
Database query languages

on views

what are views usefull for?



Database query languages

outline

1. what is a view?

2. processing queries involving views

3. what is a materialized view?

4. processing queries using materialized views

5. recursive views (see e.g., notes of CS145 from Stanford U.)



Database query languages

views

Movies[title,year,length,genre,studioName,producer]
Producer[name,nationality]

CREATE VIEW MovieProd(movieTitle,prodNat) AS
SELECT title,nationality
FROM Movies, Producer
WHERE producer = name

put differently
MovieProd(t,n) ← Movies(t,y,g,s,p),Producer(p,n)



Database query languages

querying views

I a view is not a table

I it is an intensional definition

I its extension is not stored

I but it may be queried as a table

SELECT starName,ProdNat FROM MovieProd, StarsIn WHERE
title=movieTitle



Database query languages

processing queries using views

SELECT V.x FROM V WHERE ϕ (i.e., πV .x(σϕ(V )))

suppose V is defined by : πy ,x(σθ(R))

processing Q means processing : πx(σϕ(πy ,x(σθ(R))))

and thus: πx(σϕ∧θ(R)))



Database query languages

materialized views

CREATE MATERIALIZED VIEW MovieProd(movieTitle,prodNat)
AS
SELECT title,nationality
FROM Movies, Producer
WHERE producer = name



Database query languages

materialized views

I a materialized view is not a table

I even though its extension is stored

I it remains an intensional definition

I and it may be queried as a table

if tuples are INSERTed (resp. DELETEd) in (resp. FROM) e.g.,
Movies, then MovieProd has to be refreshed



Database query languages

views maintenance

for simple views, maintenance can be incremental

I consider MovieProd defined as

MovieProd(t,n) ← Movies(t,y,g,s,p),Producer(p,n)

I suppose (a,b,c,d,e) is inserted into Movies

I what to insert into MovieProd?

I we have the title: πtitle(a,b,c,d ,e)

I SELECT nationality FROM Producer WHERE name=’e’



Database query languages

views maintenance

for simple views, maintenance can be incremental

I consider MovieProd defined as

MovieProd(t,n) ← Movies(t,y,g,s,p),Producer(p,n)

I suppose (a,b) is inserted into Producer

I what to insert into MovieProd?

I INSERT INTO MovieProd SELECT title,’b’ FROM
Movies,Producer WHERE name=’a’



Database query languages

views maintenance

for simple views, maintenance can be incremental

I consider MovieProd defined as

MovieProd(t,n) ← Movies(t,y,g,s,p),Producer(p,n)

I suppose (a,b,c,d,e) is deleted from Movies

I what to delete from MovieProd?

I DELETE FROM MovieProd WHERE title=’a’

what if we DELETE (a,b) FROM Producer?



Database query languages

rewriting queries to use materialized views

assume a materialized view v defined by

SELECT Lv FROM Rv WHERE Cv

I Lv is a list of attributes

I Rv is a list of relations

I Cv is a condition



Database query languages

rewriting queries to use materialized views

suppose a query q defined by

SELECT Lq FROM Rq WHERE Cq

I Lq is a list of attributes

I Rq is a list of relations

I Cq is a condition

can we rewrite q to use what v materializes?



Database query languages

conditions for rewriting

if all of the following apply

1. Rv ⊆ Rq

2. Cq ⇒ Cv

3. if Cq ≡ Cv ∧ C then the attributes of relations on Rv that C
mentions are attributes on Lv

4. the attributes on Lq that come from Rv are also on Lv



Database query languages

rewriting

if the conditions expressed above are met, then

1. replace Rq by V and the relations in Rq \ Rv

2. replace Cq by C



Database query languages

example
assume the following view is materialized

CREATE MATERIALIZED VIEW MovieProd(movieTitle,prodNat)
AS
SELECT title,nationality FROM Movies, Producer
WHERE producer = name

then the query

SELECT starName,ProdNat FROM Movies, Producer, StarsIn
WHERE title=movieTitle AND producer=name

can be rewritten
SELECT starName,ProdNat FROM MovieProd, StarsIn WHERE
title=movieTitle



Database query languages

example

assume the following view is materialized

MovieProd(t,n) ← Movies(t,y,g,st,p),Producer(p,n)

then the query

ans(t,n) ← Movies(t,y,g,st,p),Producer(p,n),StarsIn(t,y,s)

can be rewritten

ans(s,n) ← MovieProd(t,n),StarsIn(t,y,s)


