Using Design Guidelines
to Improve
Data Warehouse Logical Design

Verdnika Peralta - Raul Ruggia
Universidad de la Republica
URUGUAY

vperalta@fing.edu.uy - ruggia@fing.edu.uy

L ——
DMDW 2003 — Berlin, Germany September 8", 2003

Context

¢+ DW design process:

Generate the DW relational schema
from a conceptual schema

Automate the generation process

¢+ Two main aspects:
— Mapping the conceptual structures to the logical ones.
= Define the relational structures.
— Considering implementation-oriented requirements.

= Performance, storage constraints, workload.
L ——
DMDW’2003 Verénika Peralta, Raul Ruggia 2

The problem

¢ Improve DW logical schema taking into
account implementation requirements:
— Support workload (performance, etc).
= Not cover all the aspects to take into account.
— Implementation-oriented requirements.
= Very hard to formalize.

=>» Define some kind of specification:
» Represent implementation-oriented requirements.
= Enable automated processing.

DMDW’2003 Verénika Peralta, Raul Ruggia

Existing approaches

¢ Generation from conceptual schemas:
— [Golfarelli-Rizzi], [Cabibbo-Torlone], [Hahn et al]...
— Focus on mappings: conceptual - logical.
— Do not cover implementation-related requirements.
— Do not provide flexible enough generation techniques
= Required to take into account such requirements.
¢+ [Golfarelli-Rizzi]:

— Also proposes vertical fragmentation based on query
workload.

DMDW’2003 Verénika Peralta, Raul Ruggia

Goals of this work

¢ Formalize implementation-oriented
information:
— to be used in an automated design process.
¢ This involves:
— Identifying the most relevant information.
= Expressiveness vs. treatability vs. ease of use.
— Specifying such information.
= Formalism.
= Graphical notation.
— Using it to generate the logical schema.

DMDW’2003 Verénika Peralta, Raul Ruggia

Outline

¢ Design guidelines.
— Examples.
— The formalism.
— Using the guidelines.
¢ The DW design environment.
¢ Towards automation.
¢ Conclusion

DMDW’2003 Verénika Peralta, Raul Ruggia

¢ Guidelines are assertions

— Represent design strategies to solve implementation-
related requirements.

¢+ Properties:

— Ease of use. Easily defined by the designer.
— Treatable for automation. Interpreted by a process.
— Expressive. Allow solving non-trivial cases.

¢ Three types of guidelines:
— Vertical fragmentation of dimensions.
— Aggregate materialization.
— Horizontal fragmentation of facts.

Introducing design guidelines

DMDW’2003 Verénika Peralta, Raul Ruggia 7
Example Conceptual schema
(CMDM notation)
customers | — dimension
state level fact measure
state_id #
state_name | — item
me)
population<q
?
city department dates
city_id # department
Clt}’{{/ year
year #
customer T
customer_id # N
customer_name mon

DMDW’2003

Verénika Peralta, Raul Ruggia

Example

Star schema

customers

durations

customers dates
state year
state_id # year #
state_name T
population
¥ month

city department month #
city_id # department
city_name /'

customer

customer_id #

customer_name
income

month
year

SUPPORT

month
customer_id
minutes

customer_id
customer_name
income
department
city_id
city_name
state_id
state_name
population

DMDW’2003

Verénika Peralta, Raul Ruggia

customers

state
state_id #
state_name
population

Design situations

When and why:
Complex or big dimensions
— 100.000 customers, 100 cities.
¢+ Versioning
— Trace the history of the cities.
+ Different query profiles
— Geographical distribution of calls.
T — Supervise customers by departments.
+ Different access frequency

Normalizing

city department
city_id # department — Most accessed: department.
city_w
customer customer_id city_id
customer_id # customer_name city_name
customer_name income state_id
mcome
department state_name
city_id population

DMDW’2003

Verénika Peralta, Raul Ruggia

10

Design situations
Aggregating and fragmenting

When and why:
¢+ High-summarized data
— Total minutes for each year and city.
+ Different query profiles
— Frequent queries access data of 2003.
+ Complex queries
— Quantity of customers that make long
calls, classifying durations in ranges.
Additivity problems
— Quantity of customers for each year.

month
customer_id
minutes month year
additivity city_id city_id
duration_range duration_range

customer_quantity | [customer_quantity

DMDW’2003 Verénika Peralta, Raul Ruggia 1
: : Vertical Fragmentation
Guidelines erticali !
of Dimensions
¢ The designer indicates: customers
— The set of levels to store state
state_id #
together. Fragments ate_name
population
[] fragment 1: customer and department. T
B fragment 2: city and state. city department
city_id # department
SchFragments ¢ { <Fname, D, Ls>/ clty_name
Fname € Strings A \/
D € SchDimensions A customer
Ls c GetLevels(D) A customer_id #
v A,B als-. (?ustomer_name
<A,B> e GetHierarchies(D) v Heome
<B,A> € GetHierarchies(D) v
dC € Ls . (<A,C> € GetHierarchies(D) A <B,C> e GetHierarchies(D)))

L —
DMDW’2003 Verénika Peralta, Raul Ruggia 12

Guidelines Aggregate
Materialization

¢ The designer indicates:

— The derived fact tables to
materialize. Cubes

durations

customers

level of detail: year, city, duration
measure: duration

SchCubes < { <Cname, R, Ls, M>/
Cname € Strings A summary
R € SchFacts A (support)
Ls ¢ { L € GetLevels(D) / D € GetDimensions(R) } A

Me (Lsu 1)
1
}

DMDW’2003 Verénika Peralta, Raul Ruggia 13

Guidelines Horizontal Fragmentation
of Facts

¢ The designer indicates:
— The conditions to fragment fact data. Strips

current data: year > 2002

historical data: year < 2002 year
e current: year > 2002
« history: year < 2002 x summary
[(support)

SchStrips c { <Sname, C, Pred>/
Sname € Strings A

C € SchCubes A
Pred € Predicates(Getltems(C))

}1

DMDW’2003 Verénika Peralta, Raul Ruggia 14

Definition of guidelines

¢+ By means of the guidelines, the designer defines:
— A set of fragments for each dimension.

= Performance vs. redundancy v
(maintenance). v
= Workload: data queried v
together, access frequencies. v

— A set of cubes for each fact.

= Storage vs. performance v
constraints. v
= Additivity. v

— A set of strips for each cube.
= Workload. v

DMDW’2003 Verénika Peralta, Raul Ruggia

Complex or big dimensions
Versioning
Different query profiles

Different access frequency

High-summarized data
Complex queries

Additivity problems

Different query profiles

=

DW logical designh environment

design
guidelines \
| refined
conceptual schema | conceptual schema
| rules
I:I\ H :
e >
| ;
REFINEMENT ':
(task 1) 7 I D
\ [! relational
AR R schema
M APPIN(‘} ! : GENERATION
(task 2)" Vo (task 3)
source
relational
schema J
DMDW’2003 Verénika Peralta, Radl Ruggia E

Automating logical design

¢+ Objective:

— Express DW schema as a set of transformations on source
schemas

— Automate the secuence of operations that may do a designer
= Based on his experience
= Following design tips
¢ Example:
— When we want to denormalize dimensions and target data is
distributed in several tables then we have to join those tables
¢ ldea:
— Having schema transformations and design rules

DMDW’2003 Verénika Peralta, Raul Ruggia 17

Automating logical design

¢ Schema transformations
— Refer to common transf. in DW design

— A transf. trace indicates the mappings among the
DW and the sources

—
CUSTOMERS @ a

CUSTOMERS_DW

DMDW’2003 Verénika Peralta, Raul Ruggia 18

Automating logical design

¢ Input:
— Conceptual schema (express user requirements)
— Design guidelines (express non functional requirements)
— Mappings to source databases (indicate where to extract data)

¢ Process:
— Choose the schema transformations to apply
— Apply the schema transformations

¢ Output (result of applying transformations):

— DW relational schema
— Design trace

DMDW’2003 Verénika Peralta, Raul Ruggia 19

Automating logical design .

Aggregate Calculate

customers
CUSTOMERS-DW
state customer_code
state_id # name
state_name address
country telephone
city
i department department
city department_id o category
city_id # department_name @< address registration_date
city_name version telephone income
city
\/ customer_code
customer category company_code
customer id # registration_date income <~
customer_name L
income = {}* e Bl L
department_name € “DEP-" ++ Customers.department
u version € VersionDigits()
~frrcome——SEMHrrcomesircome)——

I —
DMDW’2003 Verénika Peralta, Raul Ruggia 20

Automating logical design

S refined Design Rules .
conceptual schema -
RI1 oy

in

T
_|_TI ; ;
v Ri y
=pmll ©

R \
24N

[N : : -
mapglngs‘ RS schema
Vo ; transformations
source DW
relational relational
schema FzIIIIIizzziziizz SIIIIIIIIIIIIIIIIIIIIIIIAI It schema
generated mappings
L e———
DMDW’2003 Verénika Peralta, Raul Ruggia 21
Conclusion

¢+ A formalism for specifying design guidelines:
— Take into account implementation-related requirements.
— Three type of guidelines:
= Aggregate materialization.
= Vertical fragmentation of dimensions.
= Horizontal fragmentation of facts.

— A trade-off between expressiveness, ease of use and
treatable for automation.

— The set can be extended.
— A flexible way to express design strategies.
¢+ A prototype of a CASE tool for DW logical design.

DMDW’2003 Verénika Peralta, Raul Ruggia 22

