Incremental Constraint Checking
4 for XML Documents

Maria Adriana BRAO!, Béatrice BUCHOU!,
Mirian Halfeld FERRARE, Dominique IAURENT?,
Martin MUSICANTE

1Université de Blois-Tours-Chinon — LI, France
2Université de Cergy-Pontoise — LICP, France
SUniversidade Federal do Parana — DI, Brazil

| will present a work developped at Blois in France.

We are interested in incremental update of XML documents, in presence of
schema, key and foreign key constraints.

4 Motivation

Bottom up tree automaton
+
output value lists

L4 & ‘
& L]
L4 & ‘
;. _.
Key & Data
referential exchange:
) integrity
Schema XML i

s

XSym 2004 - Béatrice Bouchou - 2

We have first designed a schema validator from a given DTD. Imya ve
classical way, it is a bottom up tree automaton, which is implemented as
usual with SAX.

Latter we have considered integrity constraints, as a complementary
specification for XML documents. For this purpose, we have integrated key
and referential integrity verification in the schema validatiorcgss.

Then we verify integrity constraints in a bottom up framework, cagryp
output lists of values up to the nodes where verification can be performed.

4 Motivation

updates
” D ‘
. . |

L 4 L

r 2 ~
o Key &

:' referential

s integrity XML
Schema]

s

XSym 2004 - Béatrice Bouchou- 3

Valid documents, consistent with some keys and some foreign keys, may be
updated. In that case one can have to verify if they still be comisvsiid all
constraints.

4 Motivation

e
updates wm
|
| /
Key &
referential
integrity XML
Schema]

s

XSym 2004 - Béatrice Bouchou - 4

Moreover, when one have to maintain valid documents, it becomes important
to incrementally verify constraints, at each update.

In order to check referencial integrity as well as keys when decdsrare
updated, we use auxiliary data structures that we call keyTrees.

4 XML document tree example

root
restaurant restaurant
@name @address me{ combinations
N T /S
data da‘ta drinks rr_:ggls desserts combination ‘e
wine wine wineNméar mrice
TN ool N] o
name””"'year” "price "“'name””" year"'price ~ _data data data data

(Sancerre) (2000) (Grilled Fish) (30.00)

data data data data data data
(Sancerre) (2000) (21.00) (Cahors) (2002) (25.00)

XSym 2004 - Béatrice Bouchou- 5

Here is the example | will use all along this talk:

It is a document which desribes menus and combinations in some French
restaurants. They contain « a la carte » choices, or combinationareghat
restricted groups of dishes and drinks.

The document is a tree, each node having a position, a label, a type and
sometimes a value.

Notice that we treat attributes, but | will disregard their spetyfloere.

Key (and Foreign Key) Constraints

[WWW 2001 — P. Buneman, S. Davidson, W. Fan, C. Hara, W. Tan]

» K,= (/restaurant, (./menu/drinks/wine, {./name, ./year}))

XSym 2004 - Béatrice Bouchou- 6

Using the syntax of Buneman et al., keys are written with paths in the
document:

Here, to assign a key to a wine element in a menu of a restauranttese wri
these four paths.

Such a definition is read as follows:

4 In the context

= K= (frestaurant(A 1)

restaurant restaurant

XSym 2004 - Béatrice Bouchou - 7

The first path is called the context path: it defines in which conteXeés
verified.

4 In the context thetarget

» K= (/restaurant(/menu/drinks/wing{ b))

_— =
- —

%/aurant
/enu
/d rin‘s\

wine wine

—

restaurant

XSym 2004 - Béatrice Bouchou- 8

The next path is called the target path and defines target of the cunsea
which element is represented by the key.

4 In the context thetargetis identified bykey

» K= (/restaurant(/menu/drinks/wing{./name ./yeat}))

/Ot\
ﬂaurant restaurant
/enu
/drin S

/7/ine /wire
hame "~ year name ~ " year
| | | |
(Sancerre) (2000) (Cahors) (2002)

XSym 2004 - Béatrice Bouchou- 9

The last component is a set of paths, each one ending at a node associated
with a value. It defines the key tuple, here the name and the yaavioé.

4 K,= (/restaurant(./menu/drinks/wing{./name ./yeat))

» FK,= (/restaurant(./combinations/combination
{./.wineName./wineYea})) c K,

oot

ant

ﬂaU\ restaurant
enu

combinations

rinks combination
/ k\ =

wineName wineYear

/7/ine /w:re
hame ye|ar name = year (Sancerre) (2000)
(Sancerre) (2000) (Cahors) (2002)

XSym 2004 - Béatrice Bouchou - 10

Foreign keys are defined in a same way: here our foreign key dendtea tha
a restaurant, the wine proposed in any combination should appear in the menu

of the same restaurant.
A foreign key has to reference one key in the same context: this key is
specified with this set inclusion notation.

4 FSA for key_s

= (/restaurant(./menu/drinks/wing{./name ./yeas))

menu

O

restaurant nam year
(&) drinki
7}
Mcontext . @ tuple
1 wine M

@)

target

HZ

XSym 2004 - Béatrice Bouchou - 11

As | was saying, we verify integrity constraints in a bottom up vemgether
with schema validation. For that purpose we build 3 finite state autdorata
each constraint:

As you can see, the first one represents the context path in reversenwhen
initial state e0, encountering the label node « restaurant » it fieggsansition
to the final state e1l,;

In a same way, the second one represents the target path, and the last one
represents key tuple paths.

These automata allow to know, for each node, its potential role in the key.

11

4 FSA for foreign keys

FK,= (/restaurant(./combinations/combination
{./wineName./wineYea})) c K,

®

restaurait combinations wineName wineYear
t combinatio *
Mcontext
1,2 @ Mtuple
A 2
target
M g

2

XSym 2004 - Béatrice Bouchou - 12

It is exactly the same for a foreign key: we will use succegibvel foreign
key tuple automaton, then he target automaton and lastly the context
automaton, to select at each node the values to be carried up in order to

perform referential verification.

12

4 Output lists, computed at each node

keys foreign keys
*

/—/%/—/%

D lpeos b g 1]

ol om

(R W I (L LY LR L

Il = fl(p! [Ill’ ---allm])

In = fn(p! [l nli T 1lr|m])

XSym 2004 - Béatrice Bouchou - 13

Our validator runs bottom up: for each position it computes its state (in the
tree automaton, which represents schema constraints), together with its output

list, which represents integrity constraints.

The output list is composed by one list for each key and each foreign key.

First lists are for keys and last ones are for foreign keys.

Each list is computed by applying a function on values coming from childre

lists: for instance here, I1 is computed with the function of the firstikey
applied on values coming from 111, 112, I1m.

If a node does not play any role in a key then the corresponding list in its

output is empty.

13

4 Verification: data nodes

= K = (/restaurant(/menu/drinks/wing{./name ./yeas))

* FK,= (/restaurant(/combinations/combinatioq./wineName./wineYeag)) < K,

& & & &
name ~ year wine .-wine

Namd®) Year
tuple tuple
M 1p M) e
wine \
name year

[[(M&, [21.00))], (M8, [21.00)]]
[[(M?,, [2000])], [(M37&, [2000])]]

bl

[[(Mtlu.pel'g, ‘[Sancerre])], [(M[gf)go, [Sancerre])]]

XSym 2004 - Béatrice Bouchou - 14

Concerning our key and foreign key example, list I1 contains information

associated to the key and list I2 contains information about the foreign key.

Notice that each value list is preceded by an automaton contiguiréhis is
to select those values which play a role in key or foreign key.

Here you can see that tuple automata are used, and that they areimtibei
state.

At the beginning of the validation, all data nodes transmit their valsie
illustrated here.

14

4 Verification: key and foreign key items

name _ year wine . _wine
& Namég,) Year ——
o i restaurant
uple uple —
M 1 M 2 / T))
menu combinations
drinks combination
o
wine /N
wineName wineYear
e (11, (M58, [Sancerre])]] [[], (M6, [2000])]]
_— \
name year

[[(M¥&, [sancerre])], [1] [[(M$S, [2000])],[1] [[1.[]]

XSym 2004 - Béatrice Bouchou - 15

On top of data nodes, only key item values are kept:

they are selected in pairs whose (key) automaton can apply a transition.

Node that don't play any role nor in key neither in foreign key have only
empty lists in their output.

Here you can see that wine name and year values are collected kay,
and also for the foreign key.

Notice that now configurations are tuple automata in their final stdieh
means that key nodes (and foreign key nodes) have been reached.

15

4 Verification: key and foreign key target

& &
menu combinationg
drinks combination o root
wine % _— T
Mta rget resta U@H{\r restaurant
Mtarget 2 / T o
1 menu combinations
drinks combination o
/ \ [[1, [(Ma& [Sancerre, 2000])]]
wine wine
[[(M3:&, [Sancerre, 2000))], [1] [[(MEE [Cahors, 2002))], [1]

XSym 2004 - Béatrice Bouchou - 16

At target nodes, values composing keys are selected from

pairs whose (key tuple) automaton is in a final state. These valupsesaged
to form tuple of key values.

Configurations associated with target nodes are target automata in their
second state (as the target label has been read).

16

4 Verification: going up

&
men combinations
_ €
drlnkse combination
1
wine %
target
s |t
_— \\
M target _— T
1 restaurant restaurant
\\\\\\\\
\\\\\\;
menu combinations

[[L[(Mfﬁg[Sancewe,ZOOOD,_ﬂ

[1.[] [1.[]
drinks

[[(M&

" [Sancerre, 2000]), (M;.&: [Cahors, 2002])], [1]

XSym 2004 - Béatrice Bouchou - 17

Values are carried up along the path, always selecting pairs
whose automaton can apply a transition.

Here, the foreign key target automaton is already in its final state.

17

4 Verification: at context level

menu combinations
. eQ el
d””kse combination
! €
wine
target
M,
Mtarget root
1
restaurant restaurant
\\
\\\
combinations
L1 (.11 [[1, [(Ma&, [Sancerre, 2000]), ..]
menu

target target

[[(M,.&;, [Sancerre, 2000]), (M,.&;, [Cahors, 2002])],[]]

XSym 2004 - Béatrice Bouchou - 18

When all children output of a context node are computed, the output for this
node can be built testing values preceded by target finite state automata
final state.

18

J Key verification

K,= (/restaurant(./menu/drinks/wing{./name ./yeat))

restaurant
€
text
Mcon
L2 “root
context _—) T
[[(Mype, [true])],..] restaurant restaurant
> combinations
mef;u [[]’]
[, ... [1..] [[(Mi& [Sancerre, 2000]), (M5.6 [Cahors, 2002])], ...]

XSym 2004 - Béatrice Bouchou - 19

First, the configuration is the context automaton in its second state
(« restaurant » have been read).

Then, keys are verified: if each tuple value has the good lentgh and is unique

then the output value is true, otherwise it is false.
For our example key, in that context, the output value is true.
In parallel with the whole validation process, keyTrees are built:

19

4 Index KeyTrees

context

//\

@pos target target

D S S

(0) fos @refCount key key fos @refCount key ker

(0200) (0) (Sancerre) (2000) (0201) (0) (Cahors) (2002)

XSym 2004 - Béatrice Bouchou - 20

they are auxiliary data structures where key tuple values aré ssoras in
an index.

They contain the key name and the list of context nodes for this key in the
document.

For each context we store its position together with the list of targets in this
contex.

For each target we store its position, its key tuple values and a reference
counter.

KeyTrees are used to verify foreign keys and, moreover, to perform
incremental checking.

In our example, this context element is generated for the key.

20

J Foreign kex verification

FK, = (/restaurant(./combinations/combination
{./wineName ./wineYea})) c K,

root
restaurant

text text
(M€ [truel)], [(My€, [irue]]] restaurant
combinations
[[1, [(Ma&, [Sancerre, 2000]), ..]

menu
target

[[(M5&; [Sancerre, 2000]), (M;.&: [Cahors, 2002])], [1]
XSym 2004 - Béatrice Bouchou - 21

[1.1] [1.1]

Once keys have been treated, foreign keys are checked: each tuple foreign
key value must exists in the same context as a key tuple value.
For our example, the output value is true, once again.

4 Index KeyTreeK . FK references

context

//\

@pos target target

I g

|pos @|refCount kfy kT @|pos @refCount key ker

02000 (1) (Sancerre) (2000) (0201) (3) (Cahors) (2002)

XSym 2004 - Béatrice Bouchou - 22

This is checked using corresponding keyTree: if the condition holds then
reference counter for that key tuple value is incremented.

For instance here, you can see that there are 1 foreign key Sancerra@000 a
3 foreign keys Cahors 2002 in the context 0.

4 Verification: at root node

K. holds in the first context FK, holds in the first context

T

oot [0V [te, by,)}, [V, [true, b,)]

/ [—
/ T

restaurant restaurant
contex context context

[[(Mg6 [rue])], [(Mesen [ruedl] [[(MTeer (b)), [(MSae [b)]]

XSym 2004 - Béatrice Bouchou - 23

Boolean values generated at context nodes are carried up to root node: output

list of root node is illustrated here for our key and our foreign key.

As usual, accurate values are selected considering configuraticachin e
children output list.

First item in each list denotes information on first context, second $téon i
second context, and so on.

23

4 Finalized index KeyTre&,

keyTree

@name context

0 // \

@pos target target

T S S S

0) pos @refCount key key @pos @refCount key ke[v

(0200) (1) (Sancerre) (2000) (0201) (3) (Cahors) (2002)

XSym 2004 - Béatrice Bouchou - 24

The keyTree is finalized at root node, for each key.

24

4 Insertion concerning a key

= [nsertion of a newvineas first child of noda&lrinks
if insertion is valid...

wine

PN

name year price

data data data
Bordeaux) (1990) (30.00

XSym 2004 - Béatrice Bouchou - 25

We will see now how these auxiliary structures are used in incremental
checking.

I ’ll focus on two update operations : insertion and deletion.

First, let 's consider an insertion of a new wine as first child of nddesdin
the first restaurant’s menu:

This operation is performed only if it keeps the document valid wrt schema
and integrity constraints.

25

4 Incremental check of insertion (key)

= |ocal validation ott’: wine

N

name ~ year ~ price

data data data

State ak: q,ne (Bordeaux) (1990) (30.00)
. farget

Output list ate: [Mﬁrgf el

keyTreeX,: target

S

@fos @refCount key ker

(€) (0) (Bordeaux) (1990)

XSym 2004 - Béatrice Bouchou - 26

This condition is checked incrementally, that is, only the part coaddry
insertion is revalidated.

The first step is to run the validator on t’: this local validation enghedsa
state of the tree automaton can be associated to the root.

Several conditions are also checked for keys and foreign keys, depending on
the root position wrt to key, target and context:

(i) Ifthe root of t' is a target node, local validation verifies wether th
number of values in key lists corresponds to the number of key nodes,

(i) If the root of t’ is a context node, or above, then local validationiesrif
that there is no key tuple duplicates in t’ and that foreign key tuple values
reference existing key tuple values.

Moreover, local parts of keyTrees are built during local validation.

In our example, the root of t’ is a target for the key, so you can seedhgatw
two values, (Bordeaux, 1990) in K1 output list and that a target element
has been built for keyTree K1.

26

4 Incremental Check of Insertion (key)

» Check atcontext node(0 in example): esaurant

menu

drinks
target

[[(M,.¢, L wine

\ In keyTree K at contex0,

@|pos target target there is no key tuple value

(0) @pos @refCount key ™ key @pos @refCount key key equal tof ; l.
| | . I .

(0200) (1) (Sancerre) (2000) (0201) (3) (Cahors) (2002)

XSym 2004 - Béatrice Bouchou - 27

The last step, if conditions of local validity hold, is to consider the update
done, without performing it yet, and to verify local implications in the
original document.

As tests must be performed at context level, we first deterfoneach key
the context of the update position.

If insertion position is a context or above a context then the local validation
implies that the insertion is ok concerning this key and its foreign keys.

Otherwise output lists coming from insertion position are carried up to the
context, where they are checked: in particular key tuple values shaiuld
have duplicates in the corresponding keyTree.

In this example the insertion is valid, so it can be performed.

27

4 Performing Insertion (key)

» UpdatedkeyTree K

/’\
‘//\\

target

e N DN NN

’ ‘ ‘ ‘ ‘ ‘ ‘ ’ @‘oos @refCountkey key

(0200) (0) (Bordeaux) (1990

XSym 2004 - Béatrice Bouchou - 28

In that case, the document is updated as well as keyTrees. You s#ehere
new target.

28

4 Insertion concerning a foreign key

= insertion of a neveombinationn the firstrestaurant

(if insertion is valid):

combination

P N

wineName wineYear mealName price

data data data Ja ta
(Bourgogne) (1986)(Grilled Chicken)(50.00)

XSym 2004 - Béatrice Bouchou - 29

Now for another case of insertion, concerning foreign key:

Suppose we want to add this new combination in the first restaurant, having

as drink a Bourgogne 1986.

29

4 Incremental Check of Insertion (foreign

» |ocal schema validation ¢of; ¢ .
combination

0/1/2\\3\

wineName wineYear mealName price
00 ‘ 10 ‘ 20 30J
data data data ata

(Bourgogne) (1986)(Grilled Chicken)(50.00)

State ate: 0.ompination

Output list ate: [[], [(I\/l;a.ge,t [Bourgogne, 1986])]]

XSym 2004 - Béatrice Bouchou - 30

N—"

The inserted subtree is valid for the schema, and local validationthe®ss
output lists at its root: nothing concerning the key, and one tuple for our
foreign key.

30

N—"

4 Incremental Check of Insertion (foreign

= Check atcontext node
0

restaurant
combinations
target
[[], [(M,.&,, [Bourgogne, 1986])]] combination
context —
In keyTree K at contex®,
@|pos rarger\ /rarg\er\\ there is no key tuple value
0) @pos/@réfCom key @pos @refCount key key equal to[Bourgogne, 1986]
| | I \ | [
(0200) (1) (Sancerre) (2000) (0201) (3) (Cahors) (2002)

XSym 2004 - Béatrice Bouchou - 31

As in the preceding example, the context node of this update is at position 0.

Now we can see that there is no key tuple values in keyTree K1
corresponding to the inserted foreign key tuple values, and then this insertion
will be rejected.

4 If performing insertion (foreign key)

= |[f wine tuple values would have befanors, 2002]
then the insertion would have been accepted and

» refCountfor target0201would have been
incremented irkeyTree K

keyTre

]

@name context

target target

S
‘ detcom 3T~ key Gos etcon i
(0) @;{ refcm key os @\refCount ey key
| | | | | |

| |
(0200) (1) (Sancerre) (2000) (0201) (4) (Cahors) (2002)

XSym 2004 - Béatrice Bouchou - 32

Notice that if foreign key tuple values would have been existing key tuple
values, then auxiliary structures are also updated.

32

4 Deletion

= Deletion of awinein amenu

wine

name ~ year ~ price

data data data
(Sancerre) (2000) (21.00)

XSym 2004 - Béatrice Bouchou - 33

The last example is a case of deletion:

Suppose we want to suppress the wine Sancerre 2000 from drinks in the first

restaurant.

33

4 Incremental Check of Deletion

= Check atcontext node O restaurant

0200 .
wine

ontext
The delete positiorDR00
@pds target is a target in contexd of
((|)) @/ LS keyTree K
fpos @refCountkey key its refCountis not 0 so

(0200) (1) (Sancerre)(2000) update is not valid.

XSym 2004 - Béatrice Bouchou - 34

We find the context node: here it is 0, and we scan the corresponding keyTree
to see if the deletion concerns the key. A key tuple can be deleted ihignd o
if it is not referenced by a foreign key tuple.

In our example, the delete position is a target in context 0.
As its refCount is not equal to 0, this update will be rejected.

Notice that a foreign key tuple can always be deleted but we have teupda
the corresponding key refCount.

34

4 Main contributions

= A method to generate a validator from schema,
key and foreign key constraints.

=« DTD rules—> bottom up tree automaton
» keys and foreign keys—=> finite state automata
» Validation is performed in only one pass.

= An incremental validation method for simple
updates (insertion or deletion of subtrees).

» Extra storage : key indexes
= Only local checks are performed

XSym 2004 - Béatrice Bouchou - 35

- We have a method to build a validator from a DTD and a set of keys and
foreign keys.

- The schema is translated into a bottom up tree automaton, while kys an
foreign keys are represented with finite states automata, used put®m
output values.

- The validator reads the whole document once.
- The validator is used to incrementally check updates on valid documents.
- For that purpose it builds and maintains key indexes.

- Incremental checks for keys and foreign keys are always boundedtexicon
levels.

35

4 Future work

Performance evaluation
More general schemas
More complex updates

Integration within an XML update language

implementation
(such as Update}°LAN-X 2004 - G. Sur, J. Hammer, J. Siméon])

XSym 2004 - Béatrice Bouchou - 36

We'll soonly be able to present performance evaluation using existing XM
benchmarks.

The extension to any kind of schema specification is done (and implemented
in Java) for schema validation.

We are also working on more complex update transactions, including several
simple updates, as proposed by an update language such as UpdateX.

Indeed, our incremental validator may be useful to XML update processors.

36

