
Using Design Guidelines Using Design Guidelines 

to Improve to Improve 

Data Warehouse Logical DesignData Warehouse Logical Design

VerVeróónika Peralta nika Peralta -- RaRaúúl Ruggial Ruggia
Universidad de la RepUniversidad de la Repúúblicablica

URUGUAYURUGUAY

vperalta@fing.edu.uyvperalta@fing.edu.uy -- ruggia@fing.edu.uyruggia@fing.edu.uy

September 8September 8thth, 2003, 2003DMDWDMDW’’2003 2003 –– Berlin, GermanyBerlin, Germany

DMDW’2003 2Verónika Peralta, Raúl Ruggia

Context

♦ Two main aspects:

– Mapping the conceptual structures to the logical ones.
� Define the relational structures.

– Considering implementation-oriented requirements.
� Performance, storage constraints, workload.

conceptual

design

logical 

design

physical 

design

Generate the DW relational schema 
from a conceptual schema

♦ DW design process:

Automate the generation process



DMDW’2003 3Verónika Peralta, Raúl Ruggia

The problem

♦ Improve DW logical schema taking into 
account implementation requirements:

– Support workload (performance, etc).

� Not cover all the aspects to take into account.

– Implementation-oriented requirements.

� Very hard to formalize.

� Define some kind of specification:

� Represent implementation-oriented requirements.

� Enable automated processing.

DMDW’2003 4Verónika Peralta, Raúl Ruggia

Existing approaches

♦ Generation from conceptual schemas:

– [Golfarelli-Rizzi], [Cabibbo-Torlone], [Hahn et al]...

– Focus on mappings: conceptual � logical.

– Do not cover implementation-related requirements.

– Do not provide flexible enough generation techniques

� Required to take into account such requirements.

♦ [Golfarelli-Rizzi]:

– Also proposes vertical fragmentation based on query 
workload.



DMDW’2003 5Verónika Peralta, Raúl Ruggia

Goals of this work

♦ Formalize implementation-oriented 
information:

– to be used in an automated design process.

♦ This involves:

– Identifying the most relevant information.

� Expressiveness vs. treatability vs. ease of use.

– Specifying such information.

� Formalism.

� Graphical notation.

– Using it to generate the logical schema.

DMDW’2003 6Verónika Peralta, Raúl Ruggia

Outline

♦ Design guidelines.

– Examples.

– The formalism.

– Using the guidelines.

♦ The DW design environment.

♦ Towards automation.

♦ Conclusion



DMDW’2003 7Verónika Peralta, Raúl Ruggia

Introducing design guidelines

♦ Guidelines are assertions 

– Represent design strategies to solve implementation-
related requirements.

♦ Properties:

– Ease of use. Easily defined by the designer.

– Treatable for automation. Interpreted by a process.

– Expressive. Allow solving non-trivial cases.

♦ Three types of guidelines:

– Vertical fragmentation of dimensions.

– Aggregate materialization.

– Horizontal fragmentation of facts.

DMDW’2003 8Verónika Peralta, Raúl Ruggia

customercustomer

customer_id #

customer_name

income

customers

citycity

city_id #

city_name

statestate

state_id #

state_name

population

monthmonth

month #

yearyear

year #

datesdepartmentdepartment

department

customerscustomers

datesdates

durationsdurationssupport

fact

dimension

level

item

Conceptual schema
(CMDM notation)

measure

Example



DMDW’2003 9Verónika Peralta, Raúl Ruggia

monthmonth

month #

yearyear

year #

dates

customercustomer

customer_id #

customer_name

income

customers

citycity

city_id #

city_name

statestate

state_id #

state_name

population

departmentdepartment
department

customerscustomers

datesdates

durationsdurationssupport

Star schema
Example 

customer_id

customer_name

income

department

city_id

city_name

state_id

state_name

population

CUSTOMERS

month

customer_id

minutes

SUPPORT

month

year

DATES

DMDW’2003 10Verónika Peralta, Raúl Ruggia

customer_id

customer_name

income

department

city_id

city_name

state_id

state_name

country

CUSTOMERS

city_id

city_name

state_id

state_name

population

CITIES

customer_id

customer_name

income

department

city_id

CUSTOMERS

Example

customercustomer

customer_id #

customer_name

income

customers

citycity

city_id #

city_name

statestate

state_id #

state_name

population

departmentdepartment

department

Design situations
Normalizing

redundancy
maintenance

When and why:
♦ Complex or big dimensions

– 100.000 customers, 100 cities.
♦ Versioning

– Trace the history of the cities.
♦ Different query profiles

– Geographical distribution of calls.
– Supervise customers by departments.

♦ Different access frequency
– Most accessed: department.



DMDW’2003 11Verónika Peralta, Raúl Ruggia

Example

When and why:
♦ High-summarized data

– Total minutes for each year and city.

customerscustomers

datesdates

durationsdurationssupport

month

customer_id

minutes

SUPPORT

year

city_id

minutes

CURRENT_SYC

year

city_id

minutes

HISTORY_SYC

♦ Complex queries
– Quantity of customers that make long 

calls, classifying durations in ranges.

♦ Different query profiles
– Frequent queries access data of 2003.

Design situations
Aggregating and fragmenting

year

city_id

minutes

SUPPORT_YC month

city_id

duration_range

customer_quantity

CUSTOMER_Q

year

city_id

duration_range

customer_quantity

CUSTOMER_YQ

additivity

performance

♦ Additivity problems
– Quantity of customers for each year.

DMDW’2003 12Verónika Peralta, Raúl Ruggia

SchFragments-⊆-{-<Fname, -D, -Ls>-/ 

Fname-∈-Strings-∧ 

D-∈-SchDimensions-∧ 

Ls-⊆-GetLevels(D) -∧ 

∀A,B-∈-Ls-.-( 

<A,B>-∈-GetHierarchies(D) -∨ 

<B,A>-∈-GetHierarchies(D) -∨ 

∃C-∈-Ls-.-(<A,C>-∈-GetHierarchies(D) -∧-<B,C>-∈-GetHierarchies(D))) 

}1 

customercustomer

customer_id #

customer_name

income

customers

citycity

city_id #

city_name

statestate

state_id #

state_name

population

departmentdepartment

department

Guidelines

♦ The designer indicates:

– The set of levels to store 

together. Fragments

fragment 1: customer and department.

fragment 2: city and state.

Vertical Fragmentation
of Dimensions



DMDW’2003 13Verónika Peralta, Raúl Ruggia

Guidelines

♦ The designer indicates:

– The derived fact tables to 

materialize. Cubes

Aggregate
Materialization

SchCubes-⊆-{-<Cname, -R,-Ls,-M>-/ 

Cname-∈-Strings-∧- 

R-∈-SchFacts-∧ 

Ls-⊆-{-L-∈-GetLevels(D) -/-D-∈-GetDimensions(R) -}-∧ 

M-∈-(Ls-∪-⊥) 

}1 

customerscustomers

datesdates

durationsdurationssupport

cityyear

duration

summary

(support)

level of detail: year, city, duration
measure: duration

DMDW’2003 14Verónika Peralta, Raúl Ruggia

Guidelines

♦ The designer indicates:

– The conditions to fragment fact data. Strips

Horizontal Fragmentation
of Facts

cityyear

duration

summary

(support)

current data: year ≥ 2002
historical data: year < 2002

SchStrips-⊆-{-<Sname, -C, -Pred>-/ 

Sname-∈-Strings-∧ 

C-∈-SchCubes-∧- 

Pred-∈-Predicates(GetItems(C)) 

}1 

• current: year ≥ 2002

• history: year < 2002



DMDW’2003 15Verónika Peralta, Raúl Ruggia

Definition of guidelines

♦ By means of the guidelines, the designer defines:

– A set of fragments for each dimension.
� Performance vs. redundancy 

(maintenance).

� Workload: data queried

together, access frequencies.

– A set of cubes for each fact.
� Storage vs. performance 

constraints.

� Additivity.

– A set of strips for each cube.
� Workload.

� Versioning

� Different query profiles

� Different access frequency

� Complex queries

� Additivity problems

� Different query profiles

� Complex or big dimensions

� High-summarized data

DMDW’2003 16Verónika Peralta, Raúl Ruggia

DW logical design environment

refined 
conceptual schema

source
relational
schema

DW
relational
schema

design

guidelines 

conceptual schema
rules 

REFINEMENT

(task 1)

MAPPING

(task 2)

GENERATION

(task 3)



DMDW’2003 17Verónika Peralta, Raúl Ruggia

Automating logical design

♦ Objective:
– Express DW schema as a set of transformations on source 

schemas

– Automate the secuence of operations that may do a designer

� Based on his experience

� Following design tips

♦ Example:
– When we want to denormalize dimensions and target data is 

distributed in several tables then we have to join those tables 

♦ Idea:
– Having schema transformations and design rules

DMDW’2003 18Verónika Peralta, Raúl Ruggia

Automating logical design

♦ Schema transformations 

– Refer to common transf. in DW design

– A transf. trace indicates the mappings among the 
DW and the sources

TYPES

SUBTYPES

CUSTOMERS

REGION

CITY

SALES

CUSTOMERS_DW

SALES_DW

TIME

GEOGRAPHY_

CUST

6.2

6.2

6.2

6.2 2

12.1 6.16.1

8

8

6.3



DMDW’2003 19Verónika Peralta, Raúl Ruggia

Automating logical design

♦ Input:
– Conceptual schema (express user requirements)
– Design guidelines (express non functional requirements)
– Mappings to source databases (indicate where to extract data)

♦ Process:
– Choose the schema transformations to apply
– Apply the schema transformations

♦ Output (result of applying transformations):
– DW relational schema
– Design trace

DMDW’2003 20Verónika Peralta, Raúl Ruggia

customercustomer

customer_id #

customer_name

income

customers

citycity

city_id #

city_name

statestate

state_id #

state_name

country

departmentdepartment

department_id

department_name

version

Automating logical design

department_name  “DEP-” ++ Customers.department

version  VersionDigits()

Income  SUM(Incomes.income)

CUSTOMERS

customer_code

company_code

income

INCOMES

customer_code

name

address

telephone

city

department

category

registration_date

CUSTOMERS

customer_code

name

address

telephone

city

department

category

registration_date

income

CUSTOMERS-DW

Rule

Aggregate Calculate



DMDW’2003 21Verónika Peralta, Raúl Ruggia

Automating logical design

generate 

in 

DW
relational
schema

call 
T1

Tn

…
.

schema
transformations

…
.

…
.

R1

Ri

R8

Design Rules

generated mappings

refined 

source
relational
schema

mappings

conceptual schema

T1

DMDW’2003 22Verónika Peralta, Raúl Ruggia

Conclusion

♦ A formalism for specifying design guidelines:

– Take into account implementation-related requirements.

– Three type of guidelines:

� Aggregate materialization.

� Vertical fragmentation of dimensions.

� Horizontal fragmentation of facts.

– A trade-off between expressiveness, ease of use and 
treatable for automation.

– The set can be extended.

– A flexible way to express design strategies.

♦ A prototype of a CASE tool for DW logical design. 


