Query languages

Assignment sheet 3

$1 \subseteq$ for bags

 \subseteq for bags can be defined by: $R \subseteq S$ if and only if for every x, the number of times x appears in R is less than or equal to the number of times it appears in S. Demonstrate or exhibit a counterexample to the following statements:

- 1. If $R \subseteq S$ and $S \subseteq R$ then R = S
- 2. If $R \subseteq S$, then $R \cup_B S = S$
- 3. If $R \subseteq S$, then $R \cap_B S = R$

2 Rewriting rules

Demonstrate or exhibit a counterexample to the following statements:

- 1. $\sigma_{p \lor q}(R \bowtie S) = (\sigma_p(R) \bowtie S) \cup_S (\sigma_q(S) \bowtie R)$, where p is a selection predicate over R and q is a selection predicate over S,
- 2. $\sigma_{p\vee q}(R \bowtie S) = (\sigma_p(R) \bowtie S) \cup_B (\sigma_q(S) \bowtie R)$, where p is a selection predicate over R and q is a selection predicate over S,
- 3. $\pi_X(R \cup_S S) = \pi_X(R) \cup_S \pi_X(S)$ where X is an attribute common to R and S
- 4. $\pi_X(R \setminus_S S) = \pi_X(R) \setminus_S \pi_X(S)$ where X is an attribute common to R and S
- 5. $R \cup_B R = R$
- 6. $R \cap_B R = R$
- 7. $R \setminus_B R = \emptyset$

3 δ operation

Consider the operator δ that removes duplicates. What are the rewriting rules that enable to push this operator down the query tree?

4 Subquery rewriting

In the case where a subquery is not correlated to the outer query, propose a rewriting of SELECT x FROM R WHERE R.x > ANY (SELECT y FROM S).

5 Query containment

Consider the following queries:

Show that $q_0 \subseteq q_1 \subseteq q_2 \subseteq q_3$