
XML Document Correction: Incremental Approach Activated by Schema
Validation

Béatrice Bouchou Ahmed Cheriat Mı́rian Halfeld Ferrari Agata Savary
{beatrice.bouchou, ahmed.cheriat, mirian.halfeld, agata.savary}@univ-tours.fr

Université François Rabelais Tours – LI/Campus de Blois– 3 place Jean Jaurès – 41000 Blois, France

Abstract

Updating XML documents submitted to schema con-
straints requires incremental validation, i.e. checking the
parts of the document concerned by the updates. We pro-
pose to correct subtrees for which re-validation fails: if the
validator fails at node p, a correction routine is called in or-
der to compute corrections of the subtree rooted at p, within
a given threshold. Then validation continues. In the cor-
rection process, we limit ourselves to single typed tree lan-
guage. The correction routine uses tree edit distance matri-
ces. Different correction versions are proposed to the user.

1. Introduction

The validation of an XML document w.r.t schema con-
straints consists in testing whether the document verifies a
set of structural specifications. Supposing that updates are
applied to the document, an incremental validator is the one
that verifies whether the updated document complies with
the schema, by validating only the parts of the document
involved in the updates.

We associate the validation process with correction pro-
posals. During the execution of our validation method, if a
constraint violation is found, a correction routine is called
in order to propose local solutions capable of allowing the
validation process to continue. Below we give an overview
of our method.

The incremental validation approach
The validator takes a tree automaton representing a sin-

gle typed tree grammar ([12]), an XML document and a
sequence of updates to be performed on the document. This
sequence is treated as one unique transaction. The algo-
rithm checks whether the updates should be accepted or not.
It proceeds by treating the XML tree in the document order.

Example 1 The XML tree of Fig. 1 is valid w.r.t. a given schema
constraints. Update positions are marked. Suppose that the tree τ1

being inserted is locally valid. When an open tag concerning an
update position is reached, the incremental validation procedure
takes the update operation into account (by deleting or inserting a
subtree). Validation tests are performed only on parent nodes p of
update positions p.i (i.e. when the close tag of p is reached). On
Fig. 1, a validation test is performed at position 0, due to the delete
at 0.1, and at position ε due to the insert at 1. �

In this paper, a tree automaton is used to represent
schema constraints (expressed in XML Schema). The in-
cremental validation algorithm is a simplified version of the
one proposed in [4]. Each validation step corresponds to
checking whether a word w is in a given language L(E),
where w results from the concatenation of the states associ-
ated to p’s children and E is a regular expression defining
the structure that p’s children should respect.

The correction approach
If the validation test fails at node p, a correction routine

is called. The goal of this routine is to correct the invalid
subtree rooted at p. The correction routine assumes that p’s
label l is a correct one and considers corrections over its de-
scendants. To build a new and valid subtree with root l, the
correction algorithm can propose changes on p’s children.
These modifications may assume changes on p’s grandchil-
dren and so forth, until reaching the leaves of the subtree.

To correct an invalid subtree at position p whose root la-
bel is assumed to be l, (i.e. to obtain a valid subtree whose
root is labeled by l) our algorithm proposes changes that
consist in: (i) changing labels of some p’s descendants; (ii)
deleting subtrees of the subtree rooted at p or (iii) inserting
subtrees in the subtree rooted at p. In other words, given
an invalid subtree Tp, we consider update operations capa-
ble of transforming Tp into a valid subtree T ′

p. However,
we want T ′

p to be close to Tp. This means that a cost is
assigned to each update operation and that the total cost of
transforming Tp into T ′

p is limited by a given threshold.

Example 2 The regular expressions assigned to labels in the tree
grammar (a DTD) corresponding to Fig. 1 are those in Fig. 2.

Notice that f and g are elements associated to data. As seen in
Ex. 1, during the incremental validation procedure the deletion at

1

c

delete

ε

g d

c d

a b

root

b

ce

dd

</c><c> </d>

<g> </g>
<d> </d>

<a>

c </c> <c> </c>

3

3.02.12.0

2.1.12.1.0

210

0.0 0.1

0.1.00.0.0

</e>

</d><d>
</d>

<root> </root>

<d>

insert

<c>
<c>

<d>

<e></c>

1.0

b

Figure 1. XML tree and update operations: Deletion of subtree rooted at position 0.1 and insertion of tree τ1 at
position 1. A node label a corresponds to an open tag <a> and a close tag in the XML document.

Label Regular expression Label Regular expression Label Regular expression
root ab∗ c g∗f? e d∗

a (cd)∗ | m∗ d d∗ f data
b ce∗ g data m g

Figure 2. Regular Expressions of a DTD

position 0.1 is considered and then the validation test performed
at node 0 fails. Let w = c be the word composed by the con-
catenation of the children of position 0, after the deletion. Clearly
w �∈ L(Ea). The first possible correction is obtained by reinsert-
ing1 d at position 0.1 with cost 12. The second correction can be
built by relabeling position 0.0 by m with cost 1 (as m also re-
quires a child labeled g). The third correction consists in deleting
the subtree rooted at position 0.0. The total cost of this operation
is 2 since it corresponds to the removal of two nodes (those at po-
sitions 0.0 and 0.0.0). Within an error threshold th = 2, all three
corrections can be proposed as possible solutions. �

Our algorithm produces different local solutions for each
invalid subtree. At the end of the re-validation process,
global solutions are proposed to the user who can choose
the best one for his update purposes.

Related work
The tree-to-tree correction problem has been formal-

ized as an extension of the string-to-string correction prob-
lem [16]. In [5], it is pointed out that the diversity of the
possible choices of elementary editing operations, which is
important for the algorithm’s complexity, is very large in
case of a tree, as one can consider changes not only on the
siblings’ level but also on some ancestors level. The most

1Notice that although this solution is considered in the current version
of our method, one may decide to assign a low priority to it since it corre-
sponds to the rejection of the update.

2Another potential correction consisting of reinserting d both at 0.1
and at 0.1.0 is not admitted as, in our method, insertions are limited to
minimal-cost subtrees having the required label (here d) as root.

appropriate choice depends clearly on the intuitive notion
of tree proximity for each particular application.

Selkow [14] extends the string edit distance computation
to tree edit distance computation, considering the following
elementary edit operations: relabel a node, delete or insert
a leaf node. By combining them, he can deal with insertion
and deletion of entire subtrees. A cost equal to 1 is assigned
to each elementary operation. To compute the distance be-
tween trees T and T ′, an edit distance matrix is built, in
which each element [i, j] contains the distance between the
partial tree T 〈i〉 of T and the partial tree T ′〈j〉 of T ′, where
T 〈i〉 is equal to T without its last subtrees, rooted from i+1
to its rightmost child. As our proposition is built upon the
same idea, the reader can consider definitions and examples
in Section 3 for details.

In [15] the authors consider different primitive opera-
tions and define mappings, that are similar to traces in the
string edit distance problem. The minimum edit distance
between T and T ′ is computed by looking for minimum
cost mappings from T to T ′. This approach is simplified
and extended in [17]: the same basic definitions and as-
sumptions held, but only some nodes are compared (called
keyroots). Notice that all these proposals only consider edit
distance computation.

In [6], the problem of tree correction is addressed. More
precisely, given a tree T and a tree grammar G such that
T /∈ L(G), L(G) being the tree language defined by G,
they propose an algorithm to find another tree T ′ ∈ L(G)
having a minimal edit distance from T . As in our proper

framework, trees represent XML documents and the gram-
mar represents a DTD. The algorithm works on a binary
representation of trees. It considers the following elemen-
tary edit operations: relabel of a node, insertion and dele-
tion of a node in the binary tree, with assumptions on the
deletion (it can occur only if at least one child is a leaf). The
method is linear in the number of nodes and exponential in
the number of errors: a given value prevents to compute T ′

if the number of errors is too large.
Our correction algorithm runs directly on unranked trees,

in a context which differs from the one considered in [6], i.e.
it is called during an incremental validation step, when up-
dates are considered on a valid document, and it computes
several correction candidates, together with tree edit oper-
ation sequences leading to these candidates. As we shall
show, it generalizes both proposals of [14] and [13].

2 Preliminaries

A tree t over an alphabet Σ is a function t : dom(t) →
Σ ∪ {λ}. Each element from dom(t) is a sequence of in-
tegers representing a node position of tree t and each node
of position p is labeled with the symbol t(p). The root is
represented by the empty sequence ε and the empty tree is
defined as t = {(ε, λ)}. Let N

∗ be the set of finite words
over the set of natural numbers N and λ be a special la-
bel. The domain dom(t) = {p ∈ N

∗ | (p, l) ∈ t} is
closed under prefixes3 and satisfies the following property:
for j ∈ N and u ∈ N

∗; if u.j ∈ dom(t), then for all
0 ≤ i ≤ j, u.i ∈ dom(t). The set of leaves of t is de-
fined by leaves(t) = {u ∈ dom(t) | ¬∃i ∈ N such that
u.i ∈ dom(t)}. Fig. 1 represents a tree whose alphabet is
the set of element names appearing in an XML document.

Given a tree t we denote by tp the subtree whose root
is at position p ∈ dom(t), i.e. tp = {(r, t(r)) | r = p.u
and r ∈ dom(t), u ∈ N

∗}. Note that a subtree is not a
tree (its root is not at ε), thus we define a tree ttree

p re-
sulting from subtree tp as follows: dom(ttree

p) = {s |
p.s ∈ dom(t) and s ∈ N

∗} and for each s ∈ dom(ttree
p)

we have ttree
p (s) = t(p.s). For instance, in Fig. 1 t0 =

{(0, a), (0.0, c), (0.0.0, g), (0.1, d), (0.1.0, d)}. Thus, we
have ttree

0 = {(ε, a), (0, c), (0.0, g), (1, d), (1.0, d)}.
XML documents are seen as ordered unranked labeled

trees that should respect some schema constraints that are
expressed by the transition rules of a tree automaton. We
define a tree automaton over an alphabet Σ as a tuple A =
(Q, Σ, Qf , ∆) where Q is a set of states, Qf ⊆ Q is a set
of final states and ∆ is a set of transition rules of the form
a, E → q where (i) a ∈ Σ; (ii) E is a regular expression
over Q and (iii) q ∈ Q. In this paper, to simplify notation,

3The prefix relation in N∗, denoted by � is defined by: u � v iff
u.w = v for some w ∈ N∗. A set dom(t) ⊆ N∗ is closed under prefix if
u � v, v ∈ dom(t) implies u ∈ dom(t).

we restrict the presentation to DTDs, which are local tree
grammars [12]. It means that the corresponding automaton
associates only one state to each label, so we consider4 that
Q = Σ. Fig. 2 shows the transition rules of a tree automaton
A imposing constraints over the document of Fig. 1. In this
case, Qf = {root}.

A tree may be changed through one or more update op-
erations. In this paper, an update operation is seen as a high
level operation defined over simple edit operations. Given a
tree t, an edit operation may be applied to an edit position p
provided that p respects some constraints depending on the
type of the edit operation.

Definition 1 - Edit Operations: Let ed be a tuple (op, p, l)
where: op ∈ {add, remove, relabel}; p an edit position
and l a label in Σ or null (/). Given a tree t, an edit operation
is a partial function that transforms the tree t into a tree t′

(t
ed−→ t′):

• relabel changes the label associated with p;
• remove allows the removal of a leaf and
• add allows the addition of a single leaf at any of the

existing positions or ”around” them, except at the root
of a non-empty tree.

For edit operations on position ε, for all l1, l2 ∈
Σ ∪ {λ}, we define {(ε, l1)} (relabel,ε,l2)−→ {(ε, l2)} and

{(ε, l1)} (remove,ε,/)−→ {(ε, λ)}, and {(ε, λ)} (add,ε,l)−→ {(ε, l)}.
All other edit operations are undefined. �

Example 3 Consider the XML tree of Fig. 1: the
domain dom(T ′) of the resulting tree T ′ obtained
after applying edit operation ed = (add, 1, a) is
dom(T ′) = {ε, 0, 0.0, 0.1, 0.0.0, 0.1.0, 1, 2, 2.0, 3, 3.0, 3.1,
3.1.0, 3.1.1, 4, 4.0}. The new tree T ′ is shown on Fig. 3(a). �

Definition 2 - Update Operations: An update operation
upd is a tuple (op, p, τ) where: op ∈ {insert, delete,
replace}, p is a position, and τ is a tree that must be empty
for a delete. Each update operation corresponds to a se-
quence (composition) of edit operations.

• The insertion of a tree τ at position p in a tree t is
performed by adding each node of τ (one by one). To
minimize the number of shifts, we add nodes of τ from
its root to its leaves, and from left to right.

• The deletion of the subtree rooted at position p in a
tree t is performed by removing all its nodes one by
one, from leaves to root and from right to left.

• The replacement of the subtree at position p in a tree t
by a tree τ is defined as the minimum sequence of add,
remove, and relabel operations necessary to trans-
form ttree

p into τ . �

4In case of single typed tree languages we implement the automaton run
in such a way that one single state is associated to each node, so the presen-
tation is obviously generalized to grammars defined with XML Schema.

2.0

1

aa

e
3.1

d

b

(a)

g d

root

b b

4.0
c

3.0

c

d
0.0.0 0.1.0

0.10.0

dc

0 2 3 4

3.1.0 3.1.1

ε

c
2.0

1

aa

e
3.1

d

b

(b)

g d

root

b b

4.0
c

3.0

c

d
0.0.0 0.1.0

0.10.0

dc

0

c d

2 3 4

3.1.0 3.1.1

ε

c
1.0 1.1

Figure 3. Application of (a) the edit operation (add, 1, a), (b) the update operation (insert, 1, τ1) over Fig. 1.

Example 4 Let T be the tree of Fig. 1 and (insert, 1, τ1) the up-
date operation with τ1 = {(ε, a), (0, c), (1, d)}. This update op-
eration is translated into the sequence (add, 1.ε, a), (add, 1.0, c),
(add, 1.1, d). The resulting tree is shown on Fig. 3(b). �

For any edit operation ed, we define cost(ed) = 1 to
be the cost of performing ed. Given an update operation

t
upd−→ t′, equivalent to the sequence t = t0

ed1−→ t1
ed2−→

t2 · · · edn−→ tn = t′ the cost of upd is Cost(upd) =
Σn

i=1(cost(edi)). We will show in Section 3 that the cost
for a replacement of tp by t′p corresponds to the minimal
distance between tp and t′p. We generalize the concept of
update operation cost to introduce the cost of a sequence of

update operations. Thus we note t
(updSeq)−→ t′, to indicate

t = t0
upd1−→ t1

upd2−→ t2 · · · updm−→ tm = t′ and we define
Cost(updSeq) = Σm

i=1(cost(updi)).
We can now define the notion of distances between two

trees and between a tree and a tree language.

Definition 3 - Tree distances: Let t and t′ be trees. Let
S be the set of all update sequences capable of transform-
ing t into t′. The distance between t and t′ is defined by:
dist(t, t′) = minSi∈S {Cost(Si)}. The distance between
a tree t and a tree language L is defined by: DIST (t,L) =
mint′∈L {dist(t, t′)}. �

3 Correcting an invalid tree

Let L be the tree language defined by the tree automaton
A. Let Ll ⊆ L be the tree language defined by transition
rules in A that contains all trees whose root is labeled with l.

Given an XML tree T , we assume that the validation
fails at position p whose label is l (i.e. T (p) = l and
T tree

p 	∈ Ll) and we propose a routine capable of correcting
Tp. Our correction routine assumes that p has the correct
label l and considers changes on p’s descendants. It takes
the language Ll, the tree T tree

p 	∈ Ll and an error thresh-

old as input. It looks for new trees T tree′
p ∈ Ll such that

dist(T tree
p , T tree′

p) is within the threshold. Each new tree

T tree′
p can then be translated into a new subtree T ′

p for T .

Example 5 In Example 2 our validation procedure fails at posi-
tion 0 of the XML tree of Fig. 1. At this point our correction rou-
tine can be activated. To perform corrections this routine considers
the tree language La defined by the tree automaton whose transi-
tion rules are those shown in Fig. 2 but with Qf = {a}. Clearly,
as T tree

0 = {(ε, a), (0, c), (0.0, g)}, we have T tree
0 �∈ La. �

In the rest of this paper, in order to simplify notation, we use
t to denote the tree T tree

p and t′ to denote the tree T tree′
p .

Our algorithm extends the ones proposed both in [14]
and in [13]: it uses an edit distance matrix H DIST . Each
element H DIST [i, j] contains the edit distance between
partial trees t〈i〉 and t′〈j〉, as well as the set of update se-
quences capable of transforming t〈i〉 into t′〈j〉 with a min-
imal cost. A (partial) tree t〈i〉 is composed by the root of
t and its subtrees t0, . . . ti (Fig. 4). Obviously, if the fan-
outs of the roots of t and t′ are n and m, respectively, then
t〈n〉 = t and t′〈m〉 = t′. The matrix is calculated col-
umn per column. Each new element is deduced from its
three top-left-hand neighbor elements which have been cal-
culated previously (H DIST [i − 1, j], H DIST [i, j − 1]
and H DIST [i − 1, j − 1]). Each H DIST [i, j] stores a
cost and a set of update sequences obtained from its neigh-
bors and from the updates that are necessary to: delete the
subtree ti (Fig. 4(b) edge (3) in the matrix), insert a new
subtree t′j (Fig. 4(b) edge (1)), or replace the subtree ti by a
new subtree t′j (Fig. 4(b) edge (2)).

The computation of each H DIST [i, j] follows a
”horizontal-vertical” reasoning. Recall that t is the tree to
be corrected and t′ is a correction candidate we have to
construct so that its root’s children respect the regular ex-
pression Et(ε). We consider the word w 	∈ L(Et(ε)) com-
posed by the concatenation of the states associated to the
children of t’s root. On the ”horizontal” plan, our correc-
tion algorithm follows the one of [13], i.e. it tries to build
new words w′ ∈ L(Et(ε)), as close as possible to w via
a threshold-controlled depth-first exploration of the Finite

jj − 1

−2

−1

−2 −1

i − 1

i

(3)

(Ci,j, UpdSeqSeti,j)

(2)

n

(1)

0 n

(Ci,j, UpdSeqSeti,j)

0 mji

t′〈j〉t〈i〉

(a) (b)

εε

t t′

m

t′〈j〉

t〈i〉 (Ci−1,j−1, UpdSeqSeti−1,j−1)

(Ci,j−1, UpdSeqSeti,j−1)

(Ci−1,j, UpdSeqSeti−1,j)

(Cn,m, UpdSeqSetn,m)

Figure 4. (a) Two (partial) trees t〈i〉 and t′〈j〉. (b) Matrix H DIST for trees t and t′, and computation of H DIST [i, j].

State Automaton (FSA) corresponding to L(Et(ε)). Each
time a transition is followed a new column is added to the
distance matrix. If a final state is reached and the current
bottom-right-hand element of the matrix does not exceed a
given threshold then the current word w′ is a valid correc-
tion candidate. Otherwise we may either continue to the
next transition (if any element of the current column does
not exceed the threshold) or backtrack, delete the current
column, and explore a different path.

Since in our approach each ”character” in w is the root of
a subtree, in order to obtain w′, we also have to work in the
”vertical” direction. Indeed, each character w′

j has to yield
a tree t′j ∈ Lt′(j), with root label t′j(ε) = w′[j] = t′(j).

Therefore, while on the ”horizontal” plan we deal with a
matrix that associates a word w to a regular language, on the
”vertical” plan, we deal with a subtree ti, in a way similar
to the computation of tree edit distance in [14]. In order to
correct ti, not only do we have to build a matrix for its root’s
sons, but possibly also for the grandchildren, and so on. To
conclude, as formalized in the following definition, matrix
H DIST stores the edit distance between the invalid tree t
that we are trying to correct and its partial correction candi-
dates, together with the set of update sequences necessary
to transform t into each of the candidates.

Definition 4 - Edit Distance Matrix: Let t be a tree and let
L (L = Lt(ε)) be a tree language such that t 	∈ L. An edit
distance matrix, denoted H DISTt,t′ (or just H DIST
when no confusion is possible), stores the edit distance be-
tween tree t and a partial tree t′ ∈ L. Let n and m be the
fan-outs of the roots of t and t′, respectively.
The matrix H DIST is a two dimensional matrix with in-
dices starting from −2. Each element H DIST [i, j] =
(C, updSeqSet) where C is a cost and updSeqSet is a set

of update sequences transforming t〈i〉 into t′〈j〉 and having
cost C, as defined below.

1. Initializations

• For each row i: H DIST [i,−2] = (∞,�) and for each
column j: H DIST [−2, j] = (∞,�), where � is a theo-
retical infinite update sequence of cost ∞.

• Element H DIST [−1,−1] is calculated as follows :

(0, {[]}) if t(ε) = t′(ε)
(1, {[(relabel, ε, t′(ε))]}) if t(ε) �= λ, t′(ε) �= λ

and t(ε) �= t′(ε)
(1, {[(add, ε, t′(ε))]}) if t(ε) = λ and

t(ε) �= t′(ε)
(1, {[(remove, ε, /)]}) if t′(ε) = λ and

t(ε) �= t′(ε)

2. For all j ≥ −1, and for all i ≥ −1, with (i, j) �= (−1,−1):

• C = min(Creplace, Cinsert, Cdelete) with

− Creplace := H DIST [i − 1, j − 1].C + dist(ti, t
′
j)

− Cinsert := H DIST [i, j − 1].C + dist({(ε, λ)}, t′j)
− Cdelete := H DIST [i − 1, j].C + dist(ti, {(ε, λ)})

• updSeqSet = {Seq | Seq ∈ Sreplace ∪ Sinsert ∪ Sdelete,
Cost(Seq) = C} where:

− Sreplace is the Cartesian product of (i) the set of update
sequences transforming t〈i − 1〉 into t′〈j − 1〉 and (ii) the
set of update sequences transforming ti into t′j . Formally,
Sreplace = S ′

r × S ′′
r where:

� S ′
r = H DIST [i − 1, j − 1].updSeqSet

� S ′′
r = {Seq′′ | ti

(Seq′′)−→ t′j and Cost(Seq′′) =
dist(ti, t

′
j)}

− Sinsert is the Cartesian product of (i) the set of update
sequences transforming t〈i〉 into t′〈j − 1〉 and (ii) the set of
update sequences inserting t′j . Formally, Sinsert = S ′

i ×S ′′
i

where:

� S ′
i = H DIST [i, j − 1].updSeqSet

� S ′′
i = {Seq′′ | {(ε, λ)} (Seq′′)−→ t′j and Cost(Seq′′) =

dist({(ε, λ)}, t′j)}
− Sdelete is the Cartesian product of (i) the set of update
sequences transforming t〈i − 1〉 into t′〈j〉 and (ii) the set of
update sequences deleting ti. Formally, Sdelete = S ′′

d × S ′
d

where:

� S ′
d = H DIST [i − 1, j].updSeqSet

� S ′′
d = {Seq′′ | ti

(Seq′′)−→ {(ε, λ)} and Cost(Seq′′) =
dist(ti, {(ε, λ)})} �

Notice that the first column of H DIST (H DIST [i,−2])
stores very great costs (∞) and the second one
(H DIST [i,−1]) stores the cost and update sequences
needed to delete the subtrees t0, . . . ti. In a similar way,
the first row contains very great costs and the second one
(H DIST [−1, j]) contains the cost and update sequences
needed to insert the subtrees t′0, . . . t

′
j . According to [14],

the bottom right-hand position of a matrix H DIST con-
tains the edit distance between t and t′ ∈ L. In our approach
it is accompanied with all minimal cost update sequences
transforming t into t′.

Example 6 In Example 5 the validation procedure fails at posi-
tion 0 Correction routine is called for T tree

0 with La and th = 2.
Let FSAE = ({1, 2}, {m, d, c}, 1, {δ(1, m) = 1, δ(1, c) =
2, δ(2, d) = 1}, {1}) be the finite-state automaton corresponding
to the regular expression of label a.
Step 1: The tree t being considered for correction is
{(ε, a), (0, c), (0.0, g)}. The matrix H DIST1 is initialized as
specified in Definition 4. The initial (and finite) state 1 in FSAE

becomes the current state. Column −2 imposes a matrix border,
necessary in the computation. Line −1 represents the root node a
whose children are represented by lines i ≥ 0 of H DIST1 .
As we assume that the root label of T tree

0 does not change (it
stays as a), element H DIST1[−1,−1] = (0, {[]}). In this case,
the lowest cost operation is to compute H DIST1[0,−1] from
H DIST1[−1,−1]: assume the deletion of the subtree rooted at
position 0 of T tree

0 . This deletion is treated by calling recursively
the correction routine (i.e. by starting Step 2). Inputs are: the tree
obtained from the subtree rooted at position 0 of T tree

0 and the tree
language Lλ containing only the empty tree.
Step 2: We start the construction of a new matrix. The
tree t being considered for correction is {(ε, c), (0, g)}. The
matrix H DIST2 is initialized. Now H DIST2[−1,−1] =
(1, {(remove, ε, /)}) because it is calculated by considering
the removal of t(ε) = c. Similarly to Step 1, element
H DIST2[0,−1] is computed from H DIST2[−1,−1] by as-
suming the deletion of the subtree {(0, g)} of t. This deletion is
treated by calling recursively the correction routine (Step 3).

Step 3: The tree t being considered for correction is {(ε, g)}. The
matrix H DIST3 is initialized and as t has only one root node
(H DIST3[−1,−1] = (1, {(remove, ε, /)})).
Return to Step 2: Coming back (from the recursive call) to
H DIST2 the result obtained in Step 3 corresponds to the
deletion of the node at position 0 of the tree t in Step 2
(H DIST2[0,−1] = (2, {(remove, 0, /)(remove, ε, /)})).
The deletion of t’s root is also considered(H DIST2[−1,−1] =
(1, {(remove, ε, /)})).
Return to Step 1: Coming back to H DIST1, the
result obtained in Step 2 corresponds to the dele-
tion of the subtree rooted at position 0.0. We have
H DIST1[−1,−1] = (0, {[]}) and H DIST1[0,−1] =
(2, {(remove, 0.0.0, /)(remove, 0.0, /)}). The current state in
FSAE is a final one and the bottom right-hand corner element
of H DIST1 does not exceed the threshold. Thus, this element
contains a valid correction candidate. We refer to [7] for more
details on this example. �

4 Algorithms

The algorithm whose goal is to compute valid candidate
trees within a given threshold is called CorrectionRoutine.
It receives as input a tree T tree

p issued from an XML tree
T whose validation failed at p. It receives also the set
solStock of solutions calculated for previously corrected
trees (if any), and returns the same set enlarged with so-
lutions calculated for T tree

p . CorrectionRoutine contains a
recursive procedure, called CorrectSubtree, which receives
in its first call the initial state s0 of FSAE , an empty word
w′, an empty list LCand, the set solStock and the matrix
H DIST with its two first columns initialized. It returns its
solutions in LCand, which is added to solStock at the end
of CorrectionRoutine. Both p and solStock allow to avoid
re-correcting the same subtrees (in function AddNewCol).

Procedure CorrectSubtree(t, p, w, w′, th, H DIST , FSAE , s,
LCand, solStock)
Input
(i) t: t = T tree

p �∈ Lt(ε)

(ii) p: position in dom(T) such that T tree
p = t

(iii) w: invalid word (concatenation of states associated to t’s
root’s children)
(iv) th: integer corresponding to the error threshold
(v) FSAE: deterministic FSA for E appearing in t(ε), E → qt(ε)

(vi) s: current state in FSAE

(vii) solStock: set of tuples (pos, LCand) for subtrees of T cor-
rected before t.
Input/Output
(i) w′: partial valid word (concatenation of states associated to
root’s children in t′)
(ii) H DIST : edit distance matrix between t and t′

(iii) LCand: set of tuples (C, updSeqSet) with C the cost and
updSeqSet the set of update sequences having cost C

1. if s is a final state in FSAE and H DIST [|w|−1, |w′|−1].C ≤
th { // New candidate found within the threshold.

2. LCand := SortIns(LCand, H DIST [|w| − 1, |w′| − 1]) }
3. for each transition δ(s, q′) = s′ in FSAE do {
4. w′ = w′.q′

5. H DIST := AddNewCol(t, p, w, w′, th, H DIST ,q′,
solStock)

6. if (Cuted(w, w′, th, H DIST) ≤ th) {
7. CorrectSubtree(t, p, w, w′, th, H DIST , FSAE , s′, LCand,

solStock) }
8. H DIST := DelLastCol(H DIST)

9. w′ := DelLastSymbol(w′) } �

FSAE is explored in the depth-first order. Each time a
transition is followed, on the ”horizontal plan”, the current
word w′ is extended (line 4) and a new column is added to
H DIST (line 5). This means that, on the ”vertical plan”,
t′ is also extended. That allows to check if t′ may still lead
to a candidate remaining within the threshold. If it does, the
path is followed via a recursive call (line 7), otherwise the
path gets cut off. In each case the transition is finally backed
off (lines 8 and 9) and a new transition outgoing from the
same state is tried out. If we arrive at a final state and the
distance from t′ to t does not exceed the threshold, then t′

is a valid candidate that is inserted to the list LCand of all
candidates found so far (lines 1 and 2).

Function Cuted computes the cut-off edit distance [13]
between t and t′. It checks if all elements of the current
column (line 6)exceed the threshold. If they do, there is no
chance for t′ to be a partial correction within the threshold.

Before calling CorrectSubtree, CorrectionRoutine first
uses procedure intializeMatrix to initialize the first two
columns of H DIST (Definition 4). It recursively calls
CorrectionRoutine to compute the cost and the update se-
quence necessary to delete each subtree ti, since deleting a
subtree is equivalent to correcting it w.r.t the empty tree.

All the following columns are calculated by function
AddNewCol (line 5) which deduces each matrix’ element
from its three upper left-hand neighbors as stated in Defini-
tion 4. In particular, in case of insertion, the subtree t′j is
not known in advance (although its root’s label is). Thus its
insertion cost and update sequence is the one needed to cre-
ate a minimal tree valid w.r.t Lt′(j), which is equivalent to
correcting an empty tree w.r.t Lt′(j) (by calling Correction-
Routine). Similarly, in case of replacement, the cost and up-
date sequences are the ones needed to correct ti w.r.t Lt′(j)
(by also calling CorrectionRoutine).

Example 7 Consider the XML tree T of Fig. 1 after the
first update operation. For t = T tree

0 CorrectionRoutine re-
turns LCand = {(1, {(add, 0.1, d)}) (1, {(relabel, 0.0, m)}),
(2, {(remove, 0.0.0, /)(remove, 0.0, /)})}. The first element
of LCand (with cost 1) is found by computing matrix
H DIST{(ε,λ)},{(ε,d)}, the second one (with cost 1) by comput-
ing H DISTT tree

0.0 ,{(ε,m)(0,g)}, and the third one (with cost 2) is
found by computing H DISTT tree

0.0 ,{(ε,λ)}. �

Theorem 1 Let L be a single typed tree language and
t 	∈ L. The algorithm CorrectionRoutine is correct (all
the candidates it computes respect a given threshold) and

complete (it computes all the candidates t′ ∈ L such that
dist(t, t′) is minimal within a given threshold).5 �

It is worth noting that CorrectionRoutine calculates not
only all the set of candidates t′ ∈ L such that dist(t, t′)
is minimal within a given threshold but also some non-
minimal candidates that respect the threshold. The proce-
dure is however not complete w.r.t the set containing all the
candidates respecting the threshold. This is due to optimiza-
tion aspects: when correcting a subtree Tp, our algorithm
avoids ”correcting” its subtrees that are already valid be-
cause they come from the initially valid tree and no updates
have been performed on them. For instance, consider the
first solution proposed in Example 1 where we keep label c
for position 0.0. Our algorithm considers that there is noth-
ing to correct under this node since subtree T0.0 is valid.
However, a complete approach would have to propose mod-
ifications in this subtree like, for example, the insertion of g
at position 0.0.1 (considering that Ec = g∗f?).

At the end of the incremental validation, the relation
solStock stores correct solutions: each failure position
p corresponds to a tuple (p, LCand) in solStock. As
some redundancies may exist between new candidates in
LCand and candidates in solStock, before proceeding to
the integration of solutions, we eliminate from solStock
the set of tuples {(p, LCand) ∈ solStock | ∃p′, p′ ≺
p ∧ (p′, LCand′) ∈ solStock}. This is because correc-
tions at positions p′ ≺ p take corrections at p into account.
During the correction at p′, if a candidate tree for Tp′ relies
on corrections on Tp (which belongs to Tp′) then the list
LCand computed for p is integrated into LCand′ (for p′).

Local solutions in solStock are combined into global
ones, each one having a global cost. If this cost does not
exceed the threshold, then the corresponding solution is a
candidate. The user can choose to compute one unique so-
lution or n ones, depending on whether he is interested in
any correction with a minimal distance from T or in exam-
ining several possible corrections.

Example 8 Consider Example 7. After the first correction at po-
sition 0 , SolStock contains S = (0, LCand1), where LCand1

represents the list of candidates found in Example 7. The second
error is found when the validation test is performed at position ε:
the resulting tree T is not in Lroot where Lroot is the tree language
defined by the rules listed in Example 2 with Qf = {root}. New
corrections are then computed. When th = 2, CorrectionRoutine
for t = T Tree

ε (updated tree), returns null, since all candidate so-
lution costs exceed the threshold. But if we consider th = 3, then
five candidates are proposed. �

Global solutions can be presented to the user in differ-
ent forms, i.e. either candidate trees or candidate operation
sequences.

5The proof is given in [7].

5 Conclusions and perspectives

This paper introduces a tree-to-grammar correction ap-
proach: given a single typed tree language L (e.g. defined
with XML Schema) and an invalid tree t, find valid trees
t′ whose distance from t is within a given threshold th. It
extends our previous work in [9] which considers an incre-
mental string-to-grammar correction method. Our theoreti-
cal complexity is exponential in the size of node fan-out in
the document to be corrected (as in [9]).

Despite its high theoretical complexity, experimental re-
sults show the good performance of our string-to-grammar
correction algorithm [8, 9]: by varying the regular expres-
sion, the threshold, the size of the initial word and the num-
ber of updates the time execution of the 90% fastest runs is
less or equal than 44 ms. We also have good experimental
results for the incremental validation routine [4]: it takes al-
most a third of the time needed for an efficient commercial
product (running from scratch) to incrementally validate 50
updates on a document having 61, 000, 000 nodes. The im-
plementation of our complete tree-to-grammar correction
algorithm is in progress (based on [9, 14]).
Novelties of our approach:
Integration of correction and validation process: We not
only perform a validation but we also propose corrections
at positions where the validation fails. Most existing XML
tools include either only validators ([2], [3]), or correctors
limited to the well-formedness of the XML-tree ([1]).
Incremental validation and correction: Parts of the tree not
concerned by the updates are omitted during validation and
correction, allowing better time and space performances.
Experiments on various versions of correction (incremental
and local / from scratch and global) remain to be performed
in order to confirm this intuitively obvious hypothesis.
An extension of a whole branch of finite-state word-to-
language correction algorithms: Our method extends cor-
rection algorithms such as those in [13], [11] into the tree-
to-language correction problem.
Some extension directions for our algorithm:
Performance of large-scale tests: They are to be performed
in order to experimentally determine its performances.
Extension of update operations: One may need insertion or
deletion of an internal node, or a subtree move, as an el-
ementary operation. Inserting or deleting an internal node
should rely, in our approach, on a local word-to-language
correction model in which one letter can be replaced, in
one operation, by several letters, and conversely. That is
because deleting an internal node is equivalent to shifting
some nodes up, and thus to replacing the label of the deleted
node by the sequence of labels of its sons. Conversely, in-
serting an internal node relies on shifting some nodes one
level down, and thus on replacing the sequence of their la-
bels by the label of the new node. Some effort has been

done for such an extended word correction (e.g. [10]) in
which sequence-to-sequence edit operations are admitted as
elementary, however we think that an elegant model of this
problem is yet to be achieved.
Introduction of a complete XML correction framework:
This framework might concern attributes as well as integrity
constraints. We already deal with all these aspects for incre-
mental validation ([4]).

References

[1] NXML. At http://www.thaiopensource.com/nxml-mode/.
[2] XMLmind. At http://www.xmlmind.com/xmleditor/.
[3] XMLSpy. At http://www.altova.com/download/.
[4] M. A. Abrao, B. Bouchou, A. Cheriat, M. Halfeld Ferrari,

D. Laurent, and M. A. Musicante. Incremental Constraint
Validation of XML Documents Under Multiple Updates. In
Submitted as journal paper, 2005.

[5] D. T. Barnard, G. Clarke, and N. Duncan. Tree-to-tree Cor-
rection for Document Trees. Technical Report 95-372, De-
partment of Computing and Information Science, Queen’s
University, Kingston, Ontario, 1995.

[6] U. Boobna and M. de Rougemont. Correctors for XML
Data. In Database and XML Technologies, Second Interna-
tional XML Database Symposium, volume 3186 of LNCS,
pages 97–111. Springer-Verlag, 2004.

[7] B. Bouchou, A. Cheriat, M. Halfeld Ferrari, and A. Savary.
Integrating Correction into Incremental Validation. Techni-
cal Report 292, Université de Tours, LI/ Campus de Blois.
Also in BDA’06, 2006.

[8] B. Bouchou, A. Cheriat, A. Savary, and M. Halfeld Ferrari.
Incremental String Correction with respect to a Finite-State
Grammar. Technical Report 282, Université de Tours, LI/
Campus de Blois, 2005.

[9] A. Cheriat, A. Savary, B. Bouchou, and M. Halfeld Ferrari.
Incremental String Correction: Towards Correction of XML
Documents. In Prague Stringology Conference, 2005.

[10] S. Deorowicz and M. Ciura. Correcting spelling errors by
modelling their causes. International Journal of Applied
Mathematics and Computer Science, 15(2):275–285, 2005.

[11] S. Mihov and K. U. Schulz. Fast approximate search in
large dictionaries. Computational Linguistics, 30(4):451–
477, 2004.

[12] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy
of XML Schema Language using Formal Language Theory.
In ACM, Transactions on Internet Technology (TOIT), 2004.

[13] K. Oflazer. Error-tolerant Finite-state Recognition with Ap-
plications to Morphological Analysis and Spelling Correc-
tion. Computational Linguistics, 22(1):73–89, 1996.

[14] S. M. Selkow. The Tree-to-Tree Editing Problem. Informa-
tion Processing Letters, 6(6):184–186, 1977.

[15] K.-C. Tai. The tree-to-tree correction problem. Journal of
the Association for Computing Machinery, 26(3), 1979.

[16] R. A. Wagner and M. J. Fischer. The String-to-String Cor-
rection Problem. Journal of the ACM, 21(1):168–173, 1974.

[17] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problem. SIAM
Journal on Computing, 18(6):1245–1262, 1989.

