Computing Appropriate Representations for Multidimensional Data

Choong, Laurent & Marcel Université François Rabelais de Tours FRANCE

Before Restructuring

World Consumption (US\$bil)

Sales: 2000	Beer	Water	Soda	Wine	Milk
Europe	4	4	7	6	5
America	4	5	7	7	6
Asia	3	3	6	5	5
Africa	2	2	6	5	4

After Restructuring

World Consumption (US\$bil)

Sales: 2000	Beer	Water	Milk	Wine	Soda
America	4	5	6	7	7
Europe	4	4	5	6	7
Asia	3	3	5	5	6
Africa	2	2	4	5	6

		"Switch"				
		Beer	Water	Soda	Wine	Milk
	Europe	4	4	7	6	5
	America	4	5	7	7	6
	Asia	3	3	6	5	5
	Africa	2	2	6	5	4

	Beer	Water	Milk	Wine	Soda
America	4	5	6	7	7
Europe	4	4	5	6	7
Asia	3	3	5	5	6
Africa	2	2	4	5	6

Motivation

- Many representations of a given cube
 Constructed by the User
- What are the most appropriate representations
 - Quality of a Representation
- How to compute these Representations

"switch" operator

Representation

 Given a n-dimensional cube C, a representation of C is a set of n mappings:

one mapping per dimension
associates each member to an integer

Example: 2-dimensional **Cube** $< C, \{x, y\}, \{a, b\}, \{1, 2, 3, 4\}, m_c > where$ $m_c (x, a) = 1, m_c (y, a) = 2, m_c (x, b) = 3, m_c (y, b) = 4$

Four possible representations:

Position of a Cell

The position of cell $c_1 = \langle x, a, 1 \rangle$ is $\langle 1, 2 \rangle$ The position of cell $c_2 = \langle y, b, 4 \rangle$ is $\langle 2, 1 \rangle$

Cell Ordering

- A cube $C = \langle C, dom_1, ..., dom_n, dom_m, m_c \rangle$
- A representation $R_c = \{rep_1, ..., rep_n\}$
- Cells $c = \langle m_1, ..., m_n, m \rangle$

$$c' = \langle m_1', ..., m_n', m' \rangle$$

 $c <_{Rc} c'$ iff $\forall i \in [1, ..., n], rep_i(m_i) \le rep_i(m_i')$

• $<_{Rc}$ is a partial ordering

Cell Ordering – an example

<i>c</i> ₁ = < x, a, 1 >	<i>c</i> ₃ = < x, b, 3 >		R	
<i>c</i> ₂ = < y, a, 2 >	<i>c</i> ₄ = < y, b, 4 >	a	1	2
		b	3	4
			X	у

We have: $c_3 <_R c_1 \qquad c_3 <_R c_2 \qquad c_3 <_R c_4$ $c_1 <_R c_2 \qquad c_4 <_R c_2$

Note that c_1 cannot be compared to c_4

Misplaced Cell

- Given a representation **R**_c of a cube **C**
- $c = \langle m_1, ..., m_n, m \rangle$ is **misplaced w.r.t.** R_c if 1. $m \neq \bot$ and 2. $\exists c_1 = \langle m_1, ..., m_n, m' \rangle \in C$ such that $c \langle_{R_c} c_1$ and m > m'or

$$\exists c_2 = \langle m_1, ..., m_n, m, m \rangle \in C \text{ such that}$$
$$c_2 \langle _{Rc} c \text{ and } m, m \rangle > m$$

Characterizing the Representation

Given a representation R_c of a cube C $M_{R_c}(C)$: number of misplaced cells in C w.r.t. R_c

R_c is a *Perfect Representation (PR)* if *M_{Rc}(C) = 0* (i.e. there are no misplaced cells w.r.t. *R_c*)

• R_c is an **Optimal Representation (OR)** if $\forall R'_c, M_{R'c}(C) \ge M_{Rc}(C)$ (i.e. there is no other 'better' representation)

Switching

switch(j, p, q)(R_c) = R'_c

 $\mathbf{R'}_c$ is obtained from \mathbf{R}_c by permutation of rows \mathbf{p} and \mathbf{q} of dimension \mathbf{j}

Arrangement

An **arrangement** is a finite composition of switches

switch(1, a, b)(R_1) = R_2 switch(2, x, y)(R_2) = R_3

 $switch(2, x, y)(switch(1, a, b)(R_1)) = R_3$

Notation: $R_3 = arr(R_1)$

PR Problem

For a given cube and a given representation of this cube,

- Test whether there exists at least one PR
 If so, compute one PR
- If there are more than one PR
 - Compute the number of PRs
 - List all the arrangements leading to these PRs

Basic Theorem

A representation of a cube is a PR *if and only if* **every row in every dimension is sorted** Sketch of the proof:

- *If:* Trivial since if a representation is a PR then every row in every dimension must be sorted
- Only if: Consider the following example which R can not be a PR. If every row is sorted then $\begin{bmatrix} a \\ X \end{bmatrix}$ we must have: $X \ge 1, Y \ge 1, X \le 0, Y \le 0$

0

Y

V

impossible

Case 1

No duplicates and no null values in each row

There exists at most one PR of a given cube C

 If there exists a representation such that for one dimension, a row r is sorted and another row r' is not sorted, then there exists no PR

• If a *PR* exists, then it can be obtained by sorting *only* one row in each dimension

Case 1 No duplicates and no null values in each row

input: The representation of a cube *C* output: The PR of *C* or the indication "no PR"

For each dimension k of C do: choose a row r in ksort rfor every row r' in k do check if r' is sorted if r' is unsorted then exit with output "non PR"

Case 2 Dealing with duplicates & no null values

Sorting row < a > may lead to representation R_1 which is **not** perfect since row < b > is not sorted

Sorting row < b > leaves row < a > unchanged and gives a PR

Case 3 Dealing with null values

Х

W

Ζ

V

У

Null values

But R_1 is not a PR ! R_2 is a PR

R₁ is a Weak PR (WPR)

Open issues

- PR Problem with Null Values
- Introducing an Efficient Implementation
- Identifying all ORs and their Arrangements
- Use other OLAP operations (e.g. roll-up)
- t-OR Problem: given a theshold t, find R_c
 of C such that

 M_R (C) $\leq t$

What we did next

- Investigate AI search techniques to compute representations of good quality
 - Genetic algorithm
 - Hill climbing