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Abstract Outlier detection consists in detecting

anomalous observations from data. During the past

decade, outlier detection methods were proposed using

the concept of frequent patterns. Basically such meth-

ods require to mine all frequent patterns for computing

the outlier factor of each transaction. This approach

remains too expensive despite recent progress in pat-

tern mining �eld to provide results within a short re-

sponse time of only a few seconds. In this paper, we

provide the �rst anytime method for calculating the

frequent pattern outlier factor (FPOF). This method

which can be interrupted at anytime by the end-user

accurately approximates FPOF by mining a sample of

patterns. It also computes the maximum error on the

estimated FPOF for helping the user to stop the process

at the right time. Experiments show the interest of this

method for very large datasets where exhaustive mining

fails to provide good approximate solutions. The accu-

racy of our anytime approximate method outperforms

the baseline approach for a same budget in number of

patterns.

1 Introduction

Outlier detection consists in detecting anomalous ob-

servations from data [17]. The outlier detection prob-

lem has important applications, such as detection of

credit card fraud or network intrusions. During the past

decade, outlier detection methods were proposed for

categorical data [2,7,9,18,20,27,28]. The general prin-

ciple is to build a model that re�ects the majority of

Université François Rabelais Tours, LI EA 6300
3 place Jean Jaurès, F-41029 Blois, France
firstname.lastname@univ-tours.fr

the dataset and to judge as outlier all data observa-

tions that deviate from this model. Some of these ap-

proaches use the concept of frequent patterns [18,20,

27] for building the model. Their key idea is to con-

sider the number of frequent patterns supported by each

data observation. A data observation is unlikely to be

an outlier if it supports many frequent patterns since

frequent patterns correspond to the �common features�

of the dataset. Frequent pattern outlier detection meth-

ods �rst extract all frequent itemsets from the data and

then assign an outlier score to each data observation

based on the frequent itemsets it contains. These outlier

detection methods follow the schema of pattern-based

two-step methods.

Pattern-based two-step methods [19] aim at ex-

haustively mining all patterns (�rst step) in order to

build models (second step) like pattern sets (e.g., clas-

si�er [21] or clustering [10]) or pattern-based measures

(e.g., FPOF [18] or CPCQ index [22]). The complete-

ness of pattern mining is often considered as a crucial

advantage for constructing accurate models or mea-

sures. However, it also leads to three important issues

that hinder the user interaction with the system:

1. Threshold issue: The completeness of the �rst

step requires to adjust thresholds which is recog-

nized as being very di�cult. Typically, if the min-

imal support threshold is too low, the extraction

becomes unfeasible. If it is too high, some essential

patterns are missed.

2. Accuracy issue: Completeness leads to huge pat-

tern volumes without guaranteeing not missing im-

portant patterns. For a smaller budget (in time or

number of patterns), we claim that non-exhaustive

methods can produce collections of patterns better

adapted to the task of the second step. Interestingly,
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a non-exhaustive method can even guarantee a cer-

tain quality on the second step.

3. Runtime issue: The exhaustive mining of all pat-

terns requires to explore the search space in a cer-

tain fashion that extracts either very general pat-

terns �rst (breadth-�rst search) or very similar pat-

terns to each other (depth-�rst search). For having

patterns regularly covering the search space, it is

necessary to wait for the end of the extraction step

before starting the model construction. As this �rst

step is very time consuming, it prevents the user to

have an immediate answer.

In order to cope with these issues, we propose an ap-

proach for pattern-based outlier detection that do not

rely on exhaustive mining. This paper extends the pre-

vious version [14] by taking into account an anytime

constraint i.e., a terminating condition based on a bud-

get in time or patterns rather than a maximum error.

However, the maximum error is still communicated to

the user to help stop the process at the right time.

This paper revisits the calculation of the Frequent

Pattern Outlier Factor (FPOF) with an anytime con-

straint by bene�ting from recent pattern sampling tech-

niques. Our goal is not to propose a new outlier detec-

tion factor. Rather, we want to better approximate, and

at anytime, the FPOF. Although this factor has sev-

eral limitations, it remains popular and our approach

can be applied to other. Furthermore, the main limi-

tation of FPOF is clearly its computational cost that

raises the three above issues. To tackle this problem,

our proposal is to propose an anytime algorithm, i.e.

algorithm that can be interrupted at any point of time

to supply an answer whose quality increases with com-

putational time [4]. To this purpose, the key idea of our

proposal is to mine a pattern sample instead of mining

the exhaustive collection of frequent patterns. We then

reformulate the FPOF by considering the current sam-

ple of patterns. Using Bennett's inequality, this method

guarantees a maximum error for a given con�dence at

anytime. Experimental study shows the e�ciency of our

sampling-based method on benchmarks coming from

UCI Machine Learning repository and FIMI reposi-

tory by considering evaluation criteria of anytime al-

gorithms [32]:

� Accuracy: The result of our sampling-based any-

time algorithm converges to the exact FPOF when

time tends to in�nity. In particular, the Kendall's

tau which evaluates the similarity between the rank-

ings induced by the approximate and exact FPOF

increases rapidly and smoothly with pattern budget.

� Certainty: The error estimated stemming from

Bennett's inequality is relatively close to the true

error. The end-user therefore has an objective inter-

estingness measure in order to help stop the algo-

rithm at the right time.

� Stability: Even if the proposed algorithm is non-

deterministic, the variability (evaluating by the

standard deviations of accuracy measures) decreases

with sample size and time. This means that multiple

executions give approximately the same answer.

The outline of this paper is as follows. Section 2

reviews some related work about outlier detection, pat-

tern sampling and anytime algorithms. Section 3 intro-

duces the basic de�nitions about the FPOF. Section 4

motivates and states the problem of its anytime ap-

proximate calculation. We introduce our anytime ap-

proximate method based on sampling in Section 5. Sec-

tion 6 provides experimental results. We conclude in

Section 7.

2 Related Work

2.1 Pattern-based outlier detection

The outlier detection methods are primarily based on

the construction of a model that describes the major-

ity of data observations. A new data observation is

then considered abnormal when it strongly deviates

from this model. In this paper, we mainly focus on

the outlier detection methods dedicated to categori-

cal data. A broader view of outlier detection is pro-

vided by surveys including [17]. Di�erent frameworks

are dedicated to categorical data for the construction of

the model including the Minimum Description Length

framework [2], the probability framework (using Hidden

Markov Models (HMM) [7], joint probabilities [9] or a

random walk on attributes [28]) and the pattern-based

framework [18,20,27]. Pattern-based methods bene�t

from the progress of pattern mining made over the past

two decades. The key idea is that as the frequent pat-

terns re�ect the distribution of the dataset, they form a

representative model of the dataset. Such methods re-

main e�cient for high-dimensional spaces unlike other

methods dedicated to categorical data.

The �rst pattern-based approach [18] introduced the

frequent pattern outlier factor that exploits the com-

plete collection of frequent itemsets (while [27] uses an

opposite approach by considering non-frequent item-

sets). More recently, [20] replaces the collection of fre-

quent itemsets by the condensed representation of Non-

Derivable Itemsets (NDI) which is more compact and

less expensive to mine. We would go further by show-

ing that the frequent pattern outlier factor proposed
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in [18] can be approximated e�ciently by extracting a

small sample of patterns.

This paper bene�ts from FPOF which remains a

popular outlier detection factor despite its known lim-

its. Unlike other methods, it does not exploit the data

structure which is often used to improve the detec-

tion of abnormal data: an organization as attribute-

value [2,9,28] and in a most original way, sequential-

ity [7]. Moreover, recent experiments [28] have shown

that the FPOF is not well-suited for identifying ab-

normal data when data are noisy or attributes have

very di�erent distributions. Finally, the main �aw of

FPOF that we already discussed in the introduction

is its computational cost. In addition, it is necessary

to wait until the end of the execution to know what

are the outliers. Note that even, non-pattern-based out-

lier detection methods which are polynomial with the

dataset size su�er from the same drawbacks. By o�ering

an anytime algorithm, our proposal gives a �rst result

in a short response time and if there is enough time, it

converges to a result as good as would give the original

FPOF method.

2.2 Pattern sampling

Previous methods for pattern-based outlier detection

enumerates exhaustively all patterns satisfying a given

selection predicate, called constraint [24] (e.g., mini-

mal frequency). As mentioned in introduction, it is rec-

ognized that constraint-based pattern mining leads to

threshold and runtime issues which are sometimes a se-

vere bottleneck. Recently, there has been a resurgence

in pattern mining for non-exhaustive methods [12]

through pattern sampling [6,8]. Pattern sampling aims

at accessing the pattern space L by an e�cient sampling

procedure simulating a distribution π : L → [0, 1] that

is de�ned with respect to some interestingness measure

m: π(.) = m(.)/Z where Z is a normalizing constant

(formal framework and algorithms are detailed in [6]).

In this way, the user has a fast and direct access to the

entire pattern language and with no parameter (except

possibly the sample size). Pattern sampling has been in-

troduced to facilitate interactive data exploration [31].

As constraint-based pattern mining, pattern sampling

problem has been declined for di�erent languages like

itemsets [6] and graphs [15], and di�erent interesting-

ness measures including support [6,15], area [6,26], dis-

criminative measure [15,6] or utility measure [6,25,26].

To the best of our knowledge, there are only two

proposals bene�ting from pattern sampling to instantly

build pattern-based global models: representative set of

patterns [8] and tiling [26]. In this paper, we investi-

gate the use of pattern sampling for assigning an out-

lier score to each transaction (a kind of model). But

we go further by re�ning this model over time to �nally

tend to the exact model. With a lower (pattern or time)

budget than that of an exhaustive method, we obtain

a higher quality with a bounded error.

2.3 Anytime algorithms for pattern mining

Introduced in the �eld of real-time system design [4,

32], anytime algorithms have more recently been used

in the �eld of data mining [3,5,11,16,23], and more

speci�cally for pattern mining [30]. Most of the time,

anytime algorithms have been used to build global mod-

els (e.g., classi�ers, clusterings or rankings) when the

computation time required to obtain a �rst model is

very important. One approach to build global mod-

els using anytime algorithms is to enumerate the set

of all possible solutions and keep anytime the best so-

lution, i.e. the best global model. For example, using

depth-�rst search based algorithms, this approach has

been used to build Bayesian networks [23], or to extract

groups with maximum coverage from spatio-temporal

data of mobile users [30]. Another approach to build

global models using anytime algorithms is to compute

�rst a rough solution and then to re�ne this solution

over time. For example, this approach is used in [5]

to build an anytime density-based clustering algorithm

and in [16] to provide high quality subspace clusterings

of data streams. This approach is also used in this paper

to extract outliers. Indeed, using pattern sampling, our

algorithm re�nes the FPOF of transactions over time.

To the best of our knowledge, only the works in [3]

adresses the problem of outlier detection using anytime

algorithms. In [3], the authors propose an anytime algo-

rithm to determine within any period of time whether

an object in a data stream is anomalous or not. The

more time is available, the more reliable the predictions

are. Compared to this work, in this paper, we do not

propose an algorithm to detect outliers in data streams,

but in very large datasets. However, we have the same

property, meaning that the accuracy of our predictions

(a transaction is an outlier or not) increases with time.

Finally, to the best of our knowledge, only the works

in [30] uses anytime algorithms for pattern mining. Nev-

ertheless, compared to our work, this work solves a very

di�erent problem, i.e. �nding groups of users with max-

imum coverage in the context of spatio-temporal data

mining.
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D
Trans. Items

t1 A B

t2 A B
t3 A B
t4 C

D′

Trans. Items

t1 A B

t2 A B

t3 A B
t4 C

t5 A B

D′′

Trans. Items

t1 A B D

t2 A B D

t3 A B D
t4 C

Table 1 Three toy datasets with slight variations

3 Frequent Pattern Based Outlier Detection

3.1 Basic de�nitions

Let I be a set of distinct literals called items, an itemset

(or a pattern) is a subset of I. The language of item-

sets corresponds to L = 2I . A transactional dataset

is a multi-set of itemsets of L. Each itemset, usually

called transaction, is a data observation. For instance,

Table 1 gives three transactional datasets with 4 or 5

transactions ti described by until 4 items A, B, C and

D.

Pattern discovery takes advantage of interestingness

measures to evaluate the relevancy of a pattern. The

support of a pattern X in the dataset D is the pro-

portion of transactions covered by X [1]: supp(X,D) =
|{t ∈ D : X ⊆ t}|/|D|. A pattern is said to be frequent

when its support exceeds a user-speci�ed minimal thresh-

old. The set of all frequent patterns for σ as minimal

threshold in D is denoted by Fσ(D):

Fσ(D) = {X ∈ L : supp(X,D) ≥ σ}

In the following, we manipulate pattern multisets

which are collections of patterns admitting several oc-

currences of the same pattern. The representativeness

of a pattern multiset P, denoted by Supp(P,D), is the
sum of the support of each pattern in P:

Supp(P,D) =
∑
X∈P

supp(X,D)

The range of Supp(P,D) is [0, |P|]. Given a cardinal-

ity, high representativeness means the multiset contains

very common patterns of the dataset. For comparing

the content of two pattern multisets, we use the semi-

join, denoted by P2.P1, that returns all the patterns of

P2 occurring in P1:

P2.P1 = {X ∈ P2 : X ∈ P1}

For instance, {A,AB,A,D}.{C,A,B} = {A,A}.

3.2 Frequent Pattern Outlier Factor

Intuitively, a transaction is more representative when it

contains many patterns which are very frequent within

the dataset. In contrast, an outlier contains only few

patterns and these patterns are not very frequent. The

frequent pattern outlier factor [18] formalizes this intu-

ition:

De�nition 1 (FPOF) The frequent pattern outlier

factor of a transaction t in D is de�ned as follows:

fpof(t,D) = Supp(2t,D)
maxu∈D Supp(2u,D)

The range of fpof is [0, 1] where 1 means that the

transaction is the most representative transaction of the

dataset while a value near 0 means that the transaction

is an outlier. Other normalizations (denominator) are

possible like Supp(L,D) or
∑
t∈D Supp(2

t,D). What-

ever the normalization method, two transactions re-

main ordered in the same way (so it does not a�ect the

Kendall's tau that we use to evaluate our method). Un-

der a certain Markov model, the score fpof(t,D) is also
the proportion of time that an analyst would dedicate

to study the transaction t considering the collection of

frequent itemsets [13].

In the �rst dataset provided by Table 1, t1 is cov-

ered by ∅ (supp(∅,D) = 1) and, A, B and AB whose

support equals to 0.75 (Supp({∅, A,B,AB},D) = 3.25)

while t4 is only covered by ∅ and C (Supp({∅, C},D) =
1.25). Consequently, fpof(t1,D1) = 3.25/3.25 and

fpof(t4,D1) = 1.25/3.25. In this example, t4 appears

to be an outlier. It is easy to see that increasing the

frequency of the patterns covering the �rst transac-

tions (e.g., dataset D′) decreases the FPOF of t4. Sim-

ilarly, increasing the number of patterns covering the

�rst transactions also decreases the FPOF factor of t4
(e.g., dataset D′′).

4 Problem Formulation

4.1 Exact FPOF computation problem

Given a dataset D, the outlier detection problem con-

sists in computing the FPOF for each transaction t ∈ D.
In practice, this exact calculation of the frequent pat-

tern outlier factor was performed by mining all patterns

appearing at least once in the dataset (i.e., with σ =

1/|D|) [18]. Of course, this expensive task is not possi-

ble for very large datasets. Recently, it has been demon-

strated that the FPOF can be reformulated in order to

calculate the exact FPOF in polynomial time [14].
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D Exhaustive Time (s) Non-enumerative Time (s)

chess 439.5 1.1

connect 748.5 577.7

mushroom 0.4 5.9
pumsb time out 1,970.5

retail 8.7 5,969.9
sick 0.8 0.5

Table 2 Time comparison of two exact methods for calculating
FPOF

To calculate the FPOF of a transaction t, Def-

inition 1 formulates the problem in terms of fre-

quent patterns appearing in t. The idea is to refor-

mulate this factor by considering what each trans-

action u brings to the transaction t. For instance,

in dataset D, the FPOF of the �rst transaction

relies on Supp({∅, A,B,AB},D) which is equal to

|{∅, A,B,AB, ∅, A,B,AB, ∅, A,B,AB, ∅}|/4. Each
subset {∅, A,B,AB} or {∅} results from the intersec-

tion of patterns covering t1 with those covering another

transaction u ∈ D. Thereby, Supp({∅, A,B,AB},D) =
|{
⋃
u∈D 2t1 ∩ 2u}|/|D| = |{

⋃
u∈D 2t1∩u}|/|D|. Given a

dataset D, this observation leads to reformulate the fre-

quent pattern outlier factor as follows for all transaction

t ∈ D:

fpof(t,D) =
∑
u∈D 2|t∩u|

maxv∈D
∑
u∈D 2|v∩u|

From a conceptual point of view, it is interesting

to note that ultimately, the FPOF of a transaction is

just the sum of its similarity with each of transactions

(where similarity between t and u is 2|t∩u|). This mea-

sure is therefore very close to traditional methods rely-

ing on pair-wise distance among data observations.

Table 2 reports the running time required for cal-

culating the exact FPOF using the classical exhaustive

method [18] and the non-enumerative method [14] (re-

spectively the 2nd and the 3rd column) based on the

experimental setting described in Section 6. Note that

the exact exhaustive method (as baseline) bene�ts from

lcm which is one of the most recognized frequent item-

set mining algorithm. The non-enumerative method is

e�ective and rivals the exact exhaustive one. Its main

advantage is to calculate the exact FPOF with datasets

where the exact exhaustive method fails (e.g., pumsb

where the execution was aborted after 5h).

However, even with a polynomial method, Ta-

ble 2 shows that the exact calculation remains time-

consuming. It is clear that the exact FPOF calculation

cannot be guaranteed in a short response time. Thus,

it makes sense to propose approximate algorithms for

the FPOF computation.

4.2 Approximate FPOF computation problem

Let us focusing on a classical approach used in liter-

ature to approximate the FPOF. Instead of using the

complete collection of patterns, FPOF is usually ap-

proximated with a collection of frequent patterns i.e.,

with a higher minimal support threshold:

De�nition 2 (σ-Exhaustive FPOF) Given a mini-

mal support threshold σ, the σ-exhaustive FPOF of a

transaction t in D is de�ned as follows:

fpofσ(t,D) =
Supp(Fσ(D).2t,D)

maxu∈D Supp(Fσ(D).2u,D)

The approximation becomes accurate with very low

minimal support thresholds. Figure 1 (top) plots the

Kendall's tau of fpofσ in comparison with fpof for some

benchmarks1. Unfortunately, this approximate method

su�ers from two issues. When the minimal support

threshold becomes very low, the number of patterns

(see the bottom plot of Figure 1) and the extraction

time explode. Sometimes the extraction of additional

patterns leads to a deterioration of the results (inac-

curacy issue). Furthermore, the approximation error is

not estimated. The user does not know if the returned

approximate FPOF is far from the exact FPOF (uncer-

tainty issue). With a smaller budget, we claim that it

is possible to approximate more precisely FPOF while

having a bound on the error.

4.3 Anytime FPOF computation problem

Figure 1 shows that the Kendall's tau varies signi�-

cantly depending on the dataset for a same minimal

support threshold. It means that this threshold is not

easy to �x for obtaining a good compromise between

e�ciency and quality. It clearly hinders the user inter-

activity. Therefore, it seems interesting to rephrase the

approximate FPOF problem by opting for an anytime

perspective. In this context, the method informs the

user with a feedback on the maximum error on the cur-

rent approximate FPOF. Then, the user will choose the

right time to stop the method.

Given a dataset D and a real δ, return at

anytime k a function f̃pofk approximating the

frequent pattern outlier factor and a maximum

bound εk such that:

� |fpof(t,D)− f̃pofk(t,D)| ≤ εk for each trans-

action t ∈ D, with con�dence 1− δ and
1 It is the proportion of pairs of transactions which would be

ranked similarly with the approximate FPOF and with the true
FPOF (see Section 6 for a formal de�nition).
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� εk+1 ≤ εk where limk→+∞ εk = 0.

This problem aims at assigning at anytime an ap-

proximate FPOF to each transaction by guaranteeing

a maximum error εk with the probability 1 − δ. Note
that, in the following, we will express all budgets in pat-

terns (denoted by k, here). The requirement of return-

ing a maximum bound that monotonically decreases

and converges to 0 avoids the drawbacks described in

the above approach based on frequent patterns where

the accuracy of the approximation may decrease (de-

spite a higher pattern budget) and where the certainty

is unknown.

5 Anytime Sampling Method

This section addresses the above problem by using pat-

tern sampling. First, we propose a method for approx-

imating FPOF from a pattern sample drawn according

to frequency. Then we show how to estimate the error

of this approximation. Finally, we detail our sampling-

based anytime algorithm.

5.1 Pattern sampling for FPOF

In Section 4, we showed that the use of the most fre-

quent patterns is insu�cient to approximate accurately

FPOF. The most frequent patterns do not measure the

singularity of each transaction that also relies on more

speci�c patterns (whose frequency varies from small to

average). Conversely do not considering frequent pat-

terns would also be a mistake because they contribute

signi�cantly to FPOF. A reasonable approach is to se-

lect patterns randomly with a probability proportional

to their weight in the calculation of FPOF. Typically,

in the dataset D of Table 1, the itemset AB is 3 times

more important than itemset C in the calculation of

FPOF due to their frequency.

In recent years pattern sampling techniques have

been proposed to randomly draw patterns in propor-

tion to their frequency [6]. Such approaches are ideal

to bring us a well-adapted collection of patterns. Of

course, it remains the non-trivial task of approximat-

ing FPOF starting from this collection. This is what

provides the following de�nition:

De�nition 3 (k-Sampling FPOF) Given an integer

k > 0, a k-sampling frequent pattern outlier factor of a

transaction t in D is de�ned as follows:

fpofk(t,D) =
|Sk(D).2t|

maxu∈D |Sk(D).2u|

where Sk(D) is a sample of k patterns drawn from D
according to support: Sk(D) ∼ supp(L,D).

It is important to note that |�| is used here instead

of Supp(�,D) as done in De�nition 1. As the sampling

technique already takes into account the frequency when

it draws patterns, it is not necessary to involve the sup-

port here. Indeed, the draw is with replacement for the

correct approximation of FPOF (without this replace-

ment the most frequent patterns would be disadvan-

taged). It induces that the same pattern can have mul-

tiple occurrences within the sample Sk(D).
For the same sample size k and for the same trans-

action t, it is possible to calculate di�erent values of

a k-sampling FPOF due to Sk(D). But, the higher the
threshold k, the less the di�erence between values stem-

ming from two samples is high. Furthermore, the greater

the sample size k, the better the approximation:

Property 1 (Convergence) Given a dataset D, a k-

sampling FPOF converges to the FPOF for each trans-

action t ∈ D.

Proof Sk(D) ∼ supp(L,D) means that there ex-

ists a constant α > 0 such that ∀X ∈ L,
limk→∞ |Sk(D).{X}| = αsupp(X,D). Then, for each
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transaction t, we obtain that: limk→∞ |Sk(D).2t| =

α
∑
X∈2t supp(X,D) = αSupp(2t,D). By injecting this

result into De�nition 3, we conclude that Property 1 is

right. ut

Beyond convergence, the interest of this approach

is the speed of convergence far superior to that of the

σ-exhaustive frequent pattern outlier factor as shown

in the experimental study (see Section 6). This speed is

accompanied by a good e�ciency due to a reasonable

complexity of pattern sampling:

Property 2 (Complexity) A k-sampling FPOF of all

transactions can be calculated in time O(k×|I|× |D|).

Proof Pattern sampling according to frequency is per-

formed in time O(|I|× |D|+ k(|I|+ln |D|)) [6] and the

FPOF calculation for all transactions consists in �nd-

ing the transactions containing each sampled pattern.

Thus, it is calculated in time O(k × |I| × |D|). ut

Given a number of patterns k (which is the allo-

cated pattern budget), a k-sampling FPOF is therefore

e�ective to calculate an accurate approximation. The

next section goes further by ensuring certainty of this

approximation.

5.2 Bounding the error

This section shows how to provide a feedback for help-

ing the user in his/her decision to stop the algorithm.

The idea is to draw a sample and to bound the maxi-

mum error of FPOF using a statistical result known as

Bennett's inequality. This maximum error is provided

to the end-user given an initial con�dence. If he/she

judges that the quality is su�ciently good, he/she inter-

rupts the algorithm that returns an approximate FPOF

based on the current sample. Otherwise, the sampling

FPOF is re�ned by increasing the sample size and so

on.

We use Bennett's inequality to estimate the current

error because it is true irrespective of the probability

distribution. After k independent observations of real-

valued random variable r with range [0, 1], Bennett's

inequality ensures that, with con�dence 1− δ, the true
mean of r is at least r−ε where r and σ are respectively

the observed mean and variance of the samples and

ε =

√
2σ ln(1/δ)

k
+

ln(1/δ)

3k

In our case, the random variable is the average num-

ber of patterns within a sample Sk ∼ supp(L,D) that
cover the transaction t. It is denoted by covSk

(t) and

de�ned as follows: covSk
(t) = |Sk.2t|/k. It is easy to see

that a k-sampling FPOF factor can be rewritten using

covSk
: fpofk(t,D) = covSk

(t)/maxv∈D covSk
(v). Using

Bennett's inequality and the above de�nition enables

us to bound FPOF:

Property 3 (FPOF Bounds) Given a datasetD and con-
�dence 1− δ, the FPOF of transaction t is bounded as
follows:

max

{
0,

covSk
(t)− εt

covSk
(u) + εu

}
︸ ︷︷ ︸

mk(t)

≤ fpof(t,D) ≤ min

{
covSk

(t) + εt

covSk
(u)− εu

, 1

}
︸ ︷︷ ︸

Mk(t)

where Sk ∼ supp(L,D), u = argmaxv∈D covSk
(v) and

εt =
√
2σt ln(1/δ)/k+ln(1/δ)/(3k) with σt which is the

empirical standard deviation of covSk
(t).

Proof Given a con�dence 1 − δ and a transaction

t ∈ D, Bennett's inequality gives that covSk
(t) − εt ≤

Supp(2t,D) ≤ covSk
(t)+εt with εt =

√
2σt ln(1/δ)/k+

ln(1/δ)/(3k). In particular, this inequality holds for

u = argmaxv∈D covSk
(v) and then, we obtain:

covSk
(t)− εt

covSk
(u) + εu

≤ Supp(2t,D)
Supp(2u,D)

≤ covSk
(t) + εt

covSk
(u)− εu

As the FPOF lies within the interval [0, 1], we conclude

that Property 3 is right. ut
In other words, Property 3 allows us to approxi-

mate the exact FPOF starting from a sample of pat-
terns randomly drawn according to frequency. Indeed,
the exact FPOF is between mk(t) and Mk(t) and the
current k-sampling FPOF approximates it with a max-
imum bounded error (Mk(t) − mk(t))/2. Rather than
presenting to the end-user this estimated error for each
transaction, we provide the average maximum error in
experimental study (see Section 6). Nevertheless, we
can go further by approximating the Kendall's tau that
is often used in practice to estimate the quality of a
ranking. The Kendall's tau compares the ranking stem-
ming from an approximate method f with that stem-
ming from the exact FPOF as follows:

τ(f) =
|{(t, u) ∈ D2 : sgn(f(t)− f(u)) = sgn(fpof(t)− fpof(u)}|

|D|2

Using the lower and upper bounds for each transac-

tion stemming from Property 3, we can compute the

pessimistic value of the Kendall's tau considering the

current sample:

Property 4 (Kendall's tau Bound) Given a dataset D
and con�dence 1− δ, the Kendall's tau of a k-sampling
FPOF, denoted by τ(fpofk), is lower bounded as fol-
lows:

{(t, t′) ∈ D2 : mk(t) ≥Mk(t′) ∨Mk(t) ≤ mk(t′)}
|D|2

≤ τ(fpofk)

Proof This property is a direct corollary of Property 3.

For each pair of transactions t and t′, we are sure that

the ranking of the approximate method is correct when

the lower bound of one transaction is higher than the

upper bound of the other. Property 3 provides these

bounds. ut
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Algorithm 1 Anytime FPOF Computation
Input: A dataset D, a con�dence 1− δ
Output: A k-sampling frequent pattern outlier factor of all

transactions in D with an estimated error for a con�dence
1− δ

1: ε̃← 1 ; S ← ∅
2: repeat
3: S ← S ∪ {X} where X ∼ supp(L,D) // add a pattern

in the sample
4: m ← argmaxt∈D covS(t) // select the most covered

transaction
// estimate the maximal error on covS

5: εt ←
√

2σt ln(1/δ)/|S|+ ln(1/δ)/(3|S|) for each t ∈ D
// estimate the maximal error on FPOF

6: ε̃ ← maxt∈D{min{1; (covS(t) + εt)/(covS(m) − em)} −
covS(t)/covS(m)}

7: ε̃ ← maxt∈D{covS(t)/covS(m) − max{0; (covSk
(t) −

εt)/(covS(m) + em)}; ε̃}
8: Print the estimated bounds about error per transaction and

Kendall's tau as feedback
9: until The user stops the process
10: return 〈covS(t)/maxu∈D covS(u)〉t∈D

Property 4 enables us to bound the true Kendall's

tau of our approach. Unfortunately, it is not possible to

estimate similar bounds about evaluation metrics that

rely on the ground truth because this ground truth is

obviously not known in advance by the approximate

approach. For instance, it is impossible to estimate the

false alarm rate or the detection rate as these measures

require to know the true outliers. An outlier threshold

α is used in order to de�ne these true outliers in the

experimental section (see Section 6.2).

Properties 3 and 4 provide bounds which are used

in the algorithm of the next section.

5.3 Anytime algorithm

Algorithm 1 returns, at anytime, an approximate

FPOF of all transactions of the dataset D by guaran-

teeing a bounded error with con�dence 1− δ. Basically,
the main loop (line 2-9) is iterated until that the user

interrupts the process (line 9). Lines 4-7 calculate the

maximal error ε̃ using Property 3 and line 8 prints the

current approximated bounds described in the previous

section as feedback for helping the user. When the user

interrupts the process, line 10 returns the k-sampling

FPOF with the current sampling S. Otherwise, one
more pattern is drawn (line 3) and so on.

As desired in Section 4.3, Algorithm 1 approximates

the FPOF of all transactions for a pattern budget k:

Property 5 (Correctness) Given a dataset D and a con-

�dence 1−δ, Algorithm 1 returns for for all pattern bud-

gets k the k-sampling FPOF fpofk that approximates

the exact FPOF such that:

D |D| |I| Avg. number of patt. per sec.

chess 3,196 75 29.0k
connect 67,557 129 1.2k
hepatic 155 45 219.3k
german 1,000 76 78.6k
mushroom 8,124 119 17.9k
pumsb 49,096 7,117 1.7k
retail 88,162 16,470 1.5k
sick 2,800 58 29.4k

Table 3 Performance issue of pattern sampling

� |fpof(t,D)− fpofk(t,D)| ≤ εk for each transaction

t ∈ D, with a con�dence of 1− δ and
� limk→+∞ εk = 0.

where εk = maxt∈D(Mk(t,D)−mk(t,D))/2.

Proof This property is a direct corollary of Property 3.

The proposed bounds justify the above de�nition of er-

ror εk and ensure that |fpof(t,D)− fpofk(t,D)| ≤ εk
for t ∈ D with 1− δ as con�dence. Furthermore, as the

bounds are re�ned when the budget k increases, it gives

that limk→+∞ εk = 0. ut

Next section also provides experiments showing that

εk+1 ≤ εk even if it is not possible to formally prove this

result due to the empirical variance that may increase.

6 Experimental Study

The goal of this paper is not to de�ne a new outlier de-

tection factor, but to improve the computing of FPOF

that is well established. For this reason, we do not pro-

vide new experiments showing the interest and the lim-

its of FPOF for detecting outliers as this aspect is al-

ready detailed in literature (see related work in Sec-

tion 2). Experiments exclusively focus on the study of

the quality of the approximate FPOF provided by our

sampling-based anytime algorithm in comparison with

the exact FPOF used as reference. The exact FPOF is

computed by the polynomial method described in Sec-

tion 4.1.

Experiments are conducted on datasets coming from

the UCI Machine Learning repository2 and the FIMI

repository3. Table 3 gives the main features of datasets

in the �rst 3 columns. All experiments are performed

on a 2.5 GHz Xeon processor with the Linux operat-

ing system and 2 GB of RAM memory. Algorithms are

implemented in C++ language.

In the following, we only consider budgets in pat-

terns but considering the average number of sampled

2 archive.ics.uci.edu/ml
3 fimi.ua.ac.be

archive.ics.uci.edu/ml
fimi.ua.ac.be
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Fig. 2 Kendall's tau per transaction with a time budget

patterns per second (see the last column of Table 3),

it is easy to convert pattern budgets into time budgets

due to the linearity of pattern sampling.

6.1 Anytime approximation vs the state-of-the-art

approximation

This section compares the abilities of the two below

methods to approximate the exact FPOF according to

a given pattern budget k:

� Baseline: This method relies on σ-Exhaustive

FPOF (see De�nition 2) where σ is de�ned for con-

sidering the set of top-k frequent patterns.

� Sampling-based method: This method draws k

patterns according to frequency and then, approxi-

mates the exact FPOF based on the formula of Def-

inition 3.

More precisely, we confront these two methods con-
sidering 3 quality criteria: 1) Accuracy: regularity and
rapidity of the convergence; 2) Certainty: precision of
the lower bounds and 3) Stability: reproducibility of the
approximate FPOF for the same sample size. For this
purpose, in Figure 2, we recall that the Kendall's tau for
comparing the ranking stemming from an approximate
method f with that stemming from the exact FPOF
(calculated with an exact method):

τ(f) =
|{(t, u) ∈ D2 : sgn(f(t)− f(u)) = sgn(fpof(t)− fpof(u)}|

|D|2

Figure 2 reports the Kendall's tau of the sampling-

based method (in plain line, anytime) and the baseline

(in dashed line, baseline) according to a given pattern

budget. We also report the lower bound of the Kendall's

tau computed using Property 4 (in dotted line, lower

bound). For the sampling-based method which is not

deterministic, each reported evaluation measure is the

arithmetic mean of 10 repeated measurements with its

con�dence interval.

In the same way, we also compute the average error

per transaction between the approximate FPOF f and

the exact FPOF:

ε(f,D) =
∑
t∈D |f(t,D)− fpof(t,D)|

|D|

Figure 3 reports this average error per transaction for

the sampling-based method (in plain line, anytime) and

the baseline (in dashed line, baseline) according to a

given pattern budget. In Figure 3, we also report the

upper bound of the average maximum error per trans-

action (in dotted line, upper bound) that is computed

online using Property 3.

Accuracy To assess the speed of the convergence, we

consider the increase of the Kendall's tau and the de-

crease of the true error. As expected, the two approx-

imate methods converge to the exact FPOF when the

pattern budget increases but, the convergence of the

sampling-based anytime method is smoother and faster.

Indeed, while the FPOF error of the baseline may in-

crease by considering more patterns (see german or

mushroom in Figure 3, for instance), the higher the

pattern budget k, the better the approximation of the

sampling-based method.
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Fig. 3 Average FPOF error per transaction with a time budget

In certain datasets, when the pattern budget is

small, the baseline is more e�ective considering the

Kendall's tau especially (e.g., hepatic or german). As

it considers the most frequent patterns �rst (in partic-

ular, items), it tends to cover more rapidly the entire

dataset. It would be appropriate to propose a hybrid

method where items are considered before using sam-

pling.

Certainty Only the sampling-based method provides

guarantees on the approximate FPOF computed at any-

time for helping the end-user to interrupt the algorithm

and to analyze the result. In Figure 3, we observe that

the lower bound of the Kendall's tau is quite pessimistic

(i.e., it is always much lower than the true Kendall's

tau). Similarly, the true average error per transaction

of the approximate method is lower than the estimated

one (see Figure 3). This di�erence results from the Ben-

nett's inequality that makes no assumption about the

distribution. It is also interesting to note that for 2

datasets (i.e., for chessand connect), the average er-

ror per transaction of the baseline is always above the

estimated error. It means that the use of the most fre-

quent itemsets is a worse strategy than a random uni-

form sampling. Conversely, the sampling strategy based

on frequency has higher results and in addition, this

method o�ers some guarantees on the certainty of the

approximation.

Stability To measure the stability of the sampling-

based anytime method, we consider the con�dence in-

tervals of the Kendall's tau and the average error per

Predicted outliers Predicted normal
fpofk(t,D) ≤ β fpofk(t,D) > β

Outliers True Positive False Negative
fpof(t,D) ≤ α (TP) (FN)

Normal False Positive False Negative
fpof(t,D) > α (FP) (TN)

Table 4 Confusion matrix of 4 possible outcomes of a prediction

transaction in Figures 2 and 3. Of course, the smaller

the con�dence interval, the better the result. Although

the sampling-based method is not deterministic, the

obtained results are really stable. For certain datasets

(e.g., german or mushroom), the instability increases in

a �rst phase and then gradually dwindles in a second

phase. The �rst phase is the progressive coverage of all

transactions by at least one pattern that brings insta-

bility (the approximate FPOF goes from 0 (no approxi-

mation) to 1 (�rst rough approximation). In the second

phase, the new drawn patterns re�nes preliminary ap-

proximations.

6.2 ROC analysis of anytime approximation

In the previous section, all transactions are considered

equivalently while in practice, the �nal goal is to de-

tect outliers (transactions having the lowest approx-

imate FPOF). We now evaluate the accuracy of the

approximation with a �xed pattern budget when the

FPOF threshold varies between 0 and 1. Outlier detec-

tion algorithms are often evaluated using ROC analysis
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[29]. In this context, given a threshold α, we consider

that all transactions having an exact FPOF (computed

with an exact method) below α are the outliers of the

dataset (while other are normal transactions). At the

same time, we predict that a transaction is an out-

lier when its approximate FPOF (computed with our

sampling-based anytime method) is below β. Table 4

describes the four possible outcomes between ground

truth and prediction. Thereby, we de�ne the False Pos-

itive Rate (denoted by FPR) and the True Positive Rate

(denoted by TPR) as follows:

FPR =
FP

FP + TN
TPR =

TP

TP + FN

The FPR and TPR are also referred respectively as the

false alarm rate and the detection rate.

For a budget of 10k patterns, Figure 4 reports the

receiver operating characteristic (ROC) curves of the

sampling-based method by varying the minimal FPOF

threshold β for di�erent ground truths α ∈ {0.1, 0.2, 0.3}.
Note that there is no outlier for α = 0.1 in german.

Whatever the choice of the threshold α that deter-

mines the true outliers, the sampling-based approxima-

tion works well overall. The method tends to quickly

isolate outliers (i.e., the detection rate increases very

quickly when the false alarm rate is low). We even see

it isolates even better the outliers when they are very

few (i.e., with the lowest value of α, here 0.1).

7 Conclusion and Discussion

We revisited the FPOF calculation with an anytime

constraint by bene�ting from the recent advances in

pattern sampling. Our approximate method using a

sampling technique outperforms exhaustive method

based on the most frequent patterns. It also provides

additional guarantees on the result with a maximum

bound on the error using the Bennett's inequality. The

experiments have shown the interest of this approach in

terms of accuracy (fast and smooth convergence to the

exact FPOF), certainty (reasonable estimated error)

and stability (good reproducibility of approximations)

compared to the usual exhaustive approach where the

most frequent patterns are mined.

Despite the challenge of anytime constraint, our pro-

posal therefore combines the proven power of pattern-

based methods by adding a guarantee on the quality

of results thanks to sampling techniques. Of course,

there is still room for improvement in particular the

approach could take into account the frequent items

to have a more reliable approximation at the very be-

ginning. But, as FPOF has disadvantages, it would be

interesting to apply this approach with other outlier

detection methods dedicated to categorical data. For

pattern-based methods, a similar design based on sam-

pling according to frequency can be exploited. For other

methods, it is really less natural to determine which

space should be sampled for achieving an approxima-

tion. However, we also think our sampling-based any-

time approach can be generalized to other measures

involving patterns (e.g., CPCQ index [22]) or pattern-

based models (e.g., CBA [21]). We would also like to

adapt this approach to integrate the user feedback. In

the case of FPOF, it consists in showing the transac-

tions consider as the most probable outliers to the user

at the very beginning of the process. By con�rming or

not that the shown transactions are outliers, the sam-

pling process should focus its e�ort on other less known

transactions.
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