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ABSTRACT
An OLAP analysis session can be defined as an interactive
session during which a user launches queries to navigate
within a cube. Very often choosing which part of the cube to
navigate further, and thus designing the forthcoming query,
is a difficult task. In this paper, we propose to use what
the OLAP users did during their former exploration of the
cube as a basis for recommending OLAP queries to the user.
We present a generic framework that allows to recommend
OLAP queries based on the OLAP server query log. This
framework is generic in the sense that changing its param-
eters changes the way the recommendations are computed.
We show how to use this framework for recommending sim-
ple MDX queries and we provide some experimental results
to validate our approach.
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1. INTRODUCTION
Traditional OLAP users interactively navigate a cube by

launching a sequence of queries over a datawarehouse, what
we call an analysis session (or session for short) in the fol-
lowing. This process is often tedious since the user may have
no idea of what the forthcoming query should be [16]. The
problem we address in this paper is thus the following: How
to help the user to design her forthcoming query?

As an answer, we propose to exploit what the other users
did in their former navigation on the cube, and to use this
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information as a basis for recommending what the forth-
coming query could be. To this end, we present a generic
framework for recommending OLAP queries, that uses both
the log of the server, i.e., the set of former sessions on the
cube, and the sequence of queries of the current session.

The framework relies on the following process:

1. Partitioning the log to group queries that are similar,
in order to cope with the sparsity of the log.

2. Generating candidate recommendations by first find-
ing which sessions of the log match the current session
and then predicting what the forthcoming query can
be.

3. Ranking the candidate queries so as to present to the
user the most relevant queries first.

This framework is generic in the sense that it does not
impose a specific way of partitioning the log, generating
candidate queries or ranking the candidates. Instead these
actions are left as parameters of the framework, that can
be instantiated in various ways in order to change the way
the recommendations are computed. The rationale behind
the proposal of a generic framework is that recommedations
highly depend on the users and the data on which recom-
mendations are computed. For instance, [2] reports the need
for flexible, user-adaptive recommender systems.

Our contribution includes the presentation of various in-
stantiations of the proposed framework to recommend MDX
queries [11]. For one of the instantiations, we present the re-
sults of several experiments that we have conducted to assess
the efficiency of recommendation generation and the quality
of the recommendations.

The paper is organized as follows: Section 2 motivates our
approach with a simple example. Section 3 presents the for-
mal definitions. Section 4 introduces our generic framework
and Section 5 illustrates its use to generate basic recom-
mendations. Section 6 presents our experimental results.
We discuss related work and future work in Section 7.

2. MOTIVATING EXAMPLE
In this section we illustrate with a simple example the

generic idea under our framework. Consider an OLAP server
used by several users. Each user can open a session on
the server to navigate the cube by launching a sequence
of queries expressed in the MDX language. The server logs
these sessions, i.e., the sequences of queries launched dur-
ing each session. For instance, suppose the log is composed



of the following three sessions: s1 = 〈q1, q2, q3, q4〉, s2 =
〈q5, q6, q7〉, s3 = 〈q8, q9, q10〉 where the qis are OLAP queries.

Suppose now a new session, called the current session, is
opened by a user. Say for instance this session is: 〈q11, q12〉.
He could be interested in how the other users explored the
cube and use this information to design its forthcoming
query.

Now, given the number of users and the number of ses-
sions, the log can be very large, albeit not as large as the
cube itself. In addition, the various users may have differ-
ent interests, thus their queries may navigate very differ-
ent parts of the cube. It means that it may be unlikely to
find a given query more than once in the log. Thus the log
can be both large and sparse. In order to cope with large-
ness and sparsity, the queries in the log can be grouped into
classes, so as to partition the log. A class of queries being a
set of queries that are closed enough to one another. And
then, in the sessions of the log, queries are replaced with the
class they belong to, what we call a generalized session. In
our running example, suppose the generalized sessions are:
g1 = 〈c1, c2, c3, c4〉, g2 = 〈c2, c3, c5〉, g3 = 〈c4, c3, c5〉 since for
example q2, q5 belong to class c2, q3, q6, q9 belong to class c3

and so on.
Of course, in the current session itself the queries can be

replaced with the class they belong to. In our example,
suppose the generalized current session is g = 〈c2, c3〉, since
it is found that q11 belongs to c2 and q12 belongs to c3.

Now, it can be found that the current session is matching
with sessions s1 and s2 of the log (since in our case g is a
subsequence of g1, and g2). The user might be interested
in knowing the queries that follow the matched sequence
in those sessions. Looking at the generalized sessions g1

and g2, we can predict that such queries belong to classes
c4 = {q4, q8} and c5 = {q7, q10}, called the candidate classes.
As queries and not classes should be proposed to the user,
a single query must be extracted from each candidate class.
It can be for instance the query that represents the class
the most. In our example, suppose these queries are q4 and
q7. They are called the candidate queries. Finally, the user
may be interested in only one query, not many. Or at-least
the candidate queries should be presented in a given order.
Thus the candidate queries must be ordered, for instance by
ranking them based on their proximity with the last query
of the current session. In our example, suppose the ranking
is 〈q7, q4〉, and thus the first query that is recommended to
the user is q7.

The generic framework we propose in Section 4 allows
to go beyond this simple example. Indeed computing the
log partitioning, session matching, prediction of candidate
classes, class representative and ranking are left as parame-
ters. Various instantiations of the framework can be imag-
ined as it is illustrated in Section 5.

3. BASIC DEFINITIONS
In this section we give the basic definitions underlying our

framework. Let R be a relation instance of schema sch(R) =
{A1, . . . , AN}. We denote by adom(Ai) the active domain
of every attribute Ai ∈ sch(R).

Cubes and Dimensions.
An N -dimensional cube C is a tuple C = 〈D1, . . . , DN , F 〉

where:

• For i ∈ [1, N ], Di is a dimension table of schema

sch(Di) = {L0
i , . . . , L

di
i }. For every dimension i ∈

[1, N ], each attribute Lj
i describes a level of a hierar-

chy, j being the depth of this level. L0
i is the lowest

level which equals the primary key of Di.

• F is a fact table of schema sch(F ) = {L0
1, . . . , L

0
N , m}

where m is a measure attribute.

In the following, note that the name of a dimension Di, i ∈
[1, N ] is also used to denote an attribute of active domain

adom(Di) =
⋃di

j=0 adom(Lj
i ). For every i ∈ [1, N ], adom(Di)

is the set of all members of dimension Di.

Cell Reference.
Given an N -dimensional cube C, a cell reference (reference

for short) is an N -tuple 〈r1, . . . , rN 〉 where ri ∈ adom(Di)
for all i ∈ [1, N ].

Given a cube C, we denote by ref(C) the set of all refer-
ences of C.

Distance between references.
Given a cube C, a distance between cell references in

ref(C) is a function from ref(C) × ref(C) to the set of
real numbers.

Query.
In this paper we consider simple MDX queries, viewed as

set of references, as defined in [5].
Let C = 〈D1, . . . , DN , F 〉 be an N -dimensional cube and

Ri ⊆ adom(Di) be a set of members of dimension Di for all
i ∈ [1, N ]. A query over an N -dimensional cube C is the set
of references R1 × . . .×RN .

Given a cube C, we denote by query(C) the set of possible
queries over C.

Distance between queries.
Given a cube C, a distance between queries in query(C)

is a function from query(C) × query(C) to the set of real
numbers.

User Session.
Given a cube C, a user session s = 〈q1, . . . , qp〉 over C

is a finite sequence of queries of query(C). We denote by
query(s) the set of queries of a session s, by session(C) the
set of all sessions over a cube C and by s[i] the ith query of
the session s.

Database Log.
Given a cube C, a database log (log for short) is a finite

set of sessions. We denote by query(L ) the set of queries of
a log L .

Class of queries.
Given a cube C, a class of queries is a set Q ⊆ query(C).

Class representative.
Given a cube C, a class representative is a function from

2query(C) to query(C).

Query set partitioning.
Given a cube C and a distance between queries, a query



set partitioning is a function p from 2query(C) to 22query(C)

such that, for all Q ⊂ query(C), p computes a partition of
Q under the form of a set P of pairwise disjoint classes of
queries.

Query classifier.
Given a cube C a query classifier cl is a function from

query(C)×22query(C)
to 2query(C) such that if q ∈ query(C)

is a query, P ⊆ 2query(C) is a set of classes then cl(q, P ) ∈ P .
We say that cl(q, P ) is the class of q.

Generalized session.
Given a session s and a set of classes of queries, the gen-

eralized session of s is the sequence of classes of each query
of s in turn.

Formally, given a cube C, a set of classes of queries P , a
query classifier cl and s = 〈q1, . . . , qp〉 a session over C, the
generalized session gs of s is the sequence 〈c1, . . . , cp〉 where:

• ci = cl(qi, P ) is the class of qi for all i ∈ [1, p].

• ∀i, ci ∈ P .

• ∀i, qi ∈ query(C).

We denote by by gs[i] the ith class of the generalized session
gs.

Query ranking.
Given a cube C and a set of queries S ∈ 2query(C), a

query ranking rank is a function from 2query(C) to a tuple
of queries, such that rank(S) orders the queries of S.

4. THE GENERIC FRAMEWORK
In this section we detail the generic framework for rec-

ommending OLAP queries. The framework uses both the
sequence of queries of the current session, and the query log
of an OLAP server, i.e., the sequences of queries formerly
launched on the cube. It consists of the three following steps,
as illustrated in Figure 1:

1. The first step consists in using a query set partitioning
to partition the query log in order to compute all the
generalized sessions of the log.

2. The second step consists in using the generalized cur-
rent session and the set of generalized sessions of the
log to predict candidate recommendations.

3. The last step consists in ranking the candidate recom-
mendations.

Each of these steps is parameterized with one of more
functions. By changing these parameters, the way recom-
mendations are computed changes (this is illustrated in Sec-
tion 5). We now present these steps into more details.

4.1 Partitioning the log and computing the gen-
eralized sessions

This step consists in partitioning the log. To this end,
this step uses a query set partitioning. This partitioning
uses a distance between queries to determine the partitions.
It outputs a set of sets of queries, that we call a set of classes
of queries in the following.

Figure 1: Overview of the generic framework

Once the log is partitioned into a set of classes of queries,
the set of generalized sessions is computed. The principle
is straightforward: For all session of the log, replace in the
session each query with the class it belongs to. The gen-
eralized current session can be computed as well, but in a
different manner since the queries of this session are unlikely
to belong to the classes computed by the partitioning. Thus
a query classifier is needed to find for each query of the cur-
rent session its class.

4.2 Computing candidate recommendations
The previous step has computed the set of generalized

sessions. Now, using this set and the sequence of queries
of the current session, a set of candidate recommendations
is computed by Function 1. The principle of the algorithm
is the following. In addition to the set of generalized ses-
sions and the current session, the algorithm uses three func-
tions, Match, Predict, ClassRep. Match is used to find a
set of generalized sessions matching a given generalized ses-
sion. Predict is used to compute, for a set of generalized
sessions, a set of candidate classes. ClassRep is used to ob-
tain the query that represents a class. The algorithm uses
these functions in the following way. First, the generalized
current session is obtained (Line 1). Then, Match is used
to search among the set of generalized sessions which ones
are matching the generalized current session (Line 2). This
function outputs a set of pairs indicating which generalized
sessions match the generalized current session and the posi-
tion of the matching. From those pairs, Predict extracts a
set of classes that will be the basis for the recommendation
(Line 3). And then for each class extracted, ClassRep is
used to obtain the query representing the class (Line 5-7).
This set of queries is returned as an answer (Line 10). Note
that it can be empty.

4.3 Ranking the candidate recommendations
In the previous step, a set of recommendations is com-

puted. The purpose of this next step is to select the most
suitable one w.r.t. a satisfaction criterion expressed by the
user. To this end, a query ranking is needed, that orders the



Function 1 GenerateCandidateQueries (Sc, SGS , Match,
Predict, ClassRep)

Require:
Sc: The current session
SGS : The set of generalized session, as output by the
previous step
Match: A function generating candidate classes
Predict: A function predicting recommendation classes
from a set of classes
ClassRep: A class representative

Ensure: a set of candidate queries
1: Let GS be the generalized session of Sc

2: M ← Match(GS,SGS)
3: C ← Predict(M)
4: Q ← ∅
5: if C 6= ∅ then
6: for each c ∈ C do
7: Q ← Q ∪ ClassRep(c)
8: end for
9: end if

10: return Q

candidate recommendations.

5. INSTANTIATIONS OF THE FRAMEWORK
In this section, we introduce different instantiations of our

framework to illustrate the applicability of our generic algo-
rithms.

5.1 Computing generalized sessions

5.1.1 Distance between queries
In this paper, we consider only simple MDX queries as

defined in Section 3, i.e., sets of references. To compute
the distance between such sets, the Hausdorff distance [7,
10] can be used. This distance relies on the computation of
distance between the elements of the sets, references in our
case. To compute a distance between references the classical
Hamming distance [6] can be used. This distance dh is de-

fined by dh(〈a1, ..., aN 〉, 〈b1, ..., bN 〉) =
∑N

i=1 compare(ai, bi)
where compare(ai, bi) = 1 if ai = bi, 0 otherwise.

The Hausdorff Distance dH between two sets q1 and q2 is
defined by: dH(q1, q2) = max{maxr1∈q1 minr2∈q2 d(r1, r2),

maxr2∈q2 minr1∈q1 d(r1, r2) }
In our case, q1 and q2 are queries, i.e., sets of references,

and the distance d used is the Hamming distance dh.
For example, consider a 3-dimensional cube and two queries

q1 and q2 over this cube, such that q1 = {〈a, 1, x〉, 〈a, 1, y〉}
and q2 = {〈a, 1, y〉, 〈b, 1, y〉}. It is left to the reader to verify
that the Hausdorff distance between q1 and q2 equals 1.

5.1.2 Query partitioning and query classifier
Partitioning the set of queries can be done by using a

simple clustering algorithm like K-medoids [8]. In that case,
the query classifier can associate the query with the class for
which the class representative is the closest to the query.

5.2 Computing Candidate recommendations

5.2.1 Match
A first example of the Match function simply consists in

looking in the set of generalized sessions for the class of the
current query (i.e., the last query of the current session).

A second more sophisticated example of the Match func-
tion that we consider in this paper is borrowed from the
area of Approximate String Matching [12]. Approximate
String Matching is the problem of finding in a text where
a given string occurs allowing a limited number of errors of
matching. In our case, generalized sessions can be viewed
as sequences of elements just as strings are considered as
sequences of characters. Then, our problem of finding in
a set of generalized sessions where the current generalized
session, or a slightly modification of it occurs can be trans-
lated to the problem of approximate string matching, for
which classical algorithms can be used. More precisely,
these algorithms take as inputs a text t, a string p, a set
of operations Op and a threshold th and return a set of
pairs 〈p, c〉 where p is a position and c is a number. The
output indicates the positions in the text where the string
matches the text and for each position, the number of trans-
formations using operations in Op that are necessary for
transforming the string to obtain the matching. For in-
stance if approximateStringMatching is such a function
then approximateStringMatching(”hello word”, ”world”,
{removeOneLetter}, 1) would output 〈7, 1〉 since removing
one letter of ”world” would cause the function to detect a
matching at position 7 in ”hello word”. In our context, the
text is one of the generalized sessions, the string is the gen-
eralized current session, the set of operations is a set of op-
erations allowed to transform a generalized session.

Function 2 presents a Match function based on approx-
imate string matching, for a fixed set of operations and
a fixed threshold (Line 1-2). It iterates until at-least one
matching is found or the cost of transforming the general-
ized current session exceeds the threshold (Line 5). At each
iteration step, the set of generalized sessions is scanned (Line
6) and the approximateStringMatching algorithm is used to
determine if by using cost operations of Op on the gener-
alized current session, matchings can be found (Line 7). If
matchings can be found, then the output of the algorithm
will be the set of pairs 〈g, i〉 where g is the generalized ses-
sion where a matching is found and i is the position of the
matching (Line 10). Otherwise, one more transformation on
the generalized current session is permitted (Line 12).

Function 2 Match (GS, SGS)

Require:
GS: The generalized current session,
SGS : The set of generalized sessions.

Ensure: A set of pairs 〈g, i〉 where g is a generalized session
and i is an integer

1: Let Op be a set of operations on generalized session
2: Let t be an integer threshold
3: cost ← 0
4: Cand ← ∅
5: while Cand = ∅ and cost ≤ t do
6: for each g ∈ SGS do
7: S=approximateStringMatching(GS,g,Op,cost)
8: end for
9: if S 6= ∅ then

10: Cand ← {〈g, i〉|〈i, c〉 ∈ S}
11: else
12: cost ← cost + 1
13: end if
14: end while
15: return Cand

Obviously, this Match function can be instantiated in



many ways, depending on what threshold or operations are
used. For instance, the set of operations can be reduced to
one operation, namely the removal of the first element of the
string. In our case, it simply means that we try to match
the generalized current session with every generalized session
and if no matches are found then we remove the first class
of the generalized current session and we iterate. As an il-
lustration, consider the generalized sessions given in Section
2. Suppose now that the current generalized session is g =
〈c1, c4, c3〉. The call to approximateStringMatching(g3, g,
{removeF irstElement}, 1) outputs the pair 〈1, 1〉.

Now as another example of the Match function, the set
of operations can be extended. In the area of approximate
string matching, many operations have been proposed (see
[12] for an overview). A given set of operations corresponds
to a given distance between strings, in such way that the
distance between two strings x and y is the minimal num-
ber of operations used to transform x into y. For instance,
the Levenshtein (or edit) distance allows not only deletions
but also insertions or substitutions, and can be used in our
context, as well as many other classical distances.

Another example of the Match function would consider
not only the set of generalized sessions computed from
the log, but also all the generalized sessions that can be
generated by crossing the generalized sessions of the log.
For instance, if we consider the generalized sessions g1 =
〈c1, c2, c3, c4〉 and g2 = 〈c2, c3, c5〉 of the example given in
Section 2, then it could make sense to add the generalized
session g4 = 〈c1, c2, c3, c5〉 to the set of generalized sessions,
by considering that as c5 follows the sequence 〈c2, c3〉 in g2

then it could follow the sequence 〈c1, c2, c3〉 that is found
in g1. In this case, if the generalized current session is
〈c1, c2, c3〉 then the Match function output two candidates
c4 and c5 instead of one, since a matching is found for g1

and for g4.

5.2.2 Predict
The Match function outputs a set of pairs 〈g, i〉 where g

is a generalized session and i is the position in the session
where a match is found. A very simple Predict function is
to output, for every such pairs, the successors of g[i]. More
sophisticated Predict functions can be defined where not
only successors but also predecessors are considered.

5.2.3 Class representative
There are many ways of computing a class representative.

For instance, it can be the intersection or union of the queries
of the class. For the simple MDX queries we consider, note
that this union can be computed by the following function
(where N is the number of dimension of the cube)1.

The class representative can also be the most representa-
tive query of the class in the sense of the query partitioning
adopted in the first step of the framework. For instance, as-
suming that the K-medoids is used as the query partitioning,
the representative can be the medoid of the class.

5.3 Ranking candidate recommendations
Again there are many ways of ranking the candidates,

from very basic to sophisticated ones. We list here a just

1Indeed the union of two MDX queries as defined in Section
3 is not simply the union of sets of references, since an MDX
query must be a set of references expressed as a cartesian
product.

Function 3 Union (C)

Require: C: A class of MDX queries
Ensure: An MDX query being the class representative of

C
1: for j ∈ [1..N ] do
2: Rj ← ∅
3: end for
4: for each qi ∈ C do
5: for j ∈ [1..N ] do
6: Rj ← Rj ∪ πj(qi)
7: end for
8: end for
9: return R1 ×R2 × ...×RN

few:

• Ranking the candidates according to how close to the
last query of the current session they are.

• Ranking the candidates according to their number of
occurrences.

• Ranking the candidates according to their number of
references not already seen by the user in the current
session.

• Ranking the candidates according to a user profile. For
example, [5] proposed a way of ordering MDX queries
based on a user profile.

5.4 Default recommendation
As previously noted, the set of candidate recommenda-

tions can be empty. In that case, it could be useful to
still be able to provide the user with a default recommenda-
tion. Various default recommendations can be proposed to
the user. For instance, borrowing an idea from [9] we can
propose as a default recommendation the representative of
the authority class or the hub class, i.e., the class that has
the highest number of successors (resp. predecessors). For
instance, a hub can be found by simply computing for all
classes c of the set of generalized sessions its number of oc-
currences minus the number of times it appears as the last
class of the sequence. The hub is the class for which this
number is the maximum.

6. EXPERIMENTATIONS
In this section, we present the results of the experiments

we have conducted to assess the capabilities of our frame-
work. We used synthetic data produced with our own data
generator. Both our prototype for recommending queries
and our generator are developed in Java using JRE 1.6.0 02.
All tests are conducted with a Pentium 4 - 630 (3Ghz) with
2GB of RAM using Windows XP.

6.1 The instanciation of the framework
We have tested a particular instanciation of the generic

framework, using some of the parameters presented in Sec-
tion 5. More precisely, we use the Hausdorff Distance as
the distance between queries. The partitioning is done by
using the K-medoid algorithm as implemented by the Java
Machine Learning library [1]. The query classifier associates
a query with the class for which the medoid is the closest
to the query, and the class representative is the medoid of
the class. The Match function uses the approximate string



matching approach with the set of operations reduced to the
removal of the first element of the string. Thus this func-
tion tries to find if some generalized sessions match suffixes
of the generalized current session. The Predict function sim-
ply returns g[i] for a given generalized session g and position
i. The candidate recommendations are ranked according to
how close to the last query of the current session they are.
Finally, the default recommendation computes the medoid
of the hub class.

6.2 Generating cube and sessions
We use our generator to generate a cube and a set of

sessions over this cube, using [13] and [15] as an inspiration
to obtain realistic sizes for the cube and the sessions.

6.2.1 Generating the cube
To generate a cube, our generator uses the following pa-

rameters: A number of dimensions (T ), a maximum number
of levels per dimension (U) and a maximum number of val-
ues per dimension (V ). For our experiments, we use a fixed
values for T , U and V . The resulted cube has 6 dimensions,
a maximum of 4 levels per dimension and a maximum of
100 values per dimension. If we consider the cube as a set of
references, these parameters construct a cube of 1 000 000
000 000 references. Note that only the dimension tables are
generated and not the cube itself (i.e., the cartesian product
of the dimension tables), meaning that the generated data
hold in main memory.

6.2.2 Generating the sessions
To generate a log, our generator uses the following pa-

rameters: A number of sessions in the log (X), a maximum
number of queries per session (Y ), and a maximum number
of references per query (Z). In our test, only Z is fixed,
and we use Z = 100 since it is reasonable to consider that
users will not produce a cross table larger than 10 × 10 as
the answer to an MDX query. Again, only the set of mem-
bers in each dimension are generated as a query, not the set
of references. In a session, the queries are generated in the
following way: A first query is generated by random. Then
each subsequent query in turn is generated by choosing ran-
domly to modify or not the set of members of the dimensions
of the previous query, in order to simulate the behavior of a
user designing related queries.

6.3 Results

6.3.1 Performance analysis
Our first experiment assesses the efficiency of the instan-

tiation of the framework to generate the recommendations.
The performance is presented in Figure 2 according to var-
ious log sizes. These log sizes are obtained by playing with
parameters X (number of sessions) and Y (maximum num-
ber of queries per session). X ranges from 20 to 200 and
Y ranges from 10 to 150. Note that the current session is
also generated with the session generator and thus with Y
ranging from 1 to 100.

Note that what is measured is the time taken by the steps
that are performed on-line, namely the computation of the
generalized current session, the matching, the prediction,
the class representative and the ranking of the candidates.
The clustering and the calculation of the set of generalized
sessions are done off-line and thus their execution times are

not taken into account.
For this instantiation of the framework, Figure 2 shows

that the time taken to generate the recommendations in-
creases with the log size but remains highly acceptable.

Figure 2: Performance analysis

6.3.2 Analyzing the precision of the recommendation
This experiment is a classical precision test of the pro-

cess. Precision is a well known indicator used in information
retrieval [4] that measures the proportion of relevant docu-
ment retrieved. In our case we slightly adapt this indicator
to evaluate if a current session that matches perfectly one
part of one of the sessions s of the log, say up to the position
i, will give rise to recommending the query s[i].

To assess this precision, we choose as the current session
one of the session of the log from which we remove the last
query. Then we observe whether this expected last query
is closed to the recommendation. As ideally this last query
would be the recommendation, we simply define the preci-
sion as the frequency of recommending this last query.

The factor that will affect the precision is the quality of the
clustering. This quality is traditionally measured by com-
puting the intra-cluster distance and inter-cluster distance.
The intra-cluster distance is the average for all clusters of
the average distance of each element of the cluster to its
medoid, and the inter-cluster distance is the minimum dis-
tance of any two medoids of the clustering. The quality is
the ratio of this two distances since a good clustering should
minimize the intra-cluster distance and maximize the inter-
cluster similarity.

Figure 3 shows that precision increases with the cluster
quality, as it is expected. More interestingly it suggests that
a cluster quality above 0.7 gives a sufficiently good precision.

6.3.3 Measuring the quality of the recommendation
The aim of this final experiment is to assess the quality

of the recommendation. Obviously as the log we used are
synthetic data, the quality we measure is an objective indi-
cator and not the relevance of the recommendation from the
user point of view. This indicator mixes two measures: How
distant are the queries of the current session to the classes
that the query classifier associates with them, and the size
of the suffix of the generalized current session for which at-
least one matching is found in the set of generalized sessions.
This indicator is a value ranging from 0 to 1, defined by the
following formula:(

Suffix Quality

Nb Dim
× α

)
+

(
Suffix Size

Sc Size
× (1− α)

)



Figure 4: Quality of the recommendation

Figure 3: Precision of the recommandation

where:

• Suffix is the suffix of the generalized current session,
and Suffix Size is the size of Suffix,

• Suffix Quality is the average of the distances be-
tween each query of the current session and the medoid
of the class which is associated with this query by the
query classifier.

• Nb Dim is the number of dimensions of the cube. Ac-
tually this number also corresponds to the maximum
distance between queries. Indeed, the Hausdorff dis-
tance we use only relies on maxima and minima of the
distance between references. As we use the Hamming
distance as the distance between references, the Haus-
dorff distance cannot exceed the arity of a reference,
that is the number of dimensions. Therefore we use
Nb Dim to normalize the Suffix Quality.

• Sc Size is the size of the current session, used to nor-
malize the size of the suffix of the generalized current
session.

• α is a weight ranging from 0 to 1.

For this experiment the log are generated with the same
protocol as in the performance analysis. Moreover, only

clustering of quality greater 0.7 are considered. The weight
α is fixed to 0.25 to give a higher importance to the size of
Suffix.

Figure 4 shows how the quality is influenced by the me-
dian number of queries in each cluster. We notice that qual-
ity increases periodically according to the median number
of queries in each cluster. This period increases when the
number of cluster falls. So it suggests that the number of
clusters should be adapted to the log size in order to obtain
objectively good recommendations. However, we note that
an average between 20 and 30 queries by cluster allows to
obtain recommendations of good quality for clusters of size
higher than 100.

7. RELATED WORK & CONCLUSION
In this paper, we propose a generic framework for recom-

mending OLAP queries. Our framework is generic in the
sense that it can be instantiated to change the way recom-
mendations are computed. We give some examples of how
it can be instantiated. For one instantiation where MDX
queries are recommended, we present the results of some ex-
periments we have conducted that show that recommenda-
tions can be computed efficiently and in which cases precise
and objectively good recommendation can be expected.

7.1 Related Work
To the best of our knowledge, this is the first work deal-

ing with the problem of recommending OLAP (especially
MDX) queries. The idea of using what the other users did
to generate recommendations is very popular in Information
Retrieval [2], and Web Usage Mining [17]. For example, [3]
uses a k-means algorithm to cluster queries submitted to
a search engine, generate candidate recommendations and
rank the candidates.

In the area of OLAP, the work of [14, 15] shares with our
work the goal of predicting the forthcoming OLAP query.
Nevertheless, there exists many differences between their
works and ours: First the main concern of [14, 15] is to
prefetch data, not to recommend a query. Second, [14, 15]
does not deal with MDX queries, and the way queries are
grouped into classes only relies on the schema of the query
(i.e., dimensions and levels) whereas the distance that we use



takes the members into account. Finally, a Markov Model
is used to predict the forthcoming query, whereas we chose
not to use a probabilistic model.

7.2 Future Work
Our future work include:

• The investigation of other instantiations of our frame-
work. For example, we would like to investigate how
the distance between queries can take into account the
fact that dimensions are hierarchically structured. As
another example, we would like to experiment other
Match, Predict and ClassRep functions. More pre-
cisely, the Match function which is at the heart of the
candidate generation, could be instantiated with the
classical distances used in Approximate String Match-
ing.

• The incorporation into our framework of the OLAP
operations (like pivot, roll-up, slice) used during the
session, in order to better take into account the way
the users design their sessions.

• The extension of our definition of query in order to
capture a larger part of the MDX language.

• The conduction of experiments on real data sets in or-
der to better assess the quality of the recommended
queries, as well as the assessment of various instantia-
tions of our framework in order to determine to what
context they are better adapted.
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