
Assisting XML Schema Evolution that Preserves Validity

Béatrice Bouchou1, Denio Duarte2

1Université François Rabelais de Tours - LI/Campus Blois -France

2Universidade Comunitária Regional de Chapecó / Unochapecó - CETEC (SC) Brazil

beatrice.bouchou@univ-tours.fr, denio@unochapeco.edu.br

Abstract. We consider the problem of XML schema evolution preserving the va-
lidity of existing documents related to the original schema. The aim of such
schema evolution is to fit new needs without revalidating allexisting valid XML
documents. We propose an approach to assist users to specifyschema updates
that have no impact on existing document validity. An XML schema is modeled
as a set of regular expressions, each constraining the content model of XML
elements. Given the user needs, we work on Glushkov graphs representing reg-
ular expressionsE in the schema: this representation gives straightforwardly
the right places inE that may be changed while preserving validity.

1. Introduction

More and more applications use XML to store and exchange their data, which are often
stored in XML databases. In this context, XML documents are valid, i.e., they respect
a schema. The schema serves two purposes: (i) it defines an interface for programs
and users to query the data, and (ii) it determines how the database management system
physically stores the data on the disk. In an XML environmentit is quite natural to have
the ability to respond to changes in the real world by allowing the schema to evolve,
especially within the Web framework.

The schema evolution problem deals with the update of a schema when it no longer
meets the needs of the user. The goal of schema evolution research is to allow schemas
to change while maintaining access to the existing data. Indeed, the evolution can be
conservativeor non-conservative. In the first case, all documents that were valid w.r.t.
the old schema are valid w.r.t. the new one. In the second case, documents valid for the
original schema are no more guaranteed to meet the structural constraints described by
the evolved schema.

The non-conservative schema evolution may be problematic since it is necessary
to validate all documents against the new schema and, if theyare not valid, they should
be adapted to it. The document adaption process can provoke data loss since it may be
necessary to delete tags (and their information) from it. Moreover, when documents to be
revalidated are stored in different sites, not only their transfer cost should be considered
(in addition to the whole revalidation cost), but also problems due to access control should
be faced.

To our knowledge, most of work in schema evolution deals witha non-
conservative approach. Indeed, the focus has been first to define schema update primi-
tives: in [Su et al. 2001], a complete and sound set of primitives is proposed, which can
make previously valid documents invalid. In this case, the authors propose changes to

be performed on documents in order to make them valid. The same approach is fol-
lowed in [Al-Jadir and El-Moukaddem 2003]. For example, their change the parent re-
lationshipprimitive may change an element occurrence fromn times to exactly once.
In this case, all documents having this element repeated must be changed in order to
have it only once. In [Prashant and Kumar 2006], the authors try to solve the problem
of revalidation by building an XSLT script to force the document to be valid with rela-
tion to the new schema (as an extension of the approach proposed in [Su et al. 2001]).
In [Guerrini et al. 2005, Mesiti et al. 2006], a set of schema update primitives is also pro-
posed and the impact of schema updates over documents is analysed. In the same way
as in [Raghavachari and Shmueli 2004], the authors take advantages of similarities and
differences between the old schema and the new one to avoid validating portions of doc-
uments. The basic idea is, considering the updates made to the schema, to identify the
parts of the new schema that would require that documents must be revalidated. Only
the document portions corresponding to these schema parts are then revalidated (and are
changed, if necessary).

From above, we can conclude that, although the conservativeevolution of schema
has been identified as a desirable feature for XML databases [Roddick et al. 2000,
Costello and Schneider 2000], there is not a significant amount of research work in this
area. The approach proposed in [Bouchou et al. 2004] is conservative, however the new
schema is inferred from an invalid document, that is, the authors do not consider schema
update primitives.

In this paper, we consider a framework for schema evolution such as the one pro-
posed in [Guerrini et al. 2005, Mesiti et al. 2006], and we present a way of assisting user
to specify schema updates with no impact on validity. To do so, we propose intuitive way
to enter updates, together with a method to determine how to implement them as conser-
vative extensions of the original schema (i.e. keeping existing documents valid without
making any change on them).

In this way, we try to respond to the increasing demand for tools specially designed
for administrators not belonging to the computer science community, but capable to make
decisions on the evolution of an application [Roddick et al.2000]. This kind of user needs
a system that assures a consistent evolution of the schema inan incremental way.

To illustrate this need, let us suppose that a librarian is responsible for feeding an
XML database with information about laboratories and theirpublications. Suppose also
that the current XML schema accepts only journal articles, while the laboratories want
conference articles to be also stored as publications in thedatabase. Thus, the librarian
receiving this demand has to change the schema accordingly.In this situation, the librarian
is not a computer science expert, thus he/she should have a tool to assist him/her to evolve
the schema.

We consider an XML schema as a set of rules. Each rule uses a regular expression
to define the allowed sub-elements of an element. The modifications on an XML schema
consist in changes on the regular expressions of the schema.Indeed, our algorithm is
based on the computation of a new regular expression to extend a given regular language
in a conservative way. Thus, our problem can be formulated interms of regular expression
evolution:

Given a regular expressionE, suppose that an update must be performed
overE. A new regular expressionE ′ is built from E such thatL(E) ⊆
L(E ′).

The following example gives an overall idea of the method.

Example 1.1 Consider a schemaS that constraints XML documents storing researchers
and their publications. Suppose that one of the constraintsin S is: publications
are grouped by journal articles organized by subject and year of publication. That
is, the content model of elementPublication is modeled by the regular expression
E1=Subject (Y ear Journal+)∗. Let the following extract of an XML documentd valid
with respect toS:

<Publication>
<Subject> Automata</Subject>
<Year> 1965</Year>
<Journal> Theorical Computer Science</Journal>
<Journal> International Journal of Computer Science</Journal>
...

</Publication>

Supposing that a user wants to updateS by inserting a new elementConference into the
content model ofPublication (i.e., Subject (Y ear Journal+)∗), the resulting regular
expressionE ′ may beSubject (Y ear Journal+ Conference+)∗, and, in this case,d
is no more valid with respect to the new schemaS ′, since the new element was inserted
as a mandatory element, in sequence withJournal+. This example shows that the user
must know the syntax of regular expressions to be able to update the schema otherwise
he/she may invalidate all the database.
In this situation, if the user could insert the new element byjust saying that the
element must follow elementJournal, that it must be at the same level as el-
ement Journal, and that he/she wants the update to preserve the validity, then
our system would build, for example, the following regular expression E ′ =
Subject (Y ear (Journal|Conference)+)∗. In this cased still is valid with respect
to bothS ′ andS. 2

The Example 1.1 shows how difficult can be the schema evolution: the user should
be aware that elements order must be respected and that the new element should be in-
serted as non-mandatory, otherwise the documents will become invalid with respect to the
new schema. Indeed, expressions likeSubject (Y ear (Journal|Conference)+)∗ are not
trivial to build fromSubject (Y ear Journal+)∗. More generally, the task of finding the
places where the new symbol may be added is not trivial.

Our idea is to allow the user to update the content model of an element without
worrying about details from the regular expression that describes this content model. No-
tice that this can be achieved only for a subset of update primitives. Indeed, if the update
is the removal (or the replacement) of a mandatory sub-element, it is unavoidable to delete
(or replace) this sub-element in all documents where it appears, otherwise the documents
will become invalid. Nevertheless, as shown in [Guerrini etal. 2005], some update prim-
itives are known to have no impact on validity under certain conditions. These primitives
are the following:

1Most of XML schemas are modeled by regular expressions [L. and Chu 2000].

• Sub-element insertion in a content model.
• Cardinality extension of a sub-element in a content model: for instance making a

sub-element optional, or allowing repetition of an existing sub-element.
• Substructure (regular expression) insertion in a content model.
• Element creation: a new rule is added to schema to describe a new element (prob-

ably inserted as a sub-element in another rule).

In this paper, we propose a set of primitives among those which are able to have
no impact on validity. In addition, we aim to hide from the user the conditions for keeping
the consistency of the XML database. For example, the user may insert a sub-elemente
in a content modelc by justsaying that e must be inserted intoc, with several options
such as the context, the type (sequence or choice), etc. The resulting content modelc′

will always havee as an optional sub-element. To summarize, we consider a framework
in which the user can specify one update in an intuitive way, and ask that this update must
preserve the validity of existing documents, and we proposea method to compute the
accurate update.

In what follows we first present the theoretical context of our proposition (sec-
tion 2), then we describe our method (section 3),i.e. the update primitives and their im-
plementation as a conservative schema evolution.

2. Background
We first present the schema model used in this paper, then we describe the notions used
in our schema evolution assistance method.

We remind that XML documents are seen as unranked labeled trees (i.e., trees
whose nodes have a finite but arbitrary number of children) and, consequently, XML
schemas are modeled as regular tree grammars. More precisely, we define the schema
model (based on [Papakonstantinou and Vianu 2000]) as follows.

Definition 2.1 A schemaS over an alphabetΣ for XML documents consists of a root
type in Σ and a mapping associating to eacha ∈ Σ a language overΣ. The language
associated toa is described by a regular expressionEa. We callcontent modelof a the
regular expressionEa associated toa. 2

Example 2.1 Suppose a schema that models the document presented in Example 1.1.
The schemaS is, therefore, as follows:
Σ = {University, Lab, Name, Members, Publications, Position, Subject, Y ear, Journal,
T itle, text}

root : University

University : Lab∗ (1)
Lab : Name Members+ Publication∗ (2)
Publication : Subject (Y ear Journal+)∗ (3)
Members : Position Name2 (4)
Notice that, for example, the rule (3) represents the content model ofPublication which is
modeled by the regular expressionEPub = Subject(Y ear Journal+)∗ and the intended
semantics ofEPub is that the production of a given author is stated by the area (or subject)
of his/her research, followed by a list of journal papers, presented by year. 2

2The other rules have the forme : text or e : ε, wheretext represents a text value andε represents the
empty word.

1 2 3 321
#

#

0
a b

c

4

(a)

b

c

(b)

40

Figure 1. (a) Glushkov Automaton for a(b c+)∗#. (b) Its Glushkov graph

For the sake of simplicity, we adopt here the simplest schemamodel, correspond-
ing to a DTD. But our method can be used for every schema language based on regular
expressions (for a taxonomy of such languages see [Murata etal. 2005]). Notice also that
we do not consider XML attributes since they are not constrained by regular expressions:
possibilities of conservative change concerning attribute definition are limited since one
can only add non compulsory attributes.

Now we introduce a method to transform a graph built from a finite state automa-
ton (FSA) into its corresponding regular expression. This method, which is the basis of
our approach to update conservatively XML schemas, is outlined as follows: starting from
regular expressions defining the content models of elements, we build Glushkov automata
based on the algorithm proposed in [Bruggeman-Klein 1993],which is known to be effi-
cient. These automata are seen as directed graphs and are stored with the corresponding
content models. A schema update is then performed over the graph that corresponds to
the content model to be updated. After that, the changed graph is reduced to a regular ex-
pression following the method proposed in [Caron and Ziadi 2000] (which is, again, very
efficient).

Our motivation to use the reduction process is that it allowsto identify the starred
sub-expressions of a regular expressionE and, thus, it is quite simple to introduce updates
in right places in order to be sure to extend the language in a conservative way. In the
following we detail the reduction method and we define the notions oforbitsandcontexts
that are need to identify the starred sub-expressions.

A Glushkov automaton is built by subscripting each symbol inthe regular expres-
sion with its position. In this way, the automaton is homogeneous3.

Example 2.2 Given the regular expression4 E = (a(b c+)∗#, the subscripted regular
expression isE = a1(b2 c3

+)∗#4. The Glushkov automatonM = (Σ, Q, ∆, q0, F),
built from E, is such that: the alphabet isΣ = {a, b, c, #}, the set of states isQ =
{0, 1, 2, 3, 4}, the initial state isq0 = 0, the set of final states isF = {4} and the transition
relation∆ is defined by the edges of the graph in Figure 1(a). 2

A Glushkov graphis the directed graphG = (X, U) obtained from a Glushkov
automaton such that each node inX corresponds to a state and each edge inU to a
transition. Since Glushkov automata are homogeneous, the edges of aG are not labeled
as shown in Figure 1(b). A graph has aroot noder (resp. anantiroot s) if there exists a
path fromr to any node in the graph (resp. from any node in the graph tos). A graph is a
hammockif it has both a root (r) and an antiroot (s), with r 6= s. Thanks to the end mark
(#), the Glushkov graphs used in this work arehammocks.

Now we consider the graph properties taken from [Caron and Ziadi 2000], that

3A FSA is said to behomogeneous[Caron and Ziadi 2000] if one always enters a given state by the
same symbol.

4We add an end mark (#) to the regular expressionE and to every string belonging toL(E).

will be used later on in this work. A setO ⊆ X is said to be anorbit if for all x andx′

in O there exists a non trivial path fromx to x′. An orbit is maximalif for each nodex
of O and for each nodex′ out ofO, there does not exist a path fromx to x′ and a path
from x′ to x. Notice that an orbit is maximal if it is not contained in any other orbit.
Let O be an orbit, we define:In(O)={x ∈ O | ∃x′ ∈ (X \ O), (x′, x) ∈ U} as the
input of O andOut(O)={x ∈ O | ∃x′ ∈ (X \ O), (x, x′) ∈ U} as theoutputof O.
An orbitO is stableif ∀x ∈ Out(O) and∀y ∈ In(O), the edge(x, y) exists. An orbit
O is transverseif ∀x, y ∈ Out(O), ∀z ∈ (X \ O), (x, z) ∈ U ⇒ (y, z) ∈ U , and if
∀x, y ∈ In(O), ∀z ∈ (X \ O), (z, x) ∈ U ⇒ (z, y) ∈ U . An orbitO is strongly stable
(resp.strongly transverse) if it is stable (resp. transverse) and if after deleting theedges
in Out(O)× In(O), every suborbit is strongly stable (resp. strongly transverse).

Example 2.3 The graph (a hammock) of Figure 1(b) has 2 orbits. The orbitO1 = {2, 3},
with In(O1) = {2} andOut(O1) = {3}, is maximal. OrbitO2 = {3} is not maximal.
Orbit O2 is stable since all the edges inOut(O2) × In(O2) are inO2. It is transverse
since the edge(3, 4) exists in the graph. In fact,O1, O2 are strongly stable and strongly
transverse. 2

Given a graphG in which all orbits are strongly stable, we build agraph without
orbits Gwo by recursively deleting, for each maximal orbitO, all edges(x, y) such that
x ∈ Out(O) andy ∈ In(O). The process ends when there are no more orbits. Notice
thatGwo is defined in a unique way [Caron and Ziadi 2000]. During the construction of
Gwo a structure that stores the computed maximal orbits ofG is also built. This structure is
calledhierarchy of orbits. The hierarchy of orbitsH is hierarchically organized according
to the set-inclusion relation.

GivenGwo, it is said to bereducible([Caron and Ziadi 2000]) if it is possible to
reduce it to one state by successive applications of any of the three rulesR1, R2 andR3

explained below (illustrated by Figure 2). Letx be a node inGwo = (X, U). We note
Q−(x) = {y ∈ X | (y, x) ∈ U} the set of immediate predecessors ofx andQ+(x) =
{y ∈ X | (x, y) ∈ U} the set of immediate successors ofx. The reduction rules are
defined as follows (we denoter(x) the regular expression associated to nodex, ande the
resulting regular expression in each case):

Rule R1: If two nodesx andy are such thatQ−(y) = {x} andQ+(x) = {y}, then replace
nodex by nodexy and delete nodey.

Rule R2: If two nodesx andy are such thatQ−(x) = Q−(y) andQ+(x) = Q+(y), then
replace nodex by nodex|y and delete nodey.

Rule R3: If a nodex is such thaty ∈ Q−(x) ⇒ Q+(x) ⊂ Q+(y), i.e., each predecessor
of nodex is also a predecessor of any successor of nodex, then delete the edges going
from Q−(x) to Q+(x). In this case we build a regular expression in the following way: if
r(x) is of the formE (resp.E+) thene will be E? (resp.E∗).

The reduction process starts at the lowest level of the hierarchy of orbits and works
bottom-up, from the smallest orbits to the maximal ones (setinclusion). Indeed, during the
construction ofGwo, the orbits are hierarchically ordered, according to the set-inclusion
relation. The information concerning the orbits of the original graph is used to add the
transitive closure operator (“+”) to the regular expression being constructed. Thus, dur-
ing the reduction process, when a single node representing awhole orbit is obtained, its

x?

(y)Q−Q (x) Q (y)+

+(y)Q −Q (x) Q (y)+

(x)Q− +Q (x) −Q (x) Q (x)+

−Q (x) x | y

x y
R1

3R

2R

x

y

x

−Q (x) x y

+

Figure 2. Rules R1, R2 and R3

content is decorated with a “+”.

Example 2.4 Figure 3 shows some steps of reduction of the Glushkov graphG that repre-
sents the regular expressionE = (a(b|c)∗)∗# (E = (a1(b2|c3)

∗)∗#4): (i) starting fromG
without orbits (Figure 3(a)), (ii) RuleR2 is applied over nodes2 and3 (Figure 3(b)), (iii)
node2|3 is decorated with “+” since it represents a whole orbit (Figure 3(c)), (iv) Rule
R3 is applied over node(2|3)+ resulting in(2|3)∗ (Figure 3(d)), (v) Rule R1 is applied
over nodes1 and(2|3)∗ and the resulting node is decorated with “+” since it represents a
whole orbit (Figure 3(e)), and (vi) RuleR3 is applied over node(1(2|3)∗)+ resulting in
(1(2|3)∗)∗ (Figure 3(f)). This process continues up to the original graph is reduced to just
one node containing the positional regular expression,i.e., 0(1(2|3)∗)∗4. Discarding the
position0, it corresponds to the original regular expression(a(b|c)∗)∗#. 2

*+

4(1(2|3)*)*0(1(2|3)*)+

(f)

(d)

0 1 (2|3) 4

0 1 (2|3) 40 1

2

3

4

(a) (b)

(c)

0 1 (2|3) 4

(e)

0 4

Figure 3. Reduction of a Glushkov graph without orbits built from (a(b|c)∗)∗#

A characterization of Glushkov automata is given by the following theorem.

Theorem 2.1 [Caron and Ziadi 2000] A finite state automatonM is a Glushkov automa-
ton iff its graphG = (X, U) satisfies the following conditions:(1) G is a hammock,(2)
each maximal orbit inG is strongly stable and strongly transverse and(3) the graph
without orbit ofG is reducible. In this case,G is called a Glushkov graph.

It has been shown in [Bruggeman-Klein and Wood 1992] that every maximal or-
bits of a Glushkov graphG built from a regular expressionE represent starred sub-
expressions ofE.

Example 2.5 Giving the regular expressionE = a(b c+)∗# (andE = a1(b2 c+

3)∗#4).
From the graphG of Figure 1(b), a graph without orbitsGwo is built and we haveH =
{{2, 3}, {3}}. The orbit{3} represents the starred subexpressionc+ and the orbit{2, 3}
represents the starred subexpression(b c+)∗. 2

We use the hierarchy of orbitsH of a Glushkov graph to define the contexts in a
regular expression. For each orbit inH, a context is defined. Moreover, we define also a
context calledgeneralhaving all symbols that do not participate in any orbit ofH.

Definition 2.2 Let E be a regular expression andE be the subscripted regular expression
of E. Let ME be a Glushkov automaton built fromE andG = (X, U) be the graph built
from ME. LetH be the hierarchy of orbits ofG. Let χ(p) denote the symbol inE that
corresponds to each positionp in E (remind that each positionp in E is also a noden in
X). The contextsC of E are defined as follows:
(i) for each orbitO ∈ H, CO = {χ(p) | p ∈ O ∧ ∀O1 ⊂ O p /∈ O1}
(ii) the general context is:Cgeneral = {χ(p) | ∀O ∈ H ⇒ p 6∈ O}. 2

We notice that if a regular expressionE has no starred sub-expression, the only
context ofE is the general one. On the other hand, if all symbols ofE are in starred
sub-expressions, the general context is empty.

Example 2.6 Giving the regular expressionE = a(b c+)∗# and the hierarchy of orbits
H = {{2, 3}, {3}} from Example 2.5. The built contexts areC{3} = {c}, C{2,3} = {b}
andCgeneral = {a}. 2

3. Schema Evolution Framework

3.1. Update Primitives

In our approach the update primitives specified by the user are executed on Glushkov
graphs that represent regular expressions. The use of Glushkov graphs to implement
these primitives allows our method to utilize the orbits (i.e., the starred sub-expression in
E) to guide the way thatE is updated.

We propose four atomic primitives for the creation of a new element, the insertion
of a sub-element in a content model, the extension of the cardinality of a sub-element
(from at most onceto several) and the possibility to make a mandatory sub-element op-
tional. These atomic primitives are based on the work presented in [Guerrini et al. 2005].

These primitives may be directly written as such, but, sinceour aim is to assist the
user in updating the schema, we propose an interactive tool that allows the user to specify
each feature of the update query in an intuitive way and, then, to built the correspondingly
primitive. Among these features (e.g., an insertion), we must have thecontextin which
the update is expected to appear. We propose to denote it by labels appearing in starred
sub-expressions (see Example 2.6). More precisely, the user gives one element name
to identify the target starred sub-expressions, then he/she chooses whether the inserted
sub-element has to appear before or afters. Notice that the user may choose a label that
appears more than once in the regular expression: in this case, the system should obtain
the accurate occurrence,i.e., the right subscript in the subscripted expression.

We consider the Glushkov graphG = (X, U) built from a regular expressionE
that describes the content model of the element to be updated. We remind that inG each
node (but the node0) corresponds to a position in the subscripted regular expressionE.
The only node that does not have out edges is subscripted withthe position of the end mark
(#). By abuse of notation, we use bothcontextandorbits interchangeably. Thus, when
referring to the inputs of a contextC we mean the symbols that correspond to the positions
belonging to the inputs of the orbitO from whichC was built (see Definition 2.2).

Figure 4. Steps of the interaction for an insertion

Our schema update primitives work on the Glushkov graph, by inserting edges
(also a node for the insertion primitive). Indeed, as the schema update must keep the
validity of documents, no deletion is performed on the graph(neither node deletion, nor
edge deletion). Once modified, the Glushkov graph is reducedto its corresponding regular
expressionE ′ andE ′ replacesE in the original content model. Graph modifications are
performed as follows:

• Insertion: the noden (that represents the elemente to be inserted intoE) is in-
serted into the corresponding Glushkov graphG (in a given position or context),
and new edges are created from/ton.
• Making an element optional: given a noden ∈ X that represents a mandatory

elemente in E, G is updated as follows: edges are added from predecessors ofn
to successors ofn.
• Extending the cardinality of an element: given a noden ∈ X that represents an

elemente in E, G is updated as follows: a new singleton orbitO containing only
the position ofe is inserted in the hierarchyH of G.
• Creation: given a new elemente and its content modelEe, a new rulee : Ee is

inserted into the schemaS.

The atomic primitives can be composed to form high level primitives in order to
express more complex updates in a more compact way. For example, it is possible to
insert an expression into a content model or to make optionala whole sub-expression.

3.2. Insertion Primitive

The advantage of our proposition is to allow a user to expresshis/her need in an intuitive
way, while guaranteeing that the schema update will keep theexisting document validity.
In order to illustrate how the user can specify an insertion,we show in Figure 4 main steps
of the interaction. First, the user has chosen the insertionoperation, the content model
to be updated (elementPublication), and he/she has given the name of the element to
be inserted (Conference). After that, the user can choose one element in the regular
expression by clicking on it: in Figure 4, he/she has chosenJournal. Then it is possible
to choose either the element or its context as the reference of the insertion: by default the
element is chosen (i.e., Journal is chosen, and notJournal+). It is also necessary to

precise the relationship between the new element and the chosen reference: in Figure 4,
choicehas been chosen. Last, the user is asked whether the new element may be repeated
or not: by default it is not repeated.

The update operation corresponding to the choices in Figure4 is the following:
ins(Publication, Conference, 3, false, choice, false). Notice that, since the user se-
lects one element in the expressionE, and only one, it is possible to get the correspond-
ing position inE without ambiguity (in the previous example, the user choseJournal, so
the generated update operation has the position3 as third parameter). We define now the
insertion atomic primitive.

Definition 3.1 Let e be an element of a schemaS (i.e., e ∈ Σ) andE the content model
of e. Let e′ the new elemente′ to be inserted. Letτ be a position inE, associated to the
element inE, which is the reference for the insertion. LetG be a Glushkov graph built
from E, and letC be the context built from an orbitO (of G) such thatτ ∈ O. We denote
by ins(e, e′, τ , context, mode, times) the atomic primitive for inserting an elemente′

into the content model ofe, where:

• context is a boolean that defines the reference of insertion,i.e., whethere′ is
inserted relatively toC (context=true) or τ (context=false),
• mode defines whethere′ is inserted as achoice, a sequence-before, or a

sequence-after, in relation to the chosen reference, and
• times is a boolean: iftimes=true thene′ will be decorated with+. 2

Notice that the insertion ofe′ in E is guided by the most internal orbit whereτ appears.

Example 3.1 The example of interaction in Figure 4 leads to the update
ins(Publication, Conference, 3, false, choice, false), which will result in the
regular expressionE ′: Subject (Y ear (Journal | Conference)+)∗#. Remark that the
contexts areC{3}={Journal}, C{2,3}={Y ear} andCgeneral={Subject}. 2

Figure 5 presents the algorithmins, which implements the insertion primitive.
First, a new nodene′ representing the element to be inserted is added to the graph(line
08). Next, new edges are inserted inG depending on the input parameters (lines09 - 23):
the first test is whether the new element will be inserted as achoice, asequence-before
or asequence-after, and next whether the reference is the positionτ or its orbit. Before
building the new regular expression (line27), the orbitO′ and all orbits in whichO′ is
included are updated:ne′ is inserted and the inputs and outputs are also updated (line24).
It is also tested whether the input parametertimes is true: if it is the case, a singleton orbit
is inserted intoH (line 25). This new orbit will provoke the decoration of nodene′ with
“+”, which is transformed into “*” by the reduction rules (line26) sincene′ is inserted as
an optional node.

Figure 6 shows the graph built by Algorithmins (Figure 5) from the Example 3.1:
• As thecontext parameter isfalse, the new node5 is inserted into the orbit

wherec appears,i.e.,O = {3}, in relation withc (i.e., τ = 3).
• As themode parameter ischoice, all successors of node3 have edges from the

new node5 (line 12 of Figure 5):(5, 4). Also, all predecessors of3 have edges to the new
node (line13 of Figure 5):(2, 5).

• O and the orbits in whichO is included are updated with the new node (line27
of Figure 5). Thus, the new hierarchy of orbits is{{3, 5}, {2, 3, 5}, {0, 1, 2, 3, 4, 5}}.

• Finally, a new regular expression is built fromGwo (line 29 of Figure 5).

Algorithm ins(e, e′, τ , context, mode, times)

Output: The new content model E′ of e.

01. Let S be the schema.
02. Let e : Ee in S be the representation of the content model of

e.
03. Let G = (X,U) be a Glushkov graph built from Ee.

04. Let H be the hierarchy of orbits of G.
05. Let O be the orbit in H such that τ ∈ O.

06. Let ne′ be the new node, representing e′ (ne′ /∈ X)

07. G ′ ← G; H′ ←H

08. Insert ne′ into X ′

09. If mode = choice

10. If context Insert (ne′ , no) into U ′ for each no ∈ Q+(Out(O′))

11. Insert (ni, ne′) into U ′ for each ni ∈ Q−(In(O′))

12. Else Insert (ne′ , no) into U ′ for each no ∈ Q+(τ)

13. Insert (ni, ne′) into U ′ for each ni ∈ Q−(τ)

14. Else If mode = sequence-before

15. If context Insert (ne′ , n) into U ′ for each n ∈ Q−(In(O′))

16. Insert (n, ne′) into U ′ for each n ∈ (In(O′)

17. Else Insert (ne′ , τ) into U ′

18. Insert (n, ne′) into U ′ for each n ∈ Q−(τ)

19. Else If mode = sequence-after

20. If context Insert (ne′ , n) into U ′ for each n ∈ (Out(O′)

21. Insert (n, ne′) into U ′ for each n ∈ Q+(Out(O′))

22. Else Insert (ne′ , n) into U ′ for each n ∈ Q−(τ)

23. Insert (τ, ne′) into U ′

24. Update O′ and O′
i with node ne′, for each O′

i ⊃ O
′

25. If times Insert {ne′} into H′

26. E′ ←reduce(G′, H′)

27. Translate E′ into E′ using χ, with χ(ne′) = e′

Figure 5. Algorithm that implements the insertion operation.

wo

={{3}{2,3},{0,1,2,3,4}}

H’

H

wo

={{5,3}{2,3,5},{0,1,2,3,4,5}}

4

G

0 1 2

5

3

G’

210 4

210

G

43 3

Figure 6. Operation ins(Publication, Conference, 3, false, choice, false) applied
over Gwo given G′

wo

={{3}{2,3},{0,1,2,3,4}}

wo

H

G’

210 43

Figure 7. Operation makeOpt(y, c) applied over Gwo (Figure 6).

3.3. Other Primitives

We define the atomic primitive to make optional an element (thus, permitting to delete
occurrences of this element in documents while keeping themvalid).

Definition 3.2 Let e be an element of a schemaS (i.e., e ∈ Σ) andE be the content
model ofe. Let e′ be a mandatory sub-element inE, such thatτ is its position. LetG be a
Glushkov graph built fromE. We denote bymakeOpt(e, τ) the atomic primitive, which
makese′ optional. This operation is performed inG as follows: all predecessors ofτ will
have edges to all successors ofe′. The orbit wheree′ appears is updated if necessary.2

Example 3.2 Given the regular expressionEy = a(b c+)∗#. For the operation
makeOpt(y, 3) the resulting regular expressionE ′ is a(b c∗)∗#.
In order to computeE ′, we modify the Glushkov graph associated toE. Figure 7 presents
the resulting graphG ′wo after executingmakeOpt(y, 3) over the graphGwo from Figure 6:
new edges are inserted intoGwo, from the predecessors of node3 (node that represents
elementc) to the successors of3. Thus, the edge(2, 4) is inserted, rending optional the
node3. Remark again that the regular language described byE ′ includes the regular lan-
guage described byE, i.e., L(E) ⊆ L(E ′). 2

Another primitive operation is to extend the cardinality ofan element, fromonly
onceto several times.

Definition 3.3 Let e be an element of a schemaS (i.e., e ∈ Σ) andE be its content
model. Lete′ be a sub-element inE at positionτ . Let G be a Glushkov graph built from
E. LetH be the hierarchy of orbits ofG.
We denote byExtendCard(e, τ) the atomic primitive, which extends the cardinality of
e′. The operation is performed as follows: a new singleton orbit {τ} is inserted intoH,
respecting the set-inclusion relation. 2

Notice that ifτ is optional, the reduction process decoratesτ with a “*”, otherwise
with a “+”, in E ′. ThenE ′ is translated intoE ′ usingχ, with χ(τ) = e′.

The last primitive operation allows to build a content modelfor a new element in
the schema. The following definition formalizes it.

Definition 3.4 Let e be an element name andE be the content model ofe. We denote
by createCM(e, E) the atomic primitive to add the rulee : E in S (and, if necessary,
e ∈ Σ). If e ∈ Σ and has already a content modelEe in S, then the new rule inS will be:
e : Ee|E. 2

The execution of all the atomic primitives first verifies somesimple preconditions:
(i) to make an elemente′ optional or to extend its cardinality in a given content model E,
e′ must belong toE, (ii) to create a new rulee : E, the rulee : E should not exist
already inS, and (iii) to extend the cardinality of an elemente′, e′ must not be already
decorated with “*” or “+”. For each atomic primitive, the time complexity is constant, as
the Glushkov graph representations are built once (and stored).

We can notice that each of our atomic primitives applied on a schemaS that con-
forms to Definition 2.1 outputs a schemaS ′ that still conforms to Definition 2.1. More-
over, the following theorem states that the graphG ′wo built by applying Definitions 3.1,
3.2 and 3.3 can be reduced to a regular expression (the new content model).

Theorem 3.1 LetG be a Glushkov graph,Gwo its graph without orbits andH the hierar-
chy of orbits ofGwo. The graphG′ (i.e.,G′wo andH′) built fromGwo andH by applying
Definitions 3.1, 3.2 or 3.3 still be a Glushkov graph, in particular G′wo is reducible by
successive applications of rulesRi. 2

Proof (Sketch): Our assumption is thatG is a Glushkov graph (cf. Theorem 2.1:(1) G is
a hammock,(2) each maximal orbit inG is strongly stable and strongly transverse and(3)
the graph without orbit ofG is reducible). For each atomic primitive, both its definition
(3.1 to 3.3) and its implementation are designed so that a node and/or edges are inserted,
in such a way that the reduction conditions are respected, thus, G′wo is reducible (i.e.,
RulesR1, R2 or R3 can be applied overG′wo). Moreover, the hierarchy of orbitsH is also
updated respecting the set-inclusion relation, soH′ still is strongly stable and strongly
transverse, andG′ still is a hammock as neither initial state nor final state is added. 2

Finally, the following theorem states that the content models built by our atomic
primitives are consistency-preserving, that is, the XML documents valid with respect to
the original schema are still valid with respect to the new schema.

Theorem 3.2 LetS be an XML schema. Lete : Ee be a rule inS. Letτ be a position in
Ee. Let e′ be an element to be inserted intoEe (e′ ∈ Σ). Let α : Eα be a rule not inS.
The operationsins(e, e′, τ , context, mode, times), makeOpt(e, τ), ExtendCard(e, τ)
andcreateCM(α, Eα) applied overS build a new schemaS ′ such thatL(S) ⊆ L(S ′).2

Proof (Sketch): A content modelEe can be updated as follows: (i) a new optional ele-
ment can be inserted, (ii) a mandatory element can be transformed into an optional one,
(iii) an element can have its cardinality augmented. By definition of regular expres-
sions, all these updates performed onEe, outputtingE ′

e, verify L(Ee) ⊂ L(E ′
e), thus

L(S) ⊆ L(S ′). Moreover, a new content model can be inserted associated toan element
α. Here again, the documents valid with respect toS are still valid with respect to the new
schemaS ′, because either they do not containα, or they containα but its original content
model is still a valid one (cf. Definition 3.4). 2

High Level Primitives We can propose some high level primitives to express complex
updates in a more compact way. LetE be the content model of elemente.

1. Inserting a subexpression:insSubExp(e, β, τ , context, mode, times), whereβ
is a regular expression. This operation insertsβ into E relatively toτ or to its
context (depending on thecontext parameter), following the way expressed in
mode and with or without repetition (parametertimes).

2. Making optional:makeSubExpOpt(e, β), β being a subexpression ofE.
3. Extending the cardinality:ExtendSubExp(e, β), β being a subexpression ofE.

These high level primitives, again inspired from [Mesiti etal. 2006], are also to be
proposed via an intuitive interface to assist the user in expressing his/her needs. Instead
of dealing with one node each time, these primitives imply towork with a set of nodes
and edges (a subgraph), but they keep the same semantics as the atomic ones.

4. Conclusion

In this paper, we consider a framework in which a user can specify updates on XML
schemas using an intuitive interface, and asks for these updates to be consistency-
preserving (it is not necessary to revalidate the previous valid documents). We propose a
method to perform the accurate update, such that the updatedschema both respects all the
specifications given by the user, and is a conservative extension of the original schema.
This property is important, specially in a distributed environment where documents lo-
cated in different sites have to respect a common schemaS. The update ofS may make
those documents invalid, and a distributed applications that usesS may no more work
properly.

Our method is based on a graph-to-regular-expression reduction technique, which
allows to identify the starred sub-expressions of a regularexpression. Another way to find
the starred sub-expressions and their behavior inE, e.g., optionality, cardinality, etc., is to
use the functionsFirst, Last, andFollow [Bruggeman-Klein 1993] that work directly on
the regular expressionE. Computing these functions is equivalent to build the Glushkov
graph, the graph without orbits and the hierarchy of orbits corresponding toE.

The set of primitives proposed in this work is not complete. The missing primi-
tives,e.g., deletion or replacement of an element (or a sub-expression), are operations that
inevitably make the XML database inconsistent [Guerrini etal. 2005]. Our primitives are
to be used together withnon-conservativeprimitives in a general framework such as the
one presented in [Mesiti et al. 2006], that contains other tools for limiting revalidation and
changes performed on existing documents when non-conservative updates are performed.
Such a framework represents a solution to the increasing demand for tools specially de-
signed for administrators not belonging to the computer science community, this demand
been particularly strong in the domain of the Web and XML.

This work is part of a broader project that is exploring all faces of valid
XML documents: (incremental) validation [Bouchou and Halfeld Ferrari 2003,
Bouchou et al. 2003], constraint checking [Abrão et al. 2004], schema evolu-
tion triggered by updates in documents [Bouchou et al. 2004], correction of up-
dates [Bouchou et al. 2006] and primitives for schema updates (this work). A prototype
of each part of this project has been implemented in Java. We plan to integrate all these
prototypes, while developing a complete and usable human-machine interface.

References

Abrão, M. A., Bouchou, B., Halfeld Ferrari, M., Laurent, D., and Musicante, M. (2004).
Incremental constraint checking for XML documents. InXSym, volume 3186 ofLec-
ture Notes in Computer Science, pages 112–127. Springer.

Al-Jadir, L. and El-Moukaddem, F. (2003). Once upon a time a DTD evolved into another
DTD... In OOIS, volume 2817 ofLecture Notes in Computer Science. Springer.

Bouchou, B., Cheriat, A., Halfeld Ferrari, M., and Savary, A. (2006). XML Document
Correction: Incremental Approach Activated by Schema Validation. InIDEAS’06.

Bouchou, B., Duarte, D., Halfeld Ferrari, M., and Laurent, D. (2003). Extending tree
automata to model XML validation under element and attribute constraints. InICEIS.

Bouchou, B., Duarte, D., Halfeld Ferrari, M., Laurent, D., and Musicante, M. A. (2004).
Schema evolution for XML: A consistency-preserving approach. In Mathematical
Foundations of Computer Science, number 3153 in LNCS, pages 876 – 888.

Bouchou, B. and Halfeld Ferrari, M. (2003). Updates and incremental validation of XML
documents. InThe 9th DBPL, number 2921 in LNCS.

Bruggeman-Klein, A. (1993). Regular expressions into finite automata.Theoretical Com-
puter Science, 120:197–213.

Bruggeman-Klein, A. and Wood, D. (1992). Deterministic regular languages. InSTACS.

Caron, P. and Ziadi, D. (2000). Characterization of Glushkov automata.TCS: Theorical
Computer Science, 233:75–90.

Costello, R. and Schneider, J. C. (2000). Challenge of XML schemas - schema evolution.
In Proceedings of XML Europe.

Guerrini, G., Mesiti, M., and Rossi, D. (2005). Impact of XMLschema evolution on valid
documents. InWIDM, pages 39–44. ACM.

L., D. and Chu, W. W. (2000). Comparative analysis of six XML schema languages.
SIGMOD Record, 29(3):76–87.

Mesiti, M., Celle, R., Sorrenti, M. A., and Guerrini, G. (2006). X-Evolution: A system
for XML schema evolution and document adaptation. InEDBT, pages 1143–1146.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. (2005). Taxonomy of XML schema
language using formal language theory.ACM Transactions on Internet Technology
(TOIT), 5(4):660–704.

Papakonstantinou, Y. and Vianu, V. (2000). DTD inference for views of XML data. In
ACM Symposium on Principles of Database System, pages 35–46.

Prashant, B. N. and Kumar, P. S. (2006). Managing XML data with evolving schema. In
COMAD, pages 168–175. Computer Society of India.

Raghavachari, M. and Shmueli, O. (2004). Efficient schema-based revalidation of XML.
In EDBT, LNCS, pages 639–657. Springer.

Roddick, J., Al-Jadir, L., Bertossi, L., Dumas, M., Estrella, F., Gregersen, H., Hornsby,
K., Lufter, J., Mandreoli, F., Männistö, T., Mayol, E., and Wedemeijer, L. (2000).
Evolution and change in data management - issues and directions. SIGMOD Record,
29(1):21–25.

Su, H., Kuno, H., and Rundensteiner, E. A. (2001). Automating the transformation of
XML documents. In3rd WIDM. ACM.

