
1

Incremental Constraint Checking 
for  XML Documents

Maria Adriana ABRÃO1,   Béatrice BOUCHOU1, 
Mírian Halfeld FERRARI1,   Dominique LAURENT2, 

Martin MUSICANTE3

1Université de Blois-Tours-Chinon – LI, France 
2Université de Cergy-Pontoise – LICP, France
3Universidade Federal do Paraná – DI, Brazil

I will present a work developped at Blois in France. 

We are interested in incremental update of XML documents, in presence of 
schema, key and foreign key constraints.



2

XSym 2004 - Béatrice Bouchou - 2

Motivation

Schema

Validator

Bottom up tree automaton 
+

output value l ists

Key & 
referential 
integrity

Data 
exchange:

XML

We have first designed a schema validator from a given DTD. In a very 
classical way, it is a bottom up tree automaton, which is implemented as
usual with SAX. 

Latter we have considered integrity constraints, as a complementary 
specification for XML documents. For this purpose, we have integrated key 
and referential integrity verification in the schema validation process. 

Then we verify integrity constraints in a bottom up framework, carrying up 
output lists of values up to the nodes where verification can be performed. 



3

XSym 2004 - Béatrice Bouchou - 3

Motivation

XML
Schema

Key & 
referential 
integrity

Validator updates

Valid documents, consistent with some keys and some foreign keys, may be 
updated. In that case one can have to verify if they still be consistant with all
constraints.



4

XSym 2004 - Béatrice Bouchou - 4

Motivation

XML
Schema

Key & 
referential 
integrity

updates Incremental
Validator

keyTrees

Moreover, when one have to maintain valid documents, it becomes important 
to incrementally verify constraints, at each update.

In order to check referencial integrity as well as keys when documents are 
updated, we use auxiliary data structures that we call keyTrees. 



5

XSym 2004 - Béatrice Bouchou - 5

XML document tree example

02000

020010 020020

(Cahors) (2002) (25.00)
data data data

data data

yearnamepriceyearname

(Sancerre) (2000) (21.00)
data datadata

(Sancerre) (2000) (Grilled Fish)
data datadata

(30.00)
dataprice

020000 020100 020110 020120

wine wine

02001 02002 02010 02011 02012

drinks

0200 0201

020

menu
02

restaurant
0

restaurant
1

@address@name

010000

0100

root
�

...
combinations

meals desserts
021 022

......

03

combination
030 ...

wineName wineYear mealName price
0300 0301 0302 0303

03000 03010 03020 03030

Here is the example I will use all along this talk:

It is a document which desribes menus and combinations in some French 
restaurants. They contain « a la carte » choices, or combinations, that are 
restricted groups of dishes and drinks. 

The document is a tree, each node having a position, a label, a type and 
sometimes a value.

-----------------------------

Notice that we treat attributes, but I will disregard their specificity here.



6

XSym 2004 - Béatrice Bouchou - 6

Key (and Foreign Key) Constraints 
[WWW 2001 – P. Buneman, S. Davidson, W. Fan, C. Hara, W. Tan]

� K1= (/restaurant, (./menu/drinks/wine, {./name, ./year}))

02000

020010 020020

(Cahors) (2002) (25.00)
data data data

data data

yearnamepriceyearname

(Sancerre) (2000) (21.00)
data datadata

(Sancerre) (2000) (Grilled Fish)
data datadata

(30.00)
dataprice

020000 020100 020110 020120

wine wine

02001 02002 02010 02011 02012

drinks

0200 0201

020

menu
02

restaurant
0

restaurant
1

@address@name

010000

0100

root

...
combinations

meals desserts
021 022

......

03

combination
030 ...

wineName wineYear mealName price
0300 0301 0302 0303

03000 03010 03020 03030

�

Using the syntax of Buneman et al., keys are written with paths in the
document:

Here, to assign a key to a wine element in a menu of a restaurant we write 
these four paths. 

Such a definition is read as follows: 



7

XSym 2004 - Béatrice Bouchou - 7

In thecontext,

� K1= (/restaurant, ( , {                      }))

02000

020010 020020

(Cahors) (2002) (25.00)
data data data

data data

yearnamepriceyearname

(Sancerre) (2000) (21.00)
data datadata

(Sancerre) (2000) (Grilled Fish)
data datadata

(30.00)
dataprice

020000 020100 020110 020120

wine wine

02001 02002 02010 02011 02012

drinks

0200 0201

020

menu
02

restaurant
0

restaurant
1

@address@name

010000

0100

root

...
combinations

meals desserts
021 022

......

03

combination
030 ...

wineName wineYear mealName price
0300 0301 0302 0303

03000 03010 03020 03030

�

The first path is called the context path: it defines in which context the key is 
verified. 



8

XSym 2004 - Béatrice Bouchou - 8

In thecontext, thetarget
� K1= (/restaurant, (./menu/drinks/wine, {                      }))

02000

020010 020020

(Cahors) (2002) (25.00)
data data data

data data

yearnamepriceyearname

(Sancerre) (2000) (21.00)
data datadata

(Sancerre) (2000) (Grilled Fish)
data datadata

(30.00)
dataprice

020000 020100 020110 020120

wine wine

02001 02002 02010 02011 02012

drinks

0200 0201

020

menu
02

restaurant
0

restaurant
1

@address@name

010000

0100

root

...
combinations

meals desserts
021 022

......

03

combination
030 ...

wineName wineYear mealName price
0300 0301 0302 0303

03000 03010 03020 03030

�

The next path is called the target path and defines target of the constraint, i.e. 
which element is represented by the key.



9

XSym 2004 - Béatrice Bouchou - 9

In thecontext, thetargetis identified by key
� K1= (/restaurant, (./menu/drinks/wine, {./name, ./year}))

�

02000

020010 020020

(Cahors) (2002) (25.00)
data data data

data data

yearnamepriceyearname

(Sancerre) (2000) (21.00)
data datadata

(Sancerre) (2000) (Grilled Fish)
data datadata

(30.00)
dataprice

020000 020100 020110 020120

wine wine

02001 02002 02010 02011 02012

drinks

0200 0201

020

menu
02

restaurant
0

restaurant
1

@address@name

010000

0100

root

...
combinations

meals desserts
021 022

......

03

combination
030 ...

wineName wineYear mealName price
0300 0301 0302 0303

03000 03010 03020 03030

The last component is a set of paths, each one ending at a node associated 
with a value. It defines the key tuple, here the name and the year of a wine.



10

XSym 2004 - Béatrice Bouchou - 10

K1= (/restaurant, (./menu/drinks/wine, {./name, ./year}))

� FK2= (/restaurant, (./combinations/combination, 
{ ./wineName, ./wineYear}))  � K1

02000

020010 020020

(Cahors) (2002) (25.00)
data data data

data data

yearnamepriceyearname

(Sancerre) (2000) (21.00)
data datadata

(Sancerre) (2000) (Grilled Fish)
data datadata

(30.00)
dataprice

020000 020100 020110 020120

wine wine

02001 02002 02010 02011 02012

drinks

0200 0201

020

menu
02

restaurant
0

restaurant
1

@address@name

010000

0100

root

...
combinations

meals desserts
021 022

......

03

combination
030 ...

wineName wineYear mealName price
0300 0301 0302 0303

03000 03010 03020 03030

�

Foreign keys are defined in a same way: here our foreign key denotes that, in 
a restaurant, the wine proposed in any combination should appear in the menu 
of the same restaurant. 

A foreign key has to reference one key in the same context: this key is 
specified with this set inclusion notation. 



11

XSym 2004 - Béatrice Bouchou - 11

e1

FSA for keys

e0

e1

restaurant

K1= (/restaurant, (./menu/drinks/wine, {./name, ./year}))

e0

e2

name year

M1

�� � ��
M1

�������
e1

e0

wine

e3

drinks

e2

menu

M1

�	 
���

As I was saying, we verify integrity constraints in a bottom up way, together 
with schema validation. For that purpose we build 3 finite state automata for 
each constraint:

As you can see, the first one represents the context path in reverse: whenin 
initial state e0, encountering the label node « restaurant » it fires the transition 
to the final state e1;  

In a same way, the second one represents the target path, and the last one 
represents key tuple paths.

These automata allow to know, for each node, its potential role in the key.



12

XSym 2004 - Béatrice Bouchou - 12

FSA for foreign keys

e0

e1 e2

M2

wineName wineYear

FK2= (/restaurant, (./combinations/combination,
{ ./wineName, ./wineYear})) � K1

e0

e1

restaurant

M1,2

�������
��� ��

e1

e0

e2

combinations

combination

M2

�	 
���

It is exactly the same for a foreign key: we will use succesively the foreign 
key tuple automaton, then he target automaton and lastly the  context 
automaton, to select at each node the values to be carried up in order to 
perform referential verification.



13

XSym 2004 - Béatrice Bouchou - 13

Output lists, computed at each node

[l11,…, lk1, lk+1
1 ,…, ln1]

p [l1,…, lk, lk+1,…, ln]

keys foreign keys

[l1m,…, lkm, lk+1
m ,…, lnm]

...

l1 = f1(p, [l11,…,l1m])

ln = fn(p, [ln1,…,lnm])

...

p1 pm

Our validator runs bottom up: for each position it computes its state (in the 
tree automaton, which represents schema constraints), together with its output 
list, which represents integrity constraints. 

The output list is composed by one list for each key and each foreign key.
First lists are for keys and last ones are for foreign keys.

Each list is computed by applying a function on values coming from children 
lists: for instance here, l1 is computed with the function of the first key, f1, 
applied on values coming from l11, l12, l1m. 

If a node does not play any role in a key then the corresponding list in its
output is empty.



14

XSym 2004 - Béatrice Bouchou - 14

e0

wine
Name

Verification: data nodes

� FK2= (/restaurant, (./combinations/combination, { ./wineName, ./wineYear})) � K1

� K1= (/restaurant, (./menu/drinks/wine, {./name, ./year}))

year

wine

[[(M1.e0, [2000])] , [(M2.e0, [2000])] ]

l1 l2,[ ]

e0

e1 e2

name year

M1

e1 e2

wine
Year

M2
tuple tuple

tuple tuple

[[(M1.e0, [Sancerre])] , [(M2.e0, [Sancerre])] ]

02000

020020

pricename

020000

02001 02002

0200

[[(M1.e0, [21.00])] , [(M2.e0, [21.00])] ]

...

tuple tuple tupletuple

020010

Concerning our key and foreign key example, list l1 contains information 
associated to the key and list l2 contains information about the foreign key.

Notice that each value list is preceded by an automaton configuration: this is
to select those values which play a role in key or foreign key. 

Here you can see that tuple automata are used, and that they are in their initial 
state.

At the beginning of the validation, all data nodes transmit their value, as
illustrated here.



15

XSym 2004 - Béatrice Bouchou - 15

e1

e0

M2

Verification: key and foreign key items

0201
...

wineYear

[[ ] , [(M2.e2, [2000])] ]

name02000 priceyear

wine

02001 02002

0200

[[(M1.e1, [Sancerre])] , [ ]] [ [ ] , [ ]][[(M1.e2, [2000])] , [ ]]

wine

drinks
020

menu
02

restaurant
0

combinations

meals desserts021 022
......

03

combination
030 ...

wineName
0300 0301

[[ ] , [(M2.e1, [Sancerre])] ]

e0

e1 e2

name year

M1

e2

wine
Name

wine
Year

... ...

...

tuple tuple

tuple tuple

tuple tuple

On top of data nodes, only key item values are kept:
they are selected in pairs whose (key) automaton can apply a transition.

Node that don’t play any role nor in key neither in foreign key have only 
empty lists in their output.

Here you can see that wine name and year values are collected for the key, 
and also for the foreign key.

Notice that now configurations are tuple automata in their final state,which 
means that key nodes (and foreign key nodes) have been reached.



16

XSym 2004 - Béatrice Bouchou - 16

e2

e2

e1

Verification: key and foreign key target

wine
0200 0201

wine

drinks
020

menu
02

restaurant
0

combinations

meals desserts
021 022

......

03

combination
030 ...

[[(M1.e1, [Cahors, 2002])] , [ ]]

[[ ] , [(M2.e1, [Sancerre, 2000])] ]

[[(M1.e1, [Sancerre, 2000])] , [ ]]

root
�

...
restaurant

1

e1

e0

combinations

combination

M2

�� ����e0

wine

e3

drinks

menu

M1

�� ����

�� ��	�

�� ��	� �� ��	�

At target nodes, values composing keys are selected from
pairs whose (key tuple) automaton is in a final state. These values are merged 
to form tuple of key values.

Configurations associated with target nodes are target automata in their 
second state (as the target label has been read).



17

XSym 2004 - Béatrice Bouchou - 17

Verification: going up

drinks
020

menu
02

restaurant
0

@address@name
0100

combinations

meals desserts
021 022

03

[[ ] , [ ]][[ ] , [ ]]

root
�

...
restaurant

1

[[(M1.e2, [Sancerre, 2000]), (M1.e2, [Cahors, 2002])] , [ ]]

[[ ] , [ ]][[ ] , [ ]]

[[ ] , [(M2.e2, [Sancerre, 2000]), ...]]

e2

e2

e1

e1

e0

combinations

combination

M2

�� ����e0

wine

e3

drinks

menu

M1

�� ����

�� ��	� �� ��	�

�� ��	�

Values are carried up along the path, always selecting pairs
whose automaton can apply a transition.

Here, the foreign key target automaton is already in its final state.



18

XSym 2004 - Béatrice Bouchou - 18

e3

Verification: at context level

menu
02

restaurant
0

@address@name
0100

combinations03

[[ ] , [ ]][[ ] , [ ]]

root
�

...
restaurant

1

[[ ] , [(M2.e2, [Sancerre, 2000]), ...]]

e2

e2

e1

e1

e0

combinations

combination

M2

�� ����e0

wine

drinks

menu

M1

�� ����

�� ��	�

[[(M1.e3, [Sancerre, 2000]), (M1.e3, [Cahors, 2002])] , [ ]]
�� ��	� �� ��	�

When all children output of a context node are computed, the output for this 
node can be built testing values preceded by target finite state automata in 
final state.



19

XSym 2004 - Béatrice Bouchou - 19

Key verification

e0

e1

restaurant

M1,2

�������

�������

[[(M1,2.e1                                ] restaurant
0

root

...
restaurant

1

�

K1= (/restaurant, (./menu/drinks/wine, {./name, ./year}))

combinations03

[[ ] , ...]
menu
02

@address@name
0100

[[ ] , ...][[ ] , ...] [[(M1.e3, [Sancerre, 2000]), (M1.e3, [Cahors, 2002])] , ...]
�� ��	� �� ��	�

,   [true])] , ...

First, the configuration is the context automaton in its second state 
(« restaurant » have been read). 

Then, keys are verified: if each tuple value has the good lentgh and is unique 
then the output value is true, otherwise it is false.

For our example key, in that context, the output value is true.

In parallel with the whole validation process, keyTrees are built:



20

XSym 2004 - Béatrice Bouchou - 20

Index KeyTrees

(Cahors) (2002)(0201)

@refCount@poskey@refCount@pos

(Sancerre) (2000)(0200)

key

target target

context

(0) (0)

keykey

@pos

!

keyTree

@name

(0)

(K1)

they are auxiliary data structures where key tuple values are stored, so as in 
an index.

They contain the key name and the list of context nodes for this key in the 
document. 

For each context we store its position together with the list of targets in this 
contex. 

For each target we store its position, its key tuple values and a reference 
counter.  

KeyTrees are used to verify foreign keys and, moreover, to perform 
incremental checking.

In our example, this context element is generated for the key.



21

XSym 2004 - Béatrice Bouchou - 21

Foreign key verification

[[(M1,2.e1,   [true])] , [(M1,2.e1,   [true])] ]
�������

menu
02

restaurant
0

@address@name
0100

combinations03

[[ ] , [ ]][[ ] , [ ]]

root

...
restaurant

1

[[ ] , [(M2.e2, [Sancerre, 2000]), ...]]
�� ��	�

[[(M1.e3, [Sancerre, 2000]), (M1.e3, [Cahors, 2002])] , [ ]]
�� ��	� �� ��	�

�

�������

FK2= (/restaurant, (./combinations/combination, 
{ ./wineName, ./wineYear}))  � K1

Once keys have been treated, foreign keys are checked: each tuple foreign 
key value must exists in the same context as a key tuple value.
For our example, the output value is true, once again.



22

XSym 2004 - Béatrice Bouchou - 22

Index KeyTreeK1: FK references

(Cahors) (2002)(0201)

@refCount@poskey@refCount@pos

(Sancerre) (2000)(0200)

key

target target

context

(1) (3)

keykey

@pos

!

keyTree

@name

(0)

(K1)

This is checked using corresponding keyTree: if the condition holds then 
reference counter for that key tuple value is incremented.

For instance here, you can see that there are 1 foreign key Sancerre 2000 and 
3 foreign keys Cahors 2002 in the context 0.



23

XSym 2004 - Béatrice Bouchou - 23

Verification: at root node

restaurant
0

root
�

restaurant
1

[[(M1,2.e1,   [true])] , [(M1,2.e1,   [true])] ]
������� �������

[[(M1,2.e1,   [b1])] , [(M1,2.e1,   [b2])] ]
������� �������

[[(Mf.ef, [true, b1, ...])], [(Mf.ef, [true, b2, ...])]]

K1 holds in the first context FK2 holds in the first context

Boolean values generated at context nodes are carried up to root node: output 
list of root node is illustrated here for our key and our foreign key.

As usual, accurate values are selected considering configurations in each 
children output list.

First item in each list denotes information on first context, second item is for 
second context, and so on.



24

XSym 2004 - Béatrice Bouchou - 24

Finalized index KeyTreeK1

(Cahors) (2002)(0201)

@refCount@poskey@refCount@pos

(Sancerre) (2000)(0200)

key

target target

context

(1) (3)

keykey

@pos

!

keyTree

@name

(0)

(K1)

The keyTree is finalized at root node, for each key.



25

XSym 2004 - Béatrice Bouchou - 25

Insertion concerning a key

� Insertion of a newwineas first child of nodedrinks: 
if insertion is valid...

(Bordeaux) (1990) (30.00)
data data data

yearname price

wine

(Cahors) (2002) (25.00)
data data data

yearnamepriceyearname

(Sancerre) (2000) (21.00)
data datadata

price

020200 020210 020220

wine wine

02020 02021 02022

drinks

0201 0202

020

...

0200

02000

020010 020020020000

02001 02002

020100 020110 020120

02010 02011 02012

We will see now how these auxiliary structures are used in incremental 
checking.

I ’ll focus on two update operations : insertion and deletion.

First, let ’s consider an insertion  of a new wine as first child of node drinks in 
the first restaurant’s menu:

This operation is performed only if it keeps the document valid wrt schema 
and integrity constraints.



26

XSym 2004 - Béatrice Bouchou - 26

Incremental check of insertion (key)

� local validation of t’ :

(Bordeaux) (1990) (30.00)
data data data

yearname price

00 10 20

wine

0 1 2

�

Output list at�: [[(M1.e1,   [Bordeaux, 1990])], [ ]]

(Bordeaux) (1990)(�)

@refCount@pos key

target

(0)

key

State at�: qwine

keyTreeK1:

target

This condition is checked incrementally, that is, only the part concerned by 
insertion is revalidated.

The first step is to run the validator on t’: this local validation ensures that a 
state of the tree automaton can be associated to the root. 

Several conditions are also checked for keys and foreign keys, depending on 
the root position wrt to key, target and context: 

(i) If the root of t’ is a target node, local validation verifies wether the 
number of values in key lists corresponds to the number of key nodes,

(ii) If the root of t’ is a context node, or above, then local validation verifies 
that there is no key tuple duplicates in t’ and that foreign key tuple values 
reference existing key tuple values.

Moreover, local parts of keyTrees are built during local validation.

In our example, the root of t’ is a target for the key, so you can see that we get 
two values, (Bordeaux, 1990) in K1 output list and that a target element 
has been built for keyTree K1. 



27

XSym 2004 - Béatrice Bouchou - 27

Incremental Check of Insertion (key)

� Check at context node, (0 in example):

In keyTree K1, at context0, 
there is no key tuple value 
equal to [Bordeaux, 1990].

(Cahors) (2002)(0201)

@refCount@poskey@refCount@pos

(Sancerre) (2000)(0200)

key

target target

context

(1) (3)

keykey

@pos

(0)

...

wine

drinks

menu

restaurant

[[(M1.e1,   [Bordeaux, 1990])], [ ]] 0200

020

02

0

target

The last step, if conditions of local validity hold, is to consider the update 
done, without performing it yet, and to verify local implications in the
original document. 

As tests must be performed at context level, we first determine, for each key
the context of the update position.

If insertion position is a context or above a context then the local validation 
implies that the insertion is ok concerning this key and its foreign keys.

Otherwise output lists coming from insertion position are carried up to the 
context, where they are checked: in particular key tuple values should not 
have duplicates in the corresponding keyTree.

In this example the insertion is valid, so it can be performed.



28

XSym 2004 - Béatrice Bouchou - 28

Performing Insertion (key)

� UpdatedkeyTree K1:

(Cahors) (2002)(0202)

@refCount@poskey@refCount@pos

(Sancerre) (2000)(0201)

key

target target

context

(1) (3)

keykey

@pos

!

keyTree

@name

(0)

(K1)

(Bordeaux)(0200)

@refCount@pos key

target

(0)

key

(1990)

In that case, the document is updated as well as keyTrees. You see here the
new target.



29

XSym 2004 - Béatrice Bouchou - 29

Insertion concerning a foreign key

� insertion of a newcombinationin the firstrestaurant
(if insertion is valid):

(Sancerre) (2000) (Grilled Fish)
data datadata

(30.00)
data

restaurant
0

restaurant
1

root
�

...
combinations03

combination
030

wineName wineYear mealName price
0300 0301 0302 0303

03000 03010 03020 03030

(Bourgogne) (1986)(Grilled Chicken)
data datadata data

combination

wineName wineYear mealName price

(50.00)

03100 03110 03120

0310 0311 0312

031

0313

03130

...

...

Now for another case of insertion, concerning foreign key:

Suppose we want to add this new combination in the first restaurant, having 
as drink a Bourgogne 1986.



30

XSym 2004 - Béatrice Bouchou - 30

Incremental Check of Insertion (foreign)

� local schema validation of t’ :

(Bourgogne) (1986)(Grilled Chicken)
data datadata data

combination

wineName wineYear mealName price

(50.00)

00 10 20

0 1 2

�

3

30

Output list at�: [[ ], [(M2.e1, [Bourgogne, 1986])]]

State at�: qcombination

target

The inserted subtree is valid for the schema, and local validation gives these 
output lists at its root: nothing concerning the key, and one tuple for our
foreign key.



31

XSym 2004 - Béatrice Bouchou - 31

Incremental Check of Insertion (foreign)

In keyTree K1, at context0, 
there is no key tuple value 
equal to [Bourgogne, 1986].

� Check at context node:

(Cahors) (2002)(0201)

@refCount@poskey@refCount@pos

(Sancerre) (2000)(0200)

key

target target

context

(1) (3)

keykey

@pos

(0)

...

restaurant
0

combinations03

combination
031

[[ ], [(M2.e1, [Bourgogne, 1986])]]
target

As in the preceding example, the context node of this update is at position 0. 

Now we can see that there is no key tuple values in keyTree K1 
corresponding to the inserted foreign key tuple values, and then this insertion 
will be rejected.



32

XSym 2004 - Béatrice Bouchou - 32

If performing insertion (foreign key)

� If wine tuple values would have been [Cahors, 2002]

then the insertion would have been accepted and
� refCountfor target0201would have been

incremented in keyTree K1.

(Cahors) (2002)(0201)

@refCount@poskey@refCount@pos

(Sancerre) (2000)(0200)

key

target target

context

(1) (4)

keykey

@pos

!

keyTree

@name

(0)

(K1)

Notice that if foreign key tuple values would have been existing key tuple 
values, then auxiliary structures are also updated.



33

XSym 2004 - Béatrice Bouchou - 33

Deletion

� Deletion of a wine in a menu:

02000

020010 020020

(Cahors) (2002) (25.00)
data data data

data data

yearnamepriceyearname

(Sancerre) (2000) (21.00)
data datadata

(Sancerre) (2000) (Grilled Fish)
data datadata

(30.00)
dataprice

020000 020100 020110 020120

wine wine

02001 02002 02010 02011 02012

drinks

0200 0201

020

menu
02

restaurant
0

restaurant
1

@address@name

010000

0100

root

...
combinations

meals desserts
021 022

......

03

combination
030 ...

wineName wineYear mealName price
0300 0301 0302 0303

03000 03010 03020 03030

The last example is a case of deletion:

Suppose we want to suppress the wine Sancerre 2000 from drinks in the first 
restaurant.



34

XSym 2004 - Béatrice Bouchou - 34

Incremental Check of Deletion

The  delete position (0200)
is a target in context0 of 
keyTree K1: 
its refCountis not 0 so 
update is not valid.

key@refCount@pos

(Sancerre)(2000)(0200)

target

context

(1)

key

@pos

(0)

� Check at context node:

wine

drinks

0200

020

menu
02

restaurant
0

We find the context node: here it is 0, and we scan the corresponding keyTree
to see if the deletion concerns the key. A key tuple can be deleted if and only 
if it is not referenced by a foreign key tuple. 

In our example, the delete position is a target in context 0. 

As its refCount is not equal to 0, this update will be rejected.

------------------------------

Notice that a foreign key tuple can always be deleted but we have to update 
the corresponding key refCount.



35

XSym 2004 - Béatrice Bouchou - 35

Main contributions

� A method to generate a validator from schema, 
key and foreign key constraints. 
� DTD rules         bottom up tree automaton
� keys and foreign keys        finite state automata
� Validation is performed in only one pass.

� An incremental validation method for simple 
updates (insertion or deletion of subtrees).
� Extra storage : key indexes 
� Only local checks are performed

- We have a method to build a validator from a DTD and a set of keys and 
foreign keys.

- The schema is translated into a bottom up tree automaton, while keys and 
foreign keys are represented with finite states automata, used to compute 
output values.

- The validator reads the whole document once.

- The validator is used to incrementally check updates on valid documents.

- For that purpose it builds and maintains key indexes. 

- Incremental checks for keys and foreign keys are always bounded at context
levels.



36

XSym 2004 - Béatrice Bouchou - 36

Future work

� Performance evaluation
� More general schemas
� More complex updates
� Integration within an XML update language

implementation 
(such as UpdateX [PLAN-X 2004 - G. Sur, J. Hammer, J. Siméon])

We’ll soonly be able to present performance evaluation using existing XML 
benchmarks.

The extension to any kind of schema specification is done (and implemented 
in Java) for schema validation.

We are also working on more complex update transactions, including several
simple updates, as proposed by an update language such as UpdateX. 

Indeed, our incremental validator may be useful to XML update processors. 


