
A Relational View of Pattern Discovery

Arnaud Giacometti, Patrick Marcel, and Arnaud Soulet

Université François Rabelais Tours, LI
3 place Jean Jaurès

F-41029 Blois France
forename.surname@univ-tours.fr

Abstract. The elegant integration of pattern mining techniques into
database remains an open issue. In particular, no language is able to
manipulate data and patterns without introducing opaque operators or
loop-like statement. In this paper, we cope with this problem using rela-
tional algebra to formulate pattern mining queries. We introduce several
operators based on the notion of cover allowing to express a wide range
of queries like the mining of frequent patterns. Beyond modeling aspects,
we show how to reason on queries for characterizing and rewriting them
for optimization purpose. Thus, we algebraically reformulate the princi-
ple of the levelwise algorithm.

1 Introduction

Pattern discovery is a significant field of Knowledge Discovery in Databases
(KDD). A broad spectrum of powerful techniques for producing local patterns
has been developed over the two last decades [3–5]. But, it is widely agreed that
the need of theoretical fusion between database and data mining still remains
a crucial issue [14, 18, 23, 24]. We would force the pattern mining methods to
fit in the relational model [1] which is the main database theory. Unlike most
of the proposals [6, 10, 14, 16, 20, 23, 28, 33, 34], we desire to only address the
pattern mining that we distinguish from the construction of global models [17]
like decision trees.

Let us consider the popular task of frequent pattern mining [3] as a motivating
example. Most works treat this task as a “black box” which input parameters
are defined by the user [6, 7, 14, 16, 20, 28, 32, 34]. Instead of only specifying
the minimal frequency threshold and the dataset, we think that the user query
should fully formalize the notion of frequent patterns (e.g., it should describe
how the frequency of a pattern is computed starting from the dataset). Ideally,
we would like to express the frequent pattern mining query in the relational
algebra in order to manipulate both the data and the patterns. As declarative
aspects should be promoted on physical ones, a pattern discovery process has to
be fully specified without considering algorithmic points. For this purpose, loop-
like operators [10, 23, 33] are not relevant for us. Furthermore, the improvement
of query performances mainly rests on physical optimizations in the field of
pattern mining. Typically, the frequent pattern mining is efficiently performed

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 153–167, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

154 A. Giacometti, P. Marcel, and A. Soulet

by an adequate implementation [3–5, 25]. Such algorithmic optimizations (even
specified at a higher level [10, 23, 33]) reduce the opportunity of integrating
other optimizations. We prefer to favor logical reasoning for optimizing query
performances. For instance, the rewriting of the naive frequent pattern mining
query should enable us to algebraically formulate the levelwise pruning [25].

The main goal of this paper is to propose an algebraic framework for pattern
discovery for expressing a wide range of queries without introducing opaque
operators or loop-like statements. Our framework brings two meaningful con-
tributions: expressive modeling and logical reasoning. First, it allows a large
set of queries manipulating relations which contain both data and patterns. We
add to the relational algebra several specific operators, like the cover operator
�, to coherently and easily join such relations. We also define a new opera-
tor Δ for generating a language starting from a relation. Typically, the query
σfreq≥f (γpatt,COUNT(trans)→freq(Δ(L) � D)) returns the patterns of language L fre-
quent in dataset D. Second, the pattern-oriented relational algebra enables to
characterize and rewrite queries in order to optimize their performance. In partic-
ular, we formalize the notions of syntactic constraint [9] and global constraint [12]
by characterizing the degree of dependence between a query and a relation. Be-
sides, we not only benefit from usual query rewriting methods stemming from
the relational model, but we also algebraically reformulate the levelwise pruning.

This paper is organized in the following way. Section 2 introduces basic notions
about the relational algebra and the pattern discovery. Section 3 defines the
cover-like and domain operators which are at the core of our algebra. We then
study the properties of downward closure and independence in Section 4. We
rewrite queries satisfying such properties for optimization purpose in Section 5.
Finally, Section 6 provides a related work.

2 Basic Notions

2.1 Relational Algebra

We enumerate here our notations for the relational algebra mainly inspired
from [1]. Let att be a set of distinct literals, named attributes, dom(A) denotes
the finite domain of the attribute A ∈ att. The relation schema (or relation
for brevity) R[U] denotes a relation named by R where U ⊂ att. An instance
of R is a subset of dom(U) = ×A∈Udom(A). Given a relation R[A1, . . . , An],
R′ renames the attributes A1, . . . , An into A′

1, . . . , A
′
n. A database schema is a

nonempty finite set R = {R1[U1], . . . , Rn[Un]} of relations. A database instance
of R is a set I = {I1, . . . , In} such that Ii is an instance of the relation Ri.
Finally, a query q maps a database instance to an instance of a relation. The set
of attributes of this relation is denoted by sch(q). A query q′ is equivalent to q,
denoted by q′ ≡ q, iff for any database instance I, one has q′(I) = q(I).

Let I be an instance of R and J be an instance of S. The relations can be
manipulated by means of set operators including Cartesian product R×S where
I × J = {(t, u)|t ∈ I ∧ u ∈ J}. If R and S are relations which have the same
schema, then R∪S, R∩S and R−S are respectively the union, the intersection

A Relational View of Pattern Discovery 155

and the difference of R and S. Selection: σf (I) = {t|t ∈ I∧f(t)} selects the tuples
of I satisfying the logical formula f where f is built from (i) the logical operators
(∧, ∨ or ¬), (ii) the arithmetic relational operators and (iii) operands based on at-
tributes and constants. Extended projection: πA1,...,An(I) = {t[A1, . . . , An]|t ∈ I}
only preserves the attributes A1, . . . , An of R. Besides, the projection also per-
mits to extend the relation by arithmetic expressions and to (re)name expres-
sions. For instance, πA+B→B′,C→C′(R) creates a new instance where the first
attribute named B′ results from the arithmetic expression A + B and the sec-
ond attribute corresponds to C, renamed C′. Grouping: γA1,...,An,AGG(B)(I) =
{(a1, . . . , an, AGG(πB(σA1=a1∧···∧An=an(I))) |(a1, . . . , an) ∈ πA1,...,An(I)} groups
tuples of I by attributes A1, . . . , An and applies an aggregate function AGG on B.

2.2 Pattern Discovery

We provide here an overview of pattern discovery based on [25, 32] focusing on
the main proposals of the field. A language L is a set of patterns: itemsets LI [3],
sequences LS [4] and so on [5]. A specialization relation 	 of a language L is
a partial order relation on L [25, 27]. Given a specialization relation 	 on L,
l 	 l′ means that l is more general than l′, and l′ is more specific than l. For
instance, the set inclusion is a specialization relation for the itemsets. Given two
posets (L1,	1) and (L2,	2), a cover relation is a binary relation � ⊆ L1×L2 iff
when l1 � l2, one has l′1 � l2 (resp. l1 � l′2) for any pattern l′1 	1 l1 (resp. l2 	2 l′2).
The relation l1 � l2 means that l1 covers l2, and l2 is covered by l1. The cover
relation is useful to relate different languages together (e.g., for linking patterns
to data). Note that a specialization relation on L is also a cover relation on L
(e.g., the set inclusion is a cover relation for the itemsets).

The pattern can be manipulated by means of three kinds of operators non
exhaustively illustrated hereafter. 1) Pattern mining operators produce pat-
terns starting from a dataset: theory [25], MINERULE [26] and so on. More
precisely, the theory denoted by Th(L, q,D) returns all the patterns of a
language L satisfying a predicate q in the dataset D [25]. Typically, the mini-
mal frequency constraint selects the patterns which occur in at least f transac-
tions [3, 4]: freq(ϕ, D) > f . As mentioned in introduction, we notice that the
query Th(L, freq(ϕ,D) ≥ f,D) does not make explicit how the frequency of
a pattern is computed from the dataset. Other approaches find the k patterns
maximizing a measure m in the dataset D [12, 15]. 2) Pattern set reducing
operators compress a collection of patterns. For instance, the minimal and max-
imal operator denoted by Min(S) and Max(S), return respectively the most
general and specific patterns of S w.r.t. a specialization relation 	 [25]. The
notion of negative and positive borders [25] is very similar. 3) Pattern apply-
ing operators cross patterns and data. For instance, the data covering operator
θd(P,D) = {d ∈ D|∃p ∈ P : p � d} returns the data of D covered by at least
one pattern of P [32]. Dually, the pattern covering operator θp(P,D) returns the
patterns of P covering at least one element of D [32].

156 A. Giacometti, P. Marcel, and A. Soulet

The next sections aim at stating an algebra based on the relational model to
simultaneously and homogeneously handle data and patterns. In particular, all
the manipulations of patterns described here will be expressed in our algebra.

3 Pattern-Oriented Relational Algebra

3.1 Pattern-Oriented Attributes

The pattern-oriented relational algebra pays attention to the attributes describ-
ing patterns, named pattern-oriented attributes. Indeed, several operations are
specifically designed to handle such attributes which the domain corresponds to
a pattern language together with a specialization relation.

Definition 1 (Pattern-oriented attributes). The pattern-oriented at-
tributes patt is a subset of the attributes: patt ⊆ att such that for every
A ∈ patt, dom(A) is a poset. Let U ⊆ att be a set of attributes, the pattern-
oriented attributes of U is denoted by ˜U .

For example, Table 1 provides instances of relations D, L and P containing
pattern-oriented attributes. The relations D[trans] and L[patt] respectively de-
scribe a transactional dataset and the corresponding language in the context of
(a) itemsets and (b) sequences. The relation P [item, type, price] gives the item
identifier, the type and the price of products. We consider that trans, patt and
item are pattern-oriented attributes where dom(item) = I and dom(trans) =
dom(patt) = LI for itemsets (or = LS for sequences). Thereafter, the proposed
queries can address instances where the domain of patt differs from that of trans.

Of course, the relations can be handled with relational operators. For in-
stance, the query σpatt�ϕ(L) returns all the patterns of L being more general
than the pattern ϕ. The formula patt 	 ϕ is allowed because σpatt�ϕ(L) ≡
πpatt(σpatt=left∧right=ϕ(L × C)) where the relation C[left, right] extensively
enumerates in its instance the tuples (l, r) such that l 	 r. On the contrary,
the query σfreq(patt,D)≥f (L) is not correct for computing the frequent patterns

Table 1. Instances for pattern discovery

(a) Itemset context (b) Sequence context

D
trans

ABE
ABC
ABCD
AD

L
patt

∅
A
B
C
D
E
AB
AC
AD

AE
BC
BD
BE
CD
CE
DE
ABC
. . .
ABCDE

Dataset Language of itemsets

D
trans

(AB)(E)
(AB)(C)(A)
(AB)(C)(D)
(B)(C)(D)(B)

L
patt

∅
(A)
(B)
(C)
(D)
(E)
(AB)
(A)(B)
. . .

Sequential data Language of
sequences

P
item type price

A snack 3
B snack 10
C beer 5
D soda 8
E soda 6

Product description

A Relational View of Pattern Discovery 157

because the formula freq(patt, D) requires a relation D and it is not allowed in
a selection (see Section 2.1). Besides, we desire to make the computation of fre-
quency explicit. The next section explains how to compute it with the relational
algebra.

3.2 Cover, Semi-cover and Anti-cover Operators

We now indicate how to formulate the frequent pattern mining query (fpm
query in brief) in the relational algebra which illustrates the need of the cover-
like operators. Assume that L[patt] and D[trans] are two relations that re-
spectively contain the language and the dataset as proposed in Table 1. The
main challenge is to compute the frequency of each pattern of L. The Carte-
sian product of L by D gathers all the patterns of L with all the trans-
actions of D. Of course, we only select the relevant tuples such that the
pattern covers the transaction: σpatt�trans(L × D). Finally, we count for each
pattern how many transactions it covers and we select the frequent ones:
σfreq≥s(γpatt,COUNT(trans)→freq(σpatt�trans(L × D))). As the notion of cover rela-
tion plays a central role to relate pattern-oriented attributes, we introduce three
operators based on this notion. The cover operator for the pattern discovery is
as important as the join operator for classical data manipulations.

Cover operator. The result of a cover operation gathers all the combinations of
tuples in R and S that have comparable pattern-oriented attributes.

Definition 2 (Cover operation). The cover of a relation R[U] for a relation
S[V] w.r.t. a cover relation1 � ⊆ dom(˜U) × dom(˜V) is R � S = σ

˜U�˜V (R × S),
i.e. for any instances I of R and J of S, I�J = {(t, u)|t ∈ I∧u ∈ J∧t[˜U]�u[˜V]}.

As θ-join is a shortcut of σf (R × S), the cover operator is derived from primitive
operations defined in Section 2.1. In fact, R � S is equivalentl to σ

˜U�˜V (R × S)
where the formula ˜U � ˜V can be expressed with usual relational operators as done
above with patt 	 ϕ. Then, as semi-cover and anti-cover defined below, the cover
operator does not increase the expressive power of the relational algebra. How-
ever, such operators bring two main advantages. First, algebraic properties of
cover-like operators can be formulated, in order to be used by a query optimizer
(see Section 5). Second, specialized and efficient query evaluation methods for
these operators could be developed.

Let us illustrate the cover operation on several examples of pattern manipu-
lations. Given a dataset D[trans] and a language L[patt], the frequent patterns
(with their frequency) correspond to the following query:

F = σfreq≥f (γpatt,COUNT(trans)→freq(L � D))

This fpm query fulfills our modeling objective by explicitly and declaratively
describing how the frequency is computed. Given the instances of L and D

1 Definitions 2 to 4 consider that the binary relation � is a cover relation w.r.t. the
specialization relations �

˜U and �
˜V respectively defined on dom(˜U) and dom(˜V).

158 A. Giacometti, P. Marcel, and A. Soulet

Table 2. Instances containing mined patterns of instance D

(a) Itemset language (b) Sequence language

F
patt freq

∅ 4
A 4
B 3
C 2
D 2
AB 3
AC 2
AD 2
BC 2
ABC 2

C
patt freq

A 4
AB 3
AD 2
ABC 2

M
patt freq

AD 2
ABC 2

Frequent itemsets Frequent closed Frequent maximal
itemsets itemsets

F
patt freq

∅ 4
(A) 3
(B) 4
(C) 3
(D) 2
(AB) 3
(A)(C) 2
(B)(C) 3
(B)(D) 2
(C)(D) 2
(AB)(C) 2
(B)(C)(D) 2
Frequent sequences

provided by Table 1 and f = 2, it exactly returns the instance of F (see Table 2).
In the fpm query, the relation � ⊆ dom(patt) × dom(trans) is a cover relation
w.r.t. 	patt and 	trans (e.g., the inclusion for itemsets [3] or sequences [4]).

As mentioned earlier, a specialization relation is a particular kind of cover re-
lation. Thereby, it can be exactly used as a cover operator. For instance, starting
from the frequent patterns F , the frequent closed patterns of D [5] are computed
as follows: C = πpatt,freq(σfreq>max(γpatt,freq,MAX(freq′)→max(F ≺ F ′))) (we recall
that F ′ renames the attributes patt and freq into patt′ and freq′). Table 2 il-
lustrates this query applied to a particular instance of F in the case of itemsets.
Furthermore, the query γpatt,MAX(freq′)→freq(L 	 C′) regenerates the instance F .

Semi-cover operator. The semi-cover operator returns all the tuples of a relation
covering at least one tuple of the other relation:

Definition 3 (Semi-cover operation). The semi-cover of a relation R[U] for
a relation S[V] w.r.t. a cover relation � ⊆ dom(˜U) × dom(˜V) is R �� S =
πU (R � S).

Definition 3 implicitly means that R 	� S returns all the tuples of R covered by
at least one tuple of S. Indeed, R 	� S has a sense because if the binary relation
� is a cover relation on dom(˜U) × dom(˜V) w.r.t. 	

˜U and 	
˜V , then 	 is also

a cover relation on dom(˜U) × dom(˜V) w.r.t. �
˜U and �

˜V . Table 3 illustrates
Definition 3 by showing semi-cover operation of L for D which is the whole set
of patterns occurring at least once in D: L�� D. Then, σpatt�ϕ(L �� D) returns
the patterns being more general than ϕ and present in D.

Let us come back to the data and pattern covering operators [32] presented
in Section 2.2. The operation θp(P, D) which gives the tuples of P covering at
least one tuple of D, is equivalent to P �� D. Dually, θd(P, D) = D 	� P returns
the tuples of D covered by at least one tuple of P .

Anti-cover operator. The anti-cover operator returns all the tuples of a relation
not covering any tuple of the other relation:

A Relational View of Pattern Discovery 159

Table 3. The semi-cover and anti-cover of L for D

L � �D
patt

∅
A
B
C
D
E
AB
AC
AD

AE
BC
BD
BE
CD
ABC
ABD
ABE
ACD
BCD
ABCD

L � ¬D
patt

CE
DE
ACE
ADE
BCE
BDE
CDE
ABCE
ABDE

ACDE
BCDE
ABCDE

Definition 4 (Anti-cover operation). The anti-cover of a relation R[U] for
a relation S[V] w.r.t. a cover relation � ⊆ dom(˜U) × dom(˜V) is R �¬ S =
R − R �� S.

As for the semi-cover relation, R	¬ S has a sense and returns all the tuples of R
not covered by any tuple of S. Table 3 gives the patterns of L that do not occur
in D by means of the anti-cover of L for D: L �¬ D. The anti-cover operator
enables us to easily express the minimal and maximal pattern operators [25]
(see Section 2.2): Min(R) = R �¬ R and Max(R) = R ≺¬ R. For instance,
the frequent maximal itemsets are the frequent itemsets having no more specific
frequent itemset: M = F ≺¬ F (see Table 2). A pattern of L is either present
in D (i.e., in L �� D) or absent from D (i.e., in L �¬ D). Then, we obtain
that L = L �� D ∪ L �¬ D (see Table 3). More generally, the semi-cover and
anti-cover operator are complementary by definition (see Definitions 3 and 4):
R = R �� S ∪ R �¬ S for any relations R and S.

3.3 Domain Operator

Let us come back to the query σfreq≥f (γpatt,COUNT(trans)→freq(L � D)) that can be
applied to any instance of relation L. However, in a practical pattern discovery
task, the instance of L has to gather all the existing patterns of dom(patt) (as
given by Table 1). To cope with this problem, we introduce a new operator that
outputs the domain of the schema for a given relation.

Definition 5 (Domain operation). The domain of a relation R[U] is Δ(R)
where for any instance I of R, Δ(I) = dom(U).

As the domain of each attribute is finite, the instance Δ(I) is finite. Assume that
I = ∅ is an instance of L[patt], Δ(I) returns the instance depicted by Table 1.
The domain operator enables us to complete the frequent pattern mining query:
σfreq≥f (γpatt,COUNT(trans)→freq(Δ(L) � D)). Other practical queries require the use
of a language of patterns. For instance, negative border of R [25] can now be
formulated: Bd−(R) = (Δ(R)−R) �¬ (Δ(R)−R). Similarly, the downward and
upward closure operators of R are respectively expressed by Δ(R) 	� R and
Δ(R) �� R.

160 A. Giacometti, P. Marcel, and A. Soulet

3.4 Scope of the Pattern-Oriented Relational Algebra

The pattern-oriented relational algebra which refers to the relational algebra plus
the cover-like operators plus the domain operator, is strictly more expressive
than the relational algebra. As aforementioned, the cover-like operators do not
increase the expressive power of the relational algebra. In contrast, the domain
operator cannot be expressed with relational operators because it induces domain
dependent queries [1]. Let us note that [10] has already demonstrated that the
frequent pattern mining query cannot be formulated in terms of the relational
algebra.

From a practical point of view, the large number of query examples illustrating
the previous sections (partially reported in Table 4 with q1-q5) highlights the
generality of the pattern-oriented relational algebra. The other queries of Table 4
complete this overview by giving examples about the top-k frequent pattern
mining with q6 [15], the syntactic pattern mining q7 [9], the utility-based pattern
mining q8 or the association rule mining q9 [3]. Note that ∈ is a cover relation
on dom(item)×dom(patt) that relates one item with an itemset or a sequence.
The query q7 returns the patterns of L occurring in D and not containing a
product of type ‘snack’. q8 returns the patterns of L occurring in D such that
the sum of product prices is less than a threshold t.

Table 4. Examples of pattern-oriented queries and their properties

Dependence
Pattern-oriented query DC Local Global

q1 σfreq≥f (γpatt,COUNT(trans)→freq(L � D)) L L D

q2 πpatt,freq(σfreq>max(γpatt,freq,MAX(freq′)→max(F ≺ F ′))) F

q3 σpatt�ϕ(L) L L
q4 σpatt�ϕ(L �� D) L L, D
q5 F ≺¬ F F
q6 σrank≤k(γpatt,freq,COUNT(patt′)→rank(σsupp≤supp′(F × F ′))) F F

q7 (L �� D) �¬ σtype=snack(P) L L, D, P
q8 σtotal≤t(γpatt,SUM(price)→total(P ∈ (L �� D))) L L, D, P

q9 πpatt′→head,patt\patt′→body,freq,freq/freq′→conf(F ′ ≺ F) F

Most of these typical queries are difficult to evaluate because the handled
instances may be very large especially when the domain operator is used for
generating the language. The following sections explain how to rewrite queries
for optimization purpose.

4 Characterizing Pattern-Oriented Queries

In the field of pattern mining, it is well known that some properties are useful
to reduce the computation time (e.g., anti-monotone constraint or pre/post-
processing ability). This section aims at characterizing such properties in the
pattern-oriented relational algebra. More precisely, we first study the structura-
tion of the instance resulting from a query w.r.t. the initial instance. Then, we
analyze three levels of dependency between a query and a relation.

A Relational View of Pattern Discovery 161

Thereafter we assume that q is a query formulated with the pattern-oriented
relational algebra and the database schema {R1[U1], . . . , Rn−1[Un−1], R[U]}.
Then, this query q is often applied to the database instance I = {I1, . . . , In−1, I}.

4.1 Downward Closed Query

Intuitively, the notion of downward closed query expresses that of anti-monotone
constraints [25] in the pattern-oriented relational algebra. A query q is downward
closed in R if for any instance I of R[U], any tuple of I more general than at
least one tuple of πU (q(I)) also belongs to πU (q(I)).

Definition 6 (Downward closed queries). A query q is downward closed in
R[U] w.r.t. 	 iff U ⊆ sch(q) and (R 	� q) ≡ πU (q).

Definition 6 means that if a tuple t of R is more general than at least one tuple of
the answer of q, t is also present in this answer. The downward closed property is
very interesting for pruning an instance (more details are given in Section 5.2).
The query σfreq≥f (γpatt,COUNT(trans)→freq(L � D)) is downward closed in L w.r.t.
	. Indeed, all the generalizations of a frequent pattern are frequent (e.g., ABC
is frequent and then, A, B, C, AB and so on are also frequent, see Table 1).
Similarly, the top-k frequent pattern query q6 is also downward closed in F
w.r.t. 	. The column ‘DC’ of Table 4 indicates the relations in which the query
is downward closed w.r.t. 	.

4.2 Local and Global Dependent Queries

A query is dependent on the relation R whenever its result varies with the in-
stance of R. Whereas the query σpatt�ϕ(L) is independent of D, σpatt�ϕ(L �� D)
depends on D because it only returns the tuples of σpatt�ϕ(L) that cover at least
one tuple of the instance of D. Definition 7 formalizes the notion of total inde-
pendence (or independence in brief):

Definition 7 (Total independence). A query q is totally independent of R iff
for any instances I, J of R, one has q({I1, . . . , In−1, I}) = q({I1, . . . , In−1, J}).

In other words, a query which is independent of R is equivalent to another
query not involving R. Note that the queries which are totally independent of
D correspond to syntactical constraints [9].

We now refine this notion of dependence by introducing the global indepen-
dence. Both queries σpatt�ϕ(L �� D) and σfreq≥f (γpatt,COUNT(trans)→freq(L � D))
are dependent on D. But, the dependency of the second query on D is stronger
than that of the first query. Indeed, the computation of the frequency for a tuple
of L requires to simultaneously take into account several tuples of D.

Definition 8 (Local/global dependence). A query q is globally indepen-
dent of R iff for any instances I, J of R, one has q({I1, . . . , In−1, I ∪ J}) =
q({I1, . . . , In−1, I})∪ q({I1, . . . , In−1, J}). A query being globally independent of
R but dependent on R is said to be locally dependent on R.

162 A. Giacometti, P. Marcel, and A. Soulet

Definition 8 formalizes the notion of global constraints [12] which compare sev-
eral patterns together to check whether the constraint is satisfied or not. The
queries (like q2, q5, q6 or q9) which are globally dependent on L or F correspond
to such global constraints. Besides, the query q1 globally depends on D and lo-
cally depends on L. It means that q1 can be evaluated by considering separately
each tuple of the instance of L. Conversely, it is impossible to consider individ-
ually each tuple of the instance of D. Thus, the higher the overall number of
global dependencies, the harder the evaluation of the query. The columns ‘Local’
and ‘Global’ of Table 4 indicates the local/global dependent relations for each
query. As expected, the queries q1, q4, q7 and q8 depend on D because they
benefit from the dataset to select the right patterns. We also observe that the
queries q2, q5, q6 and q9 globally depend on F as they postprocess the frequent
patterns by comparing them.

5 Rewriting Pattern-Oriented Queries

This section examines algebraic equivalences to rewrite queries into forms that
may be implemented more efficiently.

5.1 Algebraic Laws Involving Cover-Like Operators

Let us consider the query q4: σpatt�ϕ(L �� D). As the predicate patt 	 ϕ is
highly selective, it is preferable to first apply it for reducing the language.
Thereby, the equivalent query σpatt�ϕ(L) �� D may be more efficient than
σpatt�ϕ(L �� D). The property below enumerates equivalences:

Property 1 (Laws involving cover-like operators). Let R[U] and S[V] be
two relation schemas. Let f and g be two predicates respectively on R and S. Let
A and B be two sets of attributes such that ˜U ⊆ A ⊆ U and ˜V ⊆ B ⊆ V . One
has the following equivalences:

1. σf∧g(R � S) ≡ σf (R) � σg(S) πA∪B(R � S) ≡ πA(R) � πB(S)
2. σf (R �� S) ≡ σf (R) �� S πA(R �� S) ≡ πA(R) �� S
3. σf (R �¬ S) ≡ σf (R) �¬ S πA(R �¬ S) ≡ πA(R) �¬ S
4. R �� S ≡ R �� (S ≺¬ S) R �¬ S ≡ R �¬ (S ≺¬ S)

Intuitively, the right hand side of each equivalence listed in Property 1 (proofs
are omitted due to lack of space) may lead to optimize the query. Indeed, Lines 1
to 3 “pushes down” the selection and projection operators to reduce the size of
the operands before applying a cover-like operator. This technique is success-
fully exploited in database with Cartesian product or join operator [1]. Besides,
Line 4 benefits from the maximal tuples of S (i.e., S ≺¬ S) as done in pattern
mining [25]. If a tuple t of the instance of R covers a tuple of the instance J of

A Relational View of Pattern Discovery 163

S, then t also covers a tuple of J ≺¬ J . As |J ≺¬ J | ≤ |J |, the rewritten query
R �� (S ≺¬ S) may be less costly than R �� S provided J ≺¬ J is not too
costly.

5.2 Algebraic Reformulation of the Levelwise Algorithm

We now take into account the downward closed and the global independence
properties for reformulating queries. For instance, assume that the instance of
L is now equal to πpatt(F). A new computation of q1 again returns F : F =
σfreq≥2(γpatt,COUNT(trans)→freq(πpatt(F) � D)). Of course, this query is faster to
compute than the original fpm query because the instance of F is very small
compared to Δ(L). We generalize this observation:

Property 2. Let q be a downward closed query in R[U] w.r.t. 	 and globally
independent of R such that U ⊆ sch(q), one has q(I) = q(J) for any instances
I = {I1, . . . , In−1, I} and J = {I1, . . . , In−1, J} such that πU (q(J)) ⊆ I ⊆ J .

Given a downward closed and independent query q, Property 2 demonstrates
that q(I) = q(J) when I is an instance of R such that πU (q(J)) ⊆ I ⊆ J . As
I ⊆ J and then |I| ≤ |J |, we suppose that evaluating q(I) is less costly than
evaluating q(J) because the cost generally decreases with the cardinality of the
instance. Thus, in order to reduce the cost of the evaluation of q(I), we aim at
turning I into the smallest instance of R including q(J). Such an approach can
be seen as a pruning of the instance of R.

Table 5. Levelwise computation of the fpm query (level 2)

L C = L ¬ L S
patt

AB
AC
AD
BC
BD
CD

ABC
ABD
ACD
BCD
ABCD

patt

AB
AC
AD
BC
BD
CD

patt supp

AB 3
AC 2
AD 2
BC 2

L � S (L � S) �¬ (C �¬ S)
patt

ABC
ABD
ACD
BCD
ABCD

patt

ABC

Table 5 illustrates how to prune the instance L for evaluating the fpm query
q1. As q1 is globally independent of L, we first divide L into two parts: the most
general tuples of L denoted by C = L �¬ L (i.e., the candidates of the level 2
of Apriori [3]) and others, i.e. L �� L. We then apply the fpm query to C for
computing S: the frequent patterns of C and their frequency. Finally, we benefit
from S for pruning L �� L using the downward closed property of q1 in L w.r.t.
	 (see Definition 6). We only preserve the tuples which are more specific than
at least one frequent tuple of S: L �� S. Finally, we filter out the tuples having
a non-frequent generalization: (L �� S) �¬ (C �¬ S). As the cardinality of this
instance is smaller than |L �� L|, we have achieved our goal.

164 A. Giacometti, P. Marcel, and A. Soulet

This principle is generalized with this theorem:

Theorem 1 (Levelwise equivalence). Let q be a downward closed query w.r.t.
	 and globally independent of R, one has the below equality for any database in-
stance I = {I1, . . . , In−1, I}:

q(I) = q({I1, . . . , In−1, I �¬ I
︸ ︷︷ ︸

C=

})

︸ ︷︷ ︸

S=

∪q({I1, . . . , In−1, (I �� S) �¬ (C �¬ S)})

Proof. Let q be a downward closed query w.r.t. 	 and globally independent of
R. To alleviate the notations, q(I) refers to q({I1, . . . , In−1, I}) where I is any
instance of R. Besides, we fix that C = I �¬ I and S = q(I �¬ I) = q(C):

q(I) = q(I �¬ I ∪ I �� I) = q(C ∪ I �� I) (1)

= q(C) ∪ q(I �� I) (2)

= q(C) ∪ q(I �� q(C)) = q(C) ∪ q(I �� S) (3)

= q(C) ∪ q((I �� S) �¬ (C �¬ S)) (4)

Line 1 stems from the complementary property: R = R �� S ∪R �¬ S. Line 2 is
allowed because q is globally independent of R. Line 3-4 are due to the downward
closed property in R (see Definition 6). ��

Theorem 1 can be used for rewriting queries by considering two important points.
Firstly, the redundant subqueries as candidate tuples C = I �¬ I and satisfied
tuples S = q({I1, . . . , In−1, I �¬ I}) have to be evaluated only once. Secondly,
the practical evaluation of q requires to recursively apply the equality proposed in
Theorem 1. Indeed, the subquery q({I1, . . . , In−1, (I �� S) �¬ (C �¬ S)}) can
also be rewritten by a query plan optimizer using the same identity. Therefore,
Theorem 1 leads to algebraically reformulate the levelwise algorithm [3, 4, 25].
This algorithm repeats this equality for computing which candidate patterns
satisfy the predicate and then, generating those of the next level. Other efficient
pruning strategies like depth-first search techniques [5] could also be expressed
in pattern-oriented relational algebra. Finally, as observed in [12, 15], we cannot
apply Theorem 1 to q6 because it globally depends on F .

6 Related Work

Inductive databases [18, 24] aims at tightly integrating databases with data min-
ing. Our approach is less ambitious because it is “only” restricted to the pattern
mining. Obviously, many proposals provide an environment merging a RDBMS
with pattern mining tools: Quest [2], ConQueSt [7], DBminer [16], Sindbad [34]
and many other prototypes [6]. In such a context, there are many extensions of
the SQL language [31] like DMX or MINERULE [26]. There are also extended
relational model [13] like 3W model [20]. However, such methods don’t fuse the
theoretical concepts stemming from both the relational model and the pattern

A Relational View of Pattern Discovery 165

discovery. For instance, the query optimizer of DBMS is isolated from pattern
mining algorithms. Indeed, most of the approaches consider a pattern mining
query as the result of a “black box”. Only few works [10, 23, 33] express pattern
mining operators by benefiting from the relational algebra. Such approaches add
a loop statement for implementing the levelwise algorithm. On the contrary, our
proposal extends the relational algebra by still using a declarative approach.

Many frameworks inspired from relational and logical databases, but created
from scratch, are proposed during the last decade: constraint-based pattern min-
ing [9, 25], distance-based framework [14], rule-base [19], tuple relational calcu-
lus [28], logical database [29], pattern-base [32] and so on. Other directions are
suggested in [24] like probabilistic approach or data compression. Besides, con-
straint programming is another promising way for expressing and mining pat-
terns [21, 30]. Such frameworks are less convenient for handling data (which are
often initially stored in relational databases). Besides, they suffer from a lack
of simple and powerful languages like the relational algebra (in particular, the
manipulation of patterns is frequently separated from that of data).

From a more general point of view, many works add new operators to the re-
lational algebra in order to express more sophisticated queries. Even if such new
operators don’t necessary increase the expressive power of the relational algebra,
most of the time they facilitate the formulation of user queries and provide spe-
cific optimizations. Typically, several operators are introduced for comparing tu-
ples with each other, as does a specialization relation with patterns. For instance,
the winnow operator is specifically dedicated to handle preferences [11]. Several
operators are dedicated for selecting the best tuples by means of relational domi-
nant queries [8] or relational top-k queries [22]. The cover-like operators are very
closed to such operators. But, they enable to compare tuples based on different
languages, as does a cover relation with patterns. Finally, the domain operator
enables us to manipulate values not initially present in the relations. The same
concept is used in [13] for generating tables containing patterns.

7 Conclusion

In this paper, we have proposed a new and general framework for pattern dis-
covery by only adding cover-like and domain operators to the relational algebra.
The pattern-oriented relational algebra interestingly inherits good properties
from the relational algebra as closure or declarativity. This framework deals
with any language of patterns for expressing a wide spectrum of queries includ-
ing constraint-based pattern mining, condensed representations and so on. We
identify crucial aspects of queries as the downward closed and independence
properties. We then benefit from such properties to algebraically reformulate
the levelwise algorithm. We think that our algebraisation is an important step
towards the elegant integration of pattern discovery in database systems.

Further work addresses the implementation of a complete system based on
the pattern-oriented relational algebra. As done in the database field, we project
to implement the physical cover operators and to design a query plan optimizer

166 A. Giacometti, P. Marcel, and A. Soulet

taking advantage of our proposed algebraic laws. We also study the test of local
and global dependence between a query and a relation.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Agrawal, R., Mehta, M., Shafer, J.C., Srikant, R., Arning, A., Bollinger, T.: The
quest data mining system. In: KDD, pp. 244–249 (1996)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Mor-
gan Kaufmann, San Francisco (1994)

4. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.L.P.
(eds.) ICDE, pp. 3–14. IEEE Computer Society, Los Alamitos (1995)

5. Arimura, H., Uno, T.: Polynomial-delay and polynomial-space algorithms for min-
ing closed sequences, graphs, and pictures in accessible set systems. In: SDM, pp.
1087–1098. SIAM, Philadelphia (2009)

6. Blockeel, H., Calders, T., Fromont, É., Goethals, B., Prado, A., Robardet, C.: An
inductive database prototype based on virtual mining views. In: KDD, pp. 1061–
1064. ACM, New York (2008)

7. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: Con-
QueSt: a constraint-based querying system for exploratory pattern discovery. In:
ICDE, p. 159. IEEE Computer Society, Los Alamitos (2006)

8. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp.
421–430. IEEE Computer Society, Los Alamitos (2001)

9. Boulicaut, J.F., Jeudy, B.: Constraint-based data mining. In: Maimon, O., Rokach,
L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 399–416.
Springer, Heidelberg (2005)

10. Calders, T., Lakshmanan, L.V.S., Ng, R.T., Paredaens, J.: Expressive power of an
algebra for data mining. ACM Trans. Database Syst. 31(4), 1169–1214 (2006)

11. Chomicki, J.: Querying with intrinsic preferences. In: Jensen, C.S., Jeffery, K.,
Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002.
LNCS, vol. 2287, pp. 34–51. Springer, Heidelberg (2002)

12. Crémilleux, B., Soulet, A.: Discovering knowledge from local patterns with global
constraints. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2008, Part II. LNCS, vol. 5073, pp. 1242–1257.
Springer, Heidelberg (2008)

13. Diop, C.T., Giacometti, A., Laurent, D., Spyratos, N.: Composition of mining
contexts for efficient extraction of association rules. In: Jensen, C.S., Jeffery, K.,
Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS,
vol. 2287, pp. 106–123. Springer, Heidelberg (2002)

14. Dzeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf,
J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)

15. Fu, A.W.C., Kwong, R.W., Tang, J.: Mining n-most interesting itemsets. In:
Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 59–67.
Springer, Heidelberg (2000)

16. Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y.,
Rajan, A., Stefanovic, N., Xia, B., Zäıane, O.R.: DBMiner: a system for mining
knowledge in large relational databases. In: KDD, pp. 250–255 (1996)

A Relational View of Pattern Discovery 167

17. Hand, D.J.: Pattern detection and discovery. In: Hand, D.J., Adams, N.M., Bolton,
R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 1–12.
Springer, Heidelberg (2002)

18. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
mun. ACM 39(11), 58–64 (1996)

19. Imielinski, T., Virmani, A.: MSQL: a query language for database mining. Data
Min. Knowl. Discov. 3(4), 373–408 (1999)

20. Johnson, T., Lakshmanan, L.V.S., Ng, R.T.: The 3W model and algebra for unified
data mining. In: Abbadi, A.E., Brodie, M.L., Chakravarthy, S., Dayal, U., Kamel,
N., Schlageter, G., Whang, K.Y. (eds.) VLDB, pp. 21–32. Morgan Kaufmann, San
Francisco (2000)

21. Khiari, M., Boizumault, P., Crémilleux, B.: Combining CSP and constraint-based
mining for pattern discovery. In: Taniar, D., Gervasi, O., Murgante, B., Pardede,
E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 432–447. Springer,
Heidelberg (2010)

22. Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: RankSQL: query algebra and opti-
mization for relational top-k queries. In: Özcan, F. (ed.) SIGMOD Conference, pp.
131–142. ACM Press, New York (2005)

23. Liu, H.C., Ghose, A., Zeleznikow, J.: Towards an algebraic framework for querying
inductive databases. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.)
DASFAA 2010. LNCS, vol. 5982, pp. 306–312. Springer, Heidelberg (2010)

24. Mannila, H.: Theoretical frameworks for data mining. SIGKDD Explorations 1(2),
30–32 (2000)

25. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)

26. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules.
In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) VLDB, pp.
122–133. Morgan Kaufmann, San Francisco (1996)

27. Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203–226 (1982)
28. Nijssen, S., Raedt, L.D.: IQL: a proposal for an inductive query language. In:

Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 189–207. Springer,
Heidelberg (2007)

29. Raedt, L.D.: A logical database mining query language. In: Cussens, J., Frisch,
A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 78–92. Springer, Heidelberg
(2000)

30. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: KDD, pp. 204–212. ACM, New York (2008)

31. Romei, A., Turini, F.: Inductive database languages: requirements and examples.
Knowledge and Information Systems 1–34 (2010),
http://dx.doi.org/10.1007/s10115-009-0281-4

32. Terrovitis, M., Vassiliadis, P., Skiadopoulos, S., Bertino, E., Catania, B., Mad-
dalena, A., Rizzi, S.: Modeling and language support for the management of
pattern-bases. Data Knowl. Eng. 62(2), 368–397 (2007)

33. Wang, H., Zaniolo, C.: ATLaS: a native extension of SQL for data mining. In:
Barbará, D., Kamath, C. (eds.) SDM. SIAM, Philadelphia (2003)

34. Wicker, J., Richter, L., Kessler, K., Kramer, S.: SINDBAD and SiQL: an inductive
database and query language in the relational model. In: Daelemans, W., Goethals,
B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp.
690–694. Springer, Heidelberg (2008)

http://dx.doi.org/10.1007/s10115-009-0281-4

	A Relational View of Pattern Discovery
	Introduction
	Basic Notions
	Relational Algebra
	Pattern Discovery

	Pattern-Oriented Relational Algebra
	Pattern-Oriented Attributes
	Cover, Semi-cover and Anti-cover Operators
	Domain Operator
	Scope of the Pattern-Oriented Relational Algebra

	Characterizing Pattern-Oriented Queries
	Downward Closed Query
	Local and Global Dependent Queries

	Rewriting Pattern-Oriented Queries
	Algebraic Laws Involving Cover-Like Operators
	Algebraic Reformulation of the Levelwise Algorithm

	Related Work
	Conclusion
	References

