
Datawarehouse and OLAP

Datawarehouse and OLAP

OLAP

Datawarehouse and OLAP

Syllabus, materials, notes, etc.

See http://www.info.univ-tours.fr/˜marcel/dw.html

Datawarehouse and OLAP

On-Line Analytical Processing

Datawarehouse and OLAP

today

MOLAP, ROLAP, HOLAP

OLAP query processing techniques

indexing

materialized views

fragmentation

Datawarehouse and OLAP

OLAP server architecture

usually 3 major storage strategies are distinguished

I ROLAP (Relational OLAP)

I MOLAP (Multidimensional OLAP)

I HOLAP (Hybrid OLAP)

Datawarehouse and OLAP

ROLAP

ROLAP

Datawarehouse and OLAP

ROLAP

ROLAP

I a RDBMS is used for the storage

I star schema or the like
I middleware for dynamic translation

I of a multidimensional query on a multidimensional model
I into an SQL query

Datawarehouse and OLAP

ROLAP

pros and cons

pros

I maturity of the RDBMS technology

I no fact = no storage

I usually dimension tables fit in memory

cons: SQL generation may be costly and uneasy

Datawarehouse and OLAP

ROLAP

specific optimisation technics

I redundant structures
I indexing

I mono index
I join index

I materialized views

I non-redundant structure
I fragmentation

I vertical
I horizontal

Datawarehouse and OLAP

ROLAP

indexing

indexing

Datawarehouse and OLAP

ROLAP

indexing

multidimensional indexing technics

I inverted lists
I bitmap indexing

I oracle
I DB2
I microsoft SQL server
I SAS SPDE
I lucidDB

I join indexing
I oracle
I lucidDB

Datawarehouse and OLAP

ROLAP

indexing

inverted lists

Datawarehouse and OLAP

ROLAP

indexing

bitmap indexing

a bit vector for each attribute value
pros

I bit operation possible for query processing
I selection, comparison
I join
I aggregation

I more compact than B-trees

I compressing is effective

cons: efficient only if the attribute selectivity is high and its
cardinality is lows

Datawarehouse and OLAP

ROLAP

indexing

bitmap indexing

Datawarehouse and OLAP

ROLAP

indexing

example

consider the table sales

id product city

id1 clous lyon
id2 vis paris
id3 clous paris
id4 écrous lyon
...

Oracle syntax
CREATE BITMAP INDEX product index ON sales(product);
CREATE BITMAP INDEX city index ON sales(city);

Datawarehouse and OLAP

ROLAP

indexing

example

product index
id clous vis écrous

id1 1 0 0
id2 0 1 0
id3 1 0 0
id4 0 0 1
...

city index
id paris lyon

id1 0 1
id2 1 0
id3 1 0
id4 0 1
...

SELECT count(*) FROM sales WHERE product=’vis’ AND
city=’paris’;

Datawarehouse and OLAP

ROLAP

indexing

join indexing

I precomputation of a binary join

I usefull with star schemas
I saves the joins by recording the link between

I a foreign key
I the related primary key

bitmap indexing and join indexing can be combined

Datawarehouse and OLAP

ROLAP

indexing

join indexing

Datawarehouse and OLAP

ROLAP

indexing

join indexing

Datawarehouse and OLAP

ROLAP

indexing

bitmap join index

Oracle syntax

CREATE BITMAP INDEX sales c gender p cat bjix
ON sales(customers.cust gender, products.prod category)
FROM sales, customers, products
WHERE sales.cust id = customers.cust id
AND sales.prod id = products.prod id;

Datawarehouse and OLAP

ROLAP

materialized views

materialized views

Datawarehouse and OLAP

ROLAP

materialized views

Datawarehouse and OLAP

ROLAP

materialized views

example

consider the fact table ventes(produit, année, vendeur, quantité)

cuboid produit,année :

CREATE MATERIALIZED VIEW produit année
ENABLE QUERY REWRITE AS
SELECT produit, année,

SUM(quantité) AS quantité
FROM ventes
GROUP BY produit, année

Datawarehouse and OLAP

ROLAP

materialized views

example

cuboid vendeur :

CREATE MATERIALIZED VIEW vendeur
ENABLE QUERY REWRITE AS
SELECT vendeur, SUM(quantité) AS quantité
FROM ventes
GROUP BY vendeur

Datawarehouse and OLAP

ROLAP

materialized views

example

SELECT produit, SUM(quantité)
FROM ventes
GROUP BY produit

can be answered by using

SELECT produit, SUM(quantité)
FROM produit année
GROUP BY produit

Datawarehouse and OLAP

ROLAP

materialized views

example

SELECT produit, vendeur, SUM(quantité)
FROM ventes
GROUP BY produit, vendeur

cannot be answered using produit année, nor vendeur
therefore needs to be evaluated on the fact table

Datawarehouse and OLAP

ROLAP

materialized views

cuboid

compute and materialize cuboids
consider an n-dimensional cube, each dimension i with Li levels

n∏
i=1

(Li + 1) possible groupings

1. can we materialize all of them? If not, which ones to choose?

2. and how to use them for answering queries?

Datawarehouse and OLAP

ROLAP

materialized views

(1) what cuboids to materialize?

a classical View Selection Problem (VSP)

needs a goal, i.e., a function on

I the query processing cost

I the storage space available

I the computation and/or refreshing cost

and needs a set of frequent queries (query workload)

Datawarehouse and OLAP

ROLAP

materialized views

example of a VS algorithm

Stanford University (around 1997-1999, A. Gupta PhD)

ventes(produit, vendeur, année, prix)

3 dimensions : produit, vendeur, année
8 grouping possibilities

SELECT SUM(prix)
FROM ventes
GROUP BY ...

Datawarehouse and OLAP

ROLAP

materialized views

example

GROUP BY number of tuples name of the view
produit, vendeur, année 6 M pva
produit, vendeur 6 M pv
produit, année 0.8 M pa
vendeur, année 6 M va
produit 0.2 M p
vendeur 0.1 M v
année 0.01 M a

1 vide

assumption: the query computation cost is proportional to the
number of tuples processed

Datawarehouse and OLAP

ROLAP

materialized views

example

materializing every aggregates costs 19M

materializing

I pva

I pa

I p, v et a

I vide

costs only 7,11 M

Datawarehouse and OLAP

ROLAP

materialized views

notations

Q1 < Q2 if query Q1 can be answered using Q2

I ancestor(x) = {y | x < y}
I descendant(x) = {y | y < x}
I next(x) = {y | x < y ,@z ,x < z ,z < y}

Datawarehouse and OLAP

ROLAP

materialized views

example

I p < pv , p 6< v , ancestor(pva) = {pva},
I descendant(pv) = {pv ,p,v ,vide},
I next(p) = {pv ,pa}

Datawarehouse and OLAP

ROLAP

materialized views

cost

answering query Q

1. choose QA a materialized ancestor of Q

2. adapts Q to QA

3. evaluate the adapted query on QA

costs of answering Q = number of tuples in QA

Datawarehouse and OLAP

ROLAP

materialized views

algorithm

I k : max number of view that can be materialized

I v : one view

I C (v) : cost of view v

I S : a set of views

Datawarehouse and OLAP

ROLAP

materialized views

algorithm

B(v, S) :

1. for all w < v , Bw is defined by

1.1 let u be the view with lowest cost in S such that w < u

1.2 if C (v) < C (u) then Bw = C (u)− C (v)

1.3 else Bw = 0

2. B(v ,S) =
∑

w<v Bw

Datawarehouse and OLAP

ROLAP

materialized views

algorithm

1. S = { the fact table }
2. for i = 1 to k do

2.1 select v 6∈ S maximizing B(v ,S)

2.2 S = S ∪ {v}
3. S is the set of views to materialize

Datawarehouse and OLAP

ROLAP

materialized views

indexing and materializing

complexity of choosing redundant structures:

I set of candidate objects : O = I ∪ V

I workload: W

I disk space: S

find Oopt ⊆ O such that

I for each q ∈W ,O ′ ⊆ O, cost(q,Oopt) ≤ cost(q,O ′)

I
∑

o∈Oopt
size(o) ≤ S

this problem is NP-complete

practically: greedy algorithms

Datawarehouse and OLAP

ROLAP

materialized views

(2) how to use materialized cuboids?

rewrite a query to use the materialized cuboids

selecting the best rewriting is hard

I no rewriting means accessing the fact table

I complete rewriting means there is enough cuboids to treat the
query

I partial rewriting can be a compromise

principle

1. find possible rewritings

2. generate execution plans

3. pick best

Datawarehouse and OLAP

ROLAP

materialized views

rewriting

example: let Q1 and Q2 be two conjunctive queries

SELECT R1.B, R1.A SELECT R3.A, R1.A
FROM R R1, R R2 FROM R R1, R R2, R R3
WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

put differently
Q1 = π2,1(σ2=3(R × R))
Q2 = π5,1(σ2=4∧4=5(R × R × R))

or even
Q1(x ,y)← R(y ,x),R(x ,z)
Q2(x ,y)← R(y ,x),R(w ,x),R(x ,u)

Datawarehouse and OLAP

ROLAP

materialized views

examples

are Q1 and Q2 equivalent?

if yes, processing Q1 saves one join

can classical algebraic rewriting rules be used?

no!

Datawarehouse and OLAP

ROLAP

materialized views

query equivalence and query containment

definitions : given 2 queries q and q′ on a schema D

I q ⊂ q′ if for all instance I of D, q(I) ⊂ q′(I)

I q ≡ q′ if q ⊂ q′ and q′ ⊂ q

Datawarehouse and OLAP

ROLAP

materialized views

substitution

for a conjunctive query q, a substitution is

I a function from var(q) to var ∪ dom

I extended to free tuples

example: consider Q2 and substitution θ such that

I θ(x) = x

I θ(y) = y

I θ(u) = z

I θ(w) = y

applying θ to Q2 yelds:
Q2(x ,y)← R(y ,x),R(y ,x),R(x ,z) that is Q1

Datawarehouse and OLAP

ROLAP

materialized views

query containment

there exists a substitution that transforms the body of Q2 into the
body of Q1

if I is an instance and t ∈ Q1(I)

there exists a valuation v applied to Q1 that leads to t

therefore θ ◦ v is a valuation that applied to Q2 leads to t

therefore t ∈ Q2(I) which shows that Q1(I) ⊂ Q2(I) and thus Q1

is contained in Q2

Datawarehouse and OLAP

ROLAP

materialized views

homomorphism

let q and q′ be two rules on the same database schema B

an homomorphism from q′ to q is:

I a substitution θ such that

I θ(body(q′)) ⊆ body(q) and θ(tete(q′) = tete(q))

Datawarehouse and OLAP

ROLAP

materialized views

the homomorphism theorem

let q and q′ be two queries on the same schema

q ⊆ q′ if there exists an homomorphism from q′ to q

corollary: two queries q and q′ on the same schema are equivalent
if

I there exists an homomorphism from q to q′ and

I there exists an homomorphism from q′ to q

Datawarehouse and OLAP

ROLAP

materialized views

complexity

the test of query equivalence is

I a problem in NPTIME for conjunctive queries

I an undecidable problem for relational queries

Datawarehouse and OLAP

ROLAP

materialized views

practically

Oracle’s query rewriting techniques:

I comparing the text of the query with the text of the
materialized view definition, or

I comparing various clauses (SELECT, FROM, WHERE,
HAVING, or GROUP BY) of a query with those of a
materialized view

see Oracle Database Data Warehousing Guide, chapter 18:
Advanced Query Rewrite

Datawarehouse and OLAP

ROLAP

materialized views

conclusion: indexing and materializing

cons

I redundante structures

I using the same ressource (disk)

I needing refreshment

I based on a cost model

Datawarehouse and OLAP

ROLAP

partitioning

partitioning

Datawarehouse and OLAP

ROLAP

partitioning

partitioning

partition the tables

I horizontal: by selection

I vertical: by projection

I combined: by selection and projection

I queries processed on each partition

I obtaining the answer may need extra processing

I can be combined with indexing

Datawarehouse and OLAP

ROLAP

partitioning

horizontal partitioning

client(no client,nom,ville)

I clients 1 = SELECT * FROM clients WHERE ville=’Paris’;

I clients 2 = SELECT * FROM clients WHERE ville<>’Paris’;

reconstruction:
CREATE VIEW tous clients AS
SELECT * FROM clients 1
UNION
SELECT * FROM clients 2;

Datawarehouse and OLAP

ROLAP

partitioning

derived horizontal partitioning

partitioning a table wrt the horizontal partitions of another table

commandes(no client,date,produit,quantité)

commande 1 = SELECT * FROM commandes WHERE no client
IN (SELECT no client FROM clients 1);
commande 2 = SELECT * FROM commandes WHERE no client
IN (SELECT no client FROM clients 2);

Datawarehouse and OLAP

ROLAP

partitioning

vertical partitioning

client(no client,nom,ville)

I clients 1 = SELECT no client,nom FROM clients;

I clients 2 = SELECT no client,ville FROM clients ;

reconstruction:
CREATE VIEW tous clients AS
SELECT clients 1.no client,nom,ville
FROM clients 1, clients 2
WHERE clients 1.no client= clients 2.no client;

Datawarehouse and OLAP

ROLAP

partitioning

partitioning and datawarehouses

horizontal partitioning is well adapted

given

I a star schema

I a workload

output a set of star schemas where

I one or more dimension tables are partitioned

I the fact table is partitioned accordingly

Datawarehouse and OLAP

ROLAP

partitioning

partitioning and datawarehouses

oracle syntax:
CREATE TABLE sales (acct no NUMBER(5), acct name
CHAR(30), amount of sale NUMBER(6), week no INTEGER)
PARTITION BY RANGE (week no)
(PARTITION sales1 VALUES LESS THAN (4),
PARTITION sales2 VALUES LESS THAN (8),
. . .
PARTITION sales13 VALUES LESS THAN (52))

Datawarehouse and OLAP

MOLAP

MOLAP

Datawarehouse and OLAP

MOLAP

MOLAP

I multidimensional databases
I storage structure = multidimensional array
I direct correspondance with the conceptual view

I needs to cope with sparsity
I specific compression technics
I specific indexing technics

poor extensibility

Datawarehouse and OLAP

MOLAP

storage

storage

Datawarehouse and OLAP

MOLAP

storage

MOLAP: pros

easy and quick to access an array’s position... provided you know
the position!

if the array is dense then no need to have the members in memory

members

I are implicit

I are the cell’s coordinate

I are normalised (vis = 0, clous = 1, ...)

Datawarehouse and OLAP

MOLAP

storage

MOLAP storage

Datawarehouse and OLAP

MOLAP

storage

MOLAP storage

87 73

25 95

89 62

linearization: “row major” implementation

87 73 25 95 89 62
a[0][0] . . . a[2][2]

Datawarehouse and OLAP

MOLAP

storage

MOLAP storage

d dimensions, Nk members in dimension k

function p gives the position in the array for index id
p(i1, . . . ,id) =

∑d
j=1(ij × Πd

k=j+1Nk)

example : a[2][3][4] with 3 dimensions of respectively 8, 9 and 10
members

p(2,3,4) = 2× 9× 10 + 3× 10 + 4 = 214

Datawarehouse and OLAP

MOLAP

storage

density

example

I 1460 days

I 200.000 products

I 300 stores

I promotion : 1 boolean

1,75×1011 cells

only 10% of products sold per days

density is 1,75× 1010/1,75× 1011 = 0.1

Datawarehouse and OLAP

MOLAP

storage

MOLAP and density

typically, up to 90 % of empty cells

store only dense blocks of data

use compression technics (sometimes leads to relational storage...)

good for 2 or 3 dimensions but not for 20...

Datawarehouse and OLAP

MOLAP

indexing

indexing

Datawarehouse and OLAP

MOLAP

indexing

indexation

Datawarehouse and OLAP

MOLAP

indexing

indexing

Datawarehouse and OLAP

MOLAP

aggregation

aggregation

Datawarehouse and OLAP

MOLAP

aggregation

MOLAP and aggregation

aggregate = apply aggregate function on the rows of the array

aggregates can be

I precomputed and stored as rows in the array

I calculated on demand

Datawarehouse and OLAP

MOLAP

aggregation

MOLAP and aggregation

cube c with dimension A,B,C
group by A,C

naively

for(a=0;a<a max;a++)

for(b=0;b<b max;b++)

for(c=0;c<c max;c++)

res[a][c] += c[a][b][c]

Datawarehouse and OLAP

MOLAP

aggregation

MOLAP and aggregation

1. partition the n dimensional array into subcubes (chunks)
I n-dimensional
I holding in main memory
I compressed (to cope with sparsity)

2. computing the aggregate
I visit each cell of each chunck
I compute the partial aggregate involving this cell

Datawarehouse and OLAP

MOLAP

aggregation

Datawarehouse and OLAP

MOLAP

aggregation

MOLAP and aggregation

how to minimise the number of visit per cell?

leverage the order of visit to compute simultaneously different
partial aggregates

I reduce memory access

I reduce storage cost

Datawarehouse and OLAP

MOLAP

aggregation

example

cube with 3 dimensions A, B, C

size
A 40
B 400
C 4000
BC 1 600 000
AC 160 000
AB 16 000

dimensions partitioned into 4 subcubes of identical size

Datawarehouse and OLAP

MOLAP

aggregation

example

scan in the following order 1, 2, 3, ..., 64 (BC, AC, AB)

I computing b0c0 demands 4 scans (1, 2 , 3 , 4)

I computing a0c0 demands 13 scans (1, 5, 9, 13)

I computing a0b0 demands 49 scans (1, 17, 33, 49)

Datawarehouse and OLAP

MOLAP

aggregation

Datawarehouse and OLAP

MOLAP

aggregation

Datawarehouse and OLAP

MOLAP

aggregation

example

minimal memory requirement

16000 AB
+ 10× 4000 a column of AC
+ 100× 1000 a subcube of BC
= 156 000

Datawarehouse and OLAP

MOLAP

aggregation

example

scan in the order 1, 17, 33, 49, 5, 21, ... (AB, AC, BC)

I computing b0c0 demands 49 scans

I computing a0c0 demands 13 scans

I computing a0b0 demands 4 scans

Datawarehouse and OLAP

MOLAP

aggregation

example

minimal memory requirement

1 600 000 BC
+ 10× 4000 une colonne de AC
+ 10× 100 un sous-cube de AB
= 1 641 000

Datawarehouse and OLAP

MOLAP

aggregation

method

cuboids must be computed the smallest first

I keep the smallest in main memory

I compute only one subcube at a time for the largest

good for a small number of dimensions...

Datawarehouse and OLAP

HOLAP

HOLAP

Datawarehouse and OLAP

HOLAP

HOLAP

ROLAP is good for sparse cubes

MOLAP is good for dense cubes

note that:

I most of the cube is sparse

I some subcubes are dense

I the more aggregated the more dense

Datawarehouse and OLAP

HOLAP

HOLAP

combine ROLAP and MOLAP

I detailed data in RDBMS
I aggregated data in MDDB

I with coarser granularity
I and index in main memory

Datawarehouse and OLAP

conclusion

conclusion

So far: The physical model

Next: The logical model

	ROLAP
	indexing
	materialized views
	partitioning

	MOLAP
	storage
	indexing
	aggregation

	HOLAP
	conclusion

