Datawarehouse and OLAP

Datawarehouse and OLAP

OLAP




Datawarehouse and OLAP

Syllabus, materials, notes, etc.

See http://www.info.univ-tours.fr/“marcel /dw.html



Datawarehouse and OLAP

On-Line Analytical Processing




Datawarehouse and OLAP

today

MOLAP, ROLAP, HOLAP

OLAP query processing techniques
indexing

materialized views

fragmentation
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OLAP server architecture

usually 3 major storage strategies are distinguished
» ROLAP (Relational OLAP)

» MOLAP (Multidimensional OLAP)
> HOLAP (Hybrid OLAP)




B
Datawarehouse and OLAP
LRrOLAP

ROLAP




Datawarehouse and OLAP
L roLAP

ROLAP

» a RDBMS is used for the storage
» star schema or the like

» middleware for dynamic translation

» of a multidimensional query on a multidimensional model
» into an SQL query
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pros and cons

pros

» maturity of the RDBMS technology
» no fact = no storage

» usually dimension tables fit in memory

cons: SQL generation may be costly and uneasy
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specific optimisation technics

» redundant structures
> indexing

» mono index
> join index
» materialized views
» non-redundant structure
» fragmentation
> vertical

» horizontal
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multidimensional indexing technics

» inverted lists
» bitmap indexing

>

vV vV v Vv

> join
>

»

oracle

DB2

microsoft SQL server
SAS SPDE

lucidDB

indexing

oracle

lucidDB
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inverted lists

age
index

inverted
lists

name | age
Joe 20
fred 20
sally | 21
nancy| 20
tom 20
pat | 25
dave 21
jaff | 26
data
records
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indexing

bitmap indexing

a bit vector for each attribute value
pros
» bit operation possible for query processing
» selection, comparison
> join
> aggregation
» more compact than B-trees
» compressing is effective
cons: efficient only if the attribute selectivity is high and its
cardinality is lows
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bitmap indexing

age
index

5o
O~
I

id | name | age
1 joe | 20
2 fred | 20
3 [=aly | 21
4 |nancy] 20
5 tom | 20
5 pat | 25
7 dawve | 21
E] left | 26
data
records
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example

consider the table sales

id  product city

idl clous lyon
id2 vis paris
id3 clous paris
id4 écrous  lyon

Oracle syntax
CREATE BITMAP INDEX product_index ON sales(product);
CREATE BITMAP INDEX city_index ON sales(city);
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example

product_index

id clous vis écrous
idl 1 0 0
id2 0 1 0
id3 1 0 ©0
0 0 1

id4

SELECT count(*) FROM sales WHERE product="vis' AND

city="paris’;

city_index
id paris lyon
idl 0 1
id2 1 0
id3 1 0

0 1

id4
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join indexing

» precomputation of a binary join
» usefull with star schemas

» saves the joins by recording the link between
> a foreign key

> the related primary key

bitmap indexing and join indexing can be combined
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join indexing

sale_| 9'0?” |s|or|s|d| d*:m | 31';1 product | id | name |price
B i & i | bah [ 0
p2 ¢l 1 [ el b |::2|nu.| | '
pl c3 1 50
p2 2 i B
pl c1 2 44
pl €2 2 4
iuhThl'pfodldl name | price |umreid| date |sm
pl balt 10 ol 1 12
p2 nut 5 ¢ 1 11
p1 balt 10 cd 1 50
p2 nut 5 c2 1 g
p1 balt 10 cl 2 44
pi bolt 10 o2 2 4
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join indexing

join index
product| id |name | price | jindex
Bt polt | 10 [r1,r3,06.06 &
p2 fAul 5 r2,rd ————.I
|
1
sale | rd prodid |storeld] date | amt |
il pl ci 1 12
r2 p2 c 1 11 =]
3 pl cd 1 50 ——p—
4 p2 c2 1 B e —
15 pl cl 2 [r ™ S—
I pt c2 2 1 —
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bitmap join index

Oracle syntax

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix

ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products

WHERE sales.cust_id = customers.cust_id

AND sales.prod_id = products.prod._id;
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materialized views

Cube =

treillis de cuboides

produit

Cuboide 0- D (sorriret)
Cuboide 1-D
produigannée produi Vendwr

nnée, vendeur

Cuboide 2-D

produit, année, vendeur

Cuboide3- D (base)
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L materialized views

example

consider the fact table ventes(produit, année, vendeur, quantité)

cuboid produit,année:

CREATE MATERIALIZED VIEW  produit_année
ENABLE QUERY REWRITE AS

SELECT produit, année,
SUM(quantité) AS quantité
FROM ventes

GROUP BY produit, année
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materialized views

example

cuboid vendeur:

CREATE MATERIALIZED VIEW  vendeur
ENABLE QUERY REWRITE AS

SELECT vendeur, SUM(quantité) AS quantité
FROM ventes
GROUP BY vendeur

u]
o)
I
i
it




Datawarehouse and OLAP
L roLAP
[

materialized views

example

SELECT produit, SUM(quantité)
FROM

ventes
GROUP BY  produit

can be answered by using

SELECT

produit, SUM(quantité)
FROM produit_année
GROUP BY  produit
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materialized views

example

SELECT produit, vendeur, SUM(quantité)
FROM ventes
GROUP BY  produit, vendeur

cannot be answered using produit_année, nor vendeur
therefore needs to be evaluated on the fact table
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cuboid

compute and materialize cuboids
consider an n-dimensional cube, each dimension i/ with L; levels

n

H(L,- + 1) possible groupings
i=1

1. can we materialize all of them? If not, which ones to choose?
2. and how to use them for answering queries?
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(1) what cuboids to materialize?

a classical View Selection Problem (VSP)

needs a goal, i.e., a function on
» the query processing cost
» the storage space available
» the computation and/or refreshing cost

and needs a set of frequent queries (query workload)



Datawarehouse and OLAP
L roLAP
[

materialized views

example of a VS algorithm

Stanford University (around 1997-1999, A. Gupta PhD)
ventes(produit, vendeur, année, prix)

3 dimensions : produit, vendeur, année
8 grouping possibilities

SELECT SUM(prix)
FROM ventes
GROUP BY
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example

GROUP BY number of tuples name of the view
produit, vendeur, année 6 M pva

produit, vendeur 6 M pv

produit, année 0.8 M pa

vendeur, année 6 M va

produit 02 M p

vendeur 0.1 M v

année 0.01 M a

1 vide

assumption: the query computation cost is proportional to the
number of tuples processed
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example

materializing every aggregates costs 19M

materializing
> pva
> pa
> p,veta
> vide
costs only 7,11 M

N
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notations

Q1 < Q2 if query Q1 can be answered using Q2
> ancestor(x) = {y | x < y}
» descendant(x) = {y | y < x}

> next(x) = {y | x <y fzx<zz<y}
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example

» p<pv,p<v, ancestor(pva) = {pva},
» descendant(pv) = {pv,p,v,vide},
» next(p) = {pv,pa}
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cost

answering query @

1. choose Q4 a materialized ancestor of @
2. adapts @ to Qa
3. evaluate the adapted query on Q4

costs of answering @ = number of tuples in Q4
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algorithm

» k: max number of view that can be materialized
> v:one view

» C(v): cost of view v

» S: a set of views
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algorithm

B(v, S):

1. for all w < v, By, is defined by
1.1 let u be the view with lowest cost in S such that w < u
1.2 if C(v) < C(u) then B, = C(u) — C(v)
1.3 else B, =0
2. B(v,S)=>_

w<v BW
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algorithm

1. § = { the fact table }
2. fori=1to k do

2.1 select v ¢ S maximizing B(v,S)
22 S§=SuU{v}

3. S is the set of views to materialize
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indexing and materializing

complexity of choosing redundant structures:

» set of candidate objects: O = /U V
» workload: W
» disk space: S

find Ogpt C O such that
» for each g € W,0' C O, cost(q,00pt) < cost(q,0’)
> > oco,, Size(0) < S

this problem is NP-complete

practically: greedy algorithms
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(2) how to use materialized cuboids?
rewrite a query to use the materialized cuboids

selecting the best rewriting is hard
> no rewriting means accessing the fact table
» complete rewriting means there is enough cuboids to treat the
query
» partial rewriting can be a compromise

principle
1. find possible rewritings
2. generate execution plans
3. pick best
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rewriting

example: let Q1 and @, be two conjunctive queries

SELECT RL.B, R1.A SELECT R3.A, R1.A
FROM R R1, RR2 FROM RR1, RR2, RR3
WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

put differently
Q1 = m1(02=3(R x R))
Q2 = m5,1(02=4p4=5(R X R x R))

Ql(xa}/) — R(y,X),R(X,Z)
Q2(Xa)/) — R(y,X),R(W,X),R(X,U)
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examples

are Q1 and @, equivalent?

if yes, processing Q1 saves one join

can classical algebraic rewriting rules be used?
no!

N
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query equivalence and query containment

definitions: given 2 queries g and g’ on a schema D

» g C ¢ if for all instance | of D, q(1) C ¢'(/)
»g=q ifgCcqg and g Cgqg
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substitution

for a conjunctive query q, a substitution is

» a function from var(q) to var U dom
» extended to free tuples

example: consider (> and substitution € such that

> O(x) = x
> 0(y) =y
> O(u) =z
> O(w) =y

applying 6 to Q> yelds:
@2(x,y) < R(y,x),R(y,x),R(x,z) that is @y
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query containment

there exists a substitution that transforms the body of @, into the
body of @

if I is an instance and t € Q1(/)
there exists a valuation v applied to @ that leads to t
therefore 0 o v is a valuation that applied to @ leads to t

therefore t € @Q,(/) which shows that Q1(/) C Q2(/) and thus @;
is contained in @
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homomorphism

let g and ¢’ be two rules on the same database schema B

an homomorphism from ¢’ to q is:

» a substitution @ such that

» O(body(q')) C body(q) and O(tete(q’) = tete(q))
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the homomorphism theorem

let g and ¢’ be two queries on the same schema
g C ¢ if there exists an homomorphism from ¢’ to g

corollary: two queries g and g’ on the same schema are equivalent
if

> there exists an homomorphism from g to ¢’ and

» there exists an homomorphism from ¢’ to g
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complexity

the test of query equivalence is

» a problem in NPTIME for conjunctive queries

» an undecidable problem for relational queries
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practically

Oracle's query rewriting techniques:
» comparing the text of the query with the text of the
materialized view definition, or

» comparing various clauses (SELECT, FROM, WHERE,
HAVING, or GROUP BY) of a query with those of a
materialized view

see Oracle Database Data Warehousing Guide, chapter 18:
Advanced Query Rewrite
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conclusion: indexing and materializing

cons
» redundante structures
» using the same ressource (disk)
» needing refreshment
» based on a cost model
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partitioning

partition the tables

>
>
>

horizontal: by selection
vertical: by projection
combined: by selection and projection

queries processed on each partition
obtaining the answer may need extra processing
can be combined with indexing
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horizontal partitioning
client(no_client,nom,ville)

» clients_.1 = SELECT * FROM clients WHERE ville="Paris’;
» clients.2 = SELECT * FROM clients WHERE ville<>'Paris’;

reconstruction:

CREATE VIEW tous_clients AS
SELECT * FROM clients_1
UNION

SELECT * FROM clients_2;
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derived horizontal partitioning

partitioning a table wrt the horizontal partitions of another table
commandes(no_client,date,produit,quantité)

commande_1 = SELECT * FROM commandes WHERE no_client
IN (SELECT no_client FROM clients_1);
commande_2 = SELECT * FROM commandes WHERE no_client
IN (SELECT no_client FROM clients_2);
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vertical partitioning
client(no_client,nom,ville)

» clients_.1 = SELECT no_client,nom FROM clients:
» clients_.2 = SELECT no_client,ville FROM clients ;

reconstruction:

CREATE VIEW tous_clients AS

SELECT clients_1.no_client,nom,ville

FROM clients_1, clients_2

WHERE clients_1.no_client= clients_2.no_client;
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partitioning and datawarehouses

horizontal partitioning is well adapted

given
» a star schema
» a workload

output a set of star schemas where
» one or more dimension tables are partitioned
» the fact table is partitioned accordingly
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partitioning and datawarehouses

oracle syntax:

CREATE TABLE sales (acct_-no NUMBER(5), acct_-name
CHAR(30), amount_of_sale NUMBER(6), week_no INTEGER)
PARTITION BY RANGE (week_no)

(PARTITION salesl VALUES LESS THAN (4),

PARTITION sales2 VALUES LESS THAN (8),

PARTITION sales13 VALUES LESS THAN (52))
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MOLAP

» multidimensional databases

» storage structure = multidimensional array

» direct correspondance with the conceptual view
» needs to cope with sparsity

» specific compression technics

» specific indexing technics

poor extensibility
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MOLAP: pros

easy and quick to access an array's position... provided you know
the position!

if the array is dense then no need to have the members in memory

members
» are implicit
» are the cell's coordinate
» are normalised (vis = 0, clous =1, ...)
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MOLAP storage

Alabama | 1990

3
3
-

state: Alabama, ..., Wyoming
year: 1990, ..., 1996 2f 71819 ‘_‘J.
race: white, Black, ... 4+  slaalus
sex: male, female
age group: 1-10, ..., 91-100 ‘
5
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87 73
25 | 95
89 | 62
linearization: “row major” implementation
|87 |73] [25[95] |89]62|
a[0][0]

a[2][2]
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MOLAP storage

d dimensions, N, members in dimension k

function p gives the position in the array for index iy
. . d /-
p(’17 o JId) = Z_/:l(’.l X ng:j-i-lNk)

example: a[2][3][4] with 3 dimensions of respectively 8, 9 and 10
members

p(2,34) =2x9x10+3x 10+ 4 =214
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density

example

» 1460 days

» 200.000 products
» 300 stores

» promotion: 1 boolean
1,75x10' cells

only 10% of products sold per days

density is 1,75 x 10%°/1,75 x 10*! = 0.1
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;

MOLAP and density

typically, up to 90 % of empty cells

store only dense blocks of data

use compression technics (sometimes leads to relational storage...)

good for 2 or 3 dimensions but not for 20...
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indexation

w N -

EXTN

population

30.173
13,457
null
null
14,362
null

null

=

Store non-null values only:

[30,173 ; 13,457 ; 14,362
+

run length sequence:

221,18, ...

Accumulate:
2,4,5,23,

And build B-tree:
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indexing

distribution channel (dc) /

blici i
: publicity campaign (pc) »  Upper Level

dc = shipping dc = shipping Sparse
pe =TV spot pc =bulk mail | Dimensions

NPl RF P

u]
o)

1

n
it
)
»
i)
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MOLAP and aggregation

aggregate = apply aggregate function on the rows of the array
aggregates can be

» precomputed and stored as rows in the array
» calculated on demand
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MOLAP and aggregation

cube ¢ with dimension A,B,C
group by A,C

naively
for(a=0;a<a_max;a++)
for (b=0;b<b_max;b++)
for(c=0;c<c_max;c++)

res[al [c] += c[a][b] [c]
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MOLAP and aggregation

1. partition the n dimensional array into subcubes (chunks)
» n-dimensional
> holding in main memory
» compressed (to cope with sparsity)
2. computing the aggregate
» visit each cell of each chunck
» compute the partial aggregate involving this cell
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C 3 b 62— 63— 64
2
E 45 745 ar o 4
cl ] 0 31 32
il T - e |
b3 13 14 15 16 L~ }
44
28 7
b2 9 L 56
40
24 -
bl 5
L7 56
20
b0 1 2 3 4
al al a2 a3
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MOLAP and aggregation

how to minimise the number of visit per cell?

leverage the order of visit to compute simultaneously different
partial aggregates

» reduce memory access

> reduce storage cost
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example

cube with 3 dimensions A, B, C

A
B
C
BC
AC
AB

size

40

400

4000

1 600 000
160 000
16 000

dimensions partitioned into 4 subcubes of identical size

u]
o)
I
i
it
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example

scan in the following order 1, 2, 3, ..., 64 (BC, AC, AB)

» computing b0cO demands 4 scans (1, 2, 3, 4)
» computing a0cO demands 13 scans ( 1, 5, 9, 13)
» computing aOb0 demands 49 scans (1, 17, 33, 49)
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*
C e Bl B mr L e
2 ] il AA/;‘/’ 4 el ]
cl 0 = an 1
] f
03 12 14 15 /}‘ g
B w| s | 2%
2
5
ol 5 "
2
1 a2 a3
A

u]
o)
I
i
it
N
»
i)
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example

minimal memory requirement

N+ +

16000
10 x 4000
100 x 1000

156 000

AB
a column of AC
a subcube of BC
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example

scan in the order 1, 17, 33, 49, 5, 21, ... (AB, AC, B(Q)
» computing b0cO demands 49 scans
» computing a0cO demands 13 scans

» computing aOb0 demands 4 scans
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example

minimal memory requirement

1 600 000
10 x 4000
10 x 100

I+ +

1 641 000

BC
une colonne de AC
un sous-cube de AB
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method

cuboids must be computed the smallest first

» keep the smallest in main memory
» compute only one subcube at a time for the largest

good for a small number of dimensions...
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HOLAP

ROLAP is good for sparse cubes

MOLAP is good for dense cubes

note that:

» most of the cube is sparse

» some subcubes are dense

» the more aggregated the more dense
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HOLAP

combine ROLAP and MOLAP

» detailed data in RDBMS
» aggregated data in MDDB
» with coarser granularity

» and index in main memory
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conclusion

So far: The physical model

Next: The logical model
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