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Abstract

Given a regular expression E and a word w belonging
to the language associated to E (i.e.w ∈ L(E)), we con-
sider the following problem: Let the word w′ be obtained
from w by adding or removing one symbol. In this case, we
are interested in building new regular expressions E ′ such
are similar to E and such that L(E) ∪ {w′} ⊆ L(E′).

The new regular expressions are computed by an algo-
rithm called GREC that performs changes on a finite state
automaton accepting L(E), in order to derive the new reg-
ular expressions E ′.

Our method consists in proposing different choices, per-
mitting the evolution of the data belonging to an applica-
tion. As the final choice depends on the intended semantics
for the data, it is left to an advised user.

1. Introduction

We consider a word w belonging to a regular language L,
represented by the regular expression E. In this language,
each symbol has a precise semantics. For instance, suppose
that E serves as the content model (schema) of an XML el-
ement. In this context, a word w ∈ L represents the cur-
rent content (i.e., the sub-elements) of the considered ele-
ment. We assume that updates to w are possible (i.e., the
insertion or deletion of one symbol in a position p of w).
Clearly, an update over w results in a new word w′ not nec-
essarily belonging to the language L. Indeed, if we consider
a finite state automaton ME associated to E and if we as-
sume that w′ 6∈ L, then we can say that ME fails recogniz-
ing w′. We want this failure to trigger the creation of new

regular expressions E ′ which extend L to new regular lan-
guages L′. In our context, the extension should be conser-
vative (i.e., L ⊆ L′) and should include not only w′ but
also other words intended to be semantically close to w′.
Our goal is to propose several choices of regular expres-
sions, trying to foresee the needs of an application, and this
choices must be as close as possible to the original regu-
lar expression. An authoritative user is then responsible for
choosing one of them.

To build new regular expressions, we propose an algo-
rithm that works on the automaton ME associated to E.
It performs changes on ME in order to obtain new au-
tomata M ′

E
. For each M ′

E
, a regular expression E ′ is gener-

ated, representing a choice for the user. These new regular
expressions are produced by respecting the syntactic nest-
ing of E. Indeed our algorithm, called GREC, is an exten-
sion of the reduction process proposed in [1] to transform a
Glushkov automaton into a regular expression. This reduc-
tion procedure is well adapted to our goal since it respects
the syntactic nesting of the starred sub-expressions of the
regular expression E. We can verify the possibility of in-
serting the new state at each step of the reduction process,
depending on the new word we want to accept.

Research work on learning automata (such as [2, 3]) deal
with the construction of automata from scratch, based on
examples and counterexamples. Our approach is different
from theirs, in the sense that we need to extend a previously
defined regular language, as well as proposing regular ex-
pressions for the extended languages. These regular expres-
sions should be as similar as possible to the one that de-
fines the original regular language. Similarity between reg-
ular expressions is characterized by a simple notion of dis-
tance.



Our main contributions can be summarized as follows:

• An algorithm to compute new regular expressions E ′

in order to extend a given language L (represented by
the regular expression E) in a conservative way. This
computation is activated by the failure of the automa-
ton ME in recognizing w′, a word resulting from an
update performed over a word w ∈ L. Along with
the fact that the extension must be conservative, the
proposed new languages L′ are, usually, more general
than L ∪ {w′}, trying to foresee the needs of an appli-
cation. Moreover, each new regular expression E ′ is as
close as possible to E, according to a distance to be de-
fined in the paper.

• Different choices of new regular expressions are pro-
posed to an authoritative user, capable of deciding the
best way an application should evolve. This method
has been applied in an XML-based data-exchange en-
vironment as a decision support system for schema
evolution. In this context, it helps administrators of in-
formation systems who are experts in the domain of an
application, but who are not experts in computer sci-
ence.

The paper is organized as follows: Section 2 recalls the
reduction principles presented in [1]. Section 3 presents
GREC and an example of its execution is shown in Section 4.
Proofs are omitted due to lack of space (see [4]).

2. Glushkov Automata and Regular Expres-
sions

This section explores the transformation of regular ex-
pressions into finite state automata. The algorithm for build-
ing a finite state automaton M = (Σ, Q, ∆, q0, F ) from a
regular expression is straightforward and can be found in
the literature [1, 5]. In particular, the algorithm of Glushkov
[1] obtains a homogeneous1 finite state automaton, called
Glushkov automaton.

Given a regular expression E, a Glushkov automaton is
built by subscribing each alphabet symbol in E with its
position. In a Glushkov automaton, each non initial state
corresponds to a position in the regular expression. For in-
stance, given the regular expression E = (a(b|c)∗)∗d, the
subscribed regular expression is E = (a1(b2|c3)

∗)∗d4.
Given a homogeneous finite state automaton M , we con-

sider the corresponding Glushkov graph G = (X, U) where
X is the set of vertices (isomorphic to the set of states of the
automaton) and U is the set of edges (corresponding to the
transition relation ∆). As we are dealing with homogeneous

1 A finite state automaton is said to be homogeneous [1] if one always
enters a given state by the same symbol.

automata, we drop the superfluous labels on edges and work
with an unlabeled directed graph.

A graph has a root node r (resp. an antiroot) if there ex-
ists a path from r to any node in the graph (resp. from any
node in the graph). A graph is a hammock if it has both a
root (r) and an antiroot (s), with r 6= s.

Given a Glushkov graph G = (X, U), an orbit is a set
O ⊆ X such that for all x and x′ in O there exists a non
trivial path from x to x′. A maximal orbit O is an orbit such
that for each node x of O and for each node x′ not in O,
there does not exist at the same time a path from x to x′ and
a path from x′ to x.

The input and output nodes of an orbit are respectively
defined as follows:

In(O) = {x ∈ O | ∃x′ ∈ (X \ O), (x′, x) ∈ U}

and

Out(O) = {x ∈ O | ∃x′ ∈ (X \ O), (x, x′) ∈ U}.

An orbit O is said to be stable if ∀x ∈ Out(O) and ∀y ∈
In(O), the edge (x, y) exists. An orbit O is transverse if

∀x, y ∈ Out(O), ∀z ∈ (X \ O), (x, z) ∈ U ⇒ (y, z) ∈ U

and if

∀x, y ∈ In(O), ∀z ∈ (X \ O), (z, x) ∈ U ⇒ (z, y) ∈ U.

An orbit O is strongly stable (resp. strongly transverse) if it
is stable (resp. transverse) and if after deleting the edges in
Out(O) × In(O) every sub-orbit is strongly stable (resp.
strongly transverse).

Given a Glushkov graph G, a graph without orbits Gwo

is defined by recursively deleting, for each maximal orbit
O, all edges (x, y) such that x ∈ Out(O) and y ∈ In(O).
The process ends when there are no more orbits.

Example 2.1 Consider the Glushkov automaton from Fig-
ure 1(a) that represents2 E = (a(b|c)∗)∗d. Figure 1(b)
shows the corresponding Glushkov graph G which has one
maximal orbit: O1 = {1, 2, 3} (with In(O1) = {1} and
Out(O1) = {1, 2, 3}). Orbit O1 is both transverse and
stable. We can build a graph without orbit from G as fol-
lows: (i) Remove all the arcs Out(O1) × In(O1) of G.
(ii) The resulting graph G′ also has one maximal orbit:
O2 = {2, 3} (with In(O2) = Out(O2) = {2, 3}). Delete
the arcs Out(O2)×In(O2) to obtain a new graph G′′ with-
out orbits. Both maximal orbits O1 and O2 are strongly sta-
ble and strongly transverse. 2

Given Gwo, we consider the algorithm presented in [1]
to obtain a regular expression. Gwo is said to be reducible if

2 In fact, the Glushkov automaton is built from the subscripted expres-
sion E = (a1(b2|c3)∗)∗d4.
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Figure 1. (a) Pictorial representation of a FSA for (a(b|c)∗)∗d. (b) Its Glushkov graph.
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it is possible to reduce it to one state by successive applica-
tions of any of the three rules R1, R2 and R3 below (illus-
trated by Figure 2).

Let x be a node in Gwo = (X, U). We note Q−(x) =
{y ∈ X | (y, x) ∈ U} the set of immediate predecessors of
x and Q+(x) = {y ∈ X | (x, y) ∈ U} the set of immediate
successors of x. The reduction rules are defined as follows:
Rule R1: If two nodes x and y are such that Q−(y) = {x}
and Q+(x) = {y}, i.e., node x is the only predecessor of
node y and node y is the only successor of x, then concate-
nate the regular expressions associated to x and y, assign
this new regular expression to x, and delete y.
Rule R2: If two nodes x and y are such that Q−(x) =
Q−(y) and Q+(x) = Q+(y), i.e., the nodes x and y have
the same predecessors and successors, then build a regular
expression that corresponds to the union of those expres-
sions associated to x and y, assign this new regular expres-
sion to x, and delete y.
Rule R3: If a node x is such that y ∈ Q−(x) ⇒ Q+(x) ⊂
Q+(y), i.e., each predecessor of node x is also a predeces-
sor of any successor of node x, then delete the edges go-
ing from Q−(x) to Q+(x). In this case we build a regular
expression in the following way: If the original regular ex-
pression associated to x is of the form E (resp. E+) then the
new one will be E? (resp. E∗). From now on, we use the no-
tation E! to stand for E? or E∗.

It is important to remark that the reduction process starts
at the lower level of the hierarchy of orbits and works
bottom-up, from the smaller orbits to the maximal ones
(set inclusion). Indeed, during the construction of Gwo,

the orbits are hierarchically ordered, according to the set-
inclusion relation. The information concerning the orbits of
the original graph is used to add the transitive closure opera-
tor (“+”) to the regular expression being constructed. Thus,
during the reduction process when a single node represent-
ing a whole orbit is obtained, its content is decorated with a
“+”.

Theorem 2.1 [1] G = (X, U) is a Glushkov graph iff the
following conditions are satisfied: (1) G is a hammock3,
(2) each maximal orbit in G is strongly stable and strongly
transverse and (3) the graph without orbit of G is reducible.

We define now a very simple notion of the distance be-
tween two regular expressions, based on the number of po-
sitions of the subscribed expressions:

Definition 2.1 Let E and E ′ be regular expressions. Let E

and E′ be subscripted expressions built from E and E ′,
respectively, by using the Glushkov method. Let SE (resp.
SE

′

) be the set of positions of E (resp. E ′). The distance
between E and E ′, denoted by D(E, E ′), is D(E, E′) =|
card(SE) − card(SE

′

) |. (Where card(S) represents the
number of elements of the finite set S.)

3. Generation of New Regular Expressions

We are interested in changes to a regular expression E

representing a language L, provoked by the failure of the

3 We establish the convention that all regular expressions are finished
by an end mark #.



automaton ME associated to E. Neither the changes to the
regular expression nor the words that cause them are ran-
dom ones. The regular expression E has an intuitive mean-
ing for a human user, serving as a schema or type for some
data. The word w′, that triggers the process of changing E,
is the result of an update over a word w ∈ L.

We consider two update operations on strings. The oper-
ation Ins(w, σ, p) = ασβ, where w = αβ and |α| = p, in-
serts a symbol σ at the position4 p of a given word w. The
operation Del(w, p) = αβ, where w = ασβ and |α| = p,
returns the word obtained by removing the pth symbol from
w.

As w′ provokes a failure of ME , we propose changes on
E. However, we are interested in changes to the regular ex-
pression that are intuitive to the user. The aim is not just to
add the new word to the language, but to have a richer ex-
tension based on the structures of the regular expression and
the new word. Thus, we are neither interested in the candi-
date E|w′ that adds just one word to L(E), nor in candi-
dates too general allowing any kind of updates5. Our inter-
est concerns candidates E ′ whose distance from E such that
they are as similar to E as possible. In fact, as the change
from the word w to w′ consist of the insertion of a new sym-
bol, the number of positions in the regular expressions pro-
posed by our algorithm must be larger than the number of
positions in the original one. Indeed, our interest concerns
candidates E′ whose distance from E is minimal, this why
we consider only candidates E ′ such that D(E, E′) = 1.

We can summarize our problem as follows: let E be a
regular expression, let w be a word in L(E) and let w′ be
the word obtained after inserting or deleting a symbol at po-
sition p in w. We want to obtain new regular expressions E ′

such that
L(E) ∪ {w′} ⊆ L(E′)

and
D(E, E′) = 1.

The case for deletions is simple. For instance, given a
regular expression E = ab+c and a word w = abc, if the
symbol b in w is deleted, i.e., w′ = ac, we build a new reg-
ular expression E ′ by making the symbol b in E optional,
i.e., E′ = ab∗c.

The process above can be generalized as follows: Given
the regular expression E, we use the algorithm in [1] to
obtain a Glushkov FSA ME accepting L(E). As ME is a
Glushkov FSA, it has one state for each position of E. Let
us s be the state in ME corresponding to the position that
will become optional. In order to obtain a new FSA ME′ ,
accepting L(E′), we modify ME by adding new transitions
from all the predecessors of s to all the successors of s. It

4 Position 0 is the first position of a word.
5 As, for instance, a method that gives E′ = a∗b∗ as the result for E =

ab, w = ab and w′ = aab.

can be verified that the addition of the new transitions pre-
serves the property of the automaton to be a Glushkov FSA.
The new regular expression E ′ is then obtained by reduc-
ing ME′ using the algorithm given in the previous section.

In the rest of this paper we deal only with insertions. A
regular expression for the language obtained after the dele-
tions of a symbol in a word is straightforward to define:
it consist in rendering optional the corresponding deleted
symbol of the original regular expression.

In this context, we propose an algorithm, called GREC
(Generate Regular Expression Choices), which is an exten-
sion of the reduction method in [1] (see Section 2). GREC
computes several regular expressions which are presented
to the user who should choose one of them.

Firstly, we consider the execution of the (Glushkov) fi-
nite state automaton ME over the word w′. Let p be the po-
sition of w′ where the new symbol is inserted. Let the near-
est left state (snl) be a state in ME reached after reading
the first p− 1 symbols in w′ (or in w). Let the nearest right
state (snr) be a state in ME that is the successor of snl when
reading the p-th symbol of w. Notice that we scan w′ using
ME and, when w′ is not accepted by ME, the scanning pro-
cess help us finding where to place the new state (snew) in
ME. In fact, snew is the state that reflects in ME the in-
sertion operation over w (which gives rise to w′). Notice
that, looking for the place of snew in ME , means looking
for states snl and snr, which should be passed to GREC. In
some cases, a simple backtracking maybe necessary.We re-
mark that both snl and snr exist. When ME is deterministic
they are unique, otherwise we can find more than one pair
(snl, snr). We apply our algorithm to each of these pairs.

Without loss of generality, we assume that an insertion
operation always corresponds to the insertion of a new po-
sition in E. Thus, to accept the new word, we should in-
sert a new state in ME . This new state (snew) should be
added to ME and there should exist a transition from snl

to snew. However this is not the only change to be per-
formed on ME. Other changes are needed in order to keep
the graph associated to the automaton as a Glushkov graph.
These changes depend on the situation of snl and snr in
the Glushkov graph. Our proposal is to deal with these so-
lutions in a hierarchical way, obtaining first those solutions
that involve inner starred subexpressions of E. The reduc-
tion procedure of [1] is well adapted to this purpose, since
it respects the syntactic nesting of the starred subexpres-
sions of the regular expression (it works using the hierarchy
of maximal orbits of the graph).

Figure 3 presents a high level algorithm for the proce-
dure GREC. This procedure takes five parameters: a graph
without orbits G1, a hierarchy of orbits O, two nodes of the
graph, corresponding to snl and snr, and the new node snew

to be inserted.



(1) procedure GREC(G1, O1, snl, snr, snew) {
(2) if graph G1 has only one node
(3) then stop
(4) else{
(5) Ri := ChooseRule(G1, O1);
(6) for each (G2, O2):= LookForGraphAlternative(G1,O1,Ri,snl,snr,snew) do
(7) GraphToRegExp(G2, O2);
(8) G3 := ApplyRule(Ri, G1);
(9) GREC(G3, O1, snl, snr, snew);
(10) } }

Figure 3. Algorithm to generate regular expression choices from a Glushkov graph.
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The procedures ChooseRule and ApplyRule are
implemented according to [1]: ChooseRule uses the in-
formation concerning orbits to select a rule to be applied in
the reduction of the graph, ApplyRule builds a new graph
resulting from the application of the selected rule.

At each step of the reduction, the iterator
LookForGraphAlternative checks whether the cho-
sen rule affects nodes snl or snr and, in each of these
cases, it modifies the graph to take into account the in-
sertion of the new node snew. In the following, we ex-
plain how the tests and modifications are performed,
according to the type of the rule being considered. Ta-
bles presented in Figures 4 to 7 summarize the behavior of
LookForGraphAlternative. These tables show the
tests performed by LookForGraphAlternative, as
well as the modifications to be performed when the tested
conditions are met. In these tables, the column Condi-
tion shows the situation of the graph being reduced and
the conditions to be verified. The column Result repre-

sents the new graph (G2 in the algorithm of Figure 3).
Figure 4 deals with the conditions and modifications

when applying R1. Notice that, in this figure, the condi-
tions for the first case are: (i) the node x corresponds to
snl and (ii) the node y corresponds to snr. The modifica-
tion corresponds to the insertion of snew as an option. For
instance, suppose the regular expression E = ab, the orig-
inal word w = ab, and the new word w′ = anb. The gen-
erated regular expressions in this case are an∗b and an?b.
In the second case of Figure 4, snl is an output of an or-
bit and snr belongs to the input of the same orbit (this will
be the only situation in which the precondition of the trans-
formation holds6). Two different modifications can be pro-
posed in this case. They correspond to the inclusion of the
new node in this orbit. Moreover, the inserted node inher-
its the features of the node to which it is attached, i.e., it

6 Notice that as we work on a graph without orbits, edges from the out-
put to the input of the orbits are not represented in Figures 4-7.
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will be an input or an output of the orbit. For instance, sup-
pose the regular expression E = (ab)∗c, the original word
w = ababc and the new word w′ = abnabc. The modi-
fied graphs (column Result) lead us to the regular expres-
sions (abn!)∗c and (n!ab)∗c (from now on we use the sym-
bol ! to represent both ? and ∗, thus, the expression (abn!)∗c
means (abn?)∗c and (abn∗)∗c).

Figure 5 deals with the conditions and modifications
when applying R2. In the first case x = snl and snr ∈
Q+(x). The new state snew is introduced as part of the
option snl. For example, if E = a(b|c)d, w = abd and
w′ = abnd, then the modified graph leads to the regu-
lar expression a(b n!|c)d . The second case of Figure 5
is symmetric to the first one. The third case introduces a
new alternative in the regular expression. For example, if
E = a(b|c)?d, w = ad and w′ = and then the modified
graph leads to the regular expression a(b|c|n!)?d.

Figure 6 deals with the conditions and modifications
when applying R3. The conditions to be verified are: (i)
snl ∈ Q−(x) and snr ∈ Q+(x) or (ii) snl ∈ Q−(x) and
snr 6∈ Q+(x) or (iii) snl 6∈ Q−(x) and snr ∈ Q+(x). The
conditions (ii) and (iii) deal with cases similar to the sec-
ond condition in Figure 4. Three different solutions are pro-
posed. They consist in inserting the new node before, after
and as an alternative of the optional node x. For instance,
given E = ab?c, w = ac and w′ = anc we obtain modified
graphs resulting in the regular expressions an!b?c, ab?n!c
and a(n! | b?)c.

During the reduction process, each orbit of the original
graph is reduced to just one node containing a regular ex-
pression which is then decorated by +. Before applying this
decoration we should consider the insertion of snew in the
reduced orbit. Figure 7 summarizes the situations in which
we perform a modification on an orbit. In the first case, we
have to test if the node z containing the orbit coincides with
snl and snr. In this case two solutions are possible. In both
of them we insert snew in the orbit represented by z: at the
beginning or at the end of it. For example, given E = a∗,
w = aa and w′ = ana, we obtain modified graphs result-
ing in the regular expressions (n!a)∗ and (an!)∗. The sec-
ond case tests if snl ∈ Q−(z) and snr = z. Here, two so-
lutions are also proposed. The first one is similar to the so-
lution proposed for the first case. The second one proposes
an orbit built over an option between z and snew . For in-
stance, given E = ab∗, w = abb and w′ = anbb, we obtain
new regular expressions E = a(n!b)∗ and E = a(n|b)∗.
The third case is symmetric to the second one.
GREC solutions respect the properties stated by the fol-

lowing theorems.

Theorem 3.1 Let G1 be the graph without orbits obtained
from a Glushkov graph G. Let O1 be the hierarchy of or-
bits obtained during the construction of G1. Let Ri be one
of the reduction rules R1, R2 or R3. For any nodes snl,

snr and snew , each pair (G2, O2) resulting from the execu-
tion of LookForGraphAlternative(G1, O1, Ri,
snl, snr, snew) is a representation of a Glushkov graph
G′, where G2 is a graph without orbits, and O2 is the hier-
archy of orbits obtained when constructing G2 from G′.

Theorem 3.2 Let E be a regular expression and L(E) be
the language associated to E. Given w ∈ L(E) such
that w = αβ, let w′ = αnβ where n is a symbol and
w′ 6∈ L(E). Let ME be a deterministic Glushkov automa-
ton corresponding to E, let GA be the graph without or-
bits obtained from ME and let OA be the hierarchy of or-
bits obtained during the construction of GA. Let snl be the
state in ME reached after reading α and let snr be the
state that succeeds snl in ME when reading w. Let snew

be a new node not in GA. The execution of GREC (GA,
OA, snl, snr, snew) returns a finite, nonempty set of
regular expressions {E1, . . . , Em}. For each Ei, we have
L(E) ∪ {w′} ⊂ L(Ei) and D(E, Ei) = 1.

If unambiguous expressions are required as a result,
GREC signalizes the ambiguity of a candidate regular ex-
pression - we can then transform the chosen candidate into
an equivalent unambiguous regular expression along the
lines of [6]. Notice that if E is unambiguous and n is not
in E then each candidate regular expression Ei given by
GREC is unambiguous.

We have implemented a prototype of GREC using the
ASF+SDF [7] meta-environment under Linux. We have
chosen the meta environment for its simplicity and abstract-
ness when implementing formal (set theoretical) concepts.

4. A Detailed Example

In this section we present a detailed example of the exe-
cution of GREC, showing how regular expressions are gen-
erated. Consider E = a(bc+)∗# and E = a1(b2c3

+)∗#4.
From now on, we drop the symbols and we work with
E = 1(2 3+)∗4.

Let us suppose that the word w = abbc# is modified by
inserting a new symbol n after the symbol c, yielding the
new word7 w′ = abbcn#. The new symbol will be repre-
sented by a new position (“5”) of the regular expressions
proposed by GREC.

Let G be a Glushkov graph that represents E and G1 be
its corresponding graph without orbits (Figure 8).

We execute GREC over this graph. According to the algo-
rithm of Figure 3, we notice that we reduce the graph (rep-
resented by G1 and G3) as proposed in [1]. At each step of
this reduction, before the application of each rule (R1, R2

or R3), we construct new graphs, represented by G2. The

7 Let us enforce the update Ins(w,n, 4).
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new graphs correspond to the cases shown in Figures 4 to 7,
adding the new node snew to G1.

Firstly, we consider each input parameter of the proce-
dure: G1 (the graph without orbits of Figure 8), O (the hi-
erarchy of orbits containing O1 = {3} and O2 = {2, 3}),
snl (node 3 in G1), snr (node 4 in G1 corresponding to the
end mark since we are at the end of the original word) and
snew (new node 5 that does not appear in G1).

Now we run GREC (Figure 3) step by step:

1. As G1 has more than one node, after the if test at line
(2), GREC continues at line (4).

2. We choose O1 as the orbit to be reduced. No rule is
chosen at line (5) since O1 is a singleton.

3. As there exists an orbit with one single node,
LookForGraphAlternative tries to apply the
conditions of Figure 7. The third condition of this fig-
ure is verified. Applying the first modification (a:)
of this case, the regular expressions 1(2(3 5?)+)∗4
and 1(2(3 5∗)+)∗4 are obtained. The second mod-
ification (b:) allows the construction of the graph
below:

3

5

0 1 2 4

Notice that the modification to the graph is accom-
panied by the changes to the orbits due to the insertion
of the new node. The new orbits are: O1 = {3, 5},
O2 = {2, 3, 5}, In(O1) = {3, 5}, Out(O1) = {3,
5}, In(O2) = {2} and Out(O2) = {3, 5}.

After getting the new graph, the procedure
GraphToRegExp is called. This procedure
transforms the graph into the regular expression
1(2(3|5)+)∗4.

4. Following the reduction process of G1, the procedure
ApplyRule (line (8)) adds the operator “+” to the
node that represents an orbit in G1, as mentioned in
Section 3. Thus, this node corresponds to the regular
expression 3+.

5. The procedure GREC is then recursively called (line
(9)).

6. We choose O2 as the orbit to be reduced. Rule R1 is
the rule chosen at line (5), since it is the only one ap-
plicable over the nodes in O2, i.e., nodes 2 and 3.

7. As the application of this rule affects neither snl nor
snr, LookForGraphAlternative does not mod-
ify G1. ApplyRule applies Rule R1 on G1 and we
have G3 with a node with the regular expression 2 3+.

8. The procedure GREC is then recursively called (line
(9)).

9. Rule R3 is the chosen rule at line (5).

10. As there exists an orbit with one single node, the pro-
cedure LookForGraphAlternative builds mod-
ified graphs following the explanation given in Fig-
ures 6 and 7. We check all conditions of both tables.
The only successful condition is the third one of Fig-
ure 7.

The first modification (a:) of this case allows the
construction of the graph presented opposite. For this
graph, we obtain 1(2 3+5?)∗4 and 1(2 3+5∗)∗4. The
second modification (b:) of this case will also be pro-
posed, obtaining the regular expressions 1(2 3+|5)∗4.

0 1 4

5

2 3+

11. The algorithm now continues by reducing the graph of
step 7. Before applying rule R3 over G1, the node that
represents one orbit (O2) is decorated by +. Thus, we
have the expression (2 3+)+. By applying the rules R3

and R1 and we have a node with the regular expression
1(2 3+)∗

12. Rule R1 is now chosen at line (5), since it is the only
one applicable. The node x in Figure 4 corresponds to
the node containing 1(2 3+)∗. The node y is 4.

13. In this context, we can apply the first case of Fig-
ure 4, thus obtaining the graph opposite. This graph
will produce the regular expressions 1(2 3+)∗5?4 and
1(2 3+)∗5∗4.

0 4

5

1(2 3+)∗

14. The algorithm continues reducing the graph of Step 11,
until it has just one node. No other solutions are con-
structed.

The number of candidates built by GREC depends on the
number of orbits where the new symbol can be inserted and
the matched cases from Figures 4 to 7. We present them
to the user classified according to the context of insertion
of the new symbol (i.e., according to the starred subexpres-
sion in which the new symbol is inserted). It is straight-
forward to do it since for each maximal orbits in G of E

there exists a starred subexpression in E [8]. In our exam-
ple (E = a(bc+)∗# and w′ = abbcn#), the proposed so-
lutions are the following:
1. In the same context as c (i.e., inside (c+)): a(b(c n?)+)∗,
a(b(c n∗)+)∗, and a(b(c|n)+)∗.



2. In the same context as b (i.e., inside (bC)∗, with C =
(c+)): a(b c+n?)∗, a(b c+n∗)∗, and a(b c+|n)∗.
3. In the same context as a (i.e., outside any starred subex-
pression): a(b c+)∗n?, a(b c+)∗n∗.

Notice that we are not interested in making important
changes in the original regular expression to accept the new
word. For instance, in this example, we are not interested
in options like a(bc+)∗n?(bc+)∗. Thus, the distance be-
tween each above candidate E ′ and E is 1. For instance,
for E1 = a(b(c n?)+)∗, SE1 = {1, 2, 3, 4, 5} and, as
SE = {1, 2, 3, 4}, we have D(E, E ′) = |4 − 5| = 1.

We finish this section by illustrating the use of GREC
in the context of an XML [9] application, for the evolu-
tion of schema. Suppose that part of the schema is given
by a regular expression similar to a(bc+)∗; for instance,
the DTD (Document Type Definition) [10] syntax for reg-
ular expressions, we can have: (Subject,(Year,
Article+)*). Suppose that n stands for TechReport.
Now, let <!ELEMENT Publications (Subject,
(Year, Article+)*)> be the definition of the ele-
ment Publications in a schema given by a DTD. All
the previous proposed solutions are given in response of an
update performed by an authoritative user, over an XML
document that initially conforms to the DTD. They rep-
resent different ways of changing the DTD (i.e., of re-
placing <!ELEMENT Publications (Subject,
(Year, Article+)*)>).

5. Conclusion

In this paper, we propose a method to perform a conser-
vative generalization of a given regular language. A regu-
lar expression E, defining the regular language L, serves as
a schema for some data. An update operation, performed
over a previously recognized word w, gives rise to a new
word w′ that may not match E. The failure in recognizing
w′ triggers the process of creating new regular expressions
(based on the old one). We define (and implement) an al-
gorithm that computes several regular expressions E ′ such
that L(E)∪ {w′} ⊆ L(E′) and D(E, E′) = 1. An authori-
tative user can then choose one of them.

We intend to extend our approach in order to deal with
updates of a set of symbols. In this new context, we can as-
sume that given a regular expression E and a set of new
words W = {w|w 6∈ L(E)}, we want to modify E in or-
der to obtain E′ such that W ⊂ L(E′). Note that in this
new context, we shall investigate the similarities of our ap-
proach and those in the area of regular grammar inference.
The regular grammar inference problem is defined as fol-
lows [11]:

“Given a finite set of positive examples (sen-
tences belonging to the language of the target
grammar) and a finite (possibly empty) set of
negative examples (sentences that do not belong
to the language of the target grammar), identify
a regular grammar G∗ that is equivalent to the
target grammar G (two grammars G1 and G2

are equivalent if their languages are exactly the
same).”

Angluin in [2] has described the use of a minimally
adequate teacher to guide the learner in the identification
of the target DFA. A minimally adequate teacher is capa-
ble of answering membership queries of the form “Does
this sentence belong to the target language?” and equiv-
alence queries of the form “Is this DFA equivalent to the
target?” Using labeled examples together with membership
and equivalence queries it is possible to correctly identify
the target DFA.

Our problem is different from the regular grammar in-
ference since we have just one negative example, which is
built from just one positive example by inserting or deleting
a symbol in w and the built regular grammar G′ is a gen-
eralization of the known grammar G, such that L(G′) in-
cludes L(G) as well as a set of words W such that w′ ∈ W .

We have applied a simplified version of our algorithm
to the schema evolution for XML documents [12]. In this
context, regular expressions are unambiguous (the corre-
sponding automata are deterministic). Based on the update
of one document, we allow an authoritative user to dynami-
cally change the schema without interfering with other doc-
uments in the database. Our system proposes several op-
tions for schema evolution. All of them are consistency-
preserving and represent extensions of the original schema
that intend to foresee the needs of the user. In the case of
our XML applications, we have that both the original and
the derived regular expressions are unambiguous. This con-
dition simplifies the problem of looking for the place in the
Glushkov automaton where the new node will be inserted.
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