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ABSTRACT.For around 10 years, the academic research in database has attempted to define a
commonly agreed logical modeling for the multidimensional and hierarchical nature of data
manipulated with OLAP treatments (called datacube, or cube for short). But only recently has
the concept of representation of a cube on a screen, or the optimization of OLAP queries at a
logical level, been taken into account in this study. As many others, we believe that these two
concepts are essential for the definition of a multidimensional query language. In this article,
we propose to consider representations of cubes as first class citizens for query optimisation at
the logical level. To reach this goal, we formally define the concept of representation by using
the model of complex values [ABI 95]. This allows to have a single model for manipulating both
cubes and their representations through typical OLAP operations. These typical operations are
studied to propose rewrite rules in order to optimize OLAP queries.

RÉSUMÉ.Depuis environ 10 ans, la définition d’un modèle concensuel englobant la nature mul-
tidimensionnelle et hiérarchisée des données manipulées par les traitements OLAP (appelées
cube de données) est à l’étude. Mais c’est seulement récemment que les concepts de représen-
tation d’un cube à l’écran et d’optimisation de requêtes OLAP à un niveau logique ont été pris
en compte dans cette étude. Nous pensons, comme beaucoup, que ces concepts sont essentiels
à la définition d’un langage de requêtes pour OLAP. Dans cet article, nous proposons de consi-
dérer les représentations de cubes de données comme une base pour l’optimisation de requêtes
au niveau logique. Pour ce faire, nous définissons formellement le concept de représentation
en utilisant le modèle des valeurs complexes [ABI 95]. Cela permet d’avoir un modèle unique
pour manipuler un cube et ses représentations via les opérations OLAP usuelles. L’étude de ces
opérations nous permet de donner des règles de réécriture pour optimiser les requêtes OLAP.
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1. Introduction

Even if OLAP (On-line Analytical Processing, [CHA 97]) logical modeling has
been deeply studied in the database community [GYS 97, AGR 97, VAS 00, CAB 97,
HAC 97, MEN 04], it is still too early for a commonly agreed logical model to arise.
As noticed in [JAR 02], it seems that the practical value of such studies involves
both efficient query execution and multidimensional visualization. To the best of our
knowledge, there is no work that studies the possibilities of optimizing queries based
on the representation of a cube on a screen.

In this paper we concentrate on:

– The formal definition of representation of a cube, i.e., the logical counterpart of
what is displayed on a screen.

– The definition of a language for manipulating both cubes and representations.

– The optimization of OLAP queries at a logical level, i.e., based on the properties
of the operators.

We propose to describe in a single logical model both datacubes and their repre-
sentations. We show that the model of complex values [ABI 95] is a good candidate to
achieve this goal. We translate into this model the most typical basic OLAP operators
[MAR 99]. The language so defined allows the user to precisely:

– Describe what the output of a query is, in terms of representation on a screen.

– Know how the facts displayed have been computed, in particular aggregations
are computed on the basis of the actual hierarchies the user sees.

This framework allows us to study the optimization of OLAP queries at a logical
level in the following way:

– We give rewriting rules involving the OLAP operators that are used to generate
the optimized form of the query.

– Based on the rewriting rules, we identify a canonical form for OLAP queries that
can be obtained from any query.

– We rewrite the query so that evaluating this query only deals with the data that
will be displayed on the screen as a result.

A lot of work on the optimisation of OLAP queries has been done by studying
how to rewrite OLAP queries in the presence of precomputed aggregates ([PAR 01] is
a recent work in this area and contains a short overview). This approach does not take
into account how the answers to the queries are represented on the screen. Because we
concentrate on determining the part of the answer that is to be displayed, our approach
can be seen as orthogonal to this one.

To our knowledge, there is no study of the properties of OLAP operations, whereas
this study exists for the traditional relational operations [ABI 95]. Only [VAS 00]
proposes a logical model and uses it for the optimization of OLAP queries at a logical
level. In this work, the authors adapt the classical view subsumption techniques to the



Titre abrégé de l’article (à définir par\title[titre abrégé]{titre}) 3

OLAP framework. In that case again our technique can be seen as orthogonal to this
one.

In the context of OLAP, the concept of representation of a cube (what [KAR 03]
calls the presentation level) attracted very little attention. Many of the logical models
and languages proposed in the literature confuse logical level and presentation level.
To our knowledge, only two proposals have been made:

– The MDX API proposed in [Mic 98]. This complex SQL-like language, where
the intuitions behind the SELECT and WHERE clauses do not really correspond to
those of SQL, mixes the presentation and logical level and lacks of theoretical foun-
dations.

– The CPM model [MAN 03], that seems to be an attempt for giving MDX ex-
pressions a clear logical foundation. In this model, the logical and presentation levels
are separated. Our work can be seen as an extension of this research, towards the use
of the presentation level as a basis for query optimisation.

The rest of the paper is structured as follows: In Section 2, we propose a logical
definition of a cube and a representation in terms of complex values. In Section 3,
we define an algebra by translating the basic OLAP operators into the algebra for
complex values. Section 4 deals with the optimization process, and Section 5 draws
conclusions and future work.

2. Cubes and Representations

In this work, we make a clear distinction between a cube, a representation of a
cube and the visualization of a representation. Intuitively, we propose to consider that
logically:

– A cube is the set of all basic facts that can be presented to the user, including
the most detailed data and the precomputed aggregates. A cube is composed of a fact
table and a set of dimension tables, as in a star schema [JAR 02]. This corresponds to
what [VAS 00] calls the detailed data set.

– The representation of a cube is what the user wants to see, under the form of a
multidimensional cross-tab. A representation corresponds to the result of a query over
a cube or a representation. It is composed of the set of facts the user wants to see
and of the description of the axes of the cross-tab. If the representation the user wants
to see has more than two axes, as it cannot be easily displayed on a two-dimensional
screen, only the first two-dimensional slice of the representation is displayed. Note
that in our formalism, this two-dimensional slice is also a representation of a cube.

To take the concept of representation into account, we propose to use the model
of complex values [ABI 95] since this model is very well adapted for describing the
nesting of attributes1. Note that a first investigation of this idea occurs in [DEK 98].

1. For the sake of space we refer the reader to [ABI 95] for a presentation of this model.
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In what follows, we distinguish two categories of attributes, as usual in the OLAP
context: the member attributes, having names likeL or F , and the measure attribute,
namedm. Without loss of generality, we consider only one measure attribute. In our
model, both cubes and representations are complex values〈IA, IF , IP 〉 having sort
the same generic form〈A : sort(A), F : sort(F ), P : sort(P )〉 where:

– IA is a complex value that describes:

- In the case of a cube: The dimensions of the cube and their hierarchies2.

- In the case of a representation: The axes of the representation.

– IF is a complex value that describes:

- In the case of a cube: The complete set of facts of the datacube.

- In the case of a representation: The facts that the user wants to see.

– IP is a relation that describes:

- In the case of a cube: a default position for each member of the cube on an
axis of a representation built from this cube.

- In the case of a representation: The position of each displayed member on an
axis.

We now turn to the formal definitions.

2.1. Cube

An instanceIC of anN -dimensional cubeC is a tupleIC = 〈IAAll
, IFAll

, IPAll
〉

that is a complex value having sortsort(C) = 〈AAll : sort(AAll), FAll : sort(FAll),
PAll : sort(PAll)〉 where:

– IAAll
is a tuple〈ID1 , . . . , IDN

〉 that describes the dimensions of the cube. It is
a complex value having sortsort(AAll) = 〈D1 : sort(D1), . . . , DN : sort(DN )〉.
For all i ∈ [1, N ], IDi

is a complex value describing a particular dimensioni of the
cube. The nested structure of this complex value allows to describe the hierarchy
associated with the dimension in a straightforward manner. It has sort:sort(Di) =
{〈L0

i : dom(L0
i ), D

1
i : {〈L1

i : dom(L1
i ), . . . , D

qi

i : {〈Lqi

i : dom(Lqi

i )〉} . . .〉}〉}.
For a dimensioni, each attributeLji describes a level of the hierarchy,j being the

depth of this level in the dimension. In the following, we denote byLi(C) the set of
all attributesLji in dimensioni of cubeC, i.e. Li(C) = {Lji | 0 ≤ j ≤ qi}, and by
L(C) the set of all attributesLji of cubeC, i.e. L(C) =

⋃
i∈[1,N ] Li(C). Finally, let

v ∈ dom(Lji ) andk ∈ [0, j − 1]. We define the classical notion of ancestors ofv at
levelk by: anc(v, Lki ) = πLk

i
(σLj

i=v
(unnestDj

i
(. . . (unnestD1

i
(IDi)) . . .))).

– IFAll
is the set of all facts of the cube. It is a complex value having sort

sort(FAll) = {〈F all1 : dom(F all1 ), . . . , F allN : dom(F allN ),m : dom(m)〉}. IFAll

2. For the sake of readability, the model is restricted to only one hierarchy per dimension.
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represents the fact table of the cube. It describes every fact at every level of detail.
Hence the following equalities hold:∀i ∈ [1, N ], dom(F alli ) =

⋃
j∈[0,qi]

dom(Lji ).

– IPAll
is an instance of relation of sort{〈member :

⋃
i(

⋃
j dom(Lji )), position :

N〉} that associates each member of the cube with a distinct integer. This integer
corresponds to the default position of a member on an axis when a representation is
built from a cube. This relation defines a total ordering overdom(Lji ), for all i andj.

Example 2.1 As an example, we consider a 5 dimensional cube namedsales, inspired by the
example used in [Mic 98]. The dimensions are:

– Year: the different years.

– Quarter: the months grouped in quarters.

– Location: the cities grouped in regions and countries.

– Product: the items grouped in categories.

– Salesman: the different salespersons.

The sort of the cubesales is:

sort(Csales) = 〈AAll : sort(AAll), FAll : sort(FAll), PAll : sort(PAll)〉,

sort(AAll) = 〈Y ear : sort(Y ear), Quarter : sort(Quarter),

Location : sort(Location), P roduct : sort(Product),

Salesman : sort(Salesman)〉

sort(FAll) = {〈F all1 : {allyear, 1990, . . . , 2004}, F all2 : {allquarter, q1, . . . , dec},

F all3 : {alllocation, france, . . . , paris},

F all4 : {allproduct, drink, . . . , wine},

F all5 : {allsalesman, john, . . . , bill}, sales : N〉}

sort(PAll) = {〈member : {1990, john, . . .}, position : N〉}.

The dimensionQuarter, an instance ofFAll and an instance ofPAll are described in Figure 1.
In what follows, we consider an instanceIsales of the cubesales.

2.2. Constructing a representation of a cube

A representation of a cube is constructed by using theNavigate operation.
Intuitively, this operation is a selection in the fact table of the cube in order to
present the data at a given level for each dimension3. For example, the query
Navigateyear,quarter,city,item,name(Isales) = I1 allows to obtain the representation
displayed in Figure 2 (a). Note that only one 2-dimensional slice of this representation
is displayed (on the left-hand side of the figure), i.e., the facts concerning the cities

3. This operator is close to the navigate operator proposed in [VAS 00]. It is formally defined
in the Appendix.
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Quarter topQ quarter month
allquarter q1 jan

feb
mar

. . . . . .
q4 oct

nov
dec

(a) An instance of the dimensionQuarter

IFAll Year Quarter Location Product Salesman sales
1988 q1 paris drink john 90
1988 q1 paris beer john 30
1988 q1 paris wine john 20
1988 q1 paris milk john 20
1988 q1 paris allproduct john 1000

...
...

...
...

...
...

allyear allquarter alllocation allproduct allsalesman 500000

(b) An instance ofFAll

IPAll member position
1988 1
drink 1
food 2
milk 1
beer 2
john 1

france 1
paris 1

...
...

(c) An instance ofPAll

sort(Quarter) =
{〈topQ : {allquarter},
D1

2 : {〈quarter : {q1, q2, q3, q4},
D2

2 : {〈month : {jan, . . . , dec}〉}〉}〉}.

(d) The sort of the dimensionQuarter

Figure 1. The dimensionQuarter, the facts and default positions of the cubesales

other thanparis, the items other thanmilk and the salesmen other thanjohn (these
values appear on the right-hand side of the figure) are hidden. Indeed, a representation
is always displayed so that the user can see only the members of the first two axes, and
the member at the lowest position on every remaining axis. When there is more than
one attribute on an axis, the attributes are displayed according to the order imposed by
their level and by their position, and the measures are displayed accordingly.

Formally, an instance of a representationR of a cubeC is a tuple IR =
〈IA, IF , IP 〉 of sortsort(R) = 〈A : sort(A), F : sort(F ), P : sort(P )〉 where:

– IA is a tuple 〈IA1 , . . . , IAK
〉 of axes, of sort sort(A) = 〈A1 :

sort(A1), . . . , AK : sort(AK)〉. For all k ∈ [1,K], IAk
is a complex value de-
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scribing a particular axis of the representation.IAk
is of sortsort(Ak) = {〈Lj0i0 :

dom(Lj0i0 ), U1
k : {〈Lj1i1 : dom(Lj1i1 ), . . . , USk : {〈LjSiS : dom(LjSiS )〉} . . .〉}〉}. We

denote byAk(R) the set of attributes ofL(C) that occur onAk, i.e. Ak(R) =
{Lj0i0 , L

j1
i1
, . . . , LjSiS }, and byA(R) the set of all attributes ofL(C) that occur on an

axis ofR, i.e.A(R) =
⋃K
k=1 Ak(R).

– IF is a complex value describing the facts depicted by the representation.IF is
of sortsort(F ) = {〈Ld11 : dom(Ld11 ), . . . , LdN

N : dom(LdN

N ),m : dom(m)〉}. We
denote byF(R) the set of attributes ofL(C) that occur insort(F ), i.e. F(R) =
{Ld11 , . . . , L

dN

N }.

– IP is a complex value of sort{〈member :
⋃
i(

⋃
j dom(Lji )), position : N〉}

that associates each member ofR with an integer. This integer corresponds to the
relative position of the member on an axis of the representation.

Example 2.2 As an example, we consider the representationI7 of Figure 3 (c). I7 =
〈IA, IF , IP 〉 of sort sort(I7) = 〈A : sort(A), F : sort(F ), P : sort(P )〉 whereIA =
〈IA5 , IA2 , IA4 , IA1〉 and:

– sort(A) = 〈A5 : sort(A5), A2 : sort(A2), A4 : sort(A4), A1 : sort(A1)〉, with, for
instance:

sort(A5) = {〈name : dom(name),

U1
5 : {〈region : dom(region), U2

5 : {〈city : dom(city)〉}〉}〉}
IA5 = {〈john, U1

5 : {〈north, U2
5 : {〈paris〉, 〈blois〉, 〈lille〉}〉,

〈south, U2
5 : {〈lyon〉, 〈marseille〉}〉, . . .}〉, . . . ,

〈bill, U1
5 : {〈north, U2

5 : {〈paris〉, 〈blois〉, 〈lille〉}〉 . . .}〉}
– sort(F ) = {〈 year : dom(year), quarter : dom(quarter), city : dom(city),

category : dom(category), name : dom(name),

quantity : dom(quantity)〉}
IF = {〈2000, q1, paris, drink, john, 10〉, 〈2000, q1, blois, drink, john, 20〉,

〈2000, q1, lille, drink, john, 70〉 . . .}
– sort(P ) = {〈member :

S
i(

S
j dom(Lji )), position : N〉}

IP = {〈john, 1〉, 〈north, 1〉, 〈paris, 1〉, . . . , 〈q1, 1〉, . . . , 〈drink, 1〉, . . . , 〈2000, 1〉}

3. OLAP operations

In this section, we describe how cubes and representations are manipulated using
the most typical OLAP operators [MAR 99]. Basically, using the definition of cubes
and representations above, we translate the OLAP operators into the algebra for com-
plex values (as defined in [ABI 95]). We consider the following OLAP operators, that
are classified according to 3 categories:

– Restructuring operators that change the viewpoint on data. Operators in this
category arePermute, Switch, Nest.
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A1 A3

2004 10 20 20 10 alllocation
2003 50 70 50 60 ↑
2002 60 60 80 80 france

a 2001 70 50 40 70 ↑
l 2000 40 80 10 80 north
l 1999 50 30 10 10 ↑

1998 50 30 70 10 paris
y 1997 40 50 30 70 A4

e 1996 10 40 50 10 allproduct
a 1995 40 50 80 70 ↑
r 1994 50 80 30 50 drink

1993 10 70 40 50 ↑
1992 10 80 40 30 milk
1991 80 40 50 10 A5

1990 70 70 10 50 allsalesman
1989 40 50 50 10 ↑
1988 20 50 70 80 john

q1 q2 q3 q4
A2 allquarter

(a) I1 = Navigateyear,quarter,city,item,name(Isales)

A1 A3

2004 40 30 20 40 north
2003 50 50 40 50 ↑
2002 60 40 30 50 paris
... A4

1992 70 80 50 70 drink
1991 60 40 60 80 ↑
1990 60 70 50 40 beer
1989 50 50 30 10 A5

1988 30 40 70 70 john
A2 q1 q2 q3 q4

(c) I3 = σmemberitem=beer∨item=wine∨category=food(I2)

.
A1 A3

2004 10 20 20 10 north
2003 50 70 50 60 ↑
2002 60 60 80 80 paris
...
1995 40 50 80 70 A4

1994 50 80 30 50 drink
1993 10 70 40 50 ↑
1992 10 80 40 30 milk
...
1989 40 50 50 10 A5

1988 20 50 70 80 john
A2 q1 q2 q3 q4

(b) I2 = πA1
year(π

A2
quarter(π

A3
region,city(

πA4
category,item(πA5

name(I1)))))

A1 A3

2004 60 60 40 50 north
2003 80 90 90 90 ↑
2002 70 50 70 80 paris
... A4

1992 80 90 60 80 drink
1991 80 50 70 90 ↑
1990 70 80 60 50 beer,wine
1989 90 90 50 20 A5

1988 50 50 90 80 john
A2 q1 q2 q3 q4

(d) I4 =
Aggregateitem→category;sum(sales)(I3)

Figure 2. Outputs of steps 1-4. On each figure, the left-hand side displays the first 2-
dimensional slice of the representation, and the right-hand side displays the member
at the lowest position for each hidden axis.
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A5 A3

bill 30 90 50 60 north
rose 30 10 90 90 ↑
irma 70 60 70 10 paris
kate 90 60 50 10 A4

lara 90 90 70 10 drink
averell 10 30 30 90 ↑
jack 10 60 50 60 beer,wine
joe 90 70 30 10 A1

john 50 50 90 80 1988
A2 q1 q2 q3 q4

(a) I5 = PermuteA5,A1(I4)

A5 A4

bill north lille 40 60 60 70 drink
blois 10 20 30 20 ↑
paris 30 90 50 60 beer,wine

...
john north lille 70 70 50 50 A1

blois 20 30 20 20 1988
paris 50 50 90 80

A2 q1 q2 q3 q4

(b) I6 = NestA5(A3)(σregion=north(I5))

A5 A4

bill north lille 20 30 40 30 drink
blois 20 10 10 20 ↑
paris 10 40 30 50 beer,wine

...
john north lille 70 60 50 50 A1

blois 20 20 30 30 2000
paris 10 20 10 10

A2 q1 q2 q3 q4

(c) I7 = Switchyear;1988,2000(I6)

Figure 3. Outputs of steps 5-7

– Operators that change the level of detail. We consider two different operators in
this category:

- TheNavigate operator, introduced in the previous section, defines for each
dimension of the cube at which level the data are to be represented.
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- theAggregate operator groups the members of an axis according to the part
of the hierarchy displayed in the representation, and then aggregates the measures
accordingly.

– Filtering operators, that are the extension of classical selection and projection to
representations.

Note that the classical roll-up, drill-down or slice&dice OLAP queries can be ex-
pressed in our framework by using this set of operators. For instance, as theNavigate
operator selects from the fact table the data at a given level for each dimension, it can
be used to express drill-down or roll-up queries.

We introduce the different operators in an example, the formal definitions are given
in the Appendix. The example is based on the following query:

Switchyear;1988,2000(NestA5(A3)(σ
member
region=north(PermuteA1,A5(

Aggregateitem→category;sum(sales)(σmemberitem=beer∨item=wine∨category=food(

πA1
year(π

A2
quarter(π

A3
region,city(π

A4
category,item(πA5

name(

Navigateyear,quarter,city,item,name(Isales))))))))))))

This query aims at presenting the sales of food and the cumulated sales of beer and
wine for year 2000 in the north, detailed by salespersons and quarters. The final output
of this query is given in Figure 3 (c). We examine the different steps independently.
The first step, which involves theNavigate operation, is illustrated in the previous
section. We now illustrate the filtering operations.

3.1. Filtering

We illustrate step 2 and step 3 of the query:

– step 2:I2 = πA1
year(π

A2
quarter(π

A3
region,city(π

A4
category,item(πA5

name(I1)))))

– step 3:I3 = σmemberitem=beer∨item=wine∨category=food(I2)

The outputs are given in Figure 2 (b) and (c). These two steps reduce the amount
of displayed facts (for selection) and displayed levels (for projection).

Note that after step 3, the displayed slice has changed. This is due to the fact
that the itemmilk, that was at position 1 of axisA4 in I2 is no more selected in
representationI3. Then among the selected items, the one at the lowest position,beer,
is displayed first. Note also that in our formalism, a representation must always depict
the hierarchies that have been used to aggregate the data. Thus, for a given dimension,
selection on members can not be applied on a member attribute that identifies a level
deeper than the level currently displayed. Otherwise the measures displayed would no
more correspond to the displayed hierarchy. The same remark holds for the projection
operation.
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3.2. Changing the level of detail

Step 4, i.e.,I4 = Aggregateitem→category;sum(sales)(I3) illustrates a way of
changing the level of detail of the representation. Note that we distinguish two differ-
ent ways of changing the level of detail: by using theNavigate operation to present
the data at a given level for each dimension, or by using theAggregate operation.
Intuitively, theAggregate operation groups and aggregates the data according to the
groupingsdepicted on a particular axis. This operation does not change the sort of
the axes.

The output of step 4 is given in Figure 2 (d). Note that the facts that are dis-
played are no more the facts in the fact table of the cubesales. This is so because
theAggregate operator has been used to compute the sales ofdrink, but only for the
drinks that were selected in step 3, i.e.,beer andwine.

3.3. Restructuring

The last operations to be considered are the restructuring operations. These opera-
tions allow to exchange the positions of two axes (Permute), exchange the positions
of two members (Switch) or nest two axes together (Nest). They are illustrated by
the following steps:

– step 5:I5 = PermuteA5,A1(I4)
– step 6:I6 = NestA5(A3)(σregion=north(I5))
– step 7:I7 = Switchyear;1988,2000(I6)

The outputs of these three steps are given in Figure 3. Note that these operations
do not change the facts of the representation, but only the way they are displayed.

4. OLAP query optimisation

In this section, we propose an optimisation technique for OLAP queries. We first
introduce this technique informally.

4.1. Intuitions

This optimisation technique consists in determining which part of the query out-
put will be displayed on the screen. This part is the first 2-dimensional slice of the
representation, which is also a representation. This slice can be computed by adding
selection conditions to the initial query. Intuitively, these conditions are obtained by
inspecting the parameters of the restructuring and filtering operations in the query. As
the costly operation isAggregate, the optimization consists in pushing the conditions
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before theAggregate. We first explain how selection conditions are computed, and
then we present how these conditions are added to the query.

When statically inspecting a query, theNest and projection operations are used
to identify which attributes are displayed and on which axis. ThePermute operation
is used to identify the first 2 axes of the representation, i.e., the axes that are fully
displayed. The remaining hidden axes contain attributes for which only values at the
lowest position are visible. These values can be deduced from theSwitch operation
and the default positions of the members.

As an example, we consider the query presented in Section 3. It can be found by
inspecting the parameters of thePermute, Nest, Switch and projection operations
that:

– The final representation has 4 axes.

– The attributes on the two hidden axes areyear, item andcategory.

– The values of these attributes at the lowest position are respectively2000, beer
anddrink.

It can be found by inspecting the parameters of theAggregate and selection opera-
tions that:

– The facts displayed concern levelsyear, quarter, category, city and
salesman.

– The measures fordrink are computed only from the measures forbeer and
wine.

Hence the selection condition that is generated isyear = 2000 ∧ category =
drink.

4.2. Canonical form of an OLAP query

Our optimisation technique is based on a particular form of queries, which we
call canonical form. We define the canonical form of an OLAP query, that complies
with the standard intuition behind OLAP queries: ANavigate identifies the levels
at which the facts are to be represented, some ad-hoc aggregations, i.e., sequences of
selections and aggregations, can be performed, and finally the restructuring operations
construct the viewpoint. The canonical form of a query is given below (◦ denotes the
composition of operations):

Q = ◦Wk=1SwitchLwk
zk

;vk,v′k
◦Pk=1 PermuteAαk

,Aβk
◦Sk=1 NestAxk

(Ayk
)

◦Ni=1π
Ai

Xi
◦Gk=1 [σmeasureϕk

◦Aggregate
L

jk
ik
→L

lk
ik

; f(m)
◦ σmemberψk
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◦ σmeasureϕ′k
] ◦Navigate

L
d1
1 ,...,L

dN
N

(I)

where for allk, σmemberψk
= ◦Ni=1σ

member

ψ
Di
k

The following lemma, which proof can be found in [GIA 04], states that all queries
have an equivalent canonical form.

Lemma 4.1 Every OLAP query can be put under the canonical form.

Moreover, the rewriting rules presented in Figure 4 allow to transform any query
into its canonical form. Note that the last rule is valid since in our formalism, selection
cannot be applied on an attribute that identifies a level deeper than the displayed level.
For example, on representationI7 displayed in Figure 3 (c), selection on item, e.g.,
item = beer is not allowed, because facts are displayed at the category level.

Among the algebraic operators, theAggregate is the most costly since it is used
to compute new facts. So the principle of our technique is to propagate the selection
conditions before the aggregate operation. Getting back to our example, the rewritten
query is:

PermuteA1,A5(NestA5(A3)(π
A1
year(π

A2
quarter(π

A3
region,city(π

A4
category,item(πA5

name(

Aggregateitem→category;sum(sales)(σmemberS (

Navigateyear,quarter,city,item,name(Isales))))))))))

whereS = (region = north ∧ (item = beer ∨ item = wine ∨ category =
food)) ∧ (year = 2000 ∧ category = drink). Moreover it is easy to see that
conditioncategory = drink is redundant inS, thus we can considerS = (region =
north ∧ (item = beer ∨ item = wine) ∧ year = 2000).

4.3. Optimisation algorithm

We are now ready to present the algorithm for optimizing OLAP queries. It con-
sists of one function, namedCompute_First_Slice_Selection, given Figure 5.

Let us examine each step of the function. Recall thatNavigate
L

d1
1 ,...,L

dN
N

outputs

a representation havingN axes, with attributes of dimensionDi on axisAi.

1) This step only looks for the axes of the representation.

2) For every axis, this step performs the following four actions:

a) It finds the depth at which the data will be presented. For axisAi, this depth
is eitherdi if Ai is not one of the parameters ofAggregate (recall thatdi is the depth
on axisAi according to which the facts ofI are depicted), or it is the smallestlk such
thatAggregate

L
jk
ik
→L

lk
ik

; f(m)
∈ Q otherwise.
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r1 NestAi(Aj)(PermuteAk,Al(I)) = PermuteAk,Al(NestAi(Aj)(I)) if j /∈ {k, l}
r2 NestAi(Aj)(PermuteAk,Aj (I)) = (◦k−1

l=j+1PermuteAk,Al)(NestAi(Aj)(I))

r3 NestAi(Aj)(SwitchLl
k
;v,v′(I)) = SwitchLl

k
;v,v′(NestAi(Aj)(I))

r4 NestAi(Aj)(π
Ak

L
y1
x1 ,..., L

yp
xp

(I)) = π
Ak

L
y1
x1 ,..., L

yp
xp

(NestAi(Aj)(I))

r5 PermuteAi,Aj (SwitchLl
k
;v,v′(I)) = SwitchLl

k
;v,v′(PermuteAi,Aj (I))

r6 PermuteAi,Aj (π
Ak

L
y1
x1 ,...,L

yp
xp

(I)) = π
Ak

L
y1
x1 ,...,L

yp
xp

(PermuteAi,Aj (I))

r7 Switch
L

j
i ;v,v′(π

Ak

L
y1
x1 ,...,L

yp
xp

(I)) = π
Ak

L
y1
x1 ,...,L

yp
xp

(Switch
L

j
i ;v,v′(I))

r8 σϕ(Op(I)) = Op(σϕ(I))

r9 Aggregate
L

jx
ix
→Ljy

iy
; f(m)

(Op(I)) = Op(Aggregate
L

jx
ix
→Ljy

iy
; f(m)

(I))

r10 σmbϕ (Aggregate
L

jx
ix
→Ljy

iy
; f(m)

(I))) = Aggregate
L

jx
ix
→Ljy

iy
; f(m)

(σmbϕ (I)))

Figure 4. Rewriting rules for OLAP algebra. In this figure,◦ denotes the composi-
tion of operations,Op ∈ {Permute, Switch,Nest, π}, σmb denotes a selection on
members, andσ denotes a selection on measures or members.

b) It assigns to the axis a location number in[1, N ], which isi for axisAi.

c) It finds the set of attributes appearing on the axis, by using the parameters
of the projection operation. These attributes are simplyXi for axisAi.

d) It finds the initial position of every member appearing on the axis.

3) For each axis being the result ofNest operations, this step computes the set
of attributes appearing on this axis. For eachNestAxk

(Ayk
) operation, the set of

attributes on axisAxk
is the union of the sets of attributes ofAxk

andAyk
. Note that

when two axes of a representation are nested, the resulting representation has one axis
less. This means that the location number of the axes that are located afterAyk

has to
be updated. After this step, onlyN − S axes remain. The location number of each of
theseN − S axes remains in[1, N − S]. The setA′ contains theseN − S axes.

4) This steps computes the new location number of two axes if these two axes are
permuted.

5) This steps computes the new position of two members if these two members are
switched. Note that the members that are not switched keep their original position, i.e.,
the ones that are given by the cubeI.

6) This step computes the selection conditions. Recall that the idea is to find the
members at the lowest position on the axes that are hidden. These axes are the ones
of A′ having a location number greater than 2. For each such axisi, we consider
each attribute appearing on this axis. For each such attributeLki , we identify the
members that will belong to the resulting representation, i.e., the members that appear
in the selection conditionψDi

k (or all the members of these attributes if this condition
is true). Then the memberv having the lowest position is found, and the condition
Lki = v is generated.
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Function Compute_First_Slice_Selection[Q]

Input: A query under canonical form
Q = ◦Wk=1SwitchLwk

zk
;vk,v

′
k
◦Pk=1 PermuteAαk

,Aβk
◦Sk=1 NestAxk

(Ayk
)

◦Ni=1π
Ai
Xi
◦Gk=1 [σmeasureϕk

◦Aggregate
L

jk
ik
→Llk

ik
; f(m)

◦ σmemberψk

◦ σmeasureϕ′
k

] ◦Navigate
L

d1
1 ,...,L

dN
N

(I)

where for allk, σmemberψk
= ◦Ni=1σ

member

ψ
Di
k

An instanceI = 〈IAAll , IFAll , IPAll〉 of a cube
Output: A conditionϕ of selection
Local: att(Ai) is the set of attributes on axisAi

loc(Ai) is the location of axisAi
pos(vk) is the position of a membervk

1. LetA = {A1, . . . , AN}
2. // Aggregate and Projection operators

for i = 1 to N do begin
ki = min({lk | Aggregate

L
jk
ik
→Llk

ik
; f(m)

∈ Q ∧ ik = i} ∪ {di})

loc(Ai) = i
att(Ai) = Xi
for everyv ∈

S
i(

S
j dom(Lji )) such thatLji ∈ att(Ai) do

pos(v) = πposition(σ
L

j
i =v

(IPAll))

end for
3. // Nest operators

for k = S to 1 do begin
att(Axk ) = att(Axk ) ∪ att(Ayk ) ;
for Al ∈ A such thatloc(Al) > loc(Ayk ) do loc(Al) = loc(Al)− 1

end for
4. // Permute operators

for k = P to 1 do x = loc(Aβk ) ; loc(Aβk ) = loc(Aαk ) ; loc(Aαk ) = x end for
5. // Switch operators

for k = W to 1 do x = pos(vk) ; pos(vk) = pos(v′k) ; pos(v′k) = x end for
6. // Selection conditions on the hidden axes

ϕ = true
A′ = {Aj ∈ A | @ NestAi(Aj) ∈ Q}
for l = 3 to |A′| do begin

LetAk ∈ A′ such thatloc(Ak) = l ;
for everyi such thatLki

i ∈ att(Ak) do begin
ϕ = ϕ ∧ (Lki

i = v) wherev ∈ dom(Lki
i ) and

pos(v) = min({pos(v′) | v′ ∈ π
L

ki
i

(σφi(unnestDki
i

(. . . (unnestD1
i
(IDi)))})

whereσφi = ◦Gk=1σψDi
k

end for
end for

7. Return ϕ

Figure 5. The functionCompute_First_Slice_Selection
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Example 4.1 Consider the OLAP query used throughout the paper:

q = Switchyear;1988,2000(NestA5(A3)(σ
member
region=north(PermuteA1,A5(

Aggregateitem→category;sum(sales)(σ
member
item=beer∨item=wine∨category=food(

πA1
year(π

A2
quarter(π

A3
region,city(π

A4
category,item(πA5

name(

Navigateyear,quarter,city,item,name(Isales))))))))))))

First, we illustrate how the rewriting rules are used to put this query under canonical form. The
rules can be applied as follows:

– q
r8−→ q1 (selection can be performed before restructuring)

q1 = Switchyear;1988,2000(NestA5(A3)(PermuteA1,A5(σ
member
region=north(

Aggregateitem→category;sum(sales)(π
A1
year(π

A2
quarter(π

A3
region,city(π

A4
category,item(

πA5
name(σ

member
item=beer∨item=wine∨category=food(

Navigateyear,quarter,city,item,name(Isales))))))))))))

– q1
r9−→ q2 (aggregation can be performed before restructuring)

q2 = Switchyear;1988,2000(NestA5(A3)(PermuteA1,A5(σ
member
region=north(

πA1
year(π

A2
quarter(π

A3
region,city(π

A4
category,item(πA5

name(

Aggregateitem→category;sum(sales)(σ
member
item=beer∨item=wine∨category=food(

Navigateyear,quarter,city,item,name(Isales))))))))))))

– q2
r8−→ q3 (selection can be performed before restructuring)

q3 = Switchyear;1988,2000(NestA5(A3)(PermuteA1,A5(π
A1
year(π

A2
quarter(

πA3
region,city(π

A4
category,item(πA5

name(σ
member
region=north(

Aggregateitem→category;sum(sales)(σ
member
item=beer∨item=wine∨category=food(

Navigateyear,quarter,city,item,name(Isales))))))))))))

– q3
r1−→ q4 (Nest can be performed beforePermute)

q4 = Switchyear;1988,2000(PermuteA1,A5(NestA5(A3)(π
A1
year(π

A2
quarter(

πA3
region,city(π

A4
category,item(πA5

name(σ
member
region=north(

Aggregateitem→category;sum(sales)(σ
member
item=beer∨item=wine∨category=food(

Navigateyear,quarter,city,item,name(Isales))))))))))))

– q4
r10−→ qcf (selection on members can be performed beforeAggregate)

qcf = Switchyear;1988,2000(PermuteA1,A5(NestA5(A3)(π
A1
year(π

A2
quarter(

πA3
region,city(π

A4
category,item(πA5

name(Aggregateitem→category;sum(sales)(

σmember(region=north)∧(item=beer∨item=wine∨category=food)(

Navigateyear,quarter,city,item,name(Isales))))))))))))

The query qcf can now be used as input of the function
Compute_First_Slice_Selection. Note that for notational purpose, the selection
σmember(region=north)∧(item=beer∨item=wine∨category=food) is rewritten◦5

i=1σ
member
ψDi

with:
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– ψD1 = ψD2 = ψD5 = true

– ψD3 = (region = north)

– ψD4 = (item = beer ∨ item = wine ∨ category = food)

We illustrate each step of the algorithm:

1) A = {A1, A2, A3, A4, A5}
2) Fori = 1 to 5 we have:

i ki att(Ai) loc(Ai)

1 1 year 1
2 1 quarter 2
3 3 region, city 3
4 1 category, item 4
5 1 name 5

For instance, wheni = 4, di = 2 sinceitem, the level at depth2, appears in the parameter
list of theNavigate operation. lk = 1, sincecategory, the level at depth1, appears in the
parameter list of theAggregate operation, and thusk4 = min({1} ∪ {2}) = 1. att(A4) is
the list of parameter of theπA4 operation, andloc(A4) is set to4.

3) The only Nest operation isNestA5(A3). Henceatt(A5) = {name, region, city}, and
loc(A4) = 3, loc(A5) = 4.

4) The only Permute operation isPermuteA1,A5 . Henceloc(A1) = 4 andloc(A5) = 1.

5) The only Switch operation isSwitchyear;1988,2000. Hencepos(1988) = 13 and
pos(2000) = 1.

6) As we haveA′ = {A1, A2, A4, A5}, l ranges from3 to 4.

- Whenl = 3,Ak = A4 andatt(A4) = {category, item}. Moreover,k4 = 1, L1
4 =

category ∈ att(A4) andσφ4 = σψD4 = (item = beer ∨ item = wine) ∨ (category =
food). Thus:

πcategory(σφ4(unnestD2
4
(unnestD1

4
((IProduct))))) = {drink, food}.

As pos(drink) = 1 < pos(food) = 2 (see Figure 1 (b)), we havev = drink and
ϕ = true ∧ (category = drink).

- Whenl = 4, Ak = A1 andatt(A1) = {year}. Moreoverk1 = 1, L1
1 = year ∈

att(A1) andσφ1 = σψD1 = true. Thus:

πyear(σφ1(unnestD1
1
(IY ear))) = {1988, . . . , 2004}. As pos(2000) = 1, we have

v = 2000 andϕ = (category = drink) ∧ (year = 2000).

7) The function returns the selection conditionϕ = (category = drink) ∧ (year =
2000).

4.4. Discussion

It is important to note that our optimisation technique consists in a syntactical
exploration of the query, and thus it does not require accessing the data of the cube
from which the representation is computed. In that respect the cost of the optimisation
can be seen as not significant compared to the global cost of processing the query.
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Note also that, as mentioned in the introduction, our optimisation technique can
be used in conjunction with other optimisation techniques, such as for instance tech-
niques taking advantage of materialized aggregates. Optimising an OLAP query by
combining the two techniques could be done, in a naive way, by first applying our
technique to determine what is the first slice to be displayed, and then determine what
are the materialized aggregates to be queried.

5. Conclusion

In this paper we have proposed a new way of optimizing OLAP queries, based
on the output of a query on a screen. We have used the model of complex values to
define a cube and a representation of a cube at a logical level. We defined an algebra
for manipulating cubes and representations and we showed how the properties of the
algebraic operators can be used to optimize queries.

We are currently working on the following two open issues. First, we are inves-
tigating a way for optimizing sequences of OLAP queries. For example, if a query
I ′ = Q1(I) has been optimized, we can distinguish two cases for optimizingQ2(I ′):

– Take advantage of what has been done for optimizingQ1, if it can be found that
Q2 can be computed only by looking at the first slice ofI ′, or

– Use the rewriting rules for optimizingQ2(Q1(I)) otherwise.

Second, we are extending both the language and the definition of representations.
In this respect, typical restructuring operators likePush, Pull, orUnnest are under
consideration, and we are thinking of defining more sophisticated representations, e.g.,
with nested cells. Finally we are currently implementing our approach.
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Appendix

In this appendix, we give the formal definitions of the algebraic operators of the language.
Note that for this language, we consider only atomic operators, i.e.,Permuteonly exchanges
two axes,Switchonly exchanges two members. In that sense, theRotateoperation cannot be
considered as atomic and can be expressed as a combination ofPermutesandSwitches. All
operators are defined on representations, except theNavigate operator which is defined on a
cube, and allows to construct an initial representation. The operators defined on representations
are applied on an instanceIR = 〈IA, IF , IP 〉 of a representationR having sortsort(R) =
〈A : sort(A), F : sort(F ), P : sort(P )〉, whereIA = 〈IA1 , . . . , IAK 〉 andsort(A) = 〈A1 :
sort(A1), . . . , AK : sort(AK)〉.

Restructuring

Permute: The Permute operation consists of interchanging two axes of a representation.
Let IR = 〈IA, IF , IP 〉 be an instance of a representationR. Given two axesAi andAj of
R, PermuteAi,Aj (IR) is an instanceIR′ = 〈IA′ , IF , IP 〉 of a representationR′ having sort
sort(R′) = 〈A′ : sort(A′), F : sort(F ), P : sort(P )〉 where:

– sort(A′) = 〈A1 : sort(A1), . . . , Ai−1 : sort(Ai−1), Aj : sort(Aj), Ai+1 :
sort(Ai+1), . . . , Aj−1 : sort(Aj−1), Ai : sort(Ai), Aj+1 : sort(Aj+1), . . . , AK :
sort(AK)〉,

– IA′ = 〈IA1 , . . . , IAi−1 , IAj , IAi+1 , . . . , IAj−1 , IAi , IAj+1 , . . . , IAK 〉.

Note thatPermuteAk,Ak (IR) = IR for everyk ∈ [1,K].
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Switch: Let IR = 〈IA, IF , IP 〉 be an instance of a representationR. Let Ai be an axis
of R with sort(Ai) = {〈Lj0i0 : dom(Lj0i0 ), U1

i : {〈Lj1i1 : dom(Lj1i1 ), . . . , USi : {〈LjSiS :

dom(LjSiS )〉} . . .〉}〉}.

The Switch operation consists of interchanging the positionsp andp′ of two valuesv and
v′ of an attributeLjkik on axisAi. It is defined ifk = 0, or if ik 6= ik−1, or if ik = ik−1 and

anc(v,X) = anc(v′, X) whereX = L
jk−1
ik

.

Switch
L

jk
ik

;v,v′
(IR) is an instanceIR′ = 〈IA, IF , I ′P 〉 of a representationR′ having sort

sort(R′) = sort(R), where:

– I ′P = (IP − I) ∪ (πmember,position(ρposition→P (I)× ρmember→M (I))− I), with:

– I = σmember=v∨member=v′(IP )

Nest: Let IR = 〈IA, IF , IP 〉 be an instance of a representationR. LetAi andAj be two
axes ofR with:

– sort(Ai) = {〈Lj0i0 : dom(Lj0i0 ), U1
i : {〈Lj1i1 : dom(Lj1i1 ), . . . , USi : {〈LjSiS :

dom(LjSiS )〉} . . .〉}〉}.

– sort(Aj) = {〈Ll0k0 : dom(Ll0k0), U
1
j : {〈Ll1k1 : dom(Ll1k1), . . . , U

T
j : {〈LlTkT

:

dom(LlTkT
)〉} . . .〉}〉}.

The Nest4 operation allows to nest the attributes initially on axisIAi with the attributes on
axis IAj . NestAi(Aj)(IR) is an instanceIR′ = 〈IA′ , IF , IP 〉 of a representationR′ having
sortsort(R′) = 〈A′ : sort(A′), F : sort(F ), P : sort(P )〉 where:

– sort(A′) = 〈A1 : sort(A1), . . . , Ai : τAi , . . . , Aj−1 : sort(Aj−1), Aj+1 :
sort(Aj+1), . . . , AK : sort(AK)〉, with τAi = {〈Lj0i0 , U1

i : {〈Lj1i1 , . . . , USi :

{〈LjSiS , U
S+1
i : {〈Ll0k0 , . . . , U

S+T+1
i : {〈LlTkT

〉} . . .〉}〉}〉}〉},

– IA′ = tup_createA1,...,Ai,...,Aj−1,Aj+1,...,AK (πA1(IA), . . . , IA′i , . . . , πAj−1(IA),

πAj+1(IA), . . . , πAK (IA)), with IA′i being defined by:

IA′i = nest
U1

i =(L
j1
i1
,U2

i )
(. . . (nest

US
i =(L

jS
iS
,US+1

i )
(Iij)) . . .), where:

- Iij = nest
US+1

i =(L
l0
k0
,US+2

i )
(. . . (nest

US+T+1
i =(L

lT
kT

)
(Ii × Ij)) . . .), and

- Ii = unnestUS
i

(. . . (unnestU1
i
(πAi(IA)))),

- Ij = unnestUT
j

(. . . (unnestU1
j
(πAj (IA)))).

Filtering

Selection on measure:Let IR = 〈IA, IF , IP 〉 be an instance of a representationR. Let c
be a constant indom(m). σmeasurem=c (IR) is an instanceIR′ = 〈IA, I ′F , IP 〉 of a representation
R′ having sortsort(R′) = sort(R) and whereI ′F = σm=c(IF ).

Selection on members:Let IR = 〈IA, IF , IP 〉 be an instance of a representationR and
Ak be an axis ofR with sort(Ak) = {〈Lj0i0 : dom(Lj0i0 ), U1

k : {〈Lj1i1 : dom(Lj1i1 ), . . . , USk :

4. This OLAP operation should not be mistaken with the nest operation of the algebra for com-
plex values [ABI 95].
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{〈LjSiS : dom(LjSiS )〉} . . .〉}〉}. Given an attributeLjxix inAk(R) and a constantv ∈ dom(Ljxix ),

the selectionσmembers
L

jx
ix

=v
(IR) is defined if there exists an attributeLdi

i ∈ F(R) such thatix = i

andjx ≤ di. In that case,σmembers
L

jx
ix

=v
(IR) is an instanceIR′ = 〈I ′A, I ′F , IP 〉 of a representation

R′ having sortsort(R′) = sort(R) where:

– I ′A = 〈IA1 , . . . , IA′k , . . . , IAK 〉, with:

- I ′Ak
= nest

U1
k
=(L

j1
i1
,U2

k
)
(. . . nest

US
k

=(L
jS
iS

)
(σ
L

jx
ix

=v
(unnestUS

k
(. . .

(unnestU1
k
(IAk )) . . .),

– I ′F = σϕ(IF ) where:

- ϕ =
W
v′∈X(Ldi

i = v′)

- X = {v′ ∈ dom(Ldi
i ) | anc(v′, Ljxix ) = v}.

Projection: Let IR be an instance of a representationR and Ai be an axis ofR
with sort(Ai) = {〈Lj0i0 : dom(Lj0i0 ), U1

i : {〈Lj1i1 : dom(Lj1i1 ), . . . , USi : {〈LjSiS :

dom(LjSiS )〉} . . .〉}〉}. Given a subset{Ly0x0 , . . . , L
yp
xp} of Ai(R) such that for everyi, j ∈

[1, p], if xi = xj , then yi ≤ yj , the projectionπAi

L
y0
x0 ,...,L

yp
xp

(IR) is defined if we have:

{Ljkik ∈ Ai(R) | (∃Ldi
i ∈ F(R))(i = ik ∧ jk ≥ di)} ⊆ {Ly0x0 , . . . , L

yp
xp}. In that

case,πAi

L
y0
x0 ,...,L

yp
xp

(IR) is an instanceIR′ = 〈IA′ , IF , IP 〉 of a representationR′ having sort

sort(R′) = 〈A′ : sort(A′), F : sort(F ), P : sort(P )〉 where:

– sort(A′) = 〈A1 : sort(A1), . . . , Ai : τAi , . . . AK : sort(AK)〉, with:

τAi = {〈Ly0x0 : dom(Ly0x0), U1
i : {〈Ly1x1 : dom(Ly1x1), . . . , U

p
i : {〈Lyp

xp :
dom(L

yp
xp)〉} . . .〉}〉}.

– IA′ = 〈IA1 , . . . , IA′i , . . . , IAp〉, with:

- IA′i = nestU1
i =(L

y1
x1 ,U

2
i )(. . . (nestUp

i =(L
yp
xp )

(I)) . . .),

- I = π
L

y0
x0 ,...,L

yp
xp

(unnestUS
i

(. . . (unnestU1
i
(πAi(IA))))).

Changing the level of detail

Navigate: Let IC = 〈IAAll , IFAll , IPAll〉 be an instance of aN -dimensional cubeC. Let
Ld11 , . . . , LdN

N be such that for everyi ∈ [1, N ], Ldi
i ∈ Li(R). Navigate

L
d1
1 ,...,L

dN
N

(IC) is

an instanceIR = 〈IA, IF , IP 〉 of a representationR having sortsort(R) = 〈A : sort(A), F :
sort(F ), P : sort(P )〉, where:

– sort(A) = 〈A1 : sort(A1), . . . , AN : sort(AN )〉, where for everyi ∈
[1, N ], sort(Ai) = {〈L0

i : dom(L0
i ), U

1
i : {〈L1

i : dom(L1
i ), . . . , U

di
i : {〈Ldi

i :
dom(Ldi

i )〉} . . .〉}〉},

– sort(F ) = {〈Ld11 : dom(Ld11 ), . . . , LdN
N : dom(LdN

N ),m : dom(m)〉},

– IA = 〈IA1 , . . . , IAN 〉 where for all i ∈ [1, N ], IAi is defined by: IAi =
nestU1

i =(L1
i ,U

2
i )(. . . nestUdi

i =(L
di
i )

(π
L0

i ,...,L
di
i

(unnestDqi
i

(. . . (unnestD1
i
(IDi))))),

– IF = π
L

d1
1 ,...,L

dN
N

,m
(IFAll on

L
d1
1 =Fall

1
Level1 . . . on

L
dN
N

=Fall
N

LevelN ), with

Leveli = π
L

di
i

(unnestDqi
i

(. . . (unnestD1
i
(IDi))))), for everyi ∈ [1, N ],
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– IP = IPAll .

Aggregate: The aggregate operator allows to apply an aggregate function on the facts of a
representation. This operator relies on the extended projection operation as defined in [ABI 95].

Let IR = 〈IA, IF , IP 〉 be an instance of a representationR and Ai an axis ofR
with sort(Ai) = {〈Lj0i0 : dom(Lj0i0 ), U1

i : {〈Lj1i1 : dom(Lj1i1 ), . . . , USi : {〈LjSiS :

dom(LjSiS )〉} . . .〉}〉}.

Let f be an aggregate functions defined ondom(m). Given two attributesLjxix andL
jy
iy

in Ai(R) such thatLjxix ∈ F(R), k = ix = iy and dk = jx > jy, the aggregation
Aggregate

L
jx
ix
→Ljy

iy
; f(m)

(IR) is an instanceIR′ = 〈IA, IF ′ , IP 〉 of a representationR′ hav-

ing sortsort(R′) = 〈A : sort(A), F ′ : sort(F ′), P : sort(P )〉, where:

– sort(F ′) = {〈Ld11 : dom(Ld11 ), . . . , L
dk−1
k−1 : dom(L

dk−1
k−1 ), L

jy
k : dom(L

jy
k ), L

dk+1
k+1 :

dom(L
dk+1
k+1 ), . . . , LdN

N : dom(LdN
N ),m : dom(m)〉},

– IF ′ = π
L

d1
1 ,...,L

dk−1
k−1 ,L

jy
k
,L

dk+1
k+1 ,...,L

dN
N

; f(m)
(I), with I = IF on

L
jx
ix

unnestUS
i

(. . . (unnestU1
i
(IAi))).


