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Abstract—This paper proposes a new semi-supervised clus-
tering framework to represent and integrate quantitative
preferences on attributes. A new metric learning algorithm
is derived that achieves a compromise clustering between a
data-driven and a user-driven solution and converges with a
good complexity. We observe experimentally that the addition
of preferences may be essential to achieve a better clustering.
We also show that our approach performs better than the
state-of-the art algorithms.
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I. INTRODUCTION

Data clustering, one of the most important unsupervised
learning problem, is widely used in the field of Customer
Relationship Management (CRM). For example, it is com-
monly used for customer segmentation. Nevertheless, our
recent experiments show that many problems remain to be
solved. For example, in the context of subspace cluster-
ing [1],it has been shown that a large number of interesting
clusterings can exists and that it is difficult to automatically
select one particular subspace. Moreover, because different
users may have different center of interest or preferences, it
is important to propose a clustering system that can integrate
these subspace preferences when a clustering is built and
selected (among all the possible solutions). In that context,
the main objective of our work is to show how to take into
account the knowledge and preferences of an expert to build
a clustering that is a good compromise between a data-driven
and a user-driven solution.

Motivating example. In order to illustrate the objective of
our work, we consider the following toy example. Different
experts from a marketing agency want to build a customer
segmentation based on their purchases of various categories
of products named X , Y and Z. As these experts have
different professional experiences, we consider that their
degrees of interest on categories of product are not the same.

First, consider an expert A that is more interested by pur-
chases of product X , than purchases of products Y and Z. In
this paper, we use a quantitative model to represent the pref-
erences of A. More precisely, we assume that each expert
assigns to each descriptive attribute a weight proportional
to his/her interest for this attribute in clustering analysis.

Thus, the preferences of expert A will be represented by
the preference vector WA = (0.8, 0.1, 0.1). If this expert
wants to build a customer segmentation with two clusters,
using a K-means algorithm with a weighted distance, he/she
will obtain the clustering result presented Figure 1a. From
another point of view, an expert B with a preference vector
WB = (0.1, 0.1, 0.8) will obtain the clustering presented
Figure 1b. It is important to note that the two clusterings
obtained by experts A and B are two interesting views of
the same data set. Only the preferences of the experts allow
to select one of these possible clusterings.

Consider now an expert C with a preference vector
WC = (0.1, 0.6, 0.3). Using a simple K-means with a
weighted distance, this expert will obtain the segmentation
given by Figure 1c, which is not satisfactory. Indeed, the
expert C formulates a high degree of preference on product
Y , whereas this attribute does not separate well the set
of customers. To avoid this problem, we propose a new
approach that take into account the confidence level of an
expert in his/her preferences. The confidence level κ is
represented by a real value in [0, 1]. Thus, if the expert C has
a very high confidence in his/her preferences (κ = 1), he/she
will still obtain the segmentation depicted by Figure 1c.
However, with a lower confidence level (κ = 0.6), he/she
will obtain the segmentation presented by Figure 1b. Indeed,
as the attribute Y does not separate well clusters, our method
will tend to favor the other attributes, i.e. the attribute Z
whose preference is higher than that of X .

In order to tackle the problems and challenges illustrated
by our motivating example, we propose in this paper a new
semi-supervised clustering algorithm. More precisely:

• By contrast with previous work that consider con-
straints specifying if two instances should be in the
same cluster or not [2]–[6], we show how to integrate
user preferences on descriptive attributes in a new clus-
tering objective function. To the best of our knowledge,
only the works in [7] addresses the same problem.

• We propose to use a quantitative model of prefer-
ences to represent the user preferences on attributes.
The qualitative model used in [7] is more expressive.
However, our quantitative model is easier to use by an
expert.
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(a) Clustering with preferences
WA = (0.8, 0.1, 0.1)
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(b) Clustering with preferences
WB = (0.1, 0.1, 0.8)

0.4
0.2

0.6
0.8

0
1

10

0.8

0.6

Product.Y

0.2

0

2

2

22

2

2

22

2

2
2

22

2

2
2

2

2

2

22

2

2
2
2

2

2
2

2

2

2

1

1

2

2
22

2

1

2
2

1

2

1

11
1

22

1
1
11
1

1

1
1

1

1
1

1

2

2

2
2
2

2

22

2

2

22
2

22

1

2
2 2

2
2

2

1

2

2

2

2

2

2
2

2

2

2

2

2

1

2

2 2

22

2
2
2

2

2

2
2

1

2

2
2

2
2

2

2

22

2

1

2

2

2

1 1

2

1

2
2

2

2

2

1

2

1

2

2

1

11

1

2

1

2

1

2

2

1

1

2

1

1
11

1

2
2

1

1

1

1

2

2

1

2
2

1

2

1

1

11
1

2

1

2

1

1
1
1

1

1

1

1
1

11

1
1
1

2

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1
11

Product.X

2

22

2

2
2
2

2

2

2

2
2

1

2

2

2

2

2

2

2

2

1

2 2

22

2

2

2

2

2

2 2
2

2

2

2

11

2
2
2

1
1

2

1

1
1

1

2

1

1

2
11

2

1

2

1

2

1

2
2

1

1

1
1

2
2

1

1
1

1

11

2
2

1

1

1

1

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2
2

22

1

2 2

2
2

2

1

2

2

2

2

2

2

2

2

2

2

2

1

2

2
2
2

2

2

2
2

1

2

2
2

2

2

2

2

2

1

2

2

2

1 1

2

1

2
2

2

2

1

22

2

11

1

2

1

2

1

2

2

1

1

2

1

1 1

1

2
2

1

1

1

1

2

1

2

1

2

1

1

11
11

1

1
1

1

1

1

1

1

1
1
1

1

1

1
1

1

1

1

1

1

1

2

2

2
2
2

2

2

2

2

2

2

2

2

2

2

2
2

22
2

2 2
2
2

2

1

2

2

2

2

2

2
2

2

2

2

2

2

1

2

2 2

22

2
2
2

2

2

2
2

2

2
2

2
2

2

2

22

2

1

2

2

2

1 1

2

1

2
2

2

2

2

1

2

1

2

2

1

11

1

2

1

2

1

2

2

1

1

2

1

1
11

2

1

2

1

1
1

2
2

1

2
2

1

2

1

1

11
1

2

1

2

1

1
1
1

1

1

1

11

1

2

1

1

1

2

1
1

1

1

1

1

2

2

2
2

2
2

2

2
2
2

1

1
1
2

2
2
2

1

1

1

2

2

1

1

1

1

1
1 111
1

1
1
1

1

1
1111
1

1

1

1

1

0.2

0.4

0.6

0.8

1

Product.Z

0.4

(c) Clustering with preferences
WC = (0.1, 0.6, 0.3)

Figure 1: Customer segmentation using their purchase of products X , Y and Z.

• We present the new clustering algorithm MAPK-means
(Metric Attribute Preferential K-means) and experi-
ments which show the importance of user preferences
on attributes to improve the quality of clustering.

II. RELATED WORK

Numerous studies [8], [9] have tackled the problem of
feature selection or weighting in the classification, but all
these methods are only data-driven. Based on some internal
criteria, they select the features that might improve clustering
accuracy or interpretability without any user interaction.
Subspace clustering [1] also proposes an exploration of
different subsets of features where clusters are relevant. As
a consequence, there exists a very large number of possible
clusterings and the difficulty is to choose from all these
potential solutions. Moreover, as with the previous feature
weighting methods, these methods are only data-driven and
do not rely on user preferences for some feature subset.

Our proposal is part of the family of semi-supervised
clustering algorithms that can improve performances and sta-
bility from expert knowledge. This knowledge is generally
provided as label or pairwise instances constraints that indi-
cate if two objects should be in the same cluster (Must-Link
or ML constraints) or not (Cannot Link or CL constraints)
and has been adapted to numerous clustering approaches
[2]–[6]. Other kinds of constraints have been proposed at the
cluster level, mainly to avoid contradictions at the instance
level [10], [11] or as relative distance constraints [12] that
are more adapted to ranking and instance order preferences.
Semi-supervised clustering methods can be categorized in
three main families depending if they impose a strict [3] or
a soft enforcement of constraints with a penalization term
in the objective function [13], or a soft enforcement via
the learning of a metric space that minimizes the number
of violated constraints [12], [14], [15]. Our approach falls
into the the the third category, by taking into account user
preferences on attributes. An alternative approach [7], [16]
consists in expressing attributes preferences by mean of a

triple (s; t; d) which indicates that attribute t is preferred
over s with a degree d. Contrary to this approach, our model
of quantitative preferences only requires a linear number
of preferences, i.e. 1 per attribute. Moreover, in addition to
simplifying the interaction with the user, our model leads to
a better complexity in metric learning.

III. PROBLEM STATEMENT

Our objective is to propose a new semi-supervised cluster-
ing algorithm that can handle quantitative user preferences
on attributes. To this aim, we introduce a K-means like
algorithm that learns the attribute weights that are the best
compromise between the weights provided by the user
preferences and the attribute weights that would best fit the
natural distribution of data. In the following, a data set X is a
set of N data objects described by M attributes. A partition
of K clusters is denoted by {Xj}Kj=1 and the centroid of
cluster Xj is denoted by cj .

A. Quantitative user preferences

The originality of our approach is to incorporate user
preferences on attributes to construct the right partition. We
use a preference vector W∗ to model preferences where
each weight w∗

i represents the weight expressed by the user
on the ith attribute. Without loss of generality, we consider
that w∗

i ≥ 0 for all i ∈ {1, . . . ,M} such that
∑M

i=1 w
∗
i = 1.

The set of all preference vectors is denoted by P .
We use the Kullback-Leibler divergence to measure the

dissimilarity between two preference vectors. In our case,
given the learned vector W ∈ P and a reference vector
P ∈ P , the dissimilarity between these two vectors is:
DKL(P∥W) =

∑M
i=1 pi log

(
pi

wi

)
. In the following, we

manipulate two reference vectors P to express our objective
function: the user preferences W∗ and the uniform vector
U = (1/M, . . . , 1/M).

B. Attribute preferential clustering objective function

Our clustering objective function consists of three terms
that are detailed in the following paragraphs.



Intra-cluster distance: First, as K-means algorithm, we
minimize the intra-cluster distance of the clusters {Xj}Kj=1.
A naive solution could be to directly input the preference
vector W∗ to parameter Euclidean distance as follows:

∥x− cj∥W∗ =
√∑M

i=1 w
∗
i (x[i]− cj [i])2. However, in this

case our solution would only rely on the user expertise
and would not take into account the natural distribution
of the data. As a side effect, we could output a poor
clustering if the user preference vector does not sufficiently
discriminate between the data objects (see Figure 1c as
a typical example). Consequently, we propose to learn a
vector W ∈ P that performs a projection of the initial
data space so that the clusters are more compact and well
separated in the new space. Thus, we want to minimize:∑K

j=1

∑
x∈Xj

∥x− cj∥2W.
Deviation from attribute preferences: Second, we want

that the learned vector W deviates as less as possible from
W∗ in order to respect user preferences. Thus, it is necessary
to introduce a penalty term to reduce the dissimilarity of W
with W∗: DKL(W

∗∥W).
Regularization term: Third, we add a regularization

term that prevents the vector W to deviate too much from a
traditional K-means where all attributes have equal weights.
This idea can be formulated as the divergence between the
vector to learn and a uniform vector U = (1/M, . . . , 1/M):
DKL(U∥W).

By combining these three terms, it is possible to define
an attribute preferential clustering objective function that
expresses a compromise:

Imap = α
(
Z

K∑
j=1

∑
x∈Xj

∥x− cj∥2W
)

(1)

+ (1− α)
(
κDKL(W

∗∥W) + (1− κ)DKL(U∥W)
)

where Z > 0, α ∈ [0, 1] and κ ∈ [0, 1]. Note that Z is
a normalizing constant between intra-cluster distance and
other terms because the parameterized Euclidean distance
and the Kullback-Leibler divergence have really different
ranges (see Algorithm 1 that discusses how to set Z). The
objective function of equation 1 depends on two important
parameters:

• Intra-cluster distance weight α: This parameter con-
trols the importance of data compared to that of user
preferences. In practice, α is set to an appropriate
default value (see Section V).

• Confidence level κ: the user-specified parameter κ
gives the importance of his/her preferences. When
κ = 1, the regularization term is not used. The user
forces the method to meet his/her preferences. When
κ = 0, user preferences are ignored.

Given a set of data points X , a number of clusters
K ≥ 1, a preference vector W∗ ∈ P , α ∈ [0, 1]
and κ ∈ [0, 1], find a K-partition {Xj}K

j=1 of data

minimizing the objective function Imap while learning
a vector W ∈ P .

IV. MAPK-MEANS ALGORITHM

A. Reformulation with a Lagrange multiplier
As mentioned in Section III-A, all preference vectors of P

are such that each weight is positive and the sum of weights
equals to 1. In particular, the learned vector W in objective
function Imap has to satisfy these constraints:

min
W

Imap subjectto
M∑
i=1

wi − 1 = 0; wi > 0;

for all i ∈ {1, . . . ,M} (2)

We introduce a Lagrange multiplier λ and consider the
following function: I ′

map = Imap + λ
(∑M

i=1 wi − 1
)

. If
W minimizes Imap, then there exists a value of λ such that
W is a stationary point for I ′

map. The stationary point is
the point where the partial derivatives of I ′

map is zero:

∂I′
map

∂wi
= αZ

K∑
j=1

∑
x∈Xj

∥x[i]− cj [i]∥2

− (1− α)
(
κ
w∗

i

wi
+ (1− κ)

1

Mwi

)
+ λ = 0

Assuming that Si =
∑K

j=1

∑
x∈Xj

∥x[i]− cj [i]∥2 is the
total intra-cluster distance on the i-th attribute. We rewrite
the above equation for obtaining the update of weight wi:

wi =
(1− α)

(
κw∗

i + (1− κ)/M
)

αZSi + λ
(3)

The update of weight wi is central for learning the metric
as depicted by the next section. It is easy to see that
the lower the variance Si, the higher the weight of the
attribute wi. When κ is set to 1, only the preferences are
used. Conversely, when κ is zero, user preferences are not
considered.

B. Algorithm derivation
Our algorithm follows the scheme introduced in [14]

consisting in 3 phases: 1) points assignment, 2) centroid re-
estimation and 3) metric learning. More specifically, for a
given data set X , a number of clusters K ≥ 1, a preference
vector W∗ ∈ P , a confidence level κ ∈ [0, 1] and an intra-
cluster distance weight α ∈ [0, 1], the algorithm MAPK-
means (Metric Attribute Preferential K-means, provided by
Algorithm 1) returns a K-partition {Xj}Kj=1 minimizing the
objective function Imap by learning a vector W.

Algorithm initialization: We use the same initialization
as K-means++ [17] (line 1). The weights of attributes for
W are initially equally distributed (line 2): wi = 1

M for
i ∈ {1, . . . ,M}. Finally, Z is initialized such that the intra-
cluster distance and the other terms have a similar impact
during the weight update of wi (see 3) when α = 0.5. For
this, we choose a Z value as our update that is identical to
that of MPCK-means [14] when α = 0.5 (line 3).



Algorithm 1 MAPK-means
input a data set X , a number of clusters K,

a preference vector W∗, κ, α
output a partition {Xj}Kj=1 and a learned vector W

1: Get K center {cj}Kj=1 with K-means++
2: Initialize W := (1/M, . . . , 1/M)

3: Initialize Z :=
∑M

i=1

κw∗
i +(1−κ)/M

Si
4: repeat
5: // update the partition {Xj}Kj=1

6: Xj :=
{
x ∈ X : argminl∈{1,...,K} ∥x− cl∥2W = j

}
for

j ∈ {1, . . . ,K}

7: cj [i] :=

∑
x∈Xj

x[i]

|Xj |
for i ∈ {1, . . . ,M} and j ∈

{1, . . . ,K}
8: // update the vector W
9: Compute λ using a dichotomic search

10: wi :=
(1− α)

(
κw∗

i + (1− κ)/M
)

αZSi + λ
for i ∈ {1, . . . ,M}

11: until {Xj}Kj=1 remains unchanged
12: return {Xj}Kj=1 and W

Cluster assignment: The assignment step is the same
as K-means (line 5-6), with the only difference that the
distances between points and centroid are parameterized
with a vector W. Each point is assigned to the nearest cluster
(line 6). This assignment reduces the intra-cluster distance
and it also minimizes the objective function Imap.

Centroid re-estimation: We update the center of each
cluster by calculating the centroid for each attribute i (line
7). Unlike some approaches, the calculation of the centers
is insensible to the cluster assignment step.

Metric learning: In this step, MAPK-means learns
the right metric by updating the vector W that minimizes
the objective function Imap (line 8-10). As explained in
Section IV-A, the update of W is obtained by taking the
derivative ∂Imap

∂wi
equal to 0. In order to get the exact update

of W, we have to compute the Lagrange multiplier λ
(see 3). We introduce pi = (1 − α)

(
κw∗

i + (1 − κ)/M
)

as numerator part and qi = αZSi as denominator part
(excluding λ). Then, equation 3 becomes: wi = pi

qi+λ and
the calculation of the λ consists in solving the following
equation:

∑M
i=1

pi

qi+λ = 1.
We use a dichotomic search to determine an approximate

solution to this equation (line 9). Consequently, it is neces-
sary to bound λ to initialize this search:

Property 1. The Lagrange multiplier λ is bounded as
follows:

−min
i

(qi)︸ ︷︷ ︸
infλ

≤ λ ≤
M∑
i=1

min
i

(pi)−max
i

(qi)︸ ︷︷ ︸
supλ

As the three steps of MAPK-means decrease Imap (which
is bounded by 0), MAPK-means converges to a locally
optimal solution in a finite number of steps. Besides, its

time complexity is O(i(NKM + NM + jM)) where i is
the number of iterations and j the number of dichotomic
search iterations. This is less than the complexity of [7]
where the computation of weights optimization is quadratic
with P +M (where P is the number of preferences which
is upper bounded by M2).

V. EXPERIMENTS

In this section, we compare our new MAPK-means to the
method introduced in [7] and show that we achieve slightly
better results, but solved more efficiently and depending on
a single parameter κ that can be easily set and understood by
a user. We performed experiments on multivariate attributes
data sets from UCI repository1 for the ease of reproducibility
and comparison with other approaches like [7]. To evaluate
our experiments, we use the Normalized Mutual Information
(NMI) [7] which is a quality index that measures the
agreement between two partitions. Its value ranges from
0 to 1: 0 indicates that the two partitions are completely
independent and 1 means that they are identical.

Experimental setting: For the purpose of the experiment,
we replicate the same protocol as [7]. We first define the nat-
ural most interesting attributes by computing a weight vector
W̃ using the inverse intra-cluster distortion Γi computed for
each attribute. More precisely, the weight of each attribute
is defined as follows: w̃i =

Γi∑M
d=1 Γd

. In our approach, this

weight vector W̃ is used to initialize our preference vector
W∗, i.e. W∗ = W̃ . Then, similarly to [7], in order to select
the best clustering over different runs and different values
of κ ∈ [0, 1], we consider the one that minimizes the value
of our objective function (see Equation 1). Finally, we set
α = 0.5 and run 100 tests to ensure the significance of the
results. Preliminary experimental study (not presented here
due to lack of space) has shown that for this value of α, it is
always possible to achieve good clustering results and that
this choice is appropriate.

Results: We compare the performances of our MAPK-
means algorithm with CFP algorithm introduced in [7].
Compared with our approach, CFP uses a qualitative model
of preferences on attributes rather than a quantitative model
using weights on attributes. However, similarly to our pro-
posal, [7] learns a metric parameterized by an attribute
feature weight vector, i.e. the most appropriate weight vector
with respect to the data set and the user preferences.

The clustering results on all the data sets are shown in
Table I. This table compares the clustering results in terms of
NMI of the algorithms K-means, K-means with a weighted
distance, CFP, for which we present only the best result
obtained in [7] (using different values of their parameters
m) and finally MAPK-means for which we provide several
results, obtained respectively when:

1archive.ics.uci.edu/ml/datasets.html

archive.ics.uci.edu/ml/datasets.html


Table I: NMI values for clustering results on K-means, K-
means with a weighted distance, CFP [7] and our algorithm
MAPK-means. The results of MAPK-means are obtained
with κ =0, κ =1 and κ ∈ [0, 1] which maximizes the NMI .

K-means WK-means CFP MAPK-means
κ = 0 κ = 1 κ ∈ [0, 1]

Iris 0.742 0.758 0.864 0.778 0.864 0.864 1
Optdigits 0.756 0.743 0.715 0.655 0.720 0.720 1
Pendigits 0.682 0.710 0.707 0.698 0.718 0.735 0.95
Pgblocks 0.150 0.149 0.204 0.107 0.202 0.204 0.68
Vowel 0.415 0.397 0.424 0.387 0.453 0.473 0.83
Wdbc 0.623 0.613 0.628 0.605 0.665 0.677 0.78

NMI max(NMI) κ

• κ = 0: this result is equivalent to the result obtained us-
ing MPCK-means [14] with metric learning but without
ML and CL constraints.

• κ = 1: the NMI value is obtained when we enforce
the user preferences.

• κ ∈ [0, 1]: we show the value of NMI of the clustering
that maximizes the objective function (see Equation 1).
We also give the associated value of parameter κ.

As can be seen in Table I, the best NMI values obtained
with CFP and MAPK-means are very similar on Iris and
Pgblocks data set. With the Optdigits data set, K-means gives
the best NMI value; however, our algorithm MAPK-means
outperforms CFP. For all other data sets, the quality of the
clusters produced by MAPK-means is better than the quality
of clusters produced by CFP, MPCK-means without instance
constraints (i.e. MAPK-means with κ = 0) and a basic K-
means. These results also show that even a K-means whose
metric is set with the relevant weights cannot compete with
MAPK-means. Finally, these experiments show that the best
clustering quality can be achieved with a weight κ in [0,1],
that is to say using at the same time the user preferences
and a regularization term.

VI. CONCLUSION

We propose a metric learning based clustering method
that allows the user to express quantitative preferences on
attributes. User preferences are formulated as a simple vector
which is taken into account by the objective function. We
demonstrate that this quantitative model of preferences leads
to an efficient metric learning step iterated by our algorithm
MAPK-means. Furthermore, experimental results illustrate
the positive impact of user preferences on clustering quality
and on helping the method finding the right subspace. We
also observe that the best clustering result is not achieved by
the fully data-driven approach, nor with the fully user-driven
one. Finally we show that MAPK-means generally performs
better than other algorithms of the literature.
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