
Updates and Incremental Validation of XML Documents

BéatriceBOUCHOU Mı́rian HALFELD FERRARI ALVES

Universit́e de Tours - Laboratoire d’Informatique
Antenne Universitaire de Blois

3 place Jean Jaurès
41000, Blois, France

{bouchou, mirian}@univ-tours.fr

Abstract

We consider the incremental validation of updates
on XML documents. When avalid XML doc-
ument (i.e., one satisfying some constraints) is
updated, it has to be verified that the new doc-
ument still conforms to the imposed constraints.
Incremental validation of updates leads to signif-
icant savings on computing time when compared
to brute-force validation of an updated document
from scratch.

This paper introduces a correct and complete set
of update operations that can be integrated in an
XML manipulation language. Indeed, any doc-
ument generated by a composition of our update
operations is valid, and, every valid document can
be generated by a composition of our update op-
erations (from the empty document). To accept an
update, the validity of the result is checked first
(without any change on the original document).
Validation tests are performed incrementally,i.e.,
only the validity of the part of the document di-
rectly affected by the update is checked. Changes
to the original document are effectively performed
onlywhen the update is accepted.

1 Introduction
We present a method for incrementally validating updates
on an XML document. We assume a data-exchange envi-
ronment where an XML document should respect schema
constraints. When a valid XML document is updated, it
has to be verified that the new document still conforms to
the imposed schema. Validation from scratch requires read-
ing the entire document after each update. An incremental
method is undoubtedly very useful, in particular when we
consider that the evolution of XML as an exchange format
depends on its capability to support not only queries but
also updates.

Proceedings of the 9th International Conference
on Data Base Programming Languages (DBPL),
Potsdam, Germany, September 6-8, 2003

We view an XML document as a structureT composed
of an unranked labeled treet (i.e., a tree whose nodes have
no fixed -or ranked- arity) and functionstype and value.
The functiontype indicates the type of a node (element,
attribute or data). The functionvaluegives the value as-
sociated with a leaf (a data node). Figure 1 shows part of
the labeled tree representing the document used in our ex-
amples. Each node has a position and a label (for instance,
position0 is associated with labelCust). From this figure
we see that an XML element has both its sub-elements and
attributes as children in the tree. Elements and attributes
associated with arbitrary text have a child labeleddata. At-
tribute labels are depicted with a preceding @.

Shop
ε

Cust
0

Invoice

@idCust
00

@idInvoices
01

Name @InvoiceNb Date BillTo Item

@custNb DescriptionPrice

@itName @Type

data
000

1

10

100

02

010

data
020

data

11 12 13

110 120 131130

1200 1310 13111300

13100 13110

...

...

(99)
(00123)

(99)

(00123) (Arthur)

data data
(12/30/02)

data data

datadata
(bTools)

(25.00)

(book)

Figure 1:Labeled treet representing an XML document.

XML documents should respect a schemaD which cor-
responds to attribute and element restrictions. We see the
schemaD as a structure composed of a bottom-up tree
automaton and some “extra” information about attribute
values, both introduced in [5] where only validation from
scratch is considered. Validating schema constraints means
to execute the tree automaton over the labeled treet. This
computation results in another labeled treer (called a run-
ning tree) with the same positions ast, but labeled with the
statesof the tree automaton, as illustrated in Example 1.1
below. Roughly, a stateq is assigned to a positionp in r if
the children ofp in t verify the element and attribute con-
straints established by the tree automaton.

Example 1.1 Figure 2 shows a running tree resulting from
the execution of a given tree automaton over the treet of

Figure 1. To illustrate the execution of this tree automaton,
suppose that it has the transition rule

Invoice, {{qinvoiceNb}, ∅}, qDate qBillTo q∗Item → qInvoice.

This rule states that a positionp, labeledInvoice in t, can
be associated with the stateqInvoice in r if the following
attribute and element constraints are respected:
(i) positionp has a required attribute childinvoiceNb (i.e.,
the first child ofp in r is associated withqinvoiceNb) and
(ii) children ofp that are elements respect the regular ex-
pressionDate BillTo Item∗ (i.e., the second and the third
children ofp in r are associated withqDate andqBillTo, re-
spectively; the other right children (if they exist) are asso-
ciated withqItem).
The above constraints are respected by, for instance, po-
sition 1 in r and thus1 is associated withqinvoice (Fig-
ure 2). The automaton executes bottom-up by considering
each position and the transition rule that applies to it. A
tree automaton accepts the document tree if and only if the
root of the corresponding running tree is labeled with afi-
nal state. 2

q
Shop

ε

0

00 01

000

1

10

100

02

010 020

11 12 13

110 120 131130

1200 1310 13111300

13100 13110

...

...q
Cust

q
idCust

q
data

q
data

q
data

q
data

q
data

q
data

q
data q

data

q
data

q
idInvoices q

Name
q

InvoiceNb
q

Date q
BillTo q

Item

q
custNb q

Description
q

Price

q
itName q

Type

q
Invoice

Figure 2: Running treer resulting from the execution of a tree
automata overt.

Given a valid XML document, an update is done taking
into account the following features:
• Updates are seen as changes to be performed on the tree
representationT of an XML document. We do not consider
here the translation between an XML document and its tree
representation, this is done by well known tools such as
SAX and DOM.

• Only updates that preserve the validity of the document
are accepted. If the update violates a constraint, then it is
rejected and the XML document remains unchanged.

• The acceptance of an update relies onincremental vali-
dationtests,i.e., only the validity of the part of the original
document directly affected by the update is checked.

Based on the above points, we introduce a set of up-
date operations capable of inserting, deleting or modifying
parts of tree representing an XML document. Before ac-
cepting an update, we performincrementalvalidity tests
which consist of verifying the validity of a small part of the
document tree. If the desired update concerns positionp,
we just check if the subtree rooted atp’s father continues to
respect the validity conditions. LetA be the automaton in

D. Let δ be a transition rule ofA that associates a position
u, labeleda, with stateqa . An update at positionp (a child
of u) changes the sequence of states associated withu’s
children by the automaton. Considering the new children
of u, we need to verify if they still respect the constraints
established byδ. If these constraints are respected,δ can
be applied and the labelqa is associated withu, otherwise
the intended update is rejected since it violates constraints.
To efficiently verify if δ applies to the new children ofu,
we only build a temporarysequence of new statesof u’s
children. The following example illustrates this process.

Example 1.2 LetD be a schema containing an automaton
A with the following transition rules (among others):

(1)Item, {∅, ∅}, qPrice qDescription → qItem

(2)Price, {∅, ∅}, qdata → qPrice

(3)data, {∅, ∅}, ∅ → qdata

Now, we assume the valid document of Figure 1 describ-
ing the customers and invoices of a shop. Each invoice
contains the price and the description of the items bought
by a customer. We consider the item depicted at position
13 and we assume the insertion of another price for this
item. This operation corresponds to the insertion of a la-
beled treet1 (having positionsε and0 associated with la-
belsPrice anddata, respectively) at position131 of the
treet (Figure 1). The labeled treet′ in Figure 3 represents
the requested change overt.
The verification of the update consists in:(i) considering
that the update is performed (without performing it yet) and
(ii) verifying if the stateqItem can still be associated with
position13 (131’s father) by analyzing the unique transi-
tion rule whose head isqItem.
To this end, we are going to build the sequence of states
associated with13’s children. To better illustrate our ex-
ample, we consider the subtree oft (Figure 1) whose root
is at position13 and its requested updated version (the cor-
responding subtree on Figure 3). We assume the bottom-up
execution ofA over t1. We apply rule3 over the leave of
t1 to obtain the stateqdata. This leave shall be at position
1310 if the update is accepted (see requested updated tree
partly depicted by Figure 3). Then, we apply rule2 over
the root oft1 to obtainqPrice. The root oft1 is at position
131 of the requested updated tree (Figure 3). Note that this
update does not concern the subtrees on the left of position
131: nothing changes for the subtree rooted at position130.
Moreover, the subtrees on the right have just been shifted
(see the subtree now rooted at position132 of Figure 3). In
other words, the update does not affect position130 (asso-
ciated withqPrice) and position132 is the result of a shift
(a new position, but associated with an ”old” state,i.e., one
computed before the update). Thus, we only have to calcu-
late the state associated with position131 in order to obtain
the complete new sequence of children states for position
13.
Now, we consider rule (1). It can be applied to position13
if all the following conditions hold:(i) t(13) = Item, (ii)
for all childrenpos of 13 we havetype(t, pos) 6= attribute
and (iii) the concatenation of the labels associated with

13’s children composes a word that corresponds to the reg-
ular expressionqPrice qDescription. In our case this con-
catenation isqPrice qPrice qDescription (positions130, 131
and132, respectively). This word does not match the reg-
ular expressionqPrice qDescription, so condition(iii) does
not hold. Rule1 cannot be applied to position13. The
update is rejected, since it violates validity.
Notice that accepting or rejecting an update depends on the
schema being considered. For instance, if we consider a
schemaD′ similar toD except for transition rule(1) that is
replaced by: Item,{∅, ∅}, q∗Price qDescription → qItem

then the insertion oft1 at position131 in t is accepted. In-
deed, the concatenationqPrice qPrice qDescription matches
the regular expressionq∗Price qDescription. 2

Shop
ε

Cust
0

Invoice

@InvoiceNb Date BillTo Item

@custNb DescriptionPrice

@itName @Type

1

10

100

11 12 13

110 120 132130

1200 1320 13211300

13200 13210

... ...

(00123)

(99)

data data
(12/30/02)

data data

datadata
(bTools)

(25.00)

(book)

Price
131

1310
data

(20.00)

Figure 3:Labeled treet′ representing the requested changes on
t: an insertion at position131.

The main contributions of the paper are:

• The definition of a structure, called XMLdossier, that
formalizes and summarizes all the features necessary to the
update validation.

• A correct and complete set of update operations. In-
deed any XML dossier generated by a composition of our
update operations is valid, and given a schemaD, every
XML dossier valid with respect toD can be generated by a
composition of these operations. The changes to an XML
dossier due to an update are precisely defined. Four update
operations are introduced, namelyinsert, insertBefore,
delete andreplace.

• An incremental validation method that allows significant
improvements over brute-force validation from scratch.

This paper is organized as follows:In Section 2, XML
dossiers are defined and we discuss each component of this
structure. In Section 3 we define the set of update oper-
ations and in Section 4 we show how incremental valida-
tion is performed. Finally, Section 5 concludes with related
work and our perspectives for further research.

2 XML Dossiers
An XML dossierX contains all the components necessary
to the validation of updates. It is a tuple(D, T ,R) where:
D is a schema that defines attribute and element constraints,
T is the tree representation of an XML document andR is

a structure built fromD andT , over which(i) the valid-
ity of T with respect toD can be easily determined (only
with few tests on values contained inR), and(ii) the incre-
mental validity test performed while updating is also easily
applied.

2.1 XML document representation

There are different ways to view an XML document as a
tree. Before introducing our choice of representation, we
recall the notion of unrankedΣ-valued trees [21]. LetN∗
be the set of all finite strings of positive integers with the
empty stringε as the identity. The following definition as-
sumes thatdom(t) ⊆ N∗ is a nonempty set closed under
prefixes1, i.e., if u ¹ v, v ∈ dom(t) impliesu ∈ dom(t).
Clearly, this setdom(t) represents the set of nodes of t,
uniquely identified with a Dewey like prefix schema.

Definition 2.1 - Σ-valued tree t [21]: Given an alphabet
Σ, a nonemptyΣ-valued treet is a mappingt : dom(t) →
Σ wheredom(t) satisfies:j ≥ 0, uj ∈ dom(t), 0 ≤ i ≤
j ⇒ ui ∈ dom(t). The setdom(t) is also called the set
of positionsof t. We write t(p) = a, for p ∈ dom(t), to
indicate that theΣ-symbol associated withp is a. For each
positionp in dom(t), children(t, p) denotes the positions
pi in dom(t), andfather(t, p) denotes thefatherof p. De-
fine anempty treet as the one havingdom(t) = ∅. 2

Definition 2.2 - XML tree T : Let Σ = Σele ∪ Σatt ∪
{data} be an alphabet whereΣele is the set of element
names andΣatt is the set of attribute names. An XML
tree is a tupleT = (t, type, value) where:

• t is aΣ-valued tree (i.e., t : dom(t) → Σ).
• type and value are functions defined as follows for a
positionp ∈ dom(t):

type(t, p) =

data if t(p) = data
element if t(p) ∈ Σele

attribute if t(p) ∈ Σatt

value(t, p) =

{
setval ⊂ D if type(t, p) = data
undefined otherwise

whereD is an infinite (recursively enumerable) domain.2

In Figure 1 we have, for instance,type(t, 13) =
element andvalue(t, 1300) = {25.00}.

To define update operations we need the notions offron-
tier andinsert frontier. The frontier corresponds to the set
of leaves while the insert frontier is the set of positions (not
in dom(t)) where the simple insertion of new subtrees is
possible.

Definition 2.3 - Frontier and insert frontier of a finite
tree t: Given a treet and consideringi ∈ N, the fron-
tier of t, denoted byfr(t) is defined byfr(t) = {u ∈
dom(t) | ¬∃ i such thatui ∈ dom(t)} while the insert
frontier of t, denoted byfrins(t) is defined byfrins(t) =
{ui 6∈ dom(t) | u ∈ dom(t) ∧ [(i = 0) ∨ ((i 6=
0) ∧ u(i − 1) ∈ dom(t)]}. For an empty treet, define
frins(t) = {ε}. 2

1The prefix relation in N∗, denoted by¹ is defined by:u ¹ v iff
uw = v for somew ∈ N∗.

2.2 Schema representation

We assume that XML views are built from different data
sources according to a particular schema. In our approach,
a schemaD is specified by an extended non-deterministic
bottom-up finite tree automaton (ENFTA) enhanced with
an attribute table.

Definition 2.4 - Extended non-deterministic bottom-up
finite tree automaton (ENFTA) [5]: An ENFTA over an
alphabetΣ is a tupleA = (Q, Σ, Qf , ∆) whereQ is a
set of states,Qf ⊆ Q is a set of final states and∆ is a
set of transition rules of the forma, S,E → q where(i)
a ∈ Σ; (ii) S is a set of two disjoint sets of states,i.e.,
S = {Scompulsory, Soptional} (with Scompulsory ⊆ Q and
Soptional ⊆ Q); (iii) E is a regular expression overQ and
(iv) q ∈ Q. 2

Definition 2.5 - SchemaD for XML documents : Let
Σ = Σele ∪ Σatt ∪ {data} be a schema alphabet. A
schemaD for XML documents is a tupleD = (A,Æ)
whereA = (Q, Σ, Qf , ∆) is an ENFTA overΣ andÆ[att-
name, att-kind, ele] is an attribute table having one tuple
for each pair(att-name, ele) that associates an attribute
att-name ∈ Σatt with an elementele ∈ Σele. We assume
that attribute kindsatt-kind in Æ are those possible in a
DTD (i.e., CDATA, ID, IDREF and IDREFS). 2

Definition 2.4 extends classical tree automata in order
to deal with trees with different kinds of nodes. InT , the
children of any positionp ∈ dom(t) can be classified into
two groups: those that are unordered, corresponding to the
attributes of the node, and those that are ordered, corre-
sponding to the sub-elements.

In a schemaD, element constraints are expressed by
regular expressions (part(iii) of A’s transition rules). At-
tribute constraints imply two levels of specification. In the
first level, for each element, the specification (part(ii) of
A’s transition rules) indicates the attributes that are obliga-
tory (Scompulsory) and optional (Soptional). In the second
level, for each attribute, the specification indicates its kind
(attribute tableÆ). Thus, as discussed in [5], the validity of
attribute requires some tests on attribute values. These tests
verify the uniqueness of identifier values (called ID values)
in the whole document, and the existence of ID values cor-
responding to reference values (called IDREF or IDREFS
values).

Example 2.1 We consider the schemaD = (A, Æ) (con-
cerning customers and invoices in a shop) which has been
used to build the running tree of Figure 2 from the tree of
Figure 1. The schema alphabetΣ contains all the labels
appearing in Figure 1.
The ENFTAA = (Q, Σ, Qf ,∆) hasQ = {qa | a ∈ Σ},
Qf = {qShop} and twenty-one rules in∆: four of them are
presented in Examples 1.1 and 1.2.
The tableÆ has the following tuples:{ 〈idCust, ID, Cust〉,
〈idInvoices, IDREFS, Cust〉, 〈invoiceNb, ID, Invoice〉,
〈custNb, IDREF, BillTo〉, 〈itName, CDATA, Description〉,
〈Type, CDATA, Description〉 }. 2

2.3 XML documents respecting a schema

Given a schemaD = (A,Æ) and an XML treeT =
(t, type, value), we want to verify ifT respects the validity
constraints imposed byD. Consider first the execution of
A over t. To assume a stateq at positionp, the automaton
A performs the following tests:

1. If p hasattributechildren then their states should match
those specified by the sets inS, namelyScompulsory and
Soptional, corresponding, respectively, to attributes that
mustappear in the tree and to those thatmayappear.

2. If p haselementchildren then the concatenation of their
states must belong to the language generated by the regular
expressionE.

We call running treethe Q-valued tree resulting from
the execution of a tree automatonA overt.

Definition 2.6 - Running tree r [5]: Let t be aΣ-valued
tree andA = (Q, Σ, Qf , ∆) an ENFTA. Arunning treer,
corresponding to an execution ofA over t, is a tree such
that dom(r) = dom(t) defined as follows: for each po-
sition p whose children are at positionsp0, . . . , p(n − 1)
(with n ≥ 0), r(p) = q if all the following conditions hold:

1. t(p) = a ∈ Σ
2. There exists a transitiona, S,E → q in ∆
3. There exists an integer0 ≤ i ≤ (n − 1) such that the
children ofp can be classified as follows:

(a) the positionsp0, . . . , p(i − 1) are members of a set
posAtt(possibly empty) and

(b) the positionspi, . . . , p(n − 1) are members of a set
posEle(possibly empty) and

(c) every children ofp is a member ofposAttor of posEle
but no position is in both sets.

4. The treer is already defined forp’s childreni.e., r(p0) =
q0, . . ., r(p(n− 1)) = qn−1.

5. The wordqi . . . qn−1, composed by the concatenation of
the states associated with the positions inposEle, belongs
to the language generated byE.

6. The sets ofS respect the following properties:

(a)Scompulsory ⊆ {q0, . . . , qi−1} and

(b) ({q0, . . . , qi−1} \ Scompulsory) ⊆ Soptional.

A running treer is successfulif r(ε) is a final state. 2

From Definition 2.6, one can see thatt is accepted byA
if and only if r is successful. This is one of the conditions
an XML treeT must respect to be valid relative to a schema
D.

Consider now the ID/IDREF constraints. During the run
of A over t, bags of ID and IDREF(S) values are filled,
according to the tableÆ in D. It is then straightforward to
verify the ID/IDREF constraints. Precisely, we say thatT
respectsD if all the following conditions hold:

C1- The running treer constructed according to Defini-
tion 2.6 fromD andT is successful.

C2- The ID attributes int are unique.

C3- The IDREF/IDREFS attributes refer to existing ID at-
tributes.

To facilitate the verification of conditions C1-C3, we de-
fine the structureR containing the running treer, together
with ID and IDREF values.

Definition 2.7 - Run R: Given a schemaD = (A,Æ)
and an XML treeT = (t, type, value), a runR is a tuple
R = (r, VID, VIDREF) wherer is the running tree (Def-
inition 2.6) andVID andVIDREF , called id-storage, are
bagsfilled usingÆ during the run ofA on t, according to
the steps below:
• If there exists a tuple inÆ that indicates that an at-

tribute at positionp has kind ID, then insertvalue(t, p0) in
VID.
• If there exists a tuple inÆ that indicates that an at-

tribute at positionp has kind IDREF or IDREFS, then insert
value(t, p0) in VIDREF . 2

Condition C2 holds whenVID has no duplicate and con-
dition C3 is verified whenVIDREF only contains values
that appear inVID.

Example 2.2 We considerX , composed by the schemaD
of Example 2.1, the treeT depicted in Figure 1 and the
run R = (r, VID, VIDREF). The structureR contains
the running treer (Figure 2) and2 VID = VIDREF =
{99, 00123}. As r(ε) = qShop andQf = {qShop}, the
running treer is successful. Notice that conditions C1-C3
are respected byX . 2

2.4 Validity of XML dossiers

Now XML dossiers and their validity are defined according
to the preceding sections.

Definition 2.8 - XML dossier and validity : An XML
dossier is a tripleX = (D, T ,R) whereD is a schema
as specified in Definition 2.5,T is an XML tree as intro-
duced in Definition 2.2 andR is a run obtained according
to Definition 2.7. Two XML dossiers are equal if their com-
ponents are equal. An empty dossier hasdom(t), dom(r),
VID andVIDREF empty.
An XML dossierX is valid if it is empty or if its runR =
(r, VID, VIDREF) respects the following conditions:(i) r
is successful(Definition 2.6), (ii) VID is a set and (iii)
values inVIDREF exist inVID. 2

We distinguish between two types of validity: theglobal
validity of Definition 2.8 and thelocal one, introduced be-
low. The id-storageVIDREF of a locally valid dossier can
refer to ID attributes not present in this dossier. This notion

2In table Æ of Example 2.1, the only ID attributes considered are
at positions00 and 10. From Figure 1,value(t, 000) = {99} and
value(t, 100) = {00123}

is very useful in an update context. For instance, when in-
serting a locally valid dossierX 1 into a valid dossierX , it
is reasonable to suppose that the id-storageVIDREF1 con-
tains references to attributes inVID that are not inVID1.

Definition 2.9 - Local validity : Let X = (D, T ,R) be
an XML dossier whereT = (t, type, value) andR =
(r, VID, VIDREF). LetA = (Q, Σ, Qf ,∆) be the ENFTA
in D. An XML dossierX is locally valid if its runR re-
spects the following conditions:(i) r(ε) = q andq ∈ Q
and(ii) VID is aset. 2

Example 2.3 The dossier of Example 2.2 is valid.
Now, we consider the dossierX 1 = (D, T 1,R1) with the
same schemaD as Example 2.1. Let theΣ-valued treet1
in T 1 be a subtree similar to the one rooted at position1
of Figure 1 (i.e., having the same labels). The running tree
r1 in R1 corresponds to the subtree rooted at position1 in
Figure 2. It hasr1(ε) = qInvoice, (with qInvoice ∈ Q and
qInvoice 6∈ Qf), VID1 = {00123} andVIDREF1 = {99}.
Clearly,X 1 is not valid. However, it is locally valid. 2

In the following, we introduce the notion ofsub-dossier
and one important property concerning them.

Definition 2.10 - Sub-dossier: Let X = (D, T ,R) be
an XML dossier whereT = (t, type, value) andR =
(r, VID, VIDREF). Let p be a position indom(t).
The XML dossierX p = (D, T p,Rp), where T p =
(tp, type, value) andRp = (rp, VIDp, VIDREFp), is the
sub-dossier ofX at positionp if the following conditions
hold:

1. dom(tp) = {u | pu ∈ dom(t)}
2. tp(u) = t(pu) for eachpu ∈ dom(t)
3. Similarly to tp, the new functionstype andvalue (as-

sociated withT p) are mappings overdom(tp) and,
therefore, are defined following the same principle as
the definition oftp.

4. The runRp is obtained according to Definition 2.7,
fromD andT p. 2

Proposition 2.1 If X = (D, T ,R) is a valid XML dossier
then for every positionp ∈ dom(t), its associated sub-
dossierX p = (D, T p,Rp) is locally valid. 2

In Example 2.3, the dossierX 1 is the sub-dossier ofX
at position1.

3 Updating Valid XML Documents
We define four update operations over XML dossiers show-
ing all changes (on structure and values) that should be
performed on their components. Our update processing
transforms a valid XML dossier into a (sometimes new)
valid XML dossier. Updates that do not preserve valid-
ity are rejected. Given a valid dossierX and a position
p, it is possible to update it by performing one of the
following operations:insert(X p, p,X) (inserts a dossier

X p in X at p ∈ frins(t)), insertBefore(X p, p,X) (in-
sertsX p in X at p ∈ dom(t)), delete(p,X) (deletes
from X the sub-dossier associated top ∈ dom(t)) and
replace(X p, p,X) (replaces inX the sub-dossier associ-
ated withp byX p). Figure 4 illustrates these operations by
showing the changes occurring in aΣ-valued treet.

0
b

1
c

0

b
1

c d m
1

e

ε

2

20

(i)

10

p

ε ε

(ii) (iii) (iv)

0

b
2

c d

e

3

30

m
1

10

p

ε

0

b d

e

2

20

(v)

m
1

10

p

ε

0
x d

e

2

2000

y

a a a a a

Figure 4:(i) Initial Σ-valued treet having labelsa (positionε),
b (position 0) andc (position 1). (ii) Insertion atp = 2. (iii)
Insertion beforep = 1. (iv) Deletion atp = 2. (v) Replace at
p = 0.

Next we formally define our set of update operations.
Notice that we only consider insertion and deletion of non
empty locally valid dossiers.

Definition 3.1 - Update: Let X = (D, T ,R) be a valid
dossier. The result of applying an update operation onX at
positionp is a valid dossierX ′ defined by:

X ′ =

(D, T ′,R′) if (D, T ′,R′) is a valid
dossier different fromX .

X otherwise.

where T ′ = (t′, type, value) and R′ =
(r′, V ′

ID, V ′
IDREF) respect the three properties stated

below, which are based on the following assumptions:

• The update position isp = ui, with i ∈ N andu ∈ N∗.
It is defined according to the update operation:(i) p ∈
frins(t), for Insertion,
(ii) p ∈ dom(t) andp 6= ε, for Insertion beforep and
(iii) p ∈ dom(t), for DeletionandReplace.

• n = |children(father(t, p))| − 1 for p 6= ε.

• DelPos =
⋃k=n

k=i {w | w ∈ dom(t) andw = uku′} if
p 6= ε, otherwiseDelPos = dom(t).

• ShiftRightPos =
⋃k=n

k=i {w |w = u(k+1)u′ anduku′ ∈
dom(t)}.
• ShiftLeftPos =

⋃k=n
k=i+1{w |w = u(k−1)u′ anduku′ ∈

dom(t)} if p 6= ε, otherwiseShiftLeftPos = ∅.
• X p = (D, T p,Rp) is a non empty locally valid XML
dossier withT p = (tp, type, value) andRp = (rp, VIDp,
VIDREFp).

Properties

1. t′ is aΣ-valued tree overdom(t′) whose definition de-
pends on the type of update :

(a) Insertion: dom(t′) = dom(t) ∪ {pv | v ∈ dom(tp)}
and{

t′(w) = t(w) ∀w ∈ dom(t)
t′(pv) = tp(v) ∀v ∈ dom(tp)

(b) Insertion beforep: dom(t′) = [dom(t) \ DelPos] ∪
ShiftRightPos ∪ {pv | v ∈ dom(tp)} and
• t′(w) = t(w), ∀w ∈ dom(t) and w 6∈ DelPos
• t′(u(k + 1)u′) = t(uku′) for each u(k + 1)u′ ∈
ShiftRightPos where k ∈ [i..n]
• t′(pv) = tp(v) for each v ∈ dom(tp)

(c) Deletion: dom(t′) = [dom(t)\DelPos]∪ShiftLeftPos
and
• t′(w) = t(w) for eachw ∈ dom(t) andw 6∈ DelPos

• t′(u(k − 1)u′) = t(uku′) for each u(k − 1)u′ ∈
ShiftLeftPos wherek ∈ [(i + 1)..n]

(d) Replace: dom(t′) = [dom(t) \ {v | v ∈ dom(t) ∧ v =
pu′}] ∪ {pv | v ∈ dom(tp)} and{

t′(w) = t(w) ∀w ∈ dom(t) andw 6= pu′

t′(pv) = tp(v) ∀v ∈ dom(tp)

2. TheΣ-valued treer′ and the new functionstype and
value are defined following the same principle ast′ (prop-
erty 1 above).

3. The id-storageV ′
ID andV ′

IDREF are defined according
to the type of update:

(a) InsertionandInsertion beforep:
• V ′

ID is the setVID ∪ VIDp.
• V ′

IDREF is the bagVIDREF ∪ VIDREFp such that
every value inV ′

IDREF exists inV ′
ID.

(b) Deletion: LetX p be the sub-dossier ofX at positionp.
• V ′

ID is the setVID \ VIDp.
• V ′

IDREF is the bagVIDREF \ VIDREFp such that ev-
ery value inV ′

IDREF exists inV ′
ID.

(c) Replace atp: Let oldp = p and let X oldp =
(D, T oldp,Roldp), with Roldp = (roldp, VIDoldp,
VIDREFoldp), be the sub-dossier ofX , at positionoldp,
to be replaced by the new dossierX p = (D, T p,Rp).
• V ′

ID is the set(VID \ VIDoldp) ∪ VIDp.
• V ′

IDREF is the bag (VIDREF \ VIDREFoldp) ∪
VIDREFp such that every value inV ′

IDREF exists in
V ′

ID. 2

The following theorem states that when the resulting
dossier is different from the original one, the update op-
eration haseffectivelybeen performed.

Theorem 3.1 LetX = (D, T ,R) be a valid dossier and
letX p = (D, T p,Rp) be a locally valid dossier. LetX ′ =
(D, T ′,R′) be a dossierdifferent from X and letp be a
position.

• If X ′ = insert(X p, p,X) andp ∈ frins thenX ′ is valid
andX p is the sub-dossier ofX ′ at p.

• If X ′ = insertBefore(X p, p,X) thenX ′ is valid and
X p is the sub-dossier ofX ′ at p. Each sub-dossier ofX at
p and its right siblings is a sub-dossier ofX ′, shifted one
position to the right.

• If X ′ = delete(p,X) thenX ′ is valid andX p is the sub-
dossier ofX at p, but it is not the sub-dossier ofX ′ at p.
Each sub-dossier ofX at a position that is a right sibling
of p is a sub-dossier ofX ′, shifted one position to the left.

• If X ′ = replace(X p, p,X) thenX ′ is valid andX p is
the sub-dossier ofX ′ at p and there existsX oldp which is
the sub-dossier ofX at p. 2

Proof (Sketch) : From Definition 3.1, it can be verified for each
update operation that the validity conditions (Definition 2.8) hold.

We finish this section by stating the correction and the
completeness of our update operators. In other words, we
show that after an update, a valid XML dossier remains
valid and that any valid dossier can be obtained from a se-
quence of our update operations.

Lemma 3.1 Let X = (D, T ,R) be a valid dossier. The
XML dossierX ′ resulting from the update ofX according
to Definition 3.1 is valid. 2

Theorem 3.2 LetX andX ′ be valid dossiers with respect
to a schemaD. There exists a sequenceu of update opera-
tions (of Definition 3.1) such thatX ′ is the result of apply-
ing u overX . 2

Proof: The proof is straightforward sinceX ′ =

replace(X ′, ε,X).

4 Incremental validation
In this section we explain how to performincrementalva-
lidity tests before accepting an update. From Definition 3.1,
we notice that an update overX = (D, T ,R) at position
p only results in changes top’s right siblings (including it-
self). Thus, only the subtree rooted atfather(p) has to be
checked to assure the validity of the updated document.

All update procedures have the dossierX = (D, T ,R)
and the update positionp as input. Procedures
insert, insertBefore and replace receive a dossier
X p=(D, T p,Rp), to be added toX . We consider thatX
is valid, p is a correct update position andX p is locally
valid (or valid, according to the type of update). These as-
sumptions can be easily verified at the beginning of update
procedures.

To implement incremental validity tests efficiently, we
simulatethe update using a small auxiliary runRaux =
(raux, IDaux, IDREFaux). The id-storageIDaux and
IDREFaux are bags. They are computed according to
the type of update, implementing the operations used in
the Property 3 of Definition 3.1. TheΣ-valued treeraux

is always an 1-depth tree. As shown below, and illustrated
by Figure 5,raux is built with the siblings ofp in r, and by
re-computing the state ofp’s father.

Construction of raux:
Leaves: Let p = ui be the update position, withu ∈ N∗
andi ∈ N:

1. Copy the left siblings of positionp:

For j ∈ [0..i− 1] do raux(j) = r(uj)

2. Let3 n = |children(r, father(r, p))| − 1 and com-
pute the other leaves according to the update opera-
tion:

For insert: raux(i)=rp(ε). In this case,i is the right-
est child.

For insertBefore:
raux(i)=rp(ε)
for k ∈ [i..n] do raux(k + 1) = r(uk)

Fordelete:
for k ∈ [i..(n− 1)] do raux(k) = r(u(k + 1))

For replace:
raux(i)=rp(ε)
for k ∈ [(i + 1)..n] do raux(k) = r(uk)

Root: Compute the rootraux(ε) by applying the transition
rule associated with the labelt(father(t, p)).

u qa

r: ε

u0
qa0

un
qan

...

rp: ε qb

...
p=ui

qai

raux:
insertBefore

ε

0 i-1
qai-1

i
qai

i+1
qb

n+1

... ...

qanqa0

raux:
insert

ε

0
qa0

n
qan

i
qb

...

raux:
replace

ε

0 i-1 i i+1 n

... ...

raux:
delete

ε

0 i-1 i n-1

... ...

INPUTS

qai-1 qai+1qb qanqa0qai-1 qanqa0 qai+1

q

Figure 5:Auxiliary treesraux for each type of update.

OnceRaux is built, the validity tests are performed
by checking(i) if r(father(t, p)) equalsraux(ε) and(ii)
if IDaux andIDREFaux respect the validity conditions
stated in Definition 2.8. Notice thatraux(ε) represents the
state that should be associated with positionfather(t, p)
if the update was accepted. In fact, when we test if
r(father(t, p)) equalsraux(ε), we are taking into account
the good properties of our tree automatonA. SinceA is a
translation of an unambiguous DTD [9], each labela ∈ Σ
is associated with auniquestateqa. Thus, both running
treesr (before an update) andr′ (after an accepted update)
should associate the same state with positionfather(t, p).
To verify if an update respects this property, we perform
the test onraux (instead of building the wholer′).

3We recall thatdom(t) = dom(r) and that functionschildren
and father return positions in dom(r) (or dom(t)). Thus,
|children(r, father(r, p))| gives the number of children ofp’s father.

Now we make some remarks concerning complexity.
Given a dossierX = (D, T ,R), the construction ofR
from D and T is linear in the number of nodes appear-
ing in theΣ-valued treet (in T). To visit a subtree oft in
order to fill bags containing ID values is linear in the num-
ber of nodes of the subtree. The construction ofIDaux and
IDREFaux, from the original bagsVID, VIDREF , etc.,
is linear in the number of ID/IDREF(S) values present in
these original bags. Consideringm as the maximum num-
ber of values inIDaux andIDREFaux checking the con-
ditions (ii) and(iii) of Definition 2.8 takes, in the worst
case, timeO(m2). The construction ofRaux takes linear
time in the number ofp’s siblings. Applying the transition
rule overRaux also takes linear time in the number ofp’s
siblings (i.e., positions indom(raux)).

Therefore, in comparison with a naive method that first
applies the update and then checks validity from scratch, it
is easy to see that our approach is far better. Supposing that
the input of the update operations respect the assumptions
of Definition 3.1, we just need to construct some small aux-
iliary structures and to apply a transition ruleonce. In gen-
eral the gain is very important: imagine for example that
we delete, insert or replace a ”phone number” of an element
”person” in a large document. The incremental validity test
will check only the element ”person” concerned by the up-
date, and not the whole resulting document4! Not counting
that, in the naive method, if the resulting document is not
valid then all update process must be rolled back.

5 Conclusions

Tree automata are used in XML research in different ways
(see [15, 18] as surveys). For instance, several static typ-
ing techniques for XML transformers (including static type
checking [4, 14] and type inference [11, 16]) have been
modeled with tree automata or tree transducers. In [14],
the authors consider the type checking problem expressed
by k-pebble transducers, showing that it is decidable. In
[4], they consider trees with labels from an infinite alpha-
bet in order to represent both elements and their values,
showing that in this case type checking becomes undecid-
able. The problem of type check transformations of XML
trees (given a tree, its schema and a transformation, check
whether the resulting tree conforms to a specified schema)
is complementary to the one we address in this paper, as it
focus on the task of extracting (sometimes with restructur-
ing) information from a given document.

In this paper we have applied unranked tree automata to
the incremental validation of updates. Our validity test is
static, as we perform it before applying the update. For this
purpose, we use the extended tree automaton introduced
in [5] whose aim is to deal with both element and attribute

4As another example, consider that an element ”person” is added in a
long list of ”person” elements (originally valid): the incremental validity
test will check only the local validity of this new element and will accept
the update if this element is locally valid. This is possible because adding
an element in a list is obviously correct when this list of sub-elements is
specified in the schema (and it is, since the original list is valid).

constraints. This automaton has the same expression power
as a DTD and gives rise to an efficient validation method.
It has already been implemented as a validator from scratch
using both SAX and DOM. The key proposition to perform
incremental validation efficiently is to build a temporary
sequence of states which represents the requested change
(together with bags of ID/IDREF(S) values) and to perform
tests upon this small auxiliary structure.

Updates and incremental validation are very useful for
many application such as XML databases and XML edi-
tors. To our knowledge no information is provided on the
incremental validation of updates for the available products
on XML [17, 1].

A set of primitive XML update operations (different
from ours) is proposed in [20]. Contrary to us, the au-
thors are not interested in the problem of validation. Their
goal is to define an XML update language and to translate
update operations into updates on the associated relational
database. The same problem is addressed in [7] where, in
order to specify when XML views are updatable, the au-
thors use the nested relational algebra as the formalism for
defining them. As XML views must respect the schema in-
duced by the view specification, in [7] only updates that do
not violate it are considered. However, contrary to us, the
goal of the authors is not to build an update environment
that assures the validity of XML views. In this sense, our
work is complementary to theirs.

Our choice of update operations is based on existing
propositions for extending XQuery with updates. For
instance,[13] enumerates studies of XML update opera-
tions and conduct experimental study to compare their in-
cremental checking method against re-validating the whole
document after an update. Note that they use a quite differ-
ent approach to pre-validate updates, based on constraint
check queries, which seems to add unnecessary computa-
tion overhead. As in [13, 17], we also have implemented a
renameoperation, which gives a new name to a node (el-
ement or attribute), not presented here because it is just a
simplified version of areplace.

Updates on trees appear in papers, such as [19], dealing
with the notion of distance between two trees. Their update
operations are general while ours reflect desired changes on
XML documents. The notion of distance between two trees
is also explored in [12], where the goal is to detect changes
and not to propose updates that allow such changes.

In [17] the authors propose an incremental validation of
XML documents. They first describe a way to incremen-
tally check the sequence composed by sub-element states.
They maintain a kind of B-tree as auxiliary information
structure. This idea is extended to incremental DTD val-
idation in the case ofone element renaming. Finally, for
specialized DTDs they propose to use as auxiliary struc-
ture a binary tree encoding of the document. This structure
is of sizeO(n), wheren is the size of the document, and
their incremental validation is in timeO(log2n).

Although the aim of the work presented in [17] is simi-
lar to ours, the two proposals differ in many aspects. Con-

trary to [17], we deal not only with element constraints but
also with attribute constraints. In [17], only elementary up-
dates affectingonenode at a time are considered. Our up-
date method allows sophisticated update operations (deal-
ing with trees) without loosing the capacity of effectively
performing elementary ones.

In terms of complexity, in our approach, considering
only the insertion or deletion of a leaf (at positionp) in
the XML tree (t being theΣ-valued tree), we improve
the complexity bounds. Our auxiliary structure has size
|dom(raux)| and our validation time is linear in the num-
ber of elements indom(raux). In [17] the same operation
takes timeO(log2 n) wheren is the size of the entire doc-
ument,i.e., n equals|dom(t)|. However, contrary to them,
we do not consider specialized DTDs.

We are currently considering the following lines of re-
search:

(i) The construction of a framework for manipulating XML
documents. This framework is intended to be a formal lab-
oratory to test query and update languages for XML [2, 3].
We are currently implementing our update operations using
the ASF+SDF [8] meta-environment. Next, we shall con-
sider the development of an XML update language as an
extension of some existing query language such as XQuery.
To this end, we shall define a method to determine the up-
date positionp by the evaluation of some predicates (e.g.,
XPath). In doing this, we intend also to investigate how
the intermediate validation necessary to determinep can
optimize the complete validation for the data modification
operation.

(ii) The generalization of our method to treat other kinds
of updates such as those that change the schema since they
can help a lot the administration of a data exchange envi-
ronment.

(iii) The generalization of the update process to consider
”global” updates,i.e., a sequence (or a set) of updates
treated as one unique transaction, instead of just a single
primitive update operation. In this case, we are interested in
assuring validity just after considering the whole sequence
of updates - and not after each update of the sequence, in-
dependently. In other words, as a valid document is trans-
formed using a sequence of primitive operations, the doc-
ument can be temporarily invalid but in the end validity is
restored.

(iv) The extension of our method to deal with specialized
DTDs, as well as to treat integrity constraints. Our goal
is to incrementally validate updates over XML documents,
taking into account both schema and key constraints (as
defined in [10]). To this end, we aim at merging the method
presented here with the proposal in [6]. This first extension
is our way to start the investigation of how our validation
process can work when XML Schema (instead of DTD) is
considered.

References
[1] XML editor products. Available at

http://www.perferctxml.com/soft.asp?cat=6.

[2] XML query working group. Available at
http://www.w3.org/XML/Query.

[3] XUpdate - XML:DB Working draft. Available at
http://www.xmldb.org/xupdate/xupdate-wd.html.

[4] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.
XML with data values: Typechecking revisited. In
ACM Symposium on Principles of Database System,
2001.

[5] B. Bouchou, D. Duarte, M. Halfeld Ferrari Alves, and
D. Laurent. Extending tree automata to model XML
validation under element and attribute constraints. In
ICEIS, 2003.

[6] B. Bouchou, M. Halfeld Ferrari Alves, and M. A. Mu-
sicante. Tree automata to verify key constraints. In
Web and Databases (WebDB), San Diego, CA, USA,
June 2003.

[7] V. P. Braganholo, S. B. Davidson, and C. A. Heuser.
On the updatability of XML views over relational
databases. InWeb and Databases (WebDB), San
Diego, CA, USA, June 2003.

[8] M. G. J. van den Brand, J. Heering, P. Klint, and P. A.
Olivier. Compiling rewrite systems: The ASF+SDF
compiler. ACM, Transactions on Programming Lan-
guages and Systems, 24, 2002.

[9] A. Brüggeman-Klein and D. Wood. One-
unambiguous regular languages. Information
and Computation, 142(2):182–206, 1998.

[10] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. C.
Tan. Keys for XML. InWWW10, May 2-5, 2001.

[11] B. Chidlovskii. Using regular tree automata as XML
schemas. InProc. IEEE Advances in Digital Libraries
Conference, May 2000.

[12] G. Cobena, S. Abiteboul, and A. Marian. Detecting
changes in XML documents. InData Engineering,
2002.

[13] B. Kane, H. Su, and E. A. Rundensteiner. Consis-
tently updating XML documents using incremental
constraint check queries. InProceedings of WIDM
02, 2002.

[14] T. Milo, D. Suciu, and V. Vianu. Typechecking for
XML transformers. InACM Symposium on Principles
of Database System, pages 11–22, 2000.

[15] F. Neven. Automata, logic and XML. InCSL‘02 -
Annual Conference of the European Association for
Computer Science Logic (invited talk), 2002.

[16] Y. Papakonstantinou and V. Vianu. DTD inference for
views of XML data. InACM Symposium on Princi-
ples of Database System, pages 35–46, 2000.

[17] Y. Papakonstantinou and V. Vianu. Incremental vali-
dation of XML documents. InProceedings of the In-
ternational Conference on Database Theory (ICDT),
2003.

[18] D. Suciu. On database theory and XML.SIGMOD
Record, 30(3), 2001.

[19] Kuo-Chung Tai. The tree-to-tree correction problem.
Journal of the Association for Computing Machinery,
26(3), 1979.

[20] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. InACM SIGMOD. ACM, 2001.

[21] W. Thomas. Automata of infinite objects. In J. Van
Leeuwen, editor,Handbook of Theoretical Computer
Science. Elsevier, 1990.

