Datawarehouse and OLAP

OLAP
Syllabus, materials, notes, etc.

See http://www.info.univ-tours.fr/~marcel/dw.html
On-Line Analytical Processing
today

MOLAP, ROLAP, HOLAP

OLAP query processing techniques

indexing

materialized views

fragmentation
OLAP server architecture

usually 3 major storage strategies are distinguished

- ROLAP (Relational OLAP)
- MOLAP (Multidimensional OLAP)
- HOLAP (Hybrid OLAP)
ROLAP
ROLAP

- a RDBMS is used for the storage
- star schema or the like
- middleware for dynamic translation
 - of a multidimensional query on a multidimensional model
 - into an SQL query
pros and cons

pros
 ▶ maturity of the RDBMS technology
 ▶ no fact = no storage
 ▶ usually dimension tables fit in memory

cons: SQL generation may be costly and uneasy
specific optimisation technics

- redundant structures
 - indexing
 - mono index
 - join index
 - materialized views
- non-redundant structure
 - fragmentation
 - vertical
 - horizontal
indexing
multidimensional indexing technics

- inverted lists
- bitmap indexing
 - oracle
 - DB2
 - microsoft SQL server
 - SAS SPDE
 - lucidDB
- join indexing
 - oracle
 - lucidDB
inverted lists
bitmap indexing

- a bit vector for each attribute value

Pros:
- bit operation possible for query processing
 - selection, comparison
 - join
 - aggregation
- more compact than B-trees
- compressing is effective

Cons: efficient only if the attribute selectivity is high and its cardinality is low
bitmap indexing
example

consider the table sales

<table>
<thead>
<tr>
<th>id</th>
<th>product</th>
<th>city</th>
</tr>
</thead>
<tbody>
<tr>
<td>id1</td>
<td>clous</td>
<td>lyon</td>
</tr>
<tr>
<td>id2</td>
<td>vis</td>
<td>paris</td>
</tr>
<tr>
<td>id3</td>
<td>clous</td>
<td>paris</td>
</tr>
<tr>
<td>id4</td>
<td>écrous</td>
<td>lyon</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Oracle syntax
CREATE BITMAP INDEX product_index ON sales(product);
CREATE BITMAP INDEX city_index ON sales(city);
example

```
<table>
<thead>
<tr>
<th>id</th>
<th>clous</th>
<th>vis</th>
<th>écrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>id1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>id2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>id3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>id4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>paris</th>
<th>lyon</th>
</tr>
</thead>
<tbody>
<tr>
<td>id1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>id2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>id3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>id4</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

SELECT count(*) FROM sales WHERE product='vis' AND city='paris';
```
join indexing

- precomputation of a binary join
- useful with star schemas
- saves the joins by recording the link between
 - a foreign key
 - the related primary key

bitmap indexing and join indexing can be combined
join indexing

<table>
<thead>
<tr>
<th>sale</th>
<th>prodlid</th>
<th>storeId</th>
<th>date</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>c1</td>
<td></td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>p2</td>
<td>c1</td>
<td></td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>p1</td>
<td>c3</td>
<td></td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>p2</td>
<td>c2</td>
<td></td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>p1</td>
<td>c1</td>
<td></td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>p1</td>
<td>c2</td>
<td></td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>product</th>
<th>id</th>
<th>name</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td>bolt</td>
<td>10</td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td>nut</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>joinTb</th>
<th>prodlid</th>
<th>name</th>
<th>price</th>
<th>storeId</th>
<th>date</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>bolt</td>
<td>10</td>
<td>c1</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td>nut</td>
<td>5</td>
<td>c1</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>p1</td>
<td>bolt</td>
<td>10</td>
<td>c3</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td>nut</td>
<td>5</td>
<td>c2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>p1</td>
<td>bolt</td>
<td>10</td>
<td>c1</td>
<td>2</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>p1</td>
<td>bolt</td>
<td>10</td>
<td>c2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
join indexing

Data warehouse and OLAP

- ROLAP
- **indexing**

Join Indexing

<table>
<thead>
<tr>
<th>Product</th>
<th>ID</th>
<th>Name</th>
<th>Price</th>
<th>JIndex</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td>bolt</td>
<td>10</td>
<td>r1,r3,r5,r6</td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td>nut</td>
<td>5</td>
<td>r2,r4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sale</th>
<th>Rld</th>
<th>ProdId</th>
<th>StoreId</th>
<th>Date</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>p1</td>
<td>c1</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>r2</td>
<td>p2</td>
<td>c1</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>r3</td>
<td>p1</td>
<td>c3</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>r4</td>
<td>p2</td>
<td>c2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>r5</td>
<td>p1</td>
<td>c1</td>
<td>2</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>r6</td>
<td>p1</td>
<td>c2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
bitmap join index

Oracle syntax

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products
WHERE sales.cust_id = customers.cust_id
AND sales.prod_id = products.prod_id;
materialized views
Datawarehouse and OLAP

- ROLAP
- materialized views

Cube = treillis de cuboïdes

Cuboïde 0-D (sommet)
Cuboïde 1-D
Cuboïde 2-D
Cuboïde 3-D (base)
example

consider the fact table ventes(produit, année, vendeur, quantité)

cuboid produit, année:

CREATE MATERIALIZED VIEW produit_année
ENABLE QUERY REWRITE AS
SELECT produit, année,
SUM(quantité) AS quantité
FROM ventes
GROUP BY produit, année
example

cuboid vendeur:

```
CREATE MATERIALIZED VIEW vendeur
ENABLE QUERY REWRITE AS
SELECT vendeur, SUM(quantité) AS quantité
FROM ventes
GROUP BY vendeur
```
example

SELECT produit, SUM(quantité)
FROM ventes
GROUP BY produit

can be answered by using

SELECT produit, SUM(quantité)
FROM produit_année
GROUP BY produit
example

```
SELECT produit, vendeur, SUM(quantité)
FROM ventes
GROUP BY produit, vendeur

cannot be answered using produit_année, nor vendeur
therefore needs to be evaluated on the fact table
```
compute and materialize cuboids
consider an n-dimensional cube, each dimension i with L_i levels
\[\prod_{i=1}^{n} (L_i + 1) \text{ possible groupings} \]

1. can we materialize all of them? If not, which ones to choose?
2. and how to use them for answering queries?
(1) what cuboids to materialize?

a classical View Selection Problem (VSP)

needs a goal, i.e., a function on
- the query processing cost
- the storage space available
- the computation and/or refreshing cost

and needs a set of frequent queries (query workload)
example of a VS algorithm

Stanford University (around 1997-1999, A. Gupta PhD)

ventes(produit, vendeur, année, prix)

3 dimensions: produit, vendeur, année
8 grouping possibilities

SELECT SUM(prix) FROM ventes GROUP BY ...
example

<table>
<thead>
<tr>
<th>GROUP BY</th>
<th>number of tuples</th>
<th>name of the view</th>
</tr>
</thead>
<tbody>
<tr>
<td>produit, vendeur, année</td>
<td>6 M</td>
<td>pva</td>
</tr>
<tr>
<td>produit, vendeur</td>
<td>6 M</td>
<td>pv</td>
</tr>
<tr>
<td>produit, année</td>
<td>0.8 M</td>
<td>pa</td>
</tr>
<tr>
<td>vendeur, année</td>
<td>6 M</td>
<td>va</td>
</tr>
<tr>
<td>produit</td>
<td>0.2 M</td>
<td>p</td>
</tr>
<tr>
<td>vendeur</td>
<td>0.1 M</td>
<td>v</td>
</tr>
<tr>
<td>année</td>
<td>0.01 M</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>vide</td>
</tr>
</tbody>
</table>

assumption: the query computation cost is proportional to the number of tuples processed
Datawarehouse and OLAP

- ROLAP
- materialized views

example

materializing every aggregates costs 19M

materializing

- pva
- pa
- p, v et a
- vide

costs only 7,11 M
Q1 < Q2 if query Q1 can be answered using Q2

- $\text{ancestor}(x) = \{y \mid x < y\}$
- $\text{descendant}(x) = \{y \mid y < x\}$
- $\text{next}(x) = \{y \mid x < y, \nexists z, x < z, z < y\}$
example

- $p < pv$, $p \not\in v$, $\text{ancestor}(pva) = \{pva\}$,
- $\text{descendant}(pv) = \{pv, p, v, vide\}$,
- $\text{next}(p) = \{pv, pa\}$
cost

answering query Q

1. choose Q_A a materialized ancestor of Q
2. adapts Q to Q_A
3. evaluate the adapted query on Q_A

costs of answering $Q =$ number of tuples in Q_A
algorithm

- k: max number of view that can be materialized
- v: one view
- $C(v)$: cost of view v
- S: a set of views
Datawarehouse and OLAP
 ^- ROLAP
 ^- materialized views

algorithm

\[B(v, S) : \]

1. for all \(w < v \), \(B_w \) is defined by
 1.1 let \(u \) be the view with lowest cost in \(S \) such that \(w < u \)
 1.2 if \(C(v) < C(u) \) then \(B_w = C(u) - C(v) \)
 1.3 else \(B_w = 0 \)
2. \[B(v, S) = \sum_{w < v} B_w \]
algorithm

1. \(S = \{ \text{the fact table} \} \)
2. for \(i = 1 \) to \(k \) do
 2.1 select \(v \notin S \) maximizing \(B(v, S) \)
 2.2 \(S = S \cup \{ v \} \)
3. \(S \) is the set of views to materialize
indexing and materializing

complexity of choosing redundant structures:

- set of candidate objects: $O = I \cup V$
- workload: W
- disk space: S

find $O_{opt} \subseteq O$ such that

- for each $q \in W$, $O' \subseteq O$, $cost(q, O_{opt}) \leq cost(q, O')$
- $\sum_{o \in O_{opt}} size(o) \leq S$

this problem is \textit{NP-complete}

practically: greedy algorithms
(2) how to use materialized cuboids?

rewrite a query to use the materialized cuboids

selecting the best rewriting is hard
- no rewriting means accessing the fact table
- complete rewriting means there is enough cuboids to treat the query
- partial rewriting can be a compromise

principle
1. find possible rewritings
2. generate execution plans
3. pick best
rewriting

example: let Q_1 and Q_2 be two conjunctive queries

\[
\begin{align*}
\text{SELECT} & \quad R1.B, R1.A & \quad \text{SELECT} & \quad R3.A, R1.A \\
\text{FROM} & \quad R \ R1, R \ R2 & \quad \text{FROM} & \quad R \ R1, R \ R2, R \ R3 \\
\text{WHERE} & \quad R2.A=R1.B & \quad \text{WHERE} & \quad R1.B=R2.B \land R2.B=R3.A
\end{align*}
\]

put differently
\[
\begin{align*}
Q_1 & = \pi_{2,1}(\sigma_{2=3}(R \times R)) \\
Q_2 & = \pi_{5,1}(\sigma_{2=4 \land 4=5}(R \times R \times R))
\end{align*}
\]

or even
\[
\begin{align*}
Q_1(x,y) & \leftarrow R(y,x), R(x,z) \\
Q_2(x,y) & \leftarrow R(y,x), R(w,x), R(x,u)
\end{align*}
\]
Datawarehouse and OLAP

- ROLAP
- materialized views

examples

are Q_1 and Q_2 equivalent?

if yes, processing Q_1 saves one join

can classical algebraic rewriting rules be used?

no!
query equivalence and query containment

definitions: given 2 queries q and q' on a schema D

- $q \subset q'$ if for all instance I of D, $q(I) \subset q'(I)$
- $q \equiv q'$ if $q \subset q'$ and $q' \subset q$
substitution

for a conjunctive query \(q \), a substitution is

- a function from \(\text{var}(q) \) to \(\text{var} \cup \text{dom} \)
- extended to free tuples

example: consider \(Q_2 \) and substitution \(\theta \) such that

- \(\theta(x) = x \)
- \(\theta(y) = y \)
- \(\theta(u) = z \)
- \(\theta(w) = y \)

applying \(\theta \) to \(Q_2 \) yields:

\(Q_2(x,y) \leftarrow R(y,x), R(y,x), R(x,z) \) that is \(Q_1 \)
query containment

there exists a substitution that transforms the body of Q_2 into the body of Q_1

if I is an instance and $t \in Q_1(I)$

there exists a valuation ν applied to Q_1 that leads to t

therefore $\theta \circ \nu$ is a valuation that applied to Q_2 leads to t

therefore $t \in Q_2(I)$ which shows that $Q_1(I) \subset Q_2(I)$ and thus Q_1 is contained in Q_2
let q and q' be two rules on the same database schema B

an *homomorphism* from q' to q is:

- a substitution θ such that
- $\theta(\text{body}(q')) \subseteq \text{body}(q)$ and $\theta(\text{tete}(q') = \text{tete}(q))$
the homomorphism theorem

let q and q' be two queries on the same schema

$q \subseteq q'$ if there exists an homomorphism from q' to q

corollary: two queries q and q' on the same schema are equivalent if

- there exists an homomorphism from q to q' and
- there exists an homomorphism from q' to q
complexity

the test of query equivalence is

- a problem in $NPTIME$ for conjunctive queries
- an *undecidable* problem for relational queries
practically

Oracle’s query rewriting techniques:

▶ comparing the text of the query with the text of the materialized view definition, or
▶ comparing various clauses (SELECT, FROM, WHERE, HAVING, or GROUP BY) of a query with those of a materialized view

see Oracle Database Data Warehousing Guide, chapter 18: Advanced Query Rewrite
conclusion: indexing and materializing

cons

▶ redundante structures
▶ using the same ressource (disk)
▶ needing refreshment
▶ based on a cost model
partitioning
partitioning

partition the tables

- horizontal: by selection
- vertical: by projection
- combined: by selection and projection

- queries processed on each partition
- obtaining the answer may need extra processing
- can be combined with indexing
horizontal partitioning

client(no_client,nom,ville)

- clients_1 = SELECT * FROM clients WHERE ville='Paris';
- clients_2 = SELECT * FROM clients WHERE ville<>’Paris’;

reconstruction:
CREATE VIEW tous_clients AS
SELECT * FROM clients_1
UNION
SELECT * FROM clients_2;
derived horizontal partitioning

partitioning a table wrt the horizontal partitions of another table

commandes(no_client,date,produit,quantité)

commande_1 = SELECT * FROM commandes WHERE no_client IN (SELECT no_client FROM clients_1);
commande_2 = SELECT * FROM commandes WHERE no_client IN (SELECT no_client FROM clients_2);
vertical partitioning

client(no_client,nom,ville)

- clients_1 = SELECT no_client,nom FROM clients;
- clients_2 = SELECT no_client,ville FROM clients;

reconstruction:
CREATE VIEW tous_clients AS
SELECT clients_1.no_client,nom,ville
FROM clients_1, clients_2
WHERE clients_1.no_client = clients_2.no_client;
partitioning and datawarehouses

horizontal partitioning is well adapted given

- a star schema
- a workload

output a set of star schemas where

- one or more dimension tables are partitioned
- the fact table is partitioned accordingly
partitioning and datawarehouses

oracle syntax:
CREATE TABLE sales (acct_no NUMBER(5), acct_name CHAR(30), amount_of_sale NUMBER(6), week_no INTEGER) PARTITION BY RANGE (week_no) (PARTITION sales1 VALUES LESS THAN (4), PARTITION sales2 VALUES LESS THAN (8), ... PARTITION sales13 VALUES LESS THAN (52))
MOLAP
MOLAP

- multidimensional databases
 - storage structure = multidimensional array
 - direct correspondance with the conceptual view
- needs to cope with sparsity
 - specific compression technics
 - specific indexing technics

poor extensibility
storage
MOLAP: pros

easy and quick to access an array’s position... provided you know the position!

if the array is dense then no need to have the members in memory members

▶ are implicit
▶ are the cell’s coordinate
▶ are normalised \(\text{vis} = 0, \text{clous} = 1, \ldots \)
MOLAP storage

<table>
<thead>
<tr>
<th>state</th>
<th>year</th>
<th>race</th>
<th>sex</th>
<th>age-group</th>
<th>population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>1990</td>
<td>white</td>
<td>male</td>
<td>1-10</td>
<td>30,173</td>
</tr>
<tr>
<td>Alabama</td>
<td>1990</td>
<td>white</td>
<td>male</td>
<td>11-20</td>
<td>13,457</td>
</tr>
<tr>
<td>Alabama</td>
<td>1990</td>
<td>white</td>
<td>male</td>
<td>21-30</td>
<td>.....</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31-40</td>
<td>.....</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.....</td>
</tr>
</tbody>
</table>

- **state**: Alabama, ..., Wyoming
- **year**: 1990, ..., 1996
- **race**: white, Black, ...
- **sex**: male, female
- **age group**: 1-10, ..., 91-100
MOLAP storage

linearization: “row major” implementation

\[
\begin{array}{cc}
87 & 73 \\
25 & 95 \\
89 & 62 \\
\end{array}
\]

\[
a[0][0] \quad \ldots \quad a[2][2]
\]
MOLAP storage

\(d \) dimensions, \(N_k \) members in dimension \(k \)

function \(p \) gives the position in the array for index \(i_d \)

\[
p(i_1, \ldots, i_d) = \sum_{j=1}^{d} (i_j \times \prod_{k=j+1}^{d} N_k)\]

example: \(a[2][3][4] \) with 3 dimensions of respectively 8, 9 and 10 members

\[
p(2,3,4) = 2 \times 9 \times 10 + 3 \times 10 + 4 = 214\]
density

example

- 1460 days
- 200,000 products
- 300 stores
- promotion: 1 boolean

\[1.75 \times 10^{11} \text{ cells}\]

only 10% of products sold per day

density is \[1.75 \times 10^{10} / 1.75 \times 10^{11} = 0.1\]
MOLAP and density

typically, up to 90% of empty cells

store only dense blocks of data

use compression technics (sometimes leads to relational storage...)

good for 2 or 3 dimensions but not for 20...
Datawarehouse and OLAP

- MOLAP
- Indexing
indexation

Store non-null values only:

\[[30.173, 13,457, 14,362, \ldots] \]

+

run length sequence:

2, 2, 1, 18, \ldots

Accumulate:

2, 4, 5, 23, \ldots

And build B-tree:
indexing
aggregation
MOLAP and aggregation

aggregate = apply aggregate function on the rows of the array

aggregates can be
- precomputed and stored as rows in the array
- calculated on demand
MOLAP and aggregation

cube c with dimension A,B,C
group by A,C

naively

```c
for(a=0; a<a_max; a++)
    for(b=0; b<b_max; b++)
        for(c=0; c<c_max; c++)
            res[a][c] += c[a][b][c]
```
MOLAP and aggregation

1. partition the n dimensional array into subcubes (chunks)
 ▶ n-dimensional
 ▶ holding in main memory
 ▶ compressed (to cope with sparsity)

2. computing the aggregate
 ▶ visit each cell of each chunk
 ▶ compute the partial aggregate involving this cell
Datawarehouse and OLAP

- MOLAP
- aggregation
MOLAP and aggregation

how to minimise the number of visit per cell?

leverage the order of visit to compute simultaneously different partial aggregates

- reduce memory access
- reduce storage cost
example

cube with 3 dimensions A, B, C

<table>
<thead>
<tr>
<th></th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>400</td>
</tr>
<tr>
<td>C</td>
<td>4000</td>
</tr>
<tr>
<td>BC</td>
<td>1 600 000</td>
</tr>
<tr>
<td>AC</td>
<td>160 000</td>
</tr>
<tr>
<td>AB</td>
<td>16 000</td>
</tr>
</tbody>
</table>

dimensions partitioned into 4 subcubes of identical size
example

scan in the following order 1, 2, 3, ..., 64 (BC, AC, AB)

- computing b0c0 demands 4 scans (1, 2, 3, 4)
- computing a0c0 demands 13 scans (1, 5, 9, 13)
- computing a0b0 demands 49 scans (1, 17, 33, 49)
example

minimal memory requirement

\[
\begin{align*}
16000 & \quad \text{AB} \\
+ 10 \times 4000 & \quad \text{a column of AC} \\
+ 100 \times 1000 & \quad \text{a subcube of BC} \\
= 156000
\end{align*}
\]
example

scan in the order 1, 17, 33, 49, 5, 21, ... (AB, AC, BC)

- computing b0c0 demands 49 scans
- computing a0c0 demands 13 scans
- computing a0b0 demands 4 scans
example

minimal memory requirement

\[
1 600 000 \quad \text{BC} \\
+ \quad 10 \times 4000 \quad \text{une colonne de AC} \\
+ \quad 10 \times 100 \quad \text{un sous-cube de AB} \\
= \quad 1 641 000
\]
method

cuboids must be computed the smallest first

- keep the smallest in main memory
- compute only one subcube at a time for the largest

good for a small number of dimensions...
HOLAP
HOLAP

ROLAP is good for sparse cubes

MOLAP is good for dense cubes

note that:

▶ most of the cube is sparse
▶ some subcubes are dense
▶ the more aggregated the more dense
HOLAP

combine ROLAP and MOLAP

- detailed data in RDBMS
- aggregated data in MDDB
 - with coarser granularity
 - and index in main memory
conclusion

So far: The physical model

Next: The logical model