Personnalisation de requêtes MDX

Ladjel Bellatreche¹ Arnaud Giacometti² Patrick Marcel² Hassina Mouloudi²

¹LISI, Université de Poitiers

²LI, Université François Rabelais de Tours

BDA 2006

Plan

Motivation

Les requêtes MDX considérées

Les préférences Les contraintes de visualisation

La personnalisation

Conclusion

Différentes visualisations possibles selon le profil

city = Tours

	2003	2004	2005	2006
food	72,00	50,00	33,00	89,00
drink	26,00	20,00	25,00	77,00
cloth	56,00	30,00	32,00	60,00
shoes	45,00	50,00	32,00	51,00

		2003	2004	2005	2006
Tours	drink	77,00	54,00	55,00	33,00
	food	89,00	61,00	30,00	41,00
Orleans	drink	25,00	50,00	49,00	32,00
	food	33,00	44,00	59,00	27,00

Problématique

Pas de travaux sur la personnalisation de requêtes OLAP

Particularités des requêtes OLAP:

- la requête porte sur des faits à différents niveaux de détail
- la requête comporte une partie mise en forme du résultat
 - qu'est-ce qu'un profil utilisateur pour ce type de requêtes?
 - peut-on calculer automatiquement la visualisation des faits préférés?
- ne pas accéder à la table des faits pour personnaliser

Objectif

Étant donné:

- une requête MDX q
- des préférences utilisateur P
- une contrainte de visualisation v

calculer q' telle que:

- $ightharpoonup q' \subseteq q$
- q' est la plus proche de q satisfaisant v
- ▶ q' est la plus intéressante au regard de P

trouver
$$q' \in max_{\leq_P} \{ q'' \subseteq q | v(q'') = true \}$$

Les requêtes MDX

```
Q_{MDX} \text{ les requêtes } MDX \text{ de forme}: \begin{array}{ccc} & \text{SELECT} & \textit{SX}_1 & \text{ON AXIS(1),} \\ & & \dots & \\ & & SX_K & \text{ON AXIS(K)} \\ & \text{FROM} & C & \\ & \text{WHERE} & SX_{K+1} & \end{array}
```

soit $q \in Q_{MDX}$, pour $i \in [1, ..., K+1]$,

- \triangleright $SX_i(q)$ est une requête de l'algèbre relationnelle
- $ightharpoonup S_i(q)$ est **le schéma** de cette requête
- ref_i(q) est la réponse à cette requête

schéma
$$sch(q) = \bigcup_{i \in [1,...,K+1]} S_i(q)$$

structure $struct(q) = \langle S_1(q),...,S_K(q) \rangle$
références $ref(q) = ref_1(q) \times ... \times ref_{K+1}(q)$

```
SalesCube de schéma \(\rangle Product(Item, Category), Time(Day, Month, Year),\)
                     Location(City, Region, Country), Measure(name),
                     sales(Item, Day, City, name, val))
q =
 SELECT
           [City].members ON COLUMNS
            CROSSJOIN({[Year].2005,[Year].2006},{[Product].members}) ON ROWS
            SalesCube
 FROM
 WHERE
            [Measure].quantity
  sch(q) = {Location, Time, Product, Measure}

ightharpoonup ref(q) = \pi_{Citv}(Location) \times \{2005,2006\} \times
               (\pi_{Category}(Product) \cup \pi_{Item}(Product)) \times \{quantity\}
```

Les préférences

Les préférences consistent en :

- ▶ un ordre partiel sur les dimensions : D <_d D' si D' préférée à D
- ▶ pour chaque dimension D_i, un ordre partiel sur les membres: m <_i m' si m' préféré à m

Les préférences

Les préférences consistent en :

- ▶ un ordre partiel sur les dimensions : D <_d D' si D' préférée à D
- ▶ pour chaque dimension D_i, un ordre partiel sur les membres: m <_i m' si m' préféré à m

On en déduit un ordre sur les références :

- $ightharpoonup \Delta(t,t')$ les dimensions où t et t' **diffèrent**
- ▶ $M = \max_{<_d}(\Delta(t,t'))$ les dimensions **préférées** où t et t' diffèrent
- ▶ $t \le t'$ si $\forall D_i \in M, t(D_i) <_i t'(D_i)$

Les préférences

Ordre sur les requêtes

L'ordre sur les références fournit un **ordre partiel sur les** requêtes : pour $q,q' \in Q_{MDX}$:

$$q \leq q'$$
 si

- ightharpoonup sch(q) = sch(q') et
- $\forall t \in ref(q), \exists t' \in ref(q'), t \leq t'$

$$q \sqsubseteq q'$$
 si

- ightharpoonup sch(q) = sch(q') et
- ▶ quelque soit l'instance de C, $ref(q) \subseteq ref(q')$

L'ordre sur les requêtes est tel que si $q \sqsubseteq q'$ alors $q \preceq q'$

```
Les préférences
```

Soient les préférences :

- ▶ Location <_d Time et Product <_d Time
- ▶ 2005 < Time 2006, drink < Product food

```
q_1 =
                                                   q_2 =
SELECT
           {[Year].2005} ON COLUMNS
                                                   SELECT
                                                               {[Category].drink} ON COLUMNS
                                                               ({[Year].2006},{[City].Tours})
           ({[Category].food, [Category].drink},
            {[City].Tours}) ON ROWS
                                                               ON ROWS
FROM
           SalesCube
                                                   FROM
                                                               SalesCube
WHERE
           [Measure].quantity
                                                   WHERE
                                                               [Measure].quantity
```

```
Les préférences
```

Soient les préférences :

- ▶ Location <_d Time et Product <_d Time
- ▶ 2005 < Time 2006, drink < Product food

```
q_1 =
                                                   q_2 =
SELECT
           {[Year].2005} ON COLUMNS
                                                   SELECT
                                                               {[Category].drink} ON COLUMNS
           ({[Category].food, [Category].drink},
                                                               ({[Year].2006},{[City].Tours})
            {[City].Tours}) ON ROWS
                                                               ON ROWS
FROM
           SalesCube
                                                   FROM
                                                               SalesCube
WHERE
           [Measure].quantity
                                                   WHERE
                                                               [Measure].guantity
```

car:

```
 \begin{split} & \textit{ref}\left(q_1\right) = \left\{ \langle 2005, food, \textit{Tours}, \textit{quantity} \rangle, \langle 2005, \textit{drink}, \textit{Tours}, \textit{quantity} \rangle \right\} \\ & \textit{ref}\left(q_2\right) = \left\{ \langle 2006, \textit{drink}, \textit{Tours}, \textit{quantity} \rangle \right\} \\ & \textit{et} \\ & \langle 2005, food, \textit{Tours}, \textit{quantity} \rangle \preceq \langle 2006, \textit{drink}, \textit{Tours}, \textit{quantity} \rangle \\ & \langle 2005, \textit{drink}, \textit{Tours}, \textit{quantity} \rangle \preceq \langle 2006, \textit{drink}, \textit{Tours}, \textit{quantity} \rangle \end{aligned}
```

Le profil utilisateur

Les contraintes de visualisation

Contraintes

Une contrainte v est:

- une fonction booléenne définie sur Q_{MDX}
- ▶ anti-monotone si $\forall q, q' \in Q_{MDX}$ si $q \sqsubseteq q'$ et v(q') = true alors v(q) = true

Utilisation d'un algorithme par niveau pour calculer le plus grand ensemble de références satisfaisant *v*

Contraintes

Exemple de contrainte de visualisation anti-monotone :

- **•** pour une structure $T = \langle T_1, \dots, T_K \rangle$
- et un tuple d'entiers $G = \langle G_1, \dots, G_K \rangle$
- $\triangleright v_{T,G}(q) = true si$
 - q contient K axes
 - les dimensions de T_k sont affichées sur l'axe k
 - ▶ l'axe k ne comporte pas plus de G_k positions

Le principe

Contexte:

- les tables de dimensions sont en mémoire
- pas d'accès à la table de faits

Pour une **requête** q, des **préférences** P et une **contrainte** v:

- 1. calcul des sous-ensembles de ref(q)
 - les plus grands possibles
 - visualisables selon v
 - contenant les références préférées selon P
- 2. calcul des structures permettant de visualiser ces ensembles

L'algorithme

Les références de ref(q) peuvent être ordonnées des plus préférées (R_1) au moins préférées (R_n) : $ref(q) = R_1 \cup ... \cup R_n$

- 1. $M_0 = \{\emptyset\}$
- 2. pour i de 1 à n faire
 - 2.1 prendre R_i les préférées à l'étape i
 - 2.2 pour chaque R de M_{i-1}
 - ▶ ajouter à M_i l'ensemble $R \cup R'_i$ tel que :
 - $ightharpoonup R'_i$ est le plus grand sous-ensemble de R_i tel que
 - ▶ $R \cup R'_i$ satisfait v
- 3. pour chaque R de M_n
 - calculer les structures S permettant de visualiser R
- 4. construire les requêtes MDX à partir des couples $\langle R, S \rangle$

Les préférences:

```
 \begin{array}{l} (\textit{Time} <_{d} \textit{Location}) \; \text{et} \; (\textit{Product} <_{d} \textit{Location}) \\ 2002 <_{\textit{Time}} \; 2003 <_{\textit{Time}} \; 2004 <_{\textit{Time}} \; 2005 <_{\textit{Time}} \; 2006 \\ electronics <_{\textit{Product}} \; shoes <_{\textit{Product}} \; cloth <_{\textit{Product}} \; food <_{\textit{Product}} \; drink \\ (\textit{Centre} <_{\textit{Location}} \; \textit{Tours}) \; \text{et} \; (\textit{Centre} <_{\textit{Location}} \; \textit{Orleans}) \\ quantity <_{\textit{Measures}} \; \textit{price} \end{array}
```

La contrainte de visualisation : $v_{T,G}$: $T = \langle \emptyset, \emptyset \rangle$ et $G = \langle 4, 4 \rangle$

Etape 1:

 $\textit{R}_{1} = \{\langle 2006, \textit{drink}, \textit{Orleans}, \textit{quantity} \rangle, \langle 2006, \textit{drink}, \textit{Tours}, \textit{quantity} \rangle\}$

		2006
drink	Orleans	
	Tours	

Etape 2:

 $R_2 = \{\langle 2006, food, Orleans, quantity \rangle, \langle 2006, food, Tours, quantity \rangle, \langle 2005, drink, Orleans, quantity \rangle, \langle 2005, drink, Tours, quantity \rangle\}$

		2006	2005
drink	Orleans		
	Tours		
food	Orleans		
	Tours		

Etape 3:

$$R_3 = \{\langle 2005, food, Orleans, quantity \rangle, \langle 2004, drink, Orleans, quantity \rangle, \langle 2005, food, Tours, quantity \rangle, \langle 2004, drink, Tours, quantity \rangle, \langle 2006, cloth, Orleans, quantity \rangle, \langle 2006, cloth, Tours, quantity \rangle \}$$

or on ne peut pas visualiser 3 années, 3 catégories et 2 villes

		2006	2005	2004
drink	Orleans			
	Tours			
food	Orleans			
	Tours			

		food	drink	cloth
Tours	2005			
	2006			
Orleans	2005			
	2006			

Etc.

Au final une des requêtes générées est :

SELECT {[Year].2003,[Year].2004,[Year].2005,[Year].2006} ON COLUMNS

CROSSJOIN({[City].Tours,[City].Orleans},

{[Category].food,[Category].drink}) ON ROWS

FROM SalesCube

WHERE [Measures].quantity

		2003	2004	2005	2006
Tours	drink	77,00	54,00	55,00	33,00
	food	89,00	61,00	30,00	41,00
Orleans	drink	25,00	50,00	49,00	32,00
	food	33,00	44,00	59,00	27,00

Conclusion et perspectives

- ► Contribution :
 - un cadre pour la personnalisation de requêtes OLAP
 - développement d'un prototype pour applications mobiles

Conclusion

Conclusion et perspectives

- ► Contribution:
 - un cadre pour la personnalisation de requêtes OLAP
 - développement d'un prototype pour applications mobiles
- ▶ Perspectives:
 - utiliser plutôt un langage clos!
 - ajouter au profil des préférences sur la structure
 - prendre en compte des contraintes telles que :
 - le coût d'évaluation de la requêtes
 - la cardinalité de la réponse