A new way of optimizing OLAP queries

Arnaud Giacometti® — Dominique Laurent™ — Patrick Marcel* —
Hassina Mouloudi*

* LI, Université Francois Rabelais de Blois-Tours-Chinon
IUP GEIl, Antenne Universitaire, 3 place Jean Jaurés
41000 Blois

{arnaud.giacometti,patrick.marcel}@univ-tours.fr
Hassina.Mouloudi@etu.univ-tours.fr

* LICP, Université de Cergy-Pontoise
dominique.laurent@dept-info.u-cergy.fr

ABSTRACTFoOr around 10 years, the academic research in database has attempted to define a
commonly agreed logical modeling for the multidimensional and hierarchical nature of data
manipulated with OLAP treatments (called datacube, or cube for short). But only recently has
the concept of representation of a cube on a screen, or the optimization of OLAP queries at a
logical level, been taken into account in this study. As many others, we believe that these two
concepts are essential for the definition of a multidimensional query language. In this article,
we propose to consider representations of cubes as first class citizens for query optimisation at
the logical level. To reach this goal, we formally define the concept of representation by using
the model of complex values [ABI 95]. This allows to have a single model for manipulating both
cubes and their representations through typical OLAP operations. These typical operations are
studied to propose rewrite rules in order to optimize OLAP queries.

RESUME . Depuis environ 10 ans, la définition d’'un modéle concensuel englobant la nature mul-
tidimensionnelle et hiérarchisée des données manipulées par les traitements OLAP (appelées
cube de données) est & I'étude. Mais c’est seulement récemment que les concepts de représen-
tation d’'un cube a I'écran et d’optimisation de requétes OLAP & un niveau logique ont été pris

en compte dans cette étude. Nous pensons, comme beaucoup, que ces concepts sont essentiels
a la définition d’un langage de requétes pour OLAP. Dans cet article, nous proposons de consi-
dérer les représentations de cubes de données comme une base pour I'optimisation de requétes
au niveau logique. Pour ce faire, nous définissons formellement le concept de représentation
en utilisant le modele des valeurs complexes [ABI 95]. Cela permet d’avoir un modéle unique
pour manipuler un cube et ses représentations via les opérations OLAP usuelles. L'étude de ces
opérations nous permet de donner des régles de réécriture pour optimiser les requétes OLAP.

KEYWORDSOLAP, query language, logical modeling, optimisation
MoTs-CLES OLAP, langage de requétes, modélisation logique, optimisation

2 Nom de la revue ou conférence (a définir psiibmitted ou \toappear)

1. Introduction

Even if OLAP (On-line Analytical Processing, [CHA 97]) logical modeling has
been deeply studied in the database community [GYS 97, AGR 97, VAS 00, CAB 97,
HAC 97, MEN 04], it is still too early for a commonly agreed logical model to arise.
As noticed in [JAR 02], it seems that the practical value of such studies involves
both efficient query execution and multidimensional visualization. To the best of our
knowledge, there is no work that studies the possibilities of optimizing queries based
on the representation of a cube on a screen.

In this paper we concentrate on:

— The formal definition of representation of a cube, i.e., the logical counterpart of
what is displayed on a screen.

— The definition of a language for manipulating both cubes and representations.

— The optimization of OLAP queries at a logical level, i.e., based on the properties
of the operators.

We propose to describe in a single logical model both datacubes and their repre-
sentations. We show that the model of complex values [ABI 95] is a good candidate to
achieve this goal. We translate into this model the most typical basic OLAP operators
[MAR 99]. The language so defined allows the user to precisely:

— Describe what the output of a query is, in terms of representation on a screen.

— Know how the facts displayed have been computed, in particular aggregations
are computed on the basis of the actual hierarchies the user sees.

This framework allows us to study the optimization of OLAP queries at a logical
level in the following way:

— We give rewriting rules involving the OLAP operators that are used to generate
the optimized form of the query.

— Based on the rewriting rules, we identify a canonical form for OLAP queries that
can be obtained from any query.

— We rewrite the query so that evaluating this query only deals with the data that
will be displayed on the screen as a result.

A lot of work on the optimisation of OLAP queries has been done by studying
how to rewrite OLAP queries in the presence of precomputed aggregates ([PAR 01] is
a recent work in this area and contains a short overview). This approach does not take
into account how the answers to the queries are represented on the screen. Because we
concentrate on determining the part of the answer that is to be displayed, our approach
can be seen as orthogonal to this one.

To our knowledge, there is no study of the properties of OLAP operations, whereas
this study exists for the traditional relational operations [ABI 95]. Only [VAS 00]
proposes a logical model and uses it for the optimization of OLAP queries at a logical
level. In this work, the authors adapt the classical view subsumption techniques to the

Titre abrégé de I'article (a définir patitle[titre abrégél{titre}) 3

OLAP framework. In that case again our technique can be seen as orthogonal to this
one.

In the context of OLAP, the concept of representation of a cube (what [KAR 03]
calls the presentation level) attracted very little attention. Many of the logical models
and languages proposed in the literature confuse logical level and presentation level.
To our knowledge, only two proposals have been made:

— The MDX API proposed in [Mic 98]. This complex SQL-like language, where
the intuitions behind the SELECT and WHERE clauses do not really correspond to
those of SQL, mixes the presentation and logical level and lacks of theoretical foun-
dations.

— The CPM model [MAN 03], that seems to be an attempt for giving MDX ex-
pressions a clear logical foundation. In this model, the logical and presentation levels
are separated. Our work can be seen as an extension of this research, towards the use
of the presentation level as a basis for query optimisation.

The rest of the paper is structured as follows: In Section 2, we propose a logical
definition of a cube and a representation in terms of complex values. In Section 3,
we define an algebra by translating the basic OLAP operators into the algebra for
complex values. Section 4 deals with the optimization process, and Section 5 draws
conclusions and future work.

2. Cubes and Representations

In this work, we make a clear distinction between a cube, a representation of a
cube and the visualization of a representation. Intuitively, we propose to consider that
logically:

— A cube is the set of all basic facts that can be presented to the user, including
the most detailed data and the precomputed aggregates. A cube is composed of a fact
table and a set of dimension tables, as in a star schema [JAR 02]. This corresponds to
what [VAS 00] calls the detailed data set.

— The representation of a cube is what the user wants to see, under the form of a
multidimensional cross-tab. A representation corresponds to the result of a query over
a cube or a representation. It is composed of the set of facts the user wants to see
and of the description of the axes of the cross-tab. If the representation the user wants
to see has more than two axes, as it cannot be easily displayed on a two-dimensional
screen, only the first two-dimensional slice of the representation is displayed. Note
that in our formalism, this two-dimensional slice is also a representation of a cube.

To take the concept of representation into account, we propose to use the model
of complex values [ABI 95] since this model is very well adapted for describing the
nesting of attributé's Note that a first investigation of this idea occurs in [DEK 98].

1. For the sake of space we refer the reader to [ABI 95] for a presentation of this model.

4 Nom de la revue ou conférence (a définir psitibmitted ou \toappear)

In what follows, we distinguish two categories of attributes, as usual in the OLAP
context: the member attributes, having names liker ', and the measure attribute,
namedm. Without loss of generality, we consider only one measure attribute. In our
model, both cubes and representations are complex valuesr, I») having sort
the same generic forf : sort(A), F' : sort(F), P : sort(P)) where:

— I 4 is a complex value that describes:

- In the case of a cube: The dimensions of the cube and their hierarchies
- In the case of a representation: The axes of the representation.
— Ir is a complex value that describes:

- In the case of a cube: The complete set of facts of the datacube.
- In the case of a representation: The facts that the user wants to see.
— Ip is arelation that describes:

- In the case of a cube: a default position for each member of the cube on an
axis of a representation built from this cube.

- In the case of a representation: The position of each displayed member on an
axis.

We now turn to the formal definitions.

2.1. Cube

An instancel of an N-dimensional cub€' is a tuplelc = (I4,,,;Ira,, Ipa,)
that is a complex value having sauirt(C) = (Aay : sort(Aay), Fay : sort(Fay),
Py : SOT’t(PA”)> where:

—14,, isatuple(lp,,...,Ip,) that describes the dimensions of the cube. Itis
a complex value having sosbri(Aay;) = (D; : sort(Dy),...,Dn : sort(Dy)).
For alli € [1, N], Ip, is a complex value describing a particular dimensiaf the
cube. The nested structure of this complex value allows to describe the hierarchy
associated with the dimension in a straightforward manner. It hassom{D;) =
{(LY - dom(LY), D} : {{L} : dom(L}),...,D¥ : {{L¥ : dom(LI))}..)1}

For a dimensiori, each attributeEf describes a level of the hierarchybeing the
depth of this level in the dimension. In the following, we denotehyC) the set of
all attributesZ? in dimension: of cubeC, i.e. £,(C) = {L! | 0 < j < ¢}, and by
L(C) the set of all attributefv{ of cubeC, i.e. L(C) = U,;cp v £:(C). Finally, let
v € dom(L{) andk € [0,j — 1]. We define the classical notion of ancestors ait
level k by: anc(v, L¥) = Tk (UL{:U(unnestDZ (- (unnestpi(Ip,))...))).

—Ir,, is the set of all facts of the cube. It is a complex value having sort
sort(Fay) = {(FH 2 dom(FY), ..., FZ : dom(F&),m : dom(m))}. Ir,,

2. For the sake of readability, the model is restricted to only one hierarchy per dimension.

Titre abrégé de I'article (a définir patitle[titre abrégél{titre}) 5

represents the fact table of the cube. It describes every fact at every level of detail.
Hence the following equalities holt¥i € [1, N], dom(F*") = U, (o 4, dom(L]).

—Ip,, is aninstance of relation of softmember : {J,(U; dom(L?})), position :
N)} that associates each member of the cube with a distinct integer. This integer
corresponds to the default position of a member on an axis when a representation is
built from a cube. This relation defines a total ordering alen (L}), for all i and;.

Example 2.1 As an example, we consider a 5 dimensional cube namkd, inspired by the
example used in [Mic 98]. The dimensions are:

— Year: the different years.

— Quarter: the months grouped in quarters.

— Location: the cities grouped in regions and countries.
— Product: the items grouped in categories.

— Salesman: the different salespersons.

The sort of the cubeales is:
$01t(Csates) = (Aan : sort(Aan), Fau : sort(Fau), Pau : sort(Pau)),
sort(Aan) = (Year : sort(Year), Quarter : sort(Quarter),
Location : sort(Location), Product : sort(Product),
Salesman : sort(Salesman))
sort(Fau) = {(Ff” : {allyear, 1990, . .., 2004}, Fstt {allguarter, q1, - - ., dec},
Fglt . {alliocation, france, ..., paris},
o {allproduct, drink, ..., wine},
Falt . {allsatesman, john, ..., bill}, sales : N)}
sort(Pay) = {{member : {1990, john, ...}, position : N)}.

The dimensiorQuarter, an instance of'4; and an instance dP4;; are described in Figure 1.
In what follows, we consider an instanég,;.s of the cubesales.

2.2. Constructing a representation of a cube

A representation of a cube is constructed by using Mevigate operation.
Intuitively, this operation is a selection in the fact table of the cube in order to
present the data at a given level for each dimerisioffor example, the query
Navigateyear quarter,city,item,name (Isates) = 11 allows to obtain the representation
displayed in Figure 2 (a). Note that only one 2-dimensional slice of this representation
is displayed (on the left-hand side of the figure), i.e., the facts concerning the cities

3. This operator is close to the navigate operator proposed in [VAS 00]. It is formally defined
in the Appendix.

6 Nom de la revue ou conférence (a définir psibmitted ou \toappear)

Quarter topq quarter | month

allquaTter ql jan
feb
mar

qa oct
nov
dec

(a) An instance of the dimensidpuarter

Ir,, Year Quarter | Location Product Salesman | sales
1988 ¢ paris drink john 20
1988 ¢ paris beer john 30
1988 ¢ paris wine john 20
1988 Q1 paris milk john 20
1988 Q paris allproduct john 1000
a”year llllqu,m«ter alliocation allproduct allsatesman 500000

(b) An instance off 4y

Ip,,, | member| position
1988 1
drink 1
food 2 sort(Quarter) =
milk 1 {<t0pQ : {allquarte'r'}y
beer 2 Dj : {(quarter : {q1, 42,43, 41},
john 1 D% : {{(month : {jan,... ,dec} H})}.
france 1))
paris 1 (d) The sort of the dimensioQuarter

(c) An instance ofP4y;

Figure 1. The dimensioduarter, the facts and default positions of the culages

other tharparis, the items other thamilk and the salesmen other thaghn (these

values appear on the right-hand side of the figure) are hidden. Indeed, a representation
is always displayed so that the user can see only the members of the first two axes, and
the member at the lowest position on every remaining axis. When there is more than
one attribute on an axis, the attributes are displayed according to the order imposed by
their level and by their position, and the measures are displayed accordingly.

Formally, an instance of a representatidhof a cubeC is a tuple I =
(Ia,Ir,Ip) of sortsort(R) = (A : sort(A), F : sort(F), P : sort(P)) where:

—14 is a tuple (I4,,...,14,) of axes, of sortsort(A) = (4
sort(Ay),..., Ak : sort(Ak)). Forallk € [1,K], 14, is a complex value de-

Titre abrégé de l'article (a définir patitle[titre abrégél{titre}) 7

scribing a particular axis of the representatiaf, is of sortsort(Ay) = {(L{g :
dom(L®), UL + {(LI* : dom(L}"),..., U« {(LI% : dom(L{))}..)})}. We
denote byA,(R) the set of attributes of (C) that occur on4y, i.e. Ax(R) =
{L, L7, ..., L2}, and by A(R) the set of all attributes of (C) that occur on an
axis of R, i.e. A(R) = UI_, Ar(R).

— I is a complex value describing the facts depicted by the representatids.
of sortsort(F) = {(L* : dom(L{"),..., LY : dom(L),m : dom(m))}. We
denote byF(R) the set of attributes of(C') that occur insort(F'), i.e. F(R) =
{8, . L.

—Ip is a complex value of sof(member : |J,(U, dom(L})), position : N)}
that associates each memberffwith an integer. This integer corresponds to the
relative position of the member on an axis of the representation.

Example 2.2 As an example, we consider the representafiprof Figure 3 (c). I7
(Ia,Ip,Ip) of sortsort(I7) = (A : sort(A),F : sort(F),P : sort(P)) wherelx
<IA5,IA2,IA4,IA1> and:

—sort(A) = (As : sort(As), As : sort(Az), As : sort(As), Ay : sort(Aq)), with, for
instance:

sort(As) = {(name : dom(name),
Uz : {(region : dom(region), U2 : {{city : dom(city))})})}
Ia, = {{john, U : {{north, UZ : {{paris), (blois), (lille)}),
(south, U2 : {{lyon), (marseille)}), ...}), ...,
(bill, U2 : {{north, U2 : {{paris), (blois), (lille)}) ... })}
—sort(F) = {{ year : dom(year), quarter : dom(quarter), city : dom(city),
category : dom(category), name : dom(name),
quantity : dom(quantity))}
Ir = {(2000, g1, paris, drink, john, 10), (2000, q1, blois, drink, john, 20),
(2000, ¢1, lille, drink, john, 70) ...}
= sort(P) = {(member : U, (U, dom(L?)), position : N)}
Ip = {(john, 1), (north,1), (paris,1),..., {q1,1),..., {(drink,1),...,(2000,1)}

3. OLAP operations

In this section, we describe how cubes and representations are manipulated using
the most typical OLAP operators [MAR 99]. Basically, using the definition of cubes
and representations above, we translate the OLAP operators into the algebra for com-
plex values (as defined in [ABI 95]). We consider the following OLAP operators, that
are classified according to 3 categories:

— Restructuring operators that change the viewpoint on data. Operators in this
category ardermute, Switch, Nest

8 Nom de la revue ou conférence (a définir psiibmitted ou \toappear)

A,
2004 10 20 20 10
2003 | 50 70 50 60
2002| 60 60 80 80
a 2001| 70 50 40 70
| 2000| 40 80 10 80
| 1999 |50 30 10 10
1998 | 50 30 70 10
y 1997| 40 50 30 70
e 199| 10 40 50 10
a 1995| 40 50 80 70
r 1994 |50 80 30 50
1993| 10 70 40 50
1992 | 10 80 40 30
1991 80 40 50 10
1990 70 70 10 50
1989 | 40 50 50 10
1988 | 20 50 70 80
g1 92 g3 4ga
A2 allqua'rtm‘

(a) Il = Navigateyea'r,quarte'r,city,item,name (Isales)

A,

2004 | 40 30 20 40
2003 | 50 50 40 50
2002 | 60 40 30 50
1992 | 70 80 50 70
1991 60 40 60 80
1990 60 70 50 40
1989 | 50 50 30 10
1988 | 30 40 70 70
A g g2 g3 Q4
(C) IS — o_nLe'mbe'r

As
alllocation

T

france
1

north
1
paris
Ay
allproduct
1

drink

1
milk
As

allsales'man

1

john

As
north

1

paris

Ay
drink
1

beer

As
john

item=beerVitem=wineVcategory=food

(I2)

. A,
2004 | 10 20 20 10
2003| 50 70 50 60
2002| 60 60 80 80
1995140 50 80 70
1994 50 80 30 50
1993| 10 70 40 50
1992 10 80 40 30
1989 40 50 50 10
1988 20 50 70 80
A Q. Q2 g3 Q4

(b) 12 - W;elar (ﬂﬁiartcT(ﬂAs

Ay
category,item

Ay

2004| 60 60 40 50
2003| 80 90 90 90
2002| 70 50 70 80
1992 80 90 60 80
199180 50 70 90
1990 70 80 60 50
1989 90 90 50 20
1988 | 50 50 90 80
Ao g1 Q92 g3 qa

(d)1s =

As
north
1

paris

Ay
drink
1

milk

As
john

region,city(

(ﬂ—;?gme (Il)))))

As
north

1
paris
Ay
drink
1

beer,wine

As
john

AggTegateitem—»category;sum(sales) (13)

Figure 2. Outputs of steps 1-4. On each figure, the left-hand side displays the first 2-
dimensional slice of the representation, and the right-hand side displays the member
at the lowest position for each hidden axis.

Titre abrégé de I'article (a définir patitle[titre abrégél{titre}) 9

As As
bill 30 90 50 60 north
rose 30 10 90 90 1

irma 70 60 70 10 paris
kate 90 60 50 10 Ay
lara 90 90 70 10 drink
averell | 10 30 30 90 T

jack 10 60 50 60 beer,wine
joe 90 70 30 10 A,
john 50 50 90 80 1988
Az @ G2 @3 Q4

(@) Is = Permuteas, a, (14)

As Ay
bill north lille 40 60 60 70 drink
blois | 10 20 30 20 T
paris| 30 90 50 60 beer,wine

john north lille | 70 70 50 50 A,
blois | 20 30 20 20 1988
paris| 50 50 90 80

A2 @ 2 g3

(b) I6 = NGStAs(A3) (Uregv',onznorth (15))

As Ay
bill north lile | 20 30 40 30 drink
blois | 20 10 10 20 T
paris| 10 40 30 50 beer,wine

john north lille | 70 60 50 50 A
blois | 20 20 30 30 2000
paris| 10 20 10 10

A Q1 g2 g3 Q4

(c) Ir = Switchyear;1988,2000 (16)

Figure 3. Outputs of steps 5-7

— Operators that change the level of detail. We consider two different operators in
this category:

- The Navigate operator, introduced in the previous section, defines for each
dimension of the cube at which level the data are to be represented.

10 Nom de la revue ou conférence (a définir pabmitted ou \toappear)

- the Aggregate operator groups the members of an axis according to the part
of the hierarchy displayed in the representation, and then aggregates the measures
accordingly.

— Filtering operators, that are the extension of classical selection and projection to
representations.

Note that the classical roll-up, drill-down or slice&dice OLAP queries can be ex-
pressed in our framework by using this set of operators. For instance, &athigate
operator selects from the fact table the data at a given level for each dimension, it can
be used to express drill-down or roll-up queries.

We introduce the different operators in an example, the formal definitions are given
in the Appendix. The example is based on the following query:

. be
Switchyear;1988,2000 (N st oy (45) (07egTon L popen (Permutea, a, (

member
Agg’rega’teitemﬂcategm”y;S’U«m(sales) (Uitem:beerVitem:winchategory:food(

Ay (ﬂ.Az (Az (Ay

As
ﬂ-year quarter\"" region,city category,item(ﬂ'na)me(

Navigateyear,quarter,city,item,name (Isales))))))))))))

This query aims at presenting the sales of food and the cumulated sales of beer and
wine for year 2000 in the north, detailed by salespersons and quarters. The final output
of this query is given in Figure 3 (c). We examine the different steps independently.
The first step, which involves th& avigate operation, is illustrated in the previous
section. We now illustrate the filtering operations.

3.1. Filtering

We illustrate step 2 and step 3 of the query:

T A Ao As Ay As

- Step 212 - Tryelar(Trqum‘ter(Wregion,city (Trcategory,item (ﬂ-nd)me (Il)))))
7. _ ~member

- Step 313 - Uitem:beerVitem:winchategory:food(I2)

The outputs are given in Figure 2 (b) and (c). These two steps reduce the amount
of displayed facts (for selection) and displayed levels (for projection).

Note that after step 3, the displayed slice has changed. This is due to the fact
that the itemmilk, that was at position 1 of axid, in I is no more selected in
representatioti;. Then among the selected items, the one at the lowest pogitian,
is displayed first. Note also that in our formalism, a representation must always depict
the hierarchies that have been used to aggregate the data. Thus, for a given dimension,
selection on members can not be applied on a member attribute that identifies a level
deeper than the level currently displayed. Otherwise the measures displayed would no
more correspond to the displayed hierarchy. The same remark holds for the projection
operation.

Titre abrégé de I'article (& définir patitle[titre abrégél{titre}) 11

3.2. Changing the level of detall

Step 4, i.e..ly = Aggregateiiem—category;sum(saies)(I3) illustrates a way of
changing the level of detail of the representation. Note that we distinguish two differ-
ent ways of changing the level of detail: by using tevigate operation to present
the data at a given level for each dimension, or by usingAheregate operation.
Intuitively, the Aggregate operation groups and aggregates the data according to the
groupingsdepicted on a particular axis. This operation does not change the sort of
the axes.

The output of step 4 is given in Figure 2 (d). Note that the facts that are dis-
played are no more the facts in the fact table of the cutles. This is so because
the Aggregate operator has been used to compute the saldsiaf:, but only for the
drinks that were selected in step 3, ile¢r andwine.

3.3. Restructuring

The last operations to be considered are the restructuring operations. These opera-
tions allow to exchange the positions of two axBefmute), exchange the positions
of two members §witch) or nest two axes togetheNEst). They are illustrated by
the following steps:

— step 5:I5 = Permutea, a, (1)
— step 6:ls = NGStAS(AS) (Uregion:north(15))
— step 7:I; = Switchyear;1988,2000(16)

The outputs of these three steps are given in Figure 3. Note that these operations
do not change the facts of the representation, but only the way they are displayed.

4. OLAP query optimisation

In this section, we propose an optimisation technique for OLAP queries. We first
introduce this technique informally.

4.1. Intuitions

This optimisation technique consists in determining which part of the query out-
put will be displayed on the screen. This part is the first 2-dimensional slice of the
representation, which is also a representation. This slice can be computed by adding
selection conditions to the initial query. Intuitively, these conditions are obtained by
inspecting the parameters of the restructuring and filtering operations in the query. As
the costly operation idggregate, the optimization consists in pushing the conditions

12 Nom de la revue ou conférence (a définir pabmitted ou \toappear)

before theAggregate. We first explain how selection conditions are computed, and
then we present how these conditions are added to the query.

When statically inspecting a query, téest and projection operations are used
to identify which attributes are displayed and on which axis. Paemute operation
is used to identify the first 2 axes of the representation, i.e., the axes that are fully
displayed. The remaining hidden axes contain attributes for which only values at the
lowest position are visible. These values can be deduced froifittie-h operation
and the default positions of the members.

As an example, we consider the query presented in Section 3. It can be found by
inspecting the parameters of tliermute, Nest, Switch and projection operations
that:

— The final representation has 4 axes.
— The attributes on the two hidden axes gter, item andcategory.

— The values of these attributes at the lowest position are respe@d@y beer
anddrink.

It can be found by inspecting the parameters of fagregate and selection opera-
tions that:

— The facts displayed concern levelgar, quarter, category, city and
salesman.

— The measures fadrink are computed only from the measures deer and
wine.

Hence the selection condition that is generategleisr = 2000 A category =
drink.

4.2. Canonical form of an OLAP query

Our optimisation technique is based on a particular form of queries, which we
call canonical form We define the canonical form of an OLAP query, that complies
with the standard intuition behind OLAP queries: Mavigate identifies the levels
at which the facts are to be represented, some ad-hoc aggregations, i.e., sequences of
selections and aggregations, can be performed, and finally the restructuring operations
construct the viewpoint. The canonical form of a query is given betodefiotes the
composition of operations):

_ W . P s
Q= OkzlswltChLZ;f;vkmL_ 051 PermuteAak_,Aﬁk 0p_y NeStAmk(Ayk)

N Ay G measure . member
Oi:lﬂ-Xi Op—1 [ka o] AggregateL?fHLiﬁ; F(m) o O'wk

Titre abrégé de I'article (& définir patitle[titre abrégél{titre}) 13

o) 0.7”5(15'&7'6 ONCH}Z ate
LP;C] g L‘lil7

L?\]N (I)

veey

member _ N member
where for allk, o} = Oi:law}fi

The following lemma, which proof can be found in [GIA 04], states that all queries
have an equivalent canonical form.

Lemma 4.1 Every OLAP query can be put under the canonical form.

Moreover, the rewriting rules presented in Figure 4 allow to transform any query
into its canonical form. Note that the last rule is valid since in our formalism, selection
cannot be applied on an attribute that identifies a level deeper than the displayed level.
For example, on representatidp displayed in Figure 3 (c), selection on item, e.g.,
item = beer is not allowed, because facts are displayed at the category level.

Among the algebraic operators, thggregate is the most costly since it is used
to compute new facts. So the principle of our technique is to propagate the selection
conditions before the aggregate operation. Getting back to our example, the rewritten
query is:
Ag (A3 (A4

Aq 5
PeTmU’teAl ,As (NeStAs (As) (T((ﬂ-quarter region,city \'' category,item (Trname (

year

b
Aggregateitem—>category;sum(sales) (C’gwm er(

Navigateyear,quarter,city,item,name (Isales))))))))))

where S = (region = north A (item = beer V item = wine V category =
food)) A (year = 2000 A category = drink). Moreover it is easy to see that
conditioncategory = drink is redundant ir6, thus we can consideéf = (region =
north A (item = beer V item = wine) A year = 2000).

4.3. Optimisation algorithm

We are now ready to present the algorithm for optimizing OLAP queries. It con-
sists of one function, name&dompute_First_Slice_Selection, given Figure 5.

Let us examine each step of the function. Recall fMatigate 4+, 4y OUtputs
1 0N
a representation havinyj axes, with attributes of dimensidn; on axisA,;.

1) This step only looks for the axes of the representation.
2) For every axis, this step performs the following four actions:

a) It finds the depth at which the data will be presented. For.Axithis depth
is eitherd; if A; is not one of the parameters df;gregate (recall thatd; is the depth
on axisA; according to which the facts dfare depicted), or it is the smalldgtsuch
that Aggregate s,) € Q otherwise.

ik

=L f(m

14 Nom de la revue ou conférence (a définir pabmitted ou \toappear)

1 Nesta,a, (Permutea, a,(I)) = Permutea,,a,(Nesta,a)())ifj ¢ {k,1}
ro Nesta,(a, (Permutea, a,(I)) = (Of;jﬂ_lpermuteAk,Al)(NestAi(Aj)(I))

r3 NestAi(Aj)(SwitchL%;vyv,(I)) = Switch%;vyv, (Nesta,a; (1))

T4 NestAi(AJ)(Wf% """ L () = Wfﬁ 7777 L (Nesta;(a, (1))

rs Permutea,, a; (Switch%;v’v, () = Switch%;vﬁv, (Permutea;, a; (1))

r6 Permutea,;, a, (ﬂfgi ,,,, v) = ﬁfé:i L (Permutea;,a; (I))

7 Switchy ., (Wfi ol () = ﬁf% ol (Switch,;,, (1)

rs 7,(0p(I)) = Op(o,(1))

r9 Aggregateinﬁng; f(m)(Op(I)) = Op(AggregateLzz ﬁng; f(m)(f))

T10 U;”b(AggregatengﬂLzz; f(m)(l))) = AggregateLZiﬂLzz; f(m)(aglb(])))

Figure 4. Rewriting rules for OLAP algebra. In this figure,denotes the composi-
tion of operationsOp € {Permute, Switch, Nest, 7}, c™° denotes a selection on
members, and denotes a selection on measures or members.

b) It assigns to the axis a location numbefinN|], which isi for axis A;.

c) It finds the set of attributes appearing on the axis, by using the parameters
of the projection operation. These attributes are sindplyor axis A;.

d) It finds the initial position of every member appearing on the axis.

3) For each axis being the result dfest operations, this step computes the set
of attributes appearing on this axis. For edtﬂastAmk(Ayk) operation, the set of
attributes on axisi,, is the union of the sets of attributes 4f,, andA,, . Note that
when two axes of a representation are nested, the resulting representation has one axis
less. This means that the location number of the axes that are located gfteas to
be updated. After this step, only — S axes remain. The location number of each of
theseN — S axes remains ifi., N — S]. The setd’ contains thes&/ — S axes.

4) This steps computes the new location number of two axes if these two axes are
permuted.

5) This steps computes the new position of two members if these two members are
switched. Note that the members that are not switched keep their original position, i.e.,
the ones that are given by the cube

6) This step computes the selection conditions. Recall that the idea is to find the
members at the lowest position on the axes that are hidden. These axes are the ones
of A’ having a location number greater than 2. For each suchiax® consider
each attribute appearing on this axis. For each such attribfitewe identify the
members that will belong to the resulting representation, i.e., the members that appear
in the selection conditiow,?i (or all the members of these attributes if this condition
is true). Then the member having the lowest position is found, and the condition
Lk = v is generated.

Titre abrégé de l'article (& définir patitle[titre abrégél{titre}) 15

Function Compute_First_Slice_Selection|Q)]

Input: A query under canonical form
Q= oE’ZlSwz‘tchL:ukkmk,% of_, PermuteA%,Aﬁk 0¥, NestAIk (Ayy)
ofLy XL ofy [00et e o Aggregate i v, ;i) © ot
o aZ‘;“SW@] o NavigateL(lz1 oLy) L
where for allk, o™ = of\’zlazf%znb”

Aninstancel = (Ia,,,,1r,,,Ipr,,) of acube
Output: A conditiony of selection
Local: att(A;) is the set of attributes on axis;
loc(A;) is the location of axisd;
pos(vy) is the position of a member,

=

LetA = {Al, . 7A]\]}
2. Il Aggregate and Projection operators
for ¢ = 1 to N do begin
€eQNix =1} U{d:})

ki = min({lx | AggregateLg:HL’zi,;; m)
loc(A;) =1
att(Ai) = Xi

for everyv € U, (U, dom(L})) such thatl.] € att(A;) do
Pos(v) = Tposition (0 i, (IPaw))
end for '
3. /I Nest operators
for k = S to 1 do begin
att(Ag,) = att(Aq,) Uatt(Ay,) ;
for A; € A such thatoc(A;) > loc(Ay,) doloc(A;) = loc(A;) — 1
end for
4. /] Permute operators
for k=Ptoldo z=loc(Ag,); loc(Ap,)=1loc(Aq,); loc(Aa,) =z endfor
5. // Switch operators
for k=W toldo = = pos(vr); pos(vi)= pos(vy); pos(vy) ==z endfor
6. // Selection conditions on the hidden axes
p = true
A = {A]' € A| ﬂNeStAi(Aj) € Q}
for [= 3 to | A’| do begin
Let Aj, € A’ such thatoc(Ax) =1;
for everyi such thatl.” € att(Ayx) do begin
© =@ A (LF =v) wherev € dom(L*") and
pos(v) = min({pos(v) | v € 7 x, (0¢, (unnest x, (... (unnestp1(Ip,)))})

whereoy, = of 10 b,
k

P
end for
end for

7. Return ¢

Figure 5. The functionrCompute_F'irst_Slice_Selection

16 Nom de la revue ou conférence (a définir paubmitted ou \toappear)

Example 4.1 Consider the OLAP query used throughout the paper:

. member
q= S'w'ltChyear;lQSS,QOOO(NeStAs(A3) (Uregion:north(PermUteAlaA5(

member
AggreQGteitechategory;Sum(SaIES) (Uitem:beervitem:winchategory:food(

A A A 5
ﬂ-;elar (7rqu2u'rter (Wre:;ion,city (Wcaéltcgory,item (Wf;me (
Navigateyear,quarter,city,item,nu,me (Isales))))))))))))

First, we illustrate how the rewriting rules are used to put this query under canonical form. The
rules can be applied as follows:

—q =% ¢1 (selection can be performed before restructuring)

. member
q1 = S'LUZtChycar;lS)SS,QOOO(NeStAs(A3) (PermUteAl ,As (Jregion:north(

Aq Az Az 4
Aggregateitemﬂcatego'r'y;sum(sales) (ﬂ—yew” (ﬂ-qua'rter (ﬂ—region,city (Trcatego'ry,ite'm (

As member
Thame (Uitem:beer\/item:wine\/catagory:food(

Navigateyea'r,quarter,city,item,name([sales))))))))))))
—q1 =% ¢, (aggregation can be performed before restructuring)

. member
q2 = S’I,U’Ltchyea,r;lg88,2000(NeStA5(Ag) (Perm’UteAl ,As (U'region:north(

Ay Ao A3 Ay As
Tyear (ﬂ-quav‘ter (ﬂ-region,city (ﬂ—sategov‘y,itcm (ﬂ—’ﬂﬂme(

member
Aggregateitemecatego'r‘y;sum(Sales) (Uitem:beervitem:wine\/category:food(

Navigateyeu.r,quarter,city,item,name(Isales))))))))))))
— g2 =2 ¢3 (selection can be performed before restructuring)

. A A
g3 = Switchyear;1988,2000 (N €St Ay (ag) (Permutea; as (Tydar (Tgiarien (

Az Ay member (

5
ﬂ-region,city (Trcategory,item (ﬂ-’ﬂa’me (Uregionznm"th

member
Aggregateitemﬂcatego'ry;sum(sales) (Uitem:beervitem:wine\/catego'ry:food(

Navigateyear,quarter,city,item,name (Iaalea))))))))))))

— g3 =% qu4 (Nest can be performed befoermaute)
. A
qs = Swltchyear;lgsgg()()o(Pe’f‘muteAl As (NeStAS(A3> (Wylfelar(ﬂquartm(

As (Ay (As (member (
region,city\" category,item Tname O”l'egion:north

member
AggregateitemﬁCatego’r"y;sum(sales) (Uitem:beervitem:wine\/category:food(

Navigateyea'r,quarter,city,item,name(Isales))))))))))))
—qu = g5 (selection on members can be performed befbgeregate)

. A A
qey = Switchyear;1988,2000(Permutea,, as (Nest agas) (Tydar (Toiarter(

As Ay As
region,city (ﬂ-category,item (ﬂ-name (Aggregateitemﬂcategor'y;sum(sales) (

member (
O (region=north)A(item=beerVitem=wineVcategory=food)

Navigateyear,quarter,city,item,name (Ieales))))))))))))

The query ¢y can now be used as input of the function
Compute_First_Slice_Selection. Note that for notational purpose, the selection
oiremer is rewrittenoS_, o™g™b" with:

region=north)A(item=beerVitem=wineVcategory=food) »Pi

Titre abrégé de I'article (& définir patitle[titre abrégél{titre}) 17

— P = P2 = P5 = trye

— P2 = (region = north)

— P+ = (item = beer V item = wine V category = food)
We illustrate each step of the algorithm:

1) A= {A1, Az, A3, A4, As}

2) Fori = 1to 5 we have:

o
S3

att(Ai)

year

quarter
region, city
category, item
name

R}
o
O WwN R
S

OB WN P

PR WR PR

For instance, whei= 4, d; = 2 sinceitem, the level at deptR, appears in the parameter
list of the Navigate operation.l, = 1, sincecategory, the level at depth, appears in the
parameter list of thelggregate operation, and thus, = min({1} U {2}) = 1. att(A4) is
the list of parameter of the*4 operation, andoc(A,) is set to.

3) The only Nest operation &est 4, (4,). Henceatt(As) = {name, region, city}, and
loc(As) = 3,loc(As) = 4.

4) The only Permute operation Rermutea, a;. Henceloc(A:1) = 4 andioc(As) = 1.

5) The only Switch operation iSwitchyear;1988,2000. Hencepos(1988) = 13 and
pos(2000) = 1.

6) As we haved’ = { A1, Ao, A4, A5}, ranges fronB to 4.

- Whenl = 3, A, = A4 andatt(As) = {category, item}. Moreoverk, = 1, L} =
category € att(As) andoy, = oyp, = (item = beer V item = wine) V (category =
food). Thus:

Teategory (T, (unnest p2 (unnest pi (Iproduct))))) = {drink, food}.

As pos(drink) = 1 < pos(food) = 2 (see Figure 1 (b)), we hawe = drink and
@ = true A (category = drink).

-When! = 4, Ay, = A; andatt(A;) = {year}. Moreoverk; = 1, L1 = year €
att(Ai1) andoy, = o, p, = true. Thus:

Tyear (0, (unnest pi (Iyear))) = {1988,...,2004}. As pos(2000) = 1, we have
v = 2000 andy = (category = drink) A (year = 2000).

7) The function returns the selection conditign= (category = drink) A (year =
2000).

4.4. Discussion

It is important to note that our optimisation technique consists in a syntactical
exploration of the query, and thus it does not require accessing the data of the cube
from which the representation is computed. In that respect the cost of the optimisation
can be seen as not significant compared to the global cost of processing the query.

18 Nom de la revue ou conférence (a définir pabmitted ou \toappear)

Note also that, as mentioned in the introduction, our optimisation technique can
be used in conjunction with other optimisation techniques, such as for instance tech-
nigques taking advantage of materialized aggregates. Optimising an OLAP query by
combining the two techniques could be done, in a naive way, by first applying our
technique to determine what is the first slice to be displayed, and then determine what
are the materialized aggregates to be queried.

5. Conclusion

In this paper we have proposed a new way of optimizing OLAP queries, based
on the output of a query on a screen. We have used the model of complex values to
define a cube and a representation of a cube at a logical level. We defined an algebra
for manipulating cubes and representations and we showed how the properties of the
algebraic operators can be used to optimize queries.

We are currently working on the following two open issues. First, we are inves-
tigating a way for optimizing sequences of OLAP queries. For example, if a query
I' = Q1 (I) has been optimized, we can distinguish two cases for optimigir(d’):

— Take advantage of what has been done for optimigingif it can be found that
Q> can be computed only by looking at the first slicelgfor

— Use the rewriting rules for optimizin@2(Q1 (1)) otherwise.

Second, we are extending both the language and the definition of representations.
In this respect, typical restructuring operators liResh, Pull, or Unnest are under
consideration, and we are thinking of defining more sophisticated representations, e.g.,
with nested cells. Finally we are currently implementing our approach.

6. References

[ABI95] ABITEBOUL S., HULL R., VIANU V., Foundations of Database4995.

[AGR 97] AGRAWAL R., GUPTA A., SARAWAGI S., “Modeling Multidimensional
Databases”,Proc. ICDE 1997.

[CAB 97] CaBiBBO L., TORLONE R., “Querying Multidimensional Databases”, Proc.
DBPL, vol. 1369 ofLNCS 1997.

[CHA 97] CHAUDHURI S., DavAL U., “An Overview of Data Warehousing and OLAP Tech-
nology”, SIGMOD Recorgdvol. 26, num. 1, 1997.

[DEK 98] DEKEYSERS., KUIJPERSB., PAREDAENSJ., WIJSENJ., “Nested Data Cubes for
OLAP”, Advances in Database Technologiesl. 1552 ofLNCS 1998.

[GIA 04] GIACOMETTI A., LAURENT D., MARCEL P., MouLouDI H., “A new way of opti-
mizing OLAP queries”, Full version, 2004.

[GYS 97] GYsSeENS M., LAKSHMANAN L. V. S., “A Foundation for Multi-dimensional
Databases”,Proc. VLDRB 1997.

Titre abrégé de I'article (& définir patitle[titre abrégél{titre}) 19

[HAC 97] HAcCID M.-S., MARCEL P., RGOTTI C., “Arule-based data manipulation language
for OLAP systems”, Proc. DOOD vol. 1341 ofLNCS 1997.

[JAR 02] ARKE M., LENZERINI M., VASSILIOU Y., VASSILIADIS P.,Fundamentals of Data
WarehousesSpringer-Verlag, 2002.

[KAR 03] KARAYANNIDIS N., TsoISA., VASSILIADIS P., &ELLIS T., “Design of the ER-
ATOSTHENES OLAP Server”, Advances in Informatigsol. 2563 ofLNCS 2003.

[MAN 03] M ANIATIS A., VASSILIADIS P., KIADOPOULOS S., VASSILIOU Y., “CPM: A
Cube Presentation Model for OLAP'Proc. DaWakK vol. 2737 ofLNCS 2003.

[MAR 99] MARCEL P., “Modeling and querying multidimensional databases: An overview.”,
Networking and Information Systems Journail. 2, num. 5-6, 1999, p. 515-548.

[MEN 04] MeENDELZON A., HurtaDO C., LEMIRE D, “Data Ware-
housing and OLAP: A Research-Oriented Bibliography”, Available at
http://www.ondelette.com/OLAP/dwbib.html, 2004.

[Mic 98] MICROSOFT CORPORATION “OLEDB for OLAP”, Available at

http://www.microsoft.com/data/oledb/olap, 1998.

[PAR 01] PRK C.-S., KiM M. H., LEEY.-J., “Rewriting OLAP Queries Using Materialized
Views and Dimension Hierarchies in Data Warehousd€DE, 2001, p. 512-523.

[VAS 00] VASSILIADIS P., XIADOPOULOSS., “Modelling and Optimization Issues for Mul-
tidimensional Databases'Proc. CAISE vol. 1789 ofLNCS 2000.

Appendix

In this appendix, we give the formal definitions of the algebraic operators of the language.
Note that for this language, we consider only atomic operators,Peemuteonly exchanges
two axes,Switchonly exchanges two members. In that sense Rb&teoperation cannot be
considered as atomic and can be expressed as a combinatrRamnofitesand Switches All
operators are defined on representations, excepVihe gate operator which is defined on a
cube, and allows to construct an initial representation. The operators defined on representations
are applied on an instande: = (Ia,Ir,Ip) of a representatiol having sortsort(R) =
(A : sort(A), F : sort(F), P : sort(P)), wherelq = (Ia,,...,Ia,)andsort(A) = (A; :
sort(Ai1),..., Ak : sort(Ak)).

Restructuring

Permute: The Permute operation consists of interchanging two axes of a representation.
Let Ir = (Ia,Ir,Ip) be an instance of a representatiBn Given two axes4; and A; of
R, Permutea, a;(Ir) is an instancd s = (I 4/, Ir, Ip) of a representatiof’ having sort
sort(R') = (A’ : sort(A’), F : sort(F), P : sort(P)) where:

—sort(A") = (A1 : sort(A1),...,A;_1 @ sort(Ai—1),A; : sort(A;), Ait1
SOTt(Ai+1), ey Aj71 . SOTt(Ajfl), A»L : SO’I‘t(Ai)7 Aj+1 : 807‘15(Aj+1), ey AK
sort(Ak)),

—Tar = (Tay, ooy Day g Tag Tagyys oo Day oy ag, Ty s Lage).

Note thatPermutea,, a, (Ir) = Ir for everyk € [1, K].

20 Nom de la revue ou conférence (a définir paibmitted ou \toappear)

Switch: Let Ir = (Ia, Ir, Ip) be an instance of a representatiin Let A; be an axis
of RWith sort(A;) = {(L} : dom(L}?), Ul : {Lir : dom(L}}),. .., Ug (L -
dom(LiZ))}-.) H}-

The Switch operation consists of interchanging the positipasdp’ of two valuesv and
v’ of an attributeLZ: on axisA;. Itis defined ifk = 0, or if iy, # ix_1, Or if i = ix—1 and

anc(v, X) = anc(v’, X) whereX = LZ:_l.

Switch j, ;M/(IR) is an instancdr: = (14, Ir,Ip) of a representatiof’ having sort
sort(R') = ;Srt(R), where:

—Ip = (Ip — I) U (Tmember,position (Pposition— P (I) X pmemper—nr (1)) — I), with:

— I = Omember=vvmember=v' (1P)

Nest: Let Ir = (14, Ir,Ip) be an instance of a representatinLet A; and A; be two
axes ofR with:

= sort(Ai) = {(Le : dom(L), UL : (LI : dom(L),..., U : {(LS
dom(LIS)}..)1}
—sort(A;) = {(L{ : dom(L}), U} = {(L{ : dom(L.),..., U« {(LiF

dom(L;%))} -) h)}-

The Nest operation allows to nest the attributes initially on akis with the attributes on
axis la;. NestAi(Aj>(IR) is an instancd g, = (I, Ir,Ip) of a representatiof’ having
sortsort(R') = (A’ : sort(A"), F : sort(F), P : sort(P)) where:

—sort(A") = (A1 : sort(A1),...,A; : Ta,,...,Aj_1 ¢ sort(Aj_1),Ajta

sort(Ajt1), ..., Ak : sort(Ak)), with 74, = {(Lfg, U {(Lfll,, u?
(L3, UFF (L, USTTE (L)Y - D D)
— Iy = tup_CTeateAl7,,,,A,3,...,Aj,1,Aj+1,m,AK(7rA1 (I4), - -7IA§7 o ’WAj,l(IA)»

Ta;1(La), ..., mag (1a)), with I, being defined by:

Iy = neStU}:(LZ-},Uf)(' . (nestUis:(ng’UiSH)(Iij)) ...), where:
-L; = nesth+1:(L§c%’Uf+2)(. .. (n€Sth+T+1:(L?;)(Ii X I])) .. .), and
- I; = unnestys (... (unnestyi(ma, (14)))),

-1 = unnestU]_T (... (unnestUJ; (ma;(14))))-

Filtering

Selection on measurelet Ir = (14, Ir, Ip) be an instance of a representati@nLet ¢
be a constantidom(m). o;<%*""¢(Ig) is an instancdr: = (4, I, Ip) of a representation
R’ having sortsort(R’) = sort(R) and wherd , = 0,—c(IF).

Selection on members:Let Ir = (14, Ir,Ip) be an instance of a representatiBrand
Ay, be an axis of? with sort(Ax) = {(L]) : dom(L}?), Ut {L - dom(L}}),. .., Us

4. This OLAP operation should not be mistaken with the nest operation of the algebra for com-
plex values [ABI 95].

Titre abrégé de l'article (& définir patitle[titre abrégél{titre}) 21

{(L35 : dom(LI%))}...)})}. Given an attributd.’* in A (R) and a constant € dom(LJ*),

the selectlom’L”j;m”e”(IR) is defined if there exists an attribug € F(R) such that, = i

andj, < d;. In that casegr;”ﬁ”;’f“ (Ir) is aninstancdr, = (I'y, I, Ip) of a representation
R’ having sortsort(R') = sbrt(R) where:

—11,4:<IA1,...,IAL,---,IAK%With:

/ — . . .
-1, = nestUéz(L:} ’Ug)(A . nestUIf:(ng)(aLgi — (unnestUks (...
(unnestU; (Ia,)) .-,

— Iz = o,(Ir) where:

0=V ex(Li =)
- X = {v' € dom(L%) | anc(v', sz) = v}.

Projection: Let Ir be an instance of a representatiéh and A; be an axis ofR
with so?"t(Av) = {(Lj? : dom(L}?), Ut - {Liy + dom(L}}),. .., Ufg (L
dom(L{i))} 1} Given a subsefL¥, ..., Ly} of A;(R) such that for every,j €
[1,p], if i = z;, theny; < yj;, the projectionm ;U L (Ir) is defined if we have:

{L* € Ai(R) | ALY € F(R)G = ix A ji > d;)} C {L¥%,...,L:}. In that
case,ngo LY » (Ir) is aninstancdrr = (I4s, Ir,Ip) of a representatio®’ having sort
..... w

sort(R') = (A’ : sort(A’), F : sort(F), P : sort(P)) where:
—sort(A") = (A1 : sort(A1),..., Ai i Ta,,... Ak : sort(Ak)), with:

Ta, = {(L¥® : dom(L¥), U! : {(L¥ : dom(L¥),...,UF : {(L¥
dom(Lz}))} ..)}

— Iy = <IA17~--7IA{L,,~~~7[AP>,With:

L= nestyr_ (vt Ug)(- (nestyp (Lyp)(I)))

-I=m, L (unnestUs((unnestUil (ma,; (1a)))))-

.......

Changing the level of detail

Navigate: Let Ic = (la,,,, IF,,,IP,,) be aninstance of &-dimensional cub€'. Let
L% ... LI be such that for every € [1, N], L% € Li(R). Navigate, a, ay (Io)is
aninstancdr = (14, Ir, Ip) of arepresentatio® having sortsort(R) = (A : sort(A), F :
sort(F), P : sort(P)), where:

—sort(A) = (A1 : sort(Ai),...,An : sort(An)), where for everyi €
[1, N, sort(Ai) = (LY : dom(LY), U} - {(LY : dom(L}),...,U% . {(L%
dom(Li")}..)h)},

- sort() = {(LD - dom(L™), ..., LN - dom (L), m : dom(m))},

—Is = (lay,...,1ay) where for alli € [1,N], L4, is defined by: 14, =

nestyi_(r1,u2) (.. nestUdL % L)(i (unnesthi(...(unnestD_1(IDi))))),
i i L i
-Ir = WL‘fl,‘..,L(Ii\,N,m(IFA” ML‘lil:F‘f” Levely ... X dN —palt LeUelN) with

Level; = i (unnestD;zi (... (unnestDl; (Ip,))))), for everyi € [1 }

22 Nom de la revue ou conférence (a définir paibmitted ou \toappear)

—Ip =1Ip,y,.

Aggregate: The aggregate operator allows to apply an aggregate function on the facts of a
representation. This operator relies on the extended projection operation as defined in [ABI 95].

Let Ir = (Ia,Ir,Ip) be an instance of a representatighand A; an axis of R
with so?"t(Ai) = {(Lj? : dom(L}?), ut (i« dom(L}}),. .., Ufg (L
dom(Li3))} - 1)}

Let f be an aggregate functions defined &nn(m). Given two attributesL{;’; and LZ;’
in A;(R) such thatL{;’ € F(R), k = iz = iy anddy = j» > jy, the aggregation

Aggregate ;. iy, £)(IR) is aninstancdr: = (14, Ir:, Ip) of a representatio®’ hav-
iy’ m

i

ing sortsort(R') = (A : sort(A), F' : sort(F'), P : sort(P)), where:

—sort(F') = {(L% : dom(L{"), ..., sz__ll : dom(LZk_’_ll),Liy : dom(LiyLLZTll :

dom(LZ’jjl)7 L LAY dom(LSN), m - dom(m))},
Tl = M e e ey fomy (D Wit L= Te M

unnestys (... (unnestyi(1a;))).

