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Physical Operators

How the operators of the relational algebra for bags are
implemented?
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the data

a relation R is stored on disk

I in B(R) blocs

I with T (R) tuples

I with V (R,A) values for attribute A

we have M memory buffers (blocks) available

assume that

I the arguments of the operators are found on disk

I the result is left in main memory

I the data are accessed one block at a time
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a first basic operator

table scan: get the blocks of R one by one

I if R is clustered: costs B(R) I/O’s

I if it is not : costs T (R) I/O’s

implemented as an iterator:

I Open: initializes the data structures needed to perform the
scan

I GetNext: returns the next tuple in the result

I Close: ends the iteration after all tuples have been obtained
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different types of operators (1)

I simple scan

I sorting based methods: sort R first

I hash-based methods: hash R first

I index-based methods: use an index on R to scan it (see latter)
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different types of operators (2)

I one pass algorithm
I for small size relations or tuple at a time operations
I read the data only once

I two pass algorithm
I for relations not fitting in main memory
I read once, process, write on disk, read again

I multi pass algorithm
I no limit on the size of the data
I generalization of two pass algorithms
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different types of operators (3)

I tuple at a time unary operations
I σ and π
I do not require the entire relation in memory at once

I full relation, unary operations
I γ and δ
I require to have all or almost all tuples in main memory at once

I full relation, binary operations
I all the other operations
I require to have all or almost all tuples in main memory at once
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one pass, tuple at a time

σ(R), π(R)

I read one block, process the tuples

I requires that M ≥ 1

I costs B(R) if R is clustered
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one pass for unary, full relation

δ(R)

I read one block, keep in memory one copy of each tuple seen

I use 1 memory block for the block read and M − 1 for the seen
tuples

I needs an appropriate in memory data structure (balance tree,
hashtable)

I requires that B(δ(R)) ≤ M − 1

I requires B(R) I/O’s
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one pass for unary, full relation

γ(R)

I read one block, keep in memory entries for each group
I min, max, sum, count require only one entry
I avg requires two

I use 1 memory block for the block read and M − 1 for the
groups

I needs an appropriate in memory data structure (balance tree,
hashtable)

I memory requirement depends on the size of entries

I requires B(R) I/O’s
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one pass binary, full relation

R ∪B S

I output R then output S

I requires M ≥ 1

I requires B(R) + B(S) I/O’s
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one pass binary, full relation

∪S , ∩S , \S , ∩B , \B , ×, ./

I read the smaller of R, S in memory

I build a suitable in memory data structure

I read one block of the bigger table

I requires B(R) + B(S) I/O’s

I requires that min(B(R),B(S)) ≤ M − 1
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example of ∩B

assume B(S) = min(B(R),B(S))

record the count for each t ∈ S

1. read one block of R, for each t ′

2. if t ′ ∈ S

2.1 decrement the count of t ′, output t ′

3. when count reaches 0, no more output t ′
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two pass algorithms based on sorting

why sorting?

I order by needs it

I operators more efficient when parameters are sorted

when?

I B(R) > M
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two pass algorithms based on sorting

the basic idea

repeat:

1. read M blocks of R

2. sort these blocks in main memory (time to sort will not exceed
disk I/O time)

3. write this sorted sublist on disk

second pass: read the sorted sublists to process the relational
operation
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two pass algorithms based on sorting

δ(R),γ(R)

for δ:

1. sort the blocks and write the sublists on disk

2. read one block of each sublist

3. copy each tuple to the output ignoring duplicates
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two pass algorithms based on sorting

example for δ(R)

assume M = 3, tuples are integers, 2 tuples per blocks

R = 2,5,2,1,2,2,4,5,4,3,4,2,1,5,2,1,3

step 1: 3 sorted sublists on disk

I R1 = 1,2,2,2,2,5

I R2 = 2,3,4,4,4,5

I R3 = 1,1,2,3,5
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two pass algorithms based on sorting

step 2 and 3 (1):

step 2:

sublist in memory waiting on disk

R1 1,2 2,2,2,5
R2 2,3 4,4,4,5
R3 1,1 2,3,5

step 3: output 1
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two pass algorithms based on sorting

step 2 and 3 (2):

step 2:

sublist in memory waiting on disk

R1 2 2,2,2,5
R2 2,3 4,4,4,5
R3 2,3 5

step 3: output 2
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two pass algorithms based on sorting

step 2 and 3 (3):

step 2:

sublist in memory waiting on disk

R1 5
R2 3 4,4,4,5
R3 3 5

step 3: output 3 (and so on..)
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two pass algorithms based on sorting

conclusion, for δ and γ

I I/O cost: 3× B(R)

I can handle larger files than one pass version
I requires that B(R) ≤ M2

I no more than M sublists
I each at-most M blocks long
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two pass algorithms based on sorting

R ∪S S (two passes not needed for ∪B)

1. create sorted sublists for R and S

2. read one block of each sublist

3. find the first remaining t, output t, remove all copies of t

4. read the next block of the sublist when the current block is
exhausted
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two pass algorithms based on sorting

requirements for R ∪S S

I I/O cost: 3× (B(R) + B(S))
I requires that B(R) + B(S) ≤ M2

I no more than M sublists for R and S
I each at-most M blocks long

same requirements for ∩ and \
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two pass algorithms based on sorting

example for R \B S

assume M = 3, tuples are integers, 2 tuples per blocks

R = 2,5,2,1,2,2,4,5,4,3,4,2 and S = 1,5,2,1,3

sublist in memory waiting on disk

R1 1,2 2,2,2,5
R2 2,3 4,4,4,5
S1 1,1 2,3,5

remove 1 since 1 6∈ R \B S
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two pass algorithms based on sorting

sublist in memory waiting on disk

R1 2 2,2,2,5
R2 2,3 4,4,4,5
S1 2,3 5

output 2 four times
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two pass algorithms based on sorting

sublist in memory waiting on disk

R1 5
R2 3 4,4,4,5
S1 3 5

remove 3
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two pass algorithms based on sorting

sublist in memory waiting on disk

R1 5
R2 4,4 4,5
S1 5

output 4 three times
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two pass algorithms based on hashing

hashing?

I partition relation into buckets so that every bucket has the
same number of tuples

I needs a (carefully chosen) function h that associates each
tuple with its bucket number

what for?

I instead of performing the operation on every block of R, use
one bucket at a time
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two pass algorithms based on hashing

principle: hash R into M − 1 buckets with h

I use M − 1 block of memory (one per bucket)

I read one block of R

I hash the tuples to bucket h(t)

I when a bucket is full, write it on disk
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two pass algorithms based on hashing

δ(R),γ(R)

example for δ(R)

I hash R into M − 1 buckets

I for each tuple in each bucket, output t and remove duplicates

cost and requirement

I I/O cost is 3× B(R)
I B(R) ≤ M2

I R partitioned into buckets of size B(R)/M − 1
I that number no larger than M
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two pass algorithms based on hashing

set operations

I same h function for hashing R and S

I M − 1 buckets for R : R1, . . . ,RM−1

I M − 1 buckets for S : S1, . . . ,SM−1

I for all i , compute the one pass operation for Ri with Si

cost and requirement

I I/O cost is 3× (B(R) + B(S))
I min(B(R),B(S)) ≤ M2

I R (resp. S) partitioned into buckets of size B(R)/M − 1 (resp.
B(S)/M − 1)

I one pass operation requires operand of size ≤ M − 1
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two pass algorithms based on hashing

hashing or sorting?

I size requirement for hash-based binary operations depends
only on the smaller relation

I sorted sublist on consecutive blocks reduces rotational latency
or seek time

I only sort based algo can do ORDER BY!
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what’s next?

I indexing

I query plans, cost estimation
I the join operation:

I join algorithms
I join order
I choosing the join method

see you next semester


