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Context

♦ Two main aspects:

– Mapping the conceptual structures to the logical ones.
� Define the relational structures.

– Considering implementation-oriented requirements.
� Performance, storage constraints, workload.

conceptual

design

logical 

design

physical 

design

Generate the DW relational schema 
from a conceptual schema

♦ DW design process:

Automate the generation process



DMDW’2003 3Verónika Peralta, Raúl Ruggia

The problem

♦ Improve DW logical schema taking into 
account implementation requirements:

– Support workload (performance, etc).

� Not cover all the aspects to take into account.

– Implementation-oriented requirements.

� Very hard to formalize.

� Define some kind of specification:

� Represent implementation-oriented requirements.

� Enable automated processing.
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Existing approaches

♦ Generation from conceptual schemas:

– [Golfarelli-Rizzi], [Cabibbo-Torlone], [Hahn et al]...

– Focus on mappings: conceptual � logical.

– Do not cover implementation-related requirements.

– Do not provide flexible enough generation techniques

� Required to take into account such requirements.

♦ [Golfarelli-Rizzi]:

– Also proposes vertical fragmentation based on query 
workload.
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Goals of this work

♦ Formalize implementation-oriented 
information:

– to be used in an automated design process.

♦ This involves:

– Identifying the most relevant information.

� Expressiveness vs. treatability vs. ease of use.

– Specifying such information.

� Formalism.

� Graphical notation.

– Using it to generate the logical schema.
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Outline

♦ Design guidelines.

– Examples.

– The formalism.

– Using the guidelines.

♦ The DW design environment.

♦ Towards automation.

♦ Conclusion
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Introducing design guidelines

♦ Guidelines are assertions 

– Represent design strategies to solve implementation-
related requirements.

♦ Properties:

– Ease of use. Easily defined by the designer.

– Treatable for automation. Interpreted by a process.

– Expressive. Allow solving non-trivial cases.

♦ Three types of guidelines:

– Vertical fragmentation of dimensions.

– Aggregate materialization.

– Horizontal fragmentation of facts.
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customercustomer
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customer_name

income

customers

citycity

city_id #
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monthmonth

month #
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year #

datesdepartmentdepartment

department
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datesdates
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Conceptual schema
(CMDM notation)

measure

Example
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monthmonth

month #

yearyear
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dates

customercustomer
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Star schema
Example 

customer_id
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month
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customer_id
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city_id
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population

CITIES

customer_id
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CUSTOMERS

Example

customercustomer

customer_id #

customer_name

income

customers

citycity

city_id #

city_name
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state_id #

state_name

population

departmentdepartment

department

Design situations
Normalizing

redundancy
maintenance

When and why:
♦ Complex or big dimensions

– 100.000 customers, 100 cities.
♦ Versioning

– Trace the history of the cities.
♦ Different query profiles

– Geographical distribution of calls.
– Supervise customers by departments.

♦ Different access frequency
– Most accessed: department.
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Example

When and why:
♦ High-summarized data

– Total minutes for each year and city.

customerscustomers

datesdates

durationsdurationssupport

month

customer_id

minutes

SUPPORT

year

city_id

minutes

CURRENT_SYC

year

city_id

minutes

HISTORY_SYC

♦ Complex queries
– Quantity of customers that make long 

calls, classifying durations in ranges.

♦ Different query profiles
– Frequent queries access data of 2003.

Design situations
Aggregating and fragmenting

year

city_id

minutes

SUPPORT_YC month

city_id

duration_range

customer_quantity

CUSTOMER_Q

year

city_id

duration_range

customer_quantity

CUSTOMER_YQ

additivity

performance

♦ Additivity problems
– Quantity of customers for each year.
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SchFragments-⊆-{-<Fname, -D, -Ls>-/ 

Fname-∈-Strings-∧ 

D-∈-SchDimensions-∧ 

Ls-⊆-GetLevels(D) -∧ 

∀A,B-∈-Ls-.-( 

<A,B>-∈-GetHierarchies(D) -∨ 

<B,A>-∈-GetHierarchies(D) -∨ 

∃C-∈-Ls-.-(<A,C>-∈-GetHierarchies(D) -∧-<B,C>-∈-GetHierarchies(D))) 

}1 

customercustomer

customer_id #

customer_name

income

customers

citycity

city_id #

city_name

statestate

state_id #

state_name

population

departmentdepartment

department

Guidelines

♦ The designer indicates:

– The set of levels to store 

together. Fragments

fragment 1: customer and department.

fragment 2: city and state.

Vertical Fragmentation
of Dimensions
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Guidelines

♦ The designer indicates:

– The derived fact tables to 

materialize. Cubes

Aggregate
Materialization

SchCubes-⊆-{-<Cname, -R,-Ls,-M>-/ 

Cname-∈-Strings-∧- 

R-∈-SchFacts-∧ 

Ls-⊆-{-L-∈-GetLevels(D) -/-D-∈-GetDimensions(R) -}-∧ 

M-∈-(Ls-∪-⊥) 

}1 

customerscustomers

datesdates

durationsdurationssupport

cityyear

duration

summary

(support)

level of detail: year, city, duration
measure: duration
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Guidelines

♦ The designer indicates:

– The conditions to fragment fact data. Strips

Horizontal Fragmentation
of Facts

cityyear

duration

summary

(support)

current data: year ≥ 2002
historical data: year < 2002

SchStrips-⊆-{-<Sname, -C, -Pred>-/ 

Sname-∈-Strings-∧ 

C-∈-SchCubes-∧- 

Pred-∈-Predicates(GetItems(C)) 

}1 

• current: year ≥ 2002

• history: year < 2002
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Definition of guidelines

♦ By means of the guidelines, the designer defines:

– A set of fragments for each dimension.
� Performance vs. redundancy 

(maintenance).

� Workload: data queried

together, access frequencies.

– A set of cubes for each fact.
� Storage vs. performance 

constraints.

� Additivity.

– A set of strips for each cube.
� Workload.

� Versioning

� Different query profiles

� Different access frequency

� Complex queries

� Additivity problems

� Different query profiles

� Complex or big dimensions

� High-summarized data
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DW logical design environment

refined 
conceptual schema

source
relational
schema

DW
relational
schema

design

guidelines 

conceptual schema
rules 

REFINEMENT

(task 1)

MAPPING

(task 2)

GENERATION

(task 3)
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Automating logical design

♦ Objective:
– Express DW schema as a set of transformations on source 

schemas

– Automate the secuence of operations that may do a designer

� Based on his experience

� Following design tips

♦ Example:
– When we want to denormalize dimensions and target data is 

distributed in several tables then we have to join those tables 

♦ Idea:
– Having schema transformations and design rules
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Automating logical design

♦ Schema transformations 

– Refer to common transf. in DW design

– A transf. trace indicates the mappings among the 
DW and the sources

TYPES

SUBTYPES

CUSTOMERS

REGION

CITY

SALES

CUSTOMERS_DW

SALES_DW

TIME

GEOGRAPHY_

CUST

6.2

6.2

6.2

6.2 2

12.1 6.16.1

8

8

6.3
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Automating logical design

♦ Input:
– Conceptual schema (express user requirements)
– Design guidelines (express non functional requirements)
– Mappings to source databases (indicate where to extract data)

♦ Process:
– Choose the schema transformations to apply
– Apply the schema transformations

♦ Output (result of applying transformations):
– DW relational schema
– Design trace
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customercustomer

customer_id #

customer_name

income

customers

citycity

city_id #

city_name

statestate

state_id #

state_name

country

departmentdepartment

department_id

department_name

version

Automating logical design

department_name  “DEP-” ++ Customers.department

version  VersionDigits()

Income  SUM(Incomes.income)

CUSTOMERS

customer_code

company_code

income

INCOMES

customer_code

name

address

telephone

city

department

category

registration_date

CUSTOMERS

customer_code

name

address

telephone

city

department

category

registration_date

income

CUSTOMERS-DW

Rule

Aggregate Calculate
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Automating logical design

generate 

in 

DW
relational
schema

call 
T1

Tn

…
.

schema
transformations

…
.

…
.

R1

Ri

R8

Design Rules

generated mappings

refined 

source
relational
schema

mappings

conceptual schema

T1
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Conclusion

♦ A formalism for specifying design guidelines:

– Take into account implementation-related requirements.

– Three type of guidelines:

� Aggregate materialization.

� Vertical fragmentation of dimensions.

� Horizontal fragmentation of facts.

– A trade-off between expressiveness, ease of use and 
treatable for automation.

– The set can be extended.

– A flexible way to express design strategies.

♦ A prototype of a CASE tool for DW logical design. 


