
Computing Appropriate Representations for

Multidimensional Data

Yeow Wei Choong
LI - HELP Institute

Malaysia
choong yw@help.edu.my

Dominique Laurent
LI - Université F. Rabelais

Tours - France
laurent@univ-tours.fr

Patrick Marcel
LI - Université F. Rabelais

Tours - France
marcel@univ-tours.fr

May 7, 2002

Abstract

On-Line Analytical Processing (OLAP) provides an interactive query-
driven analysis of multidimensional data based on a set of navigational
operators like roll-up or slice and dice. In most cases, the analyst is
expected to use these operations intuitively to find interesting patterns in
a huge amount of data of high dimensionality.

In this paper, we propose an approach to enhance this analysis by
preparing the data set so that the analyst can explore it in a more sys-
tematic and effective manner. More precisely we define a measurement of
the quality of the representation of multidimensional data and we present
a framework for investigating the computation of appropriate representa-
tions. We identify the problems of computing such representations and
study them w.r.t. an OLAP restructuring operator.

Keywords: Multidimensional Database, On-Line Analytical Processing, Rep-
resentation.

1 Introduction

On-Line Analytical Processing (OLAP) [1, 3] technology provides a platform for
analysing data according to multiple dimensions (e.g., product, location, time)
and multiple granularities (e.g., city, district, country). Data is presented under
the form of a cube. A cube can be seen as a set of cells, and a cell represents
the association of a measure with one member in each dimension. For example,

1

if dimensions are products, stores and days, the measures of a particular cell
can be the sales of one product in a particular store on a given day.

The user is provided with a set of operators for navigating through the data
set to identify interesting and relevant patterns. This navigation is a query-
driven process, and a number of proposals have investigated formal models and
languages to this end (see [6, 10] for surveys). Obviously, as the size and the
dimensionality of the data set increase, the whole process becomes very tedious
and complex. To deal with this complexity, it has been recently pointed out
[9, 8] that the manual effort spent in analysis could be reduced by anticipating
the user strategy.

In typical OLAP analysis, the strategy is mostly based on observing the
measures, whereas most of the OLAP restructuring operators are parameterized
by members.

For example, consider the cube of Figure 1 (a). This cube displays sales
of beer, milk, soda, water and wine in different continents during year 2000.
Assume that the analyst wants to visualize the sales having the highest values
on the one hand, and the lowest values on the other hand. The way the cube
is represented does not provide such a visualization easily, because the cells are
displayed according to the lexical ordering of the members in each dimension,
and not according to the measures. On the other hand, it can be seen that
the cube of Figure 1 (b) contains the same information as that of Figure 1 (a),
but displays the sales in an appropriate way for the analyst. Indeed, the lowest
values of sales are located down-left in the cube, whereas the highest values are
located top-right. It should be noticed from the example that a clear distinction
between a cube and its representation is needed here. This is precisely what we
propose in this paper.

In our approach, the representation of an n-dimensional cube consists of
n functions, each of them being a numbering of the members of a dimension.
Given a cube C and one of its representations R, we assume that C is displayed
according to the ordering defined by R. For example, the numbering defining
the dimension product for the representation (a) of Figure 1 associates beer
with 1, milk with 2, soda with 3, water with 4 and wine with 5. The numbering
defining this dimension for the representation (b) associates beer with 1, water
with 2, milk with 3, wine with 4 and soda with 5.

Representation (b) of Figure 1 can be interactively constructed by the user
from representation (a) via some restructuring operators proposed in the OLAP
context. These operators allow users to change the representation of the cube
but not its logical structure: the association between one member in each di-
mension and the measure is preserved. For example, the switch operator [5, 6]
allows users to exchange the position of 2 members on the axis corresponding
to a given dimension while preserving the cells. The order over the columns in
representation (b) of Figure 1 can be obtained from representation (a) by 1/
switching milk and soda, 2/ switching soda and wine and 3/ switching wine
and water.

As a contribution to automating OLAP analysis, we propose to study how
to arrange the representation of the cube according to its measures. We believe

2

year 2000 sales
Africa 3 5 6 3 5

America 4 6 7 5 7
Asia 2 4 6 2 5

Europe 4 5 7 4 6
beer milk soda water wine

(a)

year 2000 sales
America 4 5 6 7 7
Europe 4 4 5 6 7
Africa 3 3 5 5 6
Asia 2 2 4 5 6

beer water milk wine soda

(b)

Figure 1: A 2-dimensional cube before and after restructuring

that computing appropriate representations can help to identify patterns which
would otherwise remain unknown to the user. This contributes also to obtain
the result of typical OLAP ranking queries like top-n.

We notice that even dimensions that are inherently ordered like e.g., time,
can be rearranged so as to make some patterns apparent. For example, consider
the cube of Figure 2 that displays monthly sales of chocolate in various regions.
In representation (a) the months are depicted in the standard ordering, whereas
in representation (b) the ordering is imposed by the measures. Representation
(b) can be exploited by the analyst to discover that e.g., chocolate sales are the
highest around new year and easter.

This paper presents a framework for investigating the quality of cube repre-
sentations. Obviously there may be several ways of considering what an appro-
priate representation is and how to reach it.

Concerning appropriate representations, we define a cell as misplaced if there
exists at least one other cell with lower measure and with greater or equal
numberings in all dimensions. For example, the cell containing the sales of
soda in Europe is misplaced in representation (a) of Figure 1. Indeed the cell
containing the sales of water in Europe 1/ contains a lower measure and 2/ has
greater numbering in dimension product, and the same numbering in dimension
continent. We call appropriate the representations having the least number of
misplaced cells, and we study the problem of finding these representations. To
this end, we show that the switch operation proposed in the context of OLAP
[5, 6] is the basic operator that allows us to compute these representations.

The main results of the paper are:

• First, we define a measurement for the quality of the representation of a

3

chocolate sales
east 8 5 4 6 6 3 1 0 2 4 5 7

north 9 5 5 7 7 4 1 1 3 4 6 8
south 7 3 2 5 4 1 0 0 1 2 3 5
west 6 3 3 6 5 2 0 0 1 2 4 7

jan feb mar apr may jun jul aug sep oct nov dec

(a)

chocolate sales
north 1 1 3 4 4 5 5 6 7 7 8 9
east 0 1 2 3 4 4 5 5 6 6 7 8
west 0 0 1 2 2 3 3 4 5 6 7 7
south 0 0 1 1 2 2 3 3 4 5 5 6

aug jul sep jun oct mar feb nov may apr dec jan

(b)

Figure 2: Restructuring a 2-dimensional cube with an inherently ordered di-
mension

cube by computing the number of its misplaced cells, and

• Second, we identify several problems related to the representation of cubes
w.r.t. this measurement:

– Test for the existence of a representation with no misplaced cells
(called a perfect representation. Representation (b) of Figure 1 is an
example of a perfect representation). In this case, we give a sequence
of restructuring operations for reaching such a representation, if it
exists, and we compute the total number of perfect representations.
We show that this problem is polynomial with respect to the size of
the cube.

– If no representation having no misplaced cells exists, we outline the
problems of finding representations having the least number of mis-
placed cells.

Related work A variant of the switch operator has been defined in [5] in
the context of 2-dimensional tabular databases. This operator allows users to
exchange two rows of a matrix regardless of the status of the rows (members and
measures are treated uniformly). However, in [5], the authors did not consider
the problem of using this operation to restructure matrices in a more appropriate
way for the user.

In [7], Mäkinen and Siirtola study the problem of reordering tabular repre-
sentations by interchanging rows and columns. They show that in general this

4

problem is NP-complete. The problem of computing a perfect representation of
a n-dimensional cube we consider in this paper can be seen as a particular case
of the problem studied by Mäkinen and Siirtola. In our approach, the defini-
tion of perfect representation allows to propose polynomial time algorithms for
computing such representations.

In [8, 9], Sarawagi & al. propose a new set of operators for reducing the
number of roll-ups and drill-downs (changing the granularity of the representa-
tion) needed to discover abnormalities or to explain drops or increases in the
values of the measures. Their work concentrates on the “vertical” aspect of
OLAP data where the link between aggregated data is exploited.

While our motivations are essentially the same as the authors of [8, 9], our
work is orthogonal to their approach in the sense that we concentrate on the
“horizontal” aspect of OLAP data. Our goal is to reduce the number of re-
structuring operations used during the analysis. We are interested in the rep-
resentation of the data at a given level and we do not take granularity into
account.

The paper is organized as follows. The next section introduces basic defini-
tions on the multidimensional data model, on the notion of representation, and
on the quality measurement. In Section 3, we define the problems of finding
appropriate representations, and in Section 4 we study and solve the particular
problem of computing a perfect representation. We conclude and discuss future
work in Section 5.

Due to lack of space, proofs are omitted and can be found in [2].

2 Preliminaries

In this section, we give the formal definitions of the concepts used in this paper.
The terminology concerning OLAP (members, measures, ...) is that of [6].

2.1 The multidimensional model

In our model, we distinguish a cube from its representation. Intuitively, a cube
is a logical multidimensional structure, and a representation can be seen as a
way of displaying the cube to the analyst.

Definition 2.1 An n-dimensional cube, or simply a cube, is a tuple 〈C, dom1, . . . ,
domn, domm,mC〉 where

• C is the name of the cube,

• dom1, . . . , domn are n finite sets of symbols for the members associated
with dimension 1, . . . , n, respectively,

• let dommes be a finite totally ordered set of measures. Let ⊥ be a constant
not in dommes used to represent null values. Then domm = dommes∪{⊥},
and ⊥ cannot be compared to the elements of dommes,

5

• mC is a mapping from dom1 × . . .× domn to domm.

In what follows, we denote by |domi| the cardinality of domi for every di-
mension i.

Definition 2.2 A representation RC = {rep1, . . . , repn} of a cube 〈C, dom1,
. . . , domn, domm,mC〉 is a set of n bijective mappings rep1, . . . , repn such that
for every i ∈ [1, n], repi is a mapping from domi to the initial segment of N
{1, . . . , |domi|}. The set of all different representations of a cube 〈C, dom1,
. . . , domn, domm,mC〉 is denoted by SRC .

Given a representation R of a cube C, for every i in [1, n] and for every
m ∈ domi, repi(m) is called the position of m on dimension i in R.

Note that the notion of representation we propose does not associate a di-
mension with a particular axis (e.g., for 2-dimensions the vertical axis or the
horizontal axis) for displaying the members. Only the relative position of the
members in one dimension is relevant. On each dimension i, the values of domi

are ordered according to their representation repi. In other words, placing value
m of domi at the jth position means that repi(m) = j.

The cardinality of SRC (i.e., the number of different representations of C)
is the product of the number of different rep mappings for each dimension.
Therefore, we have |SRC | = Πi∈[1,n](|domi|!).
Example 2.1 Consider the 2-dimensional cube
〈C, {a, b}, {x, y}, {1, 2, 3, 4},mC〉, where mC(a, x) = 1,mC(a, y) =
2,mC(b, x) = 3,mC(b, y) = 4. The number of different representations of this
cube is 2!×2! = 4. These representations, called R1, R2, R3 and R4 respectively,
are displayed below. The representation R1 is the set {rep1, rep2} where rep1

and rep2 are defined by rep1(a) = 2, rep1(b) = 1, rep2(x) = 1, rep2(y) = 2.
As a convention throughout the paper, in this 2-dimensional example and the
other examples, the horizontal axis is oriented from left to right and the vertical
axis is oriented from bottom to top.

R1

a 1 2
b 3 4

x y

R2

b 3 4
a 1 2

x y

R3

b 4 3
a 2 1

y x

R4

a 2 1
b 4 3

y x

We note that all of these representations are different representations of the
same cube C. Indeed, in C, we have for instance mC(a, y) = 2, which holds in
R1, R2, R3 and R4. The representations differ only in the ordering according to
which the rows and the columns are displayed. On the other hand, the table
below is not a representation of C since for instance, the measure associated
with 〈a, y〉 is not 2.

a 1 3
b 2 4

y x

6

2

A cell is the association of a member in each dimension with a measure.

Definition 2.3 A cell c of a cube 〈C, dom1, . . . , domn, domm,mC〉, is a
tuple 〈m1, . . . ,mn,m〉 where ∀i ∈ [1, n],mi ∈ domi,m ∈ domm and
mC(m1, . . . ,mn) = m.

A cell c of a cube C is an element of the graph of the function mC . Therefore
we feel allowed to consider a cube C as the set of its cells, and we write c ∈ C
to mean that c is a cell of C. A cell containing ⊥ is called an empty cell.

Let 〈C, dom1, . . . , domn, domm,mC〉 be a cube, RC = {rep1, . . . , repn} a
representation of C and c = 〈m1, . . . ,mn,m〉 a cell of C. The position of c
in C according to RC is the tuple 〈x1, . . . , xn〉 where repi(mi) = xi, for every
i ∈ [1, n].

Note that the position of a cell in a representation is only based on the
functions repi. This means that the position is invariant w.r.t. a rotation of the
cube.

Example 2.2 Consider representation R1 of Example 2.1. For this representa-
tion, the position of the cell c1 = 〈a, x, 1〉 is the tuple 〈2, 1〉, and the position of
the cell c4 = 〈b, y, 4〉 is the tuple 〈1, 2〉. 2

2.2 Cell arrangement

We can now define the ordering over cell positions.

Definition 2.4 Let 〈C, dom1, . . . , domn, domm,mC〉 be a cube and RC =
{rep1, . . . , repn} a representation of C. Let c = 〈m1, . . . ,mn,m〉 and c′ =
〈m′1, . . . ,m′n,m′〉 be two cells of C. We define the relation ≺RC as a partial
ordering over cells by c ≺RC c′ ⇐⇒ ∀i ∈ [1, n], repi(mi) ≤ repi(m′i).

Example 2.3 Consider the cube of Example 2.1. This cube has cells c1 =
〈a, x, 1〉, c2 = 〈a, y, 2〉, c3 = 〈b, x, 3〉, and c4 = 〈b, y, 4〉. Considering the repre-
sentation R1, we have c3 ≺R1 c1 , c3 ≺R1 c2 , c3 ≺R1 c4 , c1 ≺R1 c2 , c4 ≺R1 c2.
Note that c1 cannot be compared with c4 w.r.t. ≺R1 . 2

Now, we define what we call a misplaced cells.

Definition 2.5 Let 〈C, dom1, . . . , domn, domm,mC〉 be a cube and RC a rep-
resentation of C. A cell c = 〈m1, . . . ,mn,m〉 of C is misplaced w.r.t. RC if
m 6=⊥, and

• ∃c1 = 〈m′1, . . . ,m′n,m′〉 ∈ C such that c ≺RC c1 and m > m′, or

• ∃c2 = 〈m′′1 , . . . ,m′′n,m′′〉 ∈ C such that c2 ≺RC c and m′′ > m.

7

For a cube C, a representation RC of C and a cell c ∈ C, we define the function
fRC (c) = 1 if c is misplaced w.r.t. RC , 0 otherwise.

Then, the measurement we propose is simply the total number of misplaced
cells in a cube.

Definition 2.6 Given a cube C and a representation RC of C, we define
MRC (C) by MRC (C) =

∑
ci∈C fRC (ci). MRC (C) is the total number of mis-

placed cells in C w.r.t. the representation RC .

With this measurement, we can characterize the representations of a cube.

Definition 2.7 Let 〈C, dom1, . . . , domn, domm,mC〉 be a cube and let SRC be
the set of all representations of C.

• A representation RC of C is a Perfect Representation (PR) ifMRC (C) = 0.

• A representation RC of C is an Optimal Representation (OR) if @R′C ∈
SRC ,MR′C

(C) < MRC (C).

Obviously for a given cube, a PR may not exist, and there exists at least
one OR. Moreover, if a PR exists it may not be unique.

Example 2.4 Consider the representations R1 and R2 of the cube C in Example
2.1. The number of misplaced cells in R1 is MR1(C) = 4, whereas R2 is a PR of
C (i.e., MR2(C) = 0). Now if we consider the table below as a representation of
a cube, there exists no PR of this cube. This is so because the lowest and highest
measures are on the same row. Since this must hold in every representation of
the cube although this cannot hold in any PR, this cube has no PR.

2 3
1 4

2

3 The problems

In this section we study the problems of using the measurement of Definition
2.6 to find appropriate representations of cubes. We first define the operation
used to change the representation of a cube.

8

3.1 Arranging the cube

The switch operation [5, 6] is an OLAP operation that consists in interchanging
the positions of two members of a dimension of a cube. In our framework, the
switch operation is the basic operation to go from one representation of a cube
to another.

Definition 3.1 Let 〈C, dom1, . . . , domn, domm,mC〉 be a cube and SRC the
set of all representations of C. A switch on dimension j of members p and
q, denoted by switch(j, p, q), is a function from SRC to SRC such that, for
every RC = {rep1, . . . , repn} in SRC , switch(j, p, q)(RC) = R′C where R′C =
{rep′1, . . . , rep′n} is defined by:

• for every i in [1, n], if i 6= j, then repi = rep′i,

• repj(p) = rep′j(q) and repj(p) = rep′j(q)

• for every m in domj different than p and q, repj(m) = rep′j(m).

Notice that according to the first point of Definition 3.1, applying a switch
operation on two members in one dimension leaves unchanged the positions of
the members in the other dimensions.

Example 3.1 Consider the cube of Example 2.1 and its representations R1 and
R2. R2 is the result of the operation switch(1, a, b) applied to R1. In other
words, R2 = switch(1, a, b)(R1). 2

Definition 3.2 A finite composition of switches is called an arrangement.

Example 3.2 Consider the representations of Example 2.1. We
have switch(1, a, b)(R1) = R2, switch(2, x, y)(R2) = R3. Thus
switch(2, x, y)(switch(1, a, b)(R1)) = R3. Therefore, R3 = arr(R1) where arr
is the arrangement defined by switch(2, x, y) ◦ switch(1, a, b). 2

As for the switch operation, it is obvious that applying an arrangement
involving only one dimension leaves the position of the members of the other
dimensions unchanged.

The following proposition shows that all representations of a cube can be
obtained through arrangements.

Proposition 3.1 Let 〈C, dom1, . . . , domn, domm,mC〉 be a cube and let SRC be
the set of all representations of C. Given any two representations R1 and R2

of SRC , there exists an arrangement arr such that arr(R1) = R2.

9

3.2 The Perfect Representation problem

We are interested in the following problem that we call the Perfect Represen-
tation (PR) problem: For a given cube and a given representation of this cube,
test whether there exists at least one PR, and if so, compute one PR. If more
than one PR exists, then compute the total number of PRs.

The approach we use to present the algorithms for solving the PR problem is
the following: We first consider the simple case of a cube for which at least one
row in each dimension contains no duplicates and no null values. This gives rise
to a basic algorithm for solving the PR problem. Then we consider cubes for
which no such row exists, and we concentrate on dealing with duplicates in the
absence of null values. Then we concentrate on dealing with null values in the
absence of duplicates. Finally, we give the algorithm that solves the PR problem
in the general case of cubes where duplicates and null values can appear in any
rows.

We now introduce formally the notion of row for the sake of readability.
Intuitively, a row is a set of cells where all coordinates but one are fixed.

Definition 3.3 Let 〈C, dom1, . . . , domn, domm,mC〉 be a cube. A row r in
dimension k is the set of cells of C {〈m1, . . . ,mk−1, j,mk+1, . . . ,mn,m〉 | j ∈
domk}. This row is identified by the tuple 〈m1, . . . ,mk−1,mk+1, . . . ,mn〉, where
mi ∈ domi for every i in [1, k − 1] ∪ [k + 1, n].

As for cells and cubes, we feel allowed to denote by r ∈ C the fact that every
cell belonging to r also belongs to C.

Given a representation R = {rep1, . . . , repk, . . . , repn} of a cube, a row r in
dimension k, and a cell c = 〈m1, . . . ,mk, . . . ,mn,m〉 of r, the position of c in r
is simply repk(mk).

Definition 3.4 Let 〈C, dom1, . . . , domn, domm,mC〉 be a cube, let RC be a
representation of C. A row r is sorted in RC if ∀c = 〈m1, . . . ,mn,m〉, c′ =
〈m′1, . . . ,m′n,m′〉 ∈ r with m 6=⊥ and m′ 6=⊥, c ≺RC c′ =⇒ m ≤ m′. Otherwise
the row r is unsorted.

Given a representation R and a row r in dimension k, sorting r is simply
changing repk. Note that in a sorted row, empty cells can appear anywhere.
Based on usual algorithms for sorting one-dimensional arrays, we have the fol-
lowing lemma.

Lemma 3.2 For a given cube C, a given representation RC of C and a given
row r there is an arrangement that sorts the row r.

If r is a row and R is a representation, sorting a row means applying an
arrangement to R so that r is sorted in the resulting representation. Obviously,
sorting a row in dimension k implies assigning a position to the members of
domk.

10

Example 3.3 Consider Example 2.1. The row 〈y〉 is the set {〈a, y, 2〉, 〈b, y, 4〉}.
Moreover, this row is sorted in R2. 2

The following theorem, of which the proof is an immediate consequence of
Definition 2.5, is the basic result on which rely all proofs of the subsequent
propositions and corollaries.

Theorem 3.3 A representation of a cube is a PR if and only if every row in
every dimension is sorted.

This theorem implies that each dimension of a cube can be processed inde-
pendently when computing a PR. In the following section, we propose algorithms
for solving the PR problem in the following cases:

• Case 1: A row with no duplicates and no null values exists in each dimen-
sion

• Case 2: Each row of the cube can contain duplicates but no null values,

• Case 3: Each row of the cube can contain null values but no duplicates,

• Case 4: Each row of the cube can contain both duplicates and null values.

4 Solving the PR problem

4.1 Case 1: A row with no duplicates and no null values
exists in each dimension

We first consider the case where at least one row in every dimension contains no
duplicates and no null values. In this case, we show that the existence of a PR
can be efficiently tested by sorting only one row in each dimension. Moreover,
when a PR actually exists, it is unique and our method computes it. Our
method is based on the following propositions and corollary.

Proposition 4.1 Let C be a cube such that at least one row in every dimension
contains no duplicates and no null values. There exists at most one PR of C.

Proposition 4.2 Let C be a cube such that at least one row in every dimension
contains no duplicates and no null values. If there exists a representation such
that for one dimension, a row r containing no duplicates and no null values is
sorted and another row r′ is unsorted, then there exists no PR.

Corollary 4.3 Let C be a cube such that at least one row in every dimension
contains no duplicates and no null values, and for which a PR exists. Let R
be a representation of C. If in R one row containing no duplicates and no null
values is sorted in each dimension, then R is a PR.

11

At this point, a simple algorithm can be given to solve the PR problem for
a cube where one row in every dimension contains no duplicates and no null
values.

Algorithm 4.1
Input: A representation of a cube C
Output: The PR of C or the indication “no PR”

for each dimension k of C do

choose a row r in dimension k containing no duplicates and no null values

sort r

for every other row r′ in dimension k do

check if r′ is sorted

if r′ is unsorted then

exit with output “no PR”

Based on the previous propositions and corollary, we can present the follow-
ing Theorem.

Theorem 4.4 Let C be a cube such that at least one row in every dimension
contains no duplicates and no null values. Let R be a representation of C. If the
call to Algorithm 4.1 outputs “no PR” then there exists no PR of C. Otherwise,
the output is the only PR of C.

Algorithm 4.1 is polynomial in the number of cells of the cube, since it
only sorts one-dimensional arrays (one row in each dimension) or tests if one-
dimensional arrays are sorted.

4.2 Case 2: Dealing with duplicates

We consider in this section cubes for which duplicates but no null values can
appear in a row. In this case, sorting a row in each dimension is necessary but is
no more sufficient for computing a PR. For instance, consider the cube of which
representations R1 and R2 are depicted below. Sorting row 〈a〉 may lead to
representation R1 which is not perfect, since row 〈b〉 is unsorted. On the other
hand, sorting row 〈b〉 leaves row 〈a〉 sorted and gives a PR.

R1

b 4 3
a 1 1

x y

R2

b 3 4
a 1 1

y x

12

Definition 4.1 Let C = 〈dom1, . . . , domn, domm,mC〉 be a
cube, R = {rep1, . . . , repn} be a representation of C, and r =
〈m1, . . . ,mk−1,mk+1, . . . ,mn〉 be a row of dimension k. A se-
quence of duplicates in r is an interval I = [i1, i2] of N such
that for all i, j ∈ I, mC(m1, . . . ,mk−1, rep

−1
k (i),mk+1, . . . ,mn) =

mC(m1, . . . ,mk−1, rep
−1
k (j),mk+1, . . . ,mn). Given a row r, a sequence of

duplicates I in r is maximal if there is no sequence of duplicates J in r such
that I ⊂ J .

Given a representation of a cube, a row r in dimension k, and an interval I
of N, the contiguous part of r w.r.t. I is defined by:

rI = {c ∈ r | c = 〈m1, . . . ,mk, . . . ,mn,m〉 and repk(mk) ∈ I}.

Proposition 4.5 Let C be a cube and R a representation of C. Let r be a sorted
row in R containing p maximal sequences of duplicates I1, . . . , Ip. If there exists
a row r′ in the same dimension that is still unsorted after having sorted every
contiguous part of r′ w.r.t. I1, . . . , Ip, then there exists no PR.

Example 4.1 Consider a cube of which representations R1 and R2 are depicted
below. Suppose we sort row 〈b〉 first, so as to obtain representation R1. The
next step is to sort row 〈a〉 without affecting row 〈b〉. The only possibility is to
switch members x and y. Once done, we obtain representation R2 where row
〈a〉 is still unsorted. Therefore, according to Proposition 4.5 above, there is no
PR of this cube.

R1

a 4 3 1
b 1 1 2

x y z

R2

a 3 4 1
b 1 1 2

y x z

2

At this point we can give an algorithm that outputs a PR of a cube where
the rows contain duplicates but no null values, if any. Otherwise, the algorithm
indicates that no PR exists.

Algorithm 4.2
Input: A representation of an n-dimensional cube C
Output: A PR of C or the indication “no PR”
Variable: Two sets D and D′ of sequences of duplicates

for each dimension k of C do

let D = {I} with I = [1, |domk|]

choose a row r in dimension k

repeat until every row is marked

13

sort rI for every I ∈ D
check if r is sorted

if r is unsorted then

exit with output “no PR”

else

for each I in D do

D′ = ∅
compute I1, . . . , Ip the sequences of duplicates in rI
D′ = D′ ∪ {I1, . . . , Ip}

D = D′

mark r

choose an unmarked row r

The following Theorem is a consequence of Proposition 4.5.

Theorem 4.6 Let C be a cube for which each row can contain duplicates but
no null values. Let R be a representation of C. If the call to Algorithm 4.2
outputs “no PR” then there exists no PR of C. Otherwise, the output is a PR
of C.

It is easy to see that this algorithm is polynomial in the number of cells of
the cube.

Computing the total number of PRs in this case. Given a cube C for
which each row can contain duplicates but no null values, more than one PR
of C might exist. To compute the total number of PRs in this case we need to
define what are identical slices in this context. We begin with the definition of
a slice.

Definition 4.2 Let 〈C, dom1, . . . , domn, domm,mC〉 be a cube. A slice s in
dimension k is the set of cells of C {〈j1, . . . , jk−1,mk, jk+1, . . . , jn,m〉 | ji ∈
domi, i ∈ [1, k−1]∪[k+1, n]}. This slice is identified by the member mk ∈ domk.

As for cells, cubes and rows, we feel allowed to denote by s ∈ C the fact that
every cell belonging to slice s also belongs to C.

Definition 4.3 Let C be a n-dimensional cube. Let s and s′ be two slices in di-
mension k. s and s′ are identical for a given representation R of C if for each pair
of cells c = 〈m1, . . . ,mk, . . . ,mn,m〉 ∈ s and c′ = 〈m′1, . . . ,m′k, . . . ,m′n,m′〉 ∈
s′, repi(mi) = repi(m′i) =⇒ m = m′, for all i ∈ [1, k − 1] ∪ [k + 1, n].

Based on Definition 4.3 above, we have the following proposition:

14

Proposition 4.7 Let C be a n-dimensional cube and SRC be the set of every
representation of C. Let R be a particular representation of C. Let s and s′

be two slices in dimension k. If s and s′ are identical for R then s and s′ are
identical for every representation R′ ∈ SRC .

It appears that the number of different PRs depends on the presence of
identical slices within a dimension. Indeed

• switching two identical slices of a PR gives another PR, and

• computing a PR from a PR means applying an arrangement that preserves
the order of every row, which can be done only if the arrangement involves
only identical slices.

Proposition 4.8 Let C be a cube of which a PR exists. Then there exists more
than one PR of C if and only if C contains at least two identical slices in one
of its dimensions.

It is to be noticed that, if one looks only at the measures, every PR of a cube
looks the same. The following corollary allows to compute the total number of
PRs in this case.

Corollary 4.9 Let C be an n-dimensional cube and R be a PR of C. Let pi
be the number of different sets of identical slices in dimension i ∈ [1, n], and let
mi
j , j ∈ [1, pi], be the cardinality of each such set in dimension i. Then the total

number of PRs is Πi∈[1,n](Πj∈[1,pi](m
i
j !)).

Therefore, outputting every PR is clearly not polynomial. However comput-
ing the total number of PRs can be done by counting the number of identical
slices in each dimension, which is polynomial.

4.3 Case 3: Dealing with null values

In what follows, we assume that the rows of a cube can contain null values but
no duplicates. We recall from Definition 2.5 that changing the position of a
null value in a row does not affect the fact that the row is sorted or not. Thus,
a row containing null values can be sorted in different ways, which results in
more flexibility when looking for PRs. For instance, consider the cube of which
representations R1 and R2 are depicted below. Sorting row 〈a〉 may lead to
representation R1 which is not perfect, since row 〈b〉 is unsorted. On the other
hand, sorting row 〈b〉 does not affect the fact that row 〈a〉 is still sorted, and
gives a PR.

R1

b 4 3
a 1 ⊥

x y

R2

b 3 4
a ⊥ 1

x y

15

This flexibility for sorting rows imposes that many combinations have to
be explored when looking for PRs. For example, suppose we must arrange the
following representation.

...
...

...
...

...
...

b 1 ⊥ 4 2 ⊥
a 1 2 3 ⊥ ⊥

v w x y z

Suppose we have sorted row 〈a〉 and we must sort row 〈b〉. As ⊥ can be
placed anywhere, the following two possibilities are valid.

b 1 2 ⊥ 4 ⊥
a 1 ⊥ 2 3 ⊥

v y w x z
b ⊥ 1 ⊥ 2 4
a ⊥ 1 2 ⊥ 3

z v w y x

We begin with an example to illustrate the intuition of the algorithm used
to compute a PR in this case, if it exists.

4.3.1 Intuition of the method

We illustrate the algorithm on the following representation R1.

c1 c2 c3 c4
r1 7 ⊥ 5 ⊥
r2 4 8 ⊥ 3
r3 ⊥ 6 2 ⊥

Note that as for the previous cases, dimensions can be treated independently.
Hence we consider only the horizontal dimension in the example. Our method
consists mainly in three steps that are explained below.

Step 1: Sort one row. We begin by sorting a row in the considered dimen-
sion, by treating ⊥ as being greater than every other measure. Suppose we sort
row 〈r1〉. We obtain the following representation R2.

c3 c1 c2 c4
r1 5 7 ⊥ ⊥
r2 ⊥ 4 8 3
r3 2 ⊥ 6 ⊥

Then we check if the first two cells of each row are sorted. Since it is the
case in our example, this means that a PR might exist. Thus we proceed to the
next step.

16

Step 2: Compute intervals. We now consider row 〈r2〉. We sort the last
two cells of this row, and we obtain the following representation R3.

c3 c1 c4 c2
r1 5 7 ⊥ ⊥
r2 ⊥ 4 3 8
r3 2 ⊥ ⊥ 6

Since the last two cells of each row are sorted, a PR might exist. Thus we
continue the current step by trying to find a valid position among the first three
positions of 〈r2〉 for the cell at position 〈r2, c4〉 in 〈r2〉. Since this cell contains
3, it should be on the left hand side of the cell containing 4 at position 〈r2, c1〉,
i.e., in column 1 or 2. Then we associate this cell with the interval [1, 2]. The
cell containing ⊥ at position 〈r3, c4〉 can be placed anywhere among the first
three positions in 〈r3〉, thus we associate it with the interval [1, 3]. Hence row
〈c4〉 can be placed either at the first or at the second position, i.e., the interval
of possible valid positions for 〈c4〉 is [1, 2] ∩ [1, 3] = [1, 2].

We apply the same reasoning to find an interval of valid positions for the
cell containing 8 at position 〈r2, c2〉. It should be placed on the right hand side
of the cell containing 4. Then 〈c2〉 should be placed after c1 and we associate
the interval [3, 3] with this cell. The cell containing 6 at position 〈r3, c2〉 should
be placed on the right hand side of the cell containing 2. Then 〈c2〉 should be
placed after 〈c3〉 and we associate the interval [2, 3] with this cell. Therefore the
possible valid positions for 〈c2〉 are given by [3, 3] ∩ [2, 3] = [3, 3], meaning that
〈c2〉 must be the row right after 〈c1〉.

Step 3: Arrange in intervals. We first choose a position for 〈c4〉 since the
interval computed at step 2 above is [1, 2]. Assume that we choose 1. This
entails that rows 〈c3〉 and 〈c1〉 have to be shifted to the right for 〈c4〉 to be the
first row in this dimension. This implies that the interval of positions for 〈c2〉
must now be [4, 4] instead of [3, 3]. So we obtain the following representation
R3.

c4 c3 c1 c2
r1 ⊥ 5 7 ⊥
r2 3 ⊥ 4 8
r3 ⊥ 2 ⊥ 6

Since 〈c2〉 has not to be moved, the algorithm stops for this dimension, and
rows 〈r1〉, 〈r2〉 and 〈r3〉 are sorted. Applying the same method to the rows 〈c1〉,
〈c2〉, 〈c3〉 and 〈c4〉 does not change the representation if we first consider 〈c2〉
as we did for 〈r1〉. As a consequence, R3 is a PR.

4.3.2 The algorithm

In order to present the algorithm implementing our method, we need the fol-
lowing definitions.

17

Definition 4.4 Let C be a n-dimensional cube, k a dimension of C and R a
representation of C. The set rowk is the set of rows in dimension k, that is
rowk = {r = 〈m1, . . . ,mk−1,mk+1, . . . ,mn〉 ∈ C

| mi ∈ domi for every i in [1, k − 1] ∪ [k + 1, n]}.
Given an interval I = [a, b] with a < b ≤ |domk|, rowIk is the set of rows in
dimension k w.r.t. I. That is rowIk = {rI | r ∈ rowk}.

Intuitively, rowIk is the set of all slices s in dimension k such that repk(s) ∈ I.
As in the example above, we consider only one particular dimension k. Given

a particular representation R of a cube C, we first sort a chosen row r in
dimension k, such that all cells of r containing ⊥ are located at the right hand
side of r. To this end, we use a function called extSort(R, r, I) where R is a
representation, r is a row and I is an interval, that sorts rI by considering that
⊥ is greather than any other measure of dommes.

The representation R1 = extSort(R, r, [1, |domk|]) we obtain partitions the
rows in rowk into two parts (Figure 3 is an example in a 2-dimensional case):

1. The first part p1 = [1, i] corresponds to the members of dimension k for
which the cells of row r contain no null values.

2. The second part p2 = [i + 1, |domk|] corresponds to the members of di-
mension k for which the cells of row r contain only null values.

Concerning point 1 above, we use a function called testOrder(R, k, p1) that
tests if every row in rowp1

k is sorted. Based on Proposition 4.2, we have the
following lemma, stating that if at least one row in rowp1

k is unsorted, then
there exists no PR.

Lemma 4.10 Let C be a cube, k be a dimension of C, r be a row of C in
dimension k, and I be an interval. Let R′ be the output of extSort(R, r, I). If
the computation of testOrder(R′, k, I) outputs false then there exists no PR of
C.

Suppose we are in the case where every row in rowp1
k is sorted, then a PR

might exist. In this case, we consider another row r′ of the same dimension
k. We sort the part r′p2

of r′ by calling extSort(R1, r
′, p2). Let R2 be the

representation obtained. With representation R2 we obtain an interval p3 ⊆ p2

such that r′p3
is the contiguous part of r′p2

containing no null values (see Figure
4). Note that if p3 = p2 then this row has not to be considered. For notational
convenience, we assume that p1 = [1, i] and that p3 = [i+ 1, j].

For the representation R2, we check if every row of rowp3
k is sorted by calling

the function testOrder(R, k, p3). By Lemma 4.10, if the function returns false
then there exists no PR.

Assuming that every row in rowp3
k is sorted, we now want to find a repre-

sentation where row[1,j]
k is sorted. To this end, we define the notion of valid

positions for a cell in a contiguous subpart of a row as follows:

18

nullsr

p1 p2i i+1
(sorted)

non null

Figure 3: First call to extSort

Definition 4.5 Let r be a row in dimension k of a cube C and R be a repre-
sentation of C such that rI is sorted for a given interval I = [α, β]. Given a
cell c = 〈m1, . . . ,mn,m〉 of r that does not belong to rI , let Sup and Inf be
defined as follows:

• Sup = {λ = repk(mλ
k) | ∃c′ = 〈m′1, . . . ,mλ

k , . . . ,m
′
n,m

′〉 m > m′, α ≤ λ ≤
β}

• Inf = {µ = repk(mµ
k) | ∃c′ = 〈m′1, . . . ,m

µ
k , . . . ,m

′
n,m

′〉 m < m′, α ≤ µ ≤
β}

The interval of valid positions of c in rI is the interval J = [a, b] defined as
follows:

1. If Sup = ∅ then a = α, otherwise a = max(Sup) + 1,

2. If Inf = ∅ then b = β + 1, otherwise b = min(Inf).

Let p′1 = [1, i+ 1]. If we find an interval I of valid positions in r′p1
for a cell

c in r′p3
, then we can find an arrangement leading to a representation where the

position of c is in I and where r′p′1 is sorted. Note that if such a representation
exists, then rp′1 is also sorted since all cells of rp3 contain ⊥.

Note also that such an interval always exists, and that it might not be
restricted to one position (see Figure 5).

19

r

p1 p2

r’

(sorted)

nulls

nulls

p4p3

i j

non null

Figure 4: Sorting part rp3

The problem now becomes: for a representation R such that rowp
′′
1
k is sorted

with p′′1 = [1, x − 1], find an interval I of valid position in r′p′′1
for the cell c at

position x in r′ such that I is also an interval of valid positions in r′p′′1 for every
cell belonging to slice mk.

Definition 4.6 Let C be a cube and R a representation of C. Let r be a row
in dimension k, I be an interval and c = 〈m1, . . . ,mk, . . . ,mn,m〉 be a cell of r
that does not belong to rI . The interval of valid positions in rowIk for c is the
interval J =

⋂
Ic′ , where Ic′ is the interval of valid positions in rI for each c′

belonging to slice mk.

At this point, we use a function called computeInterval that computes an
interval J of valid positions in rowp1

k for a cell c = 〈m1, . . . ,mk, . . . ,mn,m〉.
This function performs the following two steps (Figure 6):

1. for each c′ belonging to slice mk compute Ic′

2. compute J =
⋂
Ic′ and return J .

The function computeInterval is as follows:

20

r

p1

r’ 2

(sorted)

3

nulls

p3

5

I

Figure 5: Finding an interval of valid positions in p1 for a cell in p3

Algorithm 4.3
Function: computeInterval
Input: a representation R, a dimension k, a contiguous subpart rI of a row r, a cell
c = 〈m1, . . . ,mk, . . . ,mn,m〉 of r
Output: an interval of valid positions for c in rowk or ∅
Variable: a list L of intervals

L = ∅
for each c′ belonging to slice mk do

compute Ic′ the interval of valid positions for c′ in rI

add I ′c to L

compute J =
⋂
Ic′∈L

Ic′
return J

If the interval J computed by this function is empty, then there exists no
PR, as stated by the following lemma.

Lemma 4.11 Let C be a cube, R be a representation of C, r be a row of
C in dimension k, I = [a, b] be an interval and c be a cell of r. If the call to
computeInterval(R, k, rI , c) outputs ∅ then there exists no PR of C. Otherwise,
if the function outputs the interval J 6= ∅, then there exists a representation of

21

r

p1

r’

4

(sorted)

r” 5 68

r

p1

r’ 2

(sorted)

3

nulls

p3

5

I

7

Figure 6: Computing the interval of valid positions in rowp1
k

C such that the position of c in r belongs to J and every row in row
[a,b+1]
k is

sorted.

We call this function for every cell in r′p3
. Suppose a non empty interval Ic

exists for every such cell c. We call L the list of all such intervals. Note that
for each pair of cells c = 〈m1, . . . ,mn,m〉, c′ = 〈m′1, . . . ,m′n,m′〉 of r′p3

such
that m < m′ and associated with two intervals of L, respectively Ic = [a, b] and
Ic′ = [a′, b′], then a ≤ a′ and b ≤ b′.

Now we have to choose for all cells c in r′p3
a position in Ic such that the

arrangement leading to a representation where rowp
1
1
k is sorted, with p1

1 = [1, j].
This is done using a function called arrangeInIntervals(R, k, r′p3

, L) that
proceeds as follows: For each cell c = 〈m1, . . . ,mn,m〉, of r′p3

associated with
interval Ic = [a, b], the function:

• chooses a position x for the cell c in Ic, e.g., the smallest position in Ic

• computes a new representation R′ from representation R as follows:

– place c at position x in r and,

– place each cell c′ of r which position is x′ in R, x < x′ < |domk| at
position x′ + 1 in r

• update each interval Ic′ = [a′, b′] of L associated with cell c′ =
〈m′1, . . . ,m′n,m′〉 in r′p3

such that m < m′, as follows:

22

– Ic′ = [a′ + 1, b′ + 1] if x < a′, or

– Ic′ = [x+ 1, b′ + 1] if x ≥ a′.

The function arrangeInIntervals is as follows:

Algorithm 4.4
Function: arrangeInIntervals
Input: a representation R, a dimension k, a contiguous subpart rI of a row r with
I = [a, b], a list L of intervals
Output: a representation R′

Variables: a representation R′, an integer i

for each c = 〈m1, . . . ,mk, . . . ,mn,m〉 in rI do

choose a position x in Ic

for i = mk down to x+ 1 do

R′ = switch(k, i, i− 1)

I = [a+ 1, b]

for each cell c′ = 〈m′1, . . . ,m′n,m′〉 in rI do

find in L the interval Ic′ = [a′, b′] of valid positions for c′

if x < a′ then

Ic′ = [a′ + 1, b′ + 1]

else

Ic′ = [x+ 1, b+ 1]

return R′

Lemma 4.12 Let C be a cube for which each row can contain null values but
no duplicates. Let R be a representation of C, k be a dimension, r be a row of
C, J = [1, i], I = [i+1, j] be two intervals and L be a list of intervals of valid po-
sitions in rowJk for every cell in rI . The call to arrangeInIntervals(R, k, rI , L)
outputs a representation R′ where every row in row

[1,j]
k is sorted.

Once every cell of r′p3
has been processed, the algorithm iterates on the other

rows of dimension k with p1 = [1, j] (see Figure 7). Once dimension k has been
processed, if p2 is not empty, then it corresponds to the members of dimension k
for which every combination with the members of the other dimensions contains
a null value.

If every dimension has been successfully processed, the representation ob-
tained is a PR.

We are now ready to present the main function that solves the PR problem
in the case of null values (but no duplicates).

23

r

p1 p2

r’ nulls

p4p3

j

(sorted)

new p1 new p2

Figure 7: Row r′ has been successfully processed

Algorithm 4.5
Function: main
Input: A representation R of a cube C
Output: A PR of C or the indication “no PR”
Variables: a representation R′, a boolean existsPR, a list L of interval

for each dimension k of C

let r be a row in dimension k having |domk| − i null values

R′ = extSort(R, r, [1, |domk|])

let p1 = [1, i]

let p2 = [i+ 1, |domk|]

mark r

existsPR = testOrder(R′, k, p1)

if not existsPR then exit with “no PR”

24

else while there exists an unmarked row r′ in dimension k do

L = ∅
R′ = extSort(R′, r′, p2)
let p4 = [j + 1, |domk|] be the only sequence of null values in r′p2

let p3 = [i+ 1, j]
existsPR = testOrder(R′, k, p3)
if not existsPR then exit with “no PR”

else for every cell c of r′p3
do

I = computeInterval(R′, k, r′p1
, c)

if I = ∅ then exit with “no PR”

else add interval I to list L

R′ = arrangeInIntervals(R′, k, r′p3
, L)

mark r′

p1 = [1, j]
p2 = [j + 1, |domk|]

return(R′)

We can now present the following Theorem, which is a consequence of the
previous Lemmas.

Theorem 4.13 Let C be a cube and R be a representation of C. If the call to
Algorithm 4.5 outputs “no PR” then there exists no PR of C. Otherwise, the
output is a PR of C.

This algorithm is polynomial in the number of cells of the cube. Indeed:

• Step 1 consists in sorting one row, which is polynomial.

• For a given dimension k, step 2 consists in comparing every cell of a slice
in dimension k to the other cells of the row in dimension k it belongs to.
For each dimension k, the number of comparisons is at most |domk′ |n,
where k′ is the dimension having the greatest number of members, and
n is the number of dimensions. Indeed for an n-dimensional cube, a slice
contains at most |domk′ |n−1 cells, each of which being compared to at
most |domk′ | other cells.

• Step 3 consists mostly in switch operations. For a given row, the number of
switches is at most |domk′ |2, where k′ is the dimension having the greatest
number of members. Indeed no more than |domk′ | cells can be switched
and for each no more than |domk′ | switches are necessary to move a cell
to a valid position.

Note that the row r to be sorted first can be chosen so as to optimize the
algorithm. Indeed we have every interest to take a row having the least number
of nulls. For instance, if one row contains no null, then choosing this row reduces
this case to case 1 (i.e., no null values in the cube).

25

Computing the total number of PRs in this case. Given a cube C for
which each row can contain null values but no duplicates, more than one PR of
C might exist. First, we have to adapt the notion of identical slice to this case.

Definition 4.7 Let C be a n-dimensional cube. Let s and s′ be two slices in di-
mension k. s and s′ are identical for a given representation R of C if for each pair
of cells c = 〈m1, . . . ,mk, . . . ,mn,m〉 ∈ s and c′ = 〈m′1, . . . ,m′k, . . . ,m′n,m′〉 ∈
s′, repi(mi) = repi(m′i) =⇒ m =⊥ or m′ =⊥, for all i ∈ [1, k− 1]∪ [k+ 1, n].

Obviously as in case 2, we have the following proposition:

Proposition 4.14 Let C be a n-dimensional cube and SRC be the set of every
representation of C. Let R be a particular representation of C. Let s and s′

be two slices in dimension k. If s and s′ are identical for R then s and s′ are
identical for every representation R′ ∈ SRC .

The number of different PRs in this case depends on the presence of identical
slices. We have the following proposition.

Proposition 4.15 Let C be a cube of which a PR exists. Then there exists
more than one PR of C if and only if C contains at least two identical slices in
one of its dimensions.

Note that a particular case of identical slices is the case of a slice contain-
ing only cells that contain a null value. We call such a slice a null-slice in the
following. This kind of slices can be placed anywhere in a representation with-
out affecting the number of misplaced cells. The following corollary allows to
compute the total number of PRs in this case.

Corollary 4.16 Let C be an n-dimensional cube and R be a PR of C. Let
pinull be the number of null-slices in dimension i ∈ [1, n], let pi be the number of
different sets of identical non null-slices in dimension i, and let mi

j , j ∈ [1, pi] be
the cardinality of each such set in dimension i. Then the total number of PRs

is Πi∈[1,n]

[
(Πj∈[1,pi](m

i
j !))×

(
n

pinull

)]
.

Therefore, outputting every PR is clearly not polynomial. However comput-
ing the total number of PRs can be done by counting the number of identical
slices in each dimension, which is polynomial.

4.4 Case 4: Dealing with both null values and duplicates

Solving the PR problem in this case can be done based on the methods given in
the previous sections. Before giving the corresponding algorithm, we illustrate
this case by an example. Consider the following representation R1 of a two-
dimensional cube C.

26

c1 c2 c3 c4 c5
r1 2 2 1 1 1
r2 ⊥ 2 1 1 ⊥
r3 3 2 2 1 2

Step 1: Call to extSort. We first treat dimension 1, with dom1 =
{c1, c2, c3, c4, c5}. Sorting row 〈r3〉 by using the function extSort(R1, 〈r3〉, [1, 5])
gives the following representation R2.

c4 c2 c3 c5 c1
r1 1 2 1 1 2
r2 1 2 1 ⊥ ⊥
r3 1 2 2 2 3

Step 2: Recursive call on the sequences of duplicates. Next, we identify
in R2 all sequences of duplicates in 〈r3〉: The only sequence in this example
corresponds to the interval [2, 4]. We consider another row of the same dimension
and we apply the algorithm recursively. Suppose we consider row 〈r2〉. This
means that we sort 〈r2〉[2,4] by calling extSort(R2, 〈r2〉, [2, 4]). This gives the
following representation R3.

c4 c3 c2 c5 c1
r1 1 1 2 1 2
r2 1 1 2 ⊥ ⊥
r3 1 2 2 2 3

As there is no sequence of duplicates in 〈r2〉[2,4] for R3, no other recursive
call is processed.

Step 3: Call to computeInterval and arrangeInInterval. At this
step, we still need to process the cell 〈r2, c5,⊥〉. Thus we com-
pute an interval of valid positions for this cell in 〈r2〉[2,4] by call-
ing computeInterval(R3, 1, 〈r2〉[2,4], 〈r2, c5,⊥〉). In our example, the in-
terval of valid positions for 〈r2, c5,⊥〉 is [2, 3]. Then a call to
arrangeInInterval(R3, 1, 〈r2〉[4], {[2, 3]}) is used to arrange the representation,
and we obtain the following representation R4.

c4 c5 c3 c2 c1
r1 1 1 1 2 2
r2 1 ⊥ 1 2 ⊥
r3 1 2 2 2 3

At this point, the sequence of duplicates has been successfully processed.
Then the algorithm stops for dimension 1 since every row in this dimension
is sorted. Applying the same principle to dimension 2 results in the following
representation which is a PR.

27

c4 c5 c3 c2 c1
r3 1 2 2 2 3
r1 1 1 1 2 2
r2 1 ⊥ 1 2 ⊥

The algorithm. We now present the algorithm for solving the PR problem
in the general case. This algorithm consists in a function called solvePR that
calls the functions given in the previous sections. For a representation R of a
cube C, solvePR(R, k, [1, |domk|]) is called for every dimension k of C.

Algorithm 4.6
Function: solvePR
Input: a representation R of a cube C, a dimension k an interval I
Output: a PR of C or the indication “no PR”
Variable : a list L of intervals, two intervals J and K

choose a row r in dimension k

R′ = extSort(R, r, I])

for every sequence of duplicates J in r do

R′′ = solvePR(R′, k, J)

L = ∅

for every cell c in rI containing a null value

K = computeInterval(R′′, k, rI , c)

add the interval K to L

R′′′ = arrangeInInterval(R′′, k, rI , L)

if r is unsorted then exit with “no PR”

As a consequence of the Propositions and Theorems given in cases 2 and 3,
we can present the following Theorem.

Theorem 4.17 Let C be a cube and R be a representation of C. If the call to
Algorithm 4.6 outputs “no PR” then there exists no PR of C. Otherwise, the
output is a PR of C.

As every function called in this algorithm is polynomial, it is easy to see that
this algorithm is polynomial in the number of cells of the cube.

28

Computing the total number of PRs in this case Obviously in this case
more than one PR of a cube might exist. The notion of identical slices has to
be generalized to this case.

Definition 4.8 Let C be a n-dimensional cube. Let s and s′ be two slices in di-
mension k. s and s′ are identical for a given representation R of C if for each pair
of cells c = 〈m1, . . . ,mk, . . . ,mn,m〉 ∈ s and c′ = 〈m′1, . . . ,m′k, . . . ,m′n,m′〉 ∈
s′, repi(mi) = repi(m′i) =⇒ m =⊥ or m′ =⊥ or m = m′, for all
i ∈ [1, k − 1] ∪ [k + 1, n].

As in case 2 and 3, the following proposition holds:

Proposition 4.18 Let C be a n-dimensional cube and SRC be the set of every
representation of C. Let R be a particular representation of C. Let s and s′

be two slices in dimension k. If s and s′ are identical for R then s and s′ are
identical for every representation R′ ∈ SRC .

With this definition of identical slice, the same reasoning as in case 3 applies.
Therefore we have the following proposition and corollary.

Proposition 4.19 Let C be a cube of which a PR exists. Then there exists
more than one PR of C if and only if C contains at least two identical slices in
one of its dimensions.

Corollary 4.20 Let C be an n-dimensional cube and R be a PR of C. Let pinull
be the number of null-slices in dimension i, let pi be the number of different sets
of identical non null-slices in dimension i ∈ [1, n], and let mi

j , j ∈ [1, pi] be the
cardinality of each such set in dimension i. Then the total number of PRs is

Πi∈[1,n]

[
(Πj∈[1,pi](m

i
j !))×

(
n

pinull

)]
.

As in case 2 and 3, outputting every PR is not polynomial, but computing
the total number of PRs is polynomial.

5 Conclusion

In this paper we have introduced an approach to enhance the query-driven
analysis of multidimensional data, based on representations of cubes according
to their measures. We have introduced a measurement to compute the quality of
the representation, and we have proposed an algorithm to find the representation
of a cube for which this measurement is optimal, if it exists.

Our current and future work encompasses the following open issues:

• Implementation of the approach discussed in the paper. The algorithms
given in Section 4 are naive algorithms, that should be reworked in order
to propose an efficient implementation.

29

• Study of other problems in this framework. As stated in Section 2, a PR
may not exist. Thus we can define two other problems that we shall study
in the future:

– The OR problem (cf. Definition 2.7): for a given cube and a given
representation of this cube, find all ORs, and list all arrangements
leading to these ORs. Based on the result of Mäkinen and Siirtola
[7], we conjecture that this problem is not polynomial.

– The t-OR problem: given a cube C and a threshold t, find a represen-
tation RC of C such that MRC (C) ≤ t if it exists. If there exists at
least one such representation, list all arrangements leading to these
representations.

• Use of other OLAP operations to solve the problems. In this paper we
restrict ourselves to the switch operation to compute appropriate represen-
tations. It would be interesting to study how the other OLAP operations
[4, 5, 6] behave w.r.t. the problems introduced above. For example in the
presence of hierarchies, can we use the roll-up operator to reach a PR?

References

[1] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing
and OLAP technology. SIGMOD Record, 26(1):65–74, 1997.

[2] Yeow Wei Choong, Dominique Laurent, and Patrick Marcel. Computing
appropriate representations for multidimensional data. In ACM DOLAP,
2001.

[3] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-Line
Analytical Processing) to user-analysts: An IT mandate [on-line]. 31p.
White Paper, 1993.

[4] Marc Gyssens and Laks V. S. Lakshmanan. A foundation for multi-
dimensional databases. In VLDB, pages 106–115, 1997.

[5] Marc Gyssens, Laks V. S. Lakshmanan, and Iyer N. Subramanian. Tables
as a paradigm for querying and restructuring. In ACM PODS, pages 93–
103, 1996.

[6] P. Marcel. Modeling and querying multidimensional databases: An
overview. Networking and Information Systems Journal, 2(5-6):515–548,
1999.

[7] Erkki Mäkinen and Harri Siirtola. Reordering the reorderable matrix as
an algorithmic problem. In Diagrams 2000, volume 1889 of LNAI, pages
453–467, 2000.

30

[8] Sunita Sarawagi. Explaining differences in multidimensional aggregates. In
VLDB, pages 42–53, 1999.

[9] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven
exploration of OLAP data cubes. In EDBT, volume 1377 of LNCS, pages
168–182, 1998.

[10] Panos Vassiliadis and Timos K. Sellis. A survey of logical models for OLAP
databases. SIGMOD Record, 28(4):64–69, 1999.

31

