x∈X b(x) = |X| if b(X) = 1

for every item x ∈ I, and udecay(X) = Πx∈Xb(x) = α|X| if b(X) = α for every
item x ∈ I. However, the class of utility functions de�ned in [19, 26] cannot
model a size constraint using a utility function uM de�ned by uM (X) = 1 if
|X| ≤ M (0 otherwise). However, we saw in Section 5, the importance and the
bene�t of considering contraints on the norm of the drawn subsequences to limit
the e�ect of the long tail.
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Now, it is important to note that in our work, we only consider linear inter-
estingness measures, i.e. that depends linearly on the frequency of the sequences.
For example, compared to [19, 26], we do not consider quadratic measures such
as the squared frequency and discriminativity measures. Nevertheless, we show in
the next sections how our approach could be extended to this class of measures
and the cost to consider this extensions (in term of complexity with respect to
the size of the datasets).

6.2. Squared frequency and discriminativity

In our framework, given a sequential dataset S, we can de�ne the weighted
squared frequency of a sequence s by qsqf (s) = u(s) × freq(s,S)2 where u is
a utility function. Similarly, given a positive sequential dataset S+ and a nega-
tive sequential dataset S−, the discriminativity of a sequence s can be de�ned
by qdisc(s) = u(s)× freq(s,S+)× (|S−|− freq(s,S−)). Following the procedure
proposed in [19, 26] for transactional datasets, it is rather direct to extend our
approach to draw a sequence s with a probability proportional to its weighted
square frequency qsqf (s) or weighted discriminativity qdisc(s). For example, given
a positive sequential dataset S+ and a negative sequential dataset S−, we can
draw a subsequence w.r.t. its weighted discriminativity as follows:

1. First, we sample a pair of sequences (s+, s−) with a probability proportional to

the weight wdisc(s
+, s−) =

∑‖s+‖
k=0 wk

disc(s
+, s−) where wk

disc(s
+, s−) = fu(k)×

(Φk(s+)−Φk(s+, s−)) and Φk(s+, s−) is the number of common subsequences
between s+ and s− with a norm equal to k.

2. Then, after drawing the norm k of the subsequence s that will be returned,
we uniformly draw a subsequence of s+ that is not a subsequence of s− (with
a norm equal to k). This second step can be done with a rejection method
similar to the rejection method proposed in Section 4.4.

In order to implement this procedure, the main challenge of the �rst step
is to count the number of common subsequences between two sequences. We
show in Section 6.3 how this computation can be done by generalizing a for-
mula presented in [36]. Considering the second step, it is interesting to evaluate
the average number of draws necessary to return a subsequence. Given a pair
of sequences (s+, s−), it is easy to see that the probability P k

a (s+, s−) that a

subsequence s of s+ is accepted is de�ned by: P k
a (s+, s−) = Φk(s+)−Φk(s+,s−)

(‖s
+‖
k )

.

Indeed, s will be accepted if it is a �rst occurrence in s+ and not a subsequence
in s−. Thus, given a pair of sequences (s+, s−), the average number of draws to

accept a subsequence of s+ is µdisc(s
+, s−) =

∑‖s+‖
k=0

wk
disc(s+,s−)

wdisc(s+,s−) ×P
k
a (s+, s−)−1

=
∑‖s+‖

k=0

fu(k)×(‖s
+‖
k

)
wdisc(s+,s−) . It is clear that this number will be more important if

the number of common subsequences between s+ and s− increases. Indeed,
wdisc(s

+, s−) is decreasing with Φk(s+, s−). However, the probability to draw

a pair of sequences (s+, s−), de�ned by P (s+, s−) = wdisc(s+,s−)
Zdisc

where Zdisc =∑
(s+,s−)∈S+×S− wdisc(s

+, s−), is decreasing with the number of common subse-

quences between s+ and s−.
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6.3. Counting the common distinct subsequences between two
sequences

In this Section 6.3, we show how to extend the results presented in Section 4.2
to count the number of common distinct subsequences between two sequences
s1 and s2 under a norm constraint. This result is a generalization of the formula
presented in [36] to count the number of common subsequences between two
sequences without constraint on the norm. In order to count the number of com-
mon subsequences between two sequences s1 ◦ Y and s2 under a maximal norm
constraint j, this new formula contains three terms. The �rst term Φ≤j(s1, s2) is
simply the number of common subsequences already existing between s1 and s2.
The term A≤j(s1, s2, Y ) represents the number of extra common subsequences
that are added when a new itemset Y is concatenated to the sequence s1. Finally,
the term R≤j(s1, s2, Y ) is a correction term in order to take into account the rep-
etitions that may occur (as for the counting method of the distinct subsequences
of a sequence).

Theorem 2 (Number of common subsequences with a maximal norm).
Let s1 and s2 be two sequences, Y be an itemset and j be an integer, the
number of distinct common subsequences having a norm less or equal to j
between s1 ◦ Y and s2, denoted by Φ≤j(s1 ◦ Y, s2), is de�ned as follows:

Φ≤j(s1 ◦ Y, s2) = Φ≤j(s1, s2) +A≤j(s1, s2, Y )−R≤j(s1, s2, Y )

where A≤j(s1, s2, Y ) and R≤j(s1, s2, Y ) are the terms de�ned by:

A≤j(s1, s2, Y ) =
∑

∅⊂K⊆L(s2,Y )

(−1)|K|+1AK
≤j(s1, s2, Y )

with AK
≤j(s1, s2, Y ) =

∑j
k=1 Φ≤j−k(s1, s

min(K)−1
2 )×

(|s2[K]∩Y |
k

)
and

R≤j(s1, s2, Y ) =
∑

∅⊂K⊆L(s1,Y )

(−1)|K|+1

 ∑
∅⊂K′⊆L(s2,Y )

(−1)|K
′|+1RK,K′

≤j (s1, s2, Y )


with RK,K′

≤j (s, Y ) =
∑j

k=1 Φ≤j−k(s
min(K)−1
1 , s

min(K′)−1
2 )×

(|s1[K]∩s2[K′]∩Y |
k

)
5.

The following example illustrates the principles of the formula given by The-
orem 2.

Example 9. In this example, we show how to compute the number of common
subsequences between sequences s2 = 〈(ab)d(ac)〉 and s4 = 〈(ab)(cd)〉 under a
maximum norm constraint j = 2. First, it is easy to see that Φ≤2(s0

2, s4) = 1
since the empty subsequence is the only common subsequence between s0

2 =
〈〉 and s4. Now, we show how to compute: Φ≤2(s1

2, s4) = Φ≤2(s0
2 ◦ (ab), s4) =

Φ≤2(s0
2, s4) +A≤2(s0

2, s4, (ab)) +R≤2(s0
2, s4, (ab)). Because L(s4, (ab)) = {1} and

s4[K] = (ab) with K = {1}, we have A≤2(s0
2, s4, (ab)) = A

{1}
≤2 (s0

2, s4, (ab)) =∑2
k=1 Φ≤2−k(s0

2, s
0
4) ×

(
2
k

)
= 1 + 2 = 3. Indeed, when we concatenate (ab) to

the empty subsequence, we add 3 extra common subsequences to Φ≤2(s0
2, s4),

i.e. the subsequences 〈a〉, 〈b〉 and 〈(ab)〉. Then, because L(s0
2, (ab)) = ∅, we have

5 We recall that for every sequence s, we de�ne s[K] as: s[K] = ∩k∈Ks[k]
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R≤2(s0
2, s4, (ab)) = 0. Thus, we �nally obtain Φ≤2(s1

2, s4) = 1 + 3− 0 = 4. Using
Theorem 2, it is also possible to check that Φ≤2(s2

2, s4) = Φ≤2(s1
2 ◦ (d), s4) =

Φ≤2(s1
2, s4) +A≤2(s1

2, s4, (d)) +R≤2(s1
2, s4, (d)) = 4 + 3− 0 = 7.

Now, we give an example where the correction term is not equal to zero. Let us
consider the computation of Φ≤2(s2, s4). Using Theorem 2, we have Φ≤2(s2, s4) =
Φ≤2(s2

2 ◦ (ac), s4) = Φ≤2(s2
2, s4) + A≤2(s2

2, s4, (ac)) + R≤2(s2
2, s4, (ac)). Be-

cause L(s4, (ac)) = {1, 2}, we have A≤2(s1
2, s4, (d)) = A

{1}
≤2 (s2

2, s4, (ac)) +

A
{2}
≤2 (s2

2, s4, (ac)) −A{1,2}≤2 (s2
2, s4, (ac)). Then, with Y = (ac), because s4[K]∩Y =

(a) with K = {1}, s4[K] ∩ Y = (c) with K = {2}, and s4[K] ∩ Y = ∅
with K = {1, 2}, we have A

{1}
≤2 (s2

2, s4, (ac)) =
∑2

k=1 Φ≤2−k(s2
2, s

0
4) ×

(
1
k

)
=

1, A
{2}
≤2 (s2

2, s4, (ac)) =
∑2

k=1 Φ≤2−k(s2
2, s

1
4) ×

(
1
k

)
= Φ≤1(s2

2, s
1
4) = 3 and

A
{1,2}
≤2 (s2

2, s4, (ac)) = 0. Thus, we obtain A≤2(s1
2, s4, (d)) = 1 + 3, which means

that we add 4 extra common subsequences to Φ≤2(s2
2, s4), i.e. the subsequences

〈a〉 (which is a repetition), 〈c〉, 〈ac〉 and 〈bc〉. Moreover, because L(s2
2, (ac)) = {1}

and L(s4, (ac)) = {1, 2} and only s2
2[K] ∩ s4[K ′] ∩ Y with K = {1}, K ′ = {1}

and Y = (ac) is non empty, we have R≤2(s2
2, s4, (ac)) = R

{1},{1}
≤2 (s2

2, s4, (ac)) =∑2
k=1 Φ≤2−k(s0

2, s
0
4)×

(
1
k

)
= 1. This correction term is useful to take into account

that the common subsequence 〈a〉 has already been counted. It follows that we
�nally obtain Φ≤2(s2, s4) = 7 + 4− 1 = 10.

6.4. Complexity analysis and discussion

The complexity for the computation of the number of common subsequences
between two sequences s1 and s2 with norm lower than M using Theorem 2 is
in time O(|s1| · |s2| ·M2 · 2P1·P2 · T ) where P1 is the maximum size of position

sets L(si−1
1 , s1[i]), P2 is the maximum size of position sets L(sj2, s1[i]) and T is

the maximum size of an itemset in s1 or s2.
Thus, given a positive sequential dataset S+ and a negative sequential dataset

S−, the preprocessing time to draw subsequences with a probability proportional

to their discriminative measure will be in time O(|S|+ ·|S|− ·L+ ·L− ·M2 ·2P+·P− ·
T ) where L+ (resp. L−) is the maximum length of a sequence in S+ (resp. in
S−), M is the maximum norm of drawn subsequences, P+ is the maximum size
of position sets L(si−1

1 , s1[i]) with s1 ∈ S+, P− is the maximum size of position

sets L(sj2, s1[i]) with s1 ∈ S+ and s2 ∈ S−, and T is the maximum size of an
itemset in a sequence in S+ or S−.

Concerning this complexity, it is �rst important to note that P+ ≤ L+ and
P− ≤ L− may be very small in practice, and that if the datasets S+ and S−
contain only sequences of items (and not sequences of itemsets), then we have
P+ = P− = 1. Thus, in that case, the preprocessing can be performed in poly-
nomial time O(|S|+ · |S|− ·L+ ·L− ·M2 ·T ). Nevertheless, it should be pointed out
that this complexity is quadratic with the size of the datasets, which represents
a signi�cant bottleneck with large datasets. For that reason, it is clear that for
quadratic measures, an enumerative implementation of the �rst step of the sam-
pling procedure is certainly not a good solution, and that an indirect approach
based on the coupling from the past exact sampling method (as proposed in [26])
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is certainly a better solution. However, such an approach is out of the scope of
this paper.

7. Conclusion

This paper proposes the �rst output space sampling method for sequential pat-
terns with norm-based utility. This class of interestingness measures includes
frequency and area. It also allows to specify an interval constraint on the norm
of sequential patterns to better control the returned patterns. We have demon-
strated that our sampling algorithm is exact and we have estimated its e�ciency
with respect to the average number of rejections which increases with the num-
ber of occurrences within a sequence. The experimental study shows that the
approach is very e�cient on real-world datasets where the number of repetitions
is low. Besides, the experiments show that as well with frequency as area, the
addition of constraints on the norm or exponential decays avoids returning too
many patterns too rare, and focuses the sampling on the patterns of the �head�
as desired. Finally, we illustrated how to build a classi�er in a very short re-
sponse time by just drawing a sample containing 1,000 patterns. Whatever the
measure (frequency or area), these models still have an accuracy comparable to
some methods achieving a complete enumeration of the pattern search space.

We have already presented in Section 6 an important direction to extend our
work to other interestingness measures involving several times the frequency. Of
course, we can envisage many other future directions including:

� Language extent: We would especially like to extend our approach to more
complex languages. A �rst advance would be to introduce a gap constraint to
avoid having signi�cant gaps between two itemsets of the same sequence [40].
More ambitiously, it would be interesting to consider any set system [41], which
is a �exible framework of pattern languages. Indeed, the uniform drawing
within complex structures made possible by a canonical form (here the �rst
occurrence) can be envisaged with other structured languages.

� Sequential pattern modeling: As it was the case with the itemsets, we think
that the results about associative classi�cation are promising for addressing
other data mining tasks like detecting outliers in sequential data [15] or for
designing interactive systems dedicated to sequential pattern discovery [12].
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