

How the operators of the relational algebra for bags are implemented?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- 1. introduction
 - $1.1 \mod of \ computation$
 - 1.2 different types of operators

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- 2. one pass operators
 - 2.1 tuple at a time
 - 2.2 full relation
- 3. two pass operators
 - 3.1 based on sorting
 - 3.2 based on hashing

the data

a relation R is stored on disk

- ▶ in B(R) blocs
- with T(R) tuples
- with V(R,A) values for attribute A

we have M memory buffers (blocks) available

assume that

the arguments of the operators are found on disk

- the result is left in main memory
- the data are accessed one block at a time

a first basic operator

table scan: get the blocks of R one by one

- if R is clustered: costs B(R) I/O's
- if it is not: costs T(R) I/O's

implemented as an iterator:

- Open: initializes the data structures needed to perform the scan
- GetNext: returns the next tuple in the result
- Close: ends the iteration after all tuples have been obtained

different types of operators (1)

simple scan

- sorting based methods: sort R first
- hash-based methods: hash R first
- index-based methods: use an index on R to scan it (see latter)

different types of operators (2)

- one pass algorithm
 - for small size relations or tuple at a time operations

- read the data only once
- two pass algorithm
 - for relations not fitting in main memory
 - read once, process, write on disk, read again
- multi pass algorithm
 - no limit on the size of the data
 - generalization of two pass algorithms

different types of operators (3)

tuple at a time unary operations

• σ and π

- do not require the entire relation in memory at once
- full relation, unary operations
 - γ and δ
 - require to have all or almost all tuples in main memory at once
- full relation, binary operations
 - all the other operations
 - require to have all or almost all tuples in main memory at once

one pass, tuple at a time

 $\sigma(R)$, $\pi(R)$

read one block, process the tuples

- ▶ requires that M ≥ 1
- costs B(R) if R is clustered

one pass for unary, full relation

 $\delta(R)$

- read one block, keep in memory one copy of each tuple seen
- use 1 memory block for the block read and M-1 for the seen tuples
- needs an appropriate in memory data structure (balance tree, hashtable)

- requires that $B(\delta(R)) \leq M-1$
- requires B(R) I/O's

one pass for unary, full relation

 $\gamma(R)$

- read one block, keep in memory entries for each group
 - min, max, sum, count require only one entry
 - avg requires two
- ▶ use 1 memory block for the block read and M − 1 for the groups
- needs an appropriate in memory data structure (balance tree, hashtable)

- memory requirement depends on the size of entries
- requires B(R) I/O's

one pass binary, full relation

 $R \cup_B S$

- output R then output S
- ▶ requires M ≥ 1
- requires B(R) + B(S) I/O's

one pass binary, full relation

$$\cup_{S}, \cap_{S}, \setminus_{S}, \cap_{B}, \setminus_{B}, \times, \bowtie$$

- read the smaller of R, S in memory
- build a suitable in memory data structure
- read one block of the bigger table
- requires B(R) + B(S) I/O's
- requires that $min(B(R),B(S)) \leq M-1$

example of \cap_B

assume B(S) = min(B(R),B(S))

record the count for each $t \in S$

- 1. read one block of R, for each t'
- 2. if $t' \in S$
 - 2.1 decrement the count of t', output t'
- 3. when count reaches 0, no more output t'

why sorting?

order by needs it

operators more efficient when parameters are sorted

when?

► B(R) > M

the basic idea

repeat:

- 1. read M blocks of R
- 2. sort these blocks in main memory (time to sort will not exceed disk I/O time)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. write this sorted sublist on disk

second pass: read the sorted sublists to process the relational operation

 $\delta(R), \gamma(R)$

for δ :

- 1. sort the blocks and write the sublists on disk
- 2. read one block of each sublist
- 3. copy each tuple to the output ignoring duplicates

example for $\delta(R)$

assume M = 3, tuples are integers, 2 tuples per blocks

R = 2,5,2,1,2,2,4,5,4,3,4,2,1,5,2,1,3

step 1: 3 sorted sublists on disk

*R*₁ = 1,2,2,2,2,5
*R*₂ = 2,3,4,4,4,5
*R*₃ = 1,1,2,3,5

step 2 and 3 (1):

step 2:

sublist	in memory	waiting on disk
R_1	1,2	2,2,2,5
R_2	2,3	4,4,4,5
R_3	1,1	2,3,5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

step 3: output 1

step 2 and 3 (2):

step 2:

sublist	in memory	waiting on disk
R_1	2	2,2,2,5
R_2	2,3	4,4,4,5
R_3	2,3	5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

step 3: output 2

step 2 and 3 (3):

step 2:

sublist	in memory	waiting on disk
R_1	5	
R_2	3	4,4,4,5
R_3	3	5

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

step 3: output 3 (and so on..)

conclusion, for δ and γ

- ► I/O cost: $3 \times B(R)$
- can handle larger files than one pass version

- requires that $B(R) \leq M^2$
 - no more than M sublists
 - each at-most M blocks long

 $R \cup_S S$ (two passes not needed for \cup_B)

- 1. create sorted sublists for R and S
- 2. read one block of each sublist
- 3. find the first remaining t, output t, remove all copies of t
- 4. read the next block of the sublist when the current block is exhausted

```
requirements for R \cup_S S
```

► I/O cost:
$$3 \times (B(R) + B(S))$$

- requires that $B(R) + B(S) \le M^2$
 - ▶ no more than *M* sublists for *R* and *S*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

each at-most M blocks long

same requirements for \cap and \setminus

example for $R \setminus_B S$

assume M = 3, tuples are integers, 2 tuples per blocks

R = 2,5,2,1,2,2,4,5,4,3,4,2 and S = 1,5,2,1,3

sublist	in memory	waiting on disk
R_1	1,2	2,2,2,5
R_2	2,3	4,4,4,5
S_1	1,1	2,3,5

remove 1 since $1 \notin R \setminus_B S$

sublist	in memory	waiting on disk
R_1	2	2,2,2,5
R_2	2,3	4,4,4,5
S_1	2,3	5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

output 2 four times

sublist	in memory	waiting on disk
R_1	5	
R_2	3	4,4,4,5
S_1	3	5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

remove 3

sublist	in memory	waiting on disk
R_1	5	
R_2	4,4	4,5
S_1	5	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

output 4 three times

hashing?

- partition relation into buckets so that every bucket has the same number of tuples
- needs a (carefully chosen) function h that associates each tuple with its bucket number

what for?

 instead of performing the operation on every block of R, use one bucket at a time

principle: hash R into M - 1 buckets with h

• use M - 1 block of memory (one per bucket)

- read one block of R
- hash the tuples to bucket h(t)
- when a bucket is full, write it on disk

 $\delta(R), \gamma(R)$

example for $\delta(R)$

- ▶ hash R into M 1 buckets
- for each tuple in each bucket, output t and remove duplicates

cost and requirement

- ▶ I/O cost is $3 \times B(R)$
- ► $B(R) \leq M^2$
 - R partitioned into buckets of size B(R)/M 1
 - that number no larger than M

set operations

- same h function for hashing R and S
- M-1 buckets for $R: R_1, \ldots, R_{M-1}$
- M-1 buckets for $S: S_1, \ldots, S_{M-1}$
- for all *i*, compute the one pass operation for R_i with S_i

cost and requirement

- I/O cost is $3 \times (B(R) + B(S))$
- $min(B(R),B(S)) \leq M^2$
 - ► R (resp. S) partitioned into buckets of size B(R)/M-1 (resp. B(S)/M-1)

• one pass operation requires operand of size $\leq M - 1$

hashing or sorting?

- size requirement for hash-based binary operations depends only on the smaller relation
- sorted sublist on consecutive blocks reduces rotational latency or seek time

only sort based algo can do ORDER BY!

what's next?

- indexing
- query plans, cost estimation
- the join operation:
 - ► join algorithms
 - ► join order
 - choosing the join method

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

see you next semester