1

Updates and Incremental Validation of XML Documents

BéatriceBoucHoOU

Mirian HALFELD FERRARI ALVES

Universié de Tours - Laboratoire d’'Informatique
Antenne Universitaire de Blois
3 place Jean Jags
41000, Blois, France
{bouchou, miriah@univ-tours.fr

Abstract

We consider the incremental validation of updates
on XML documents. When &alid XML doc-
ument {.e, one satisfying some constraints) is
updated, it has to be verified that the new doc-
ument still conforms to the imposed constraints.
Incremental validation of updates leads to signif-
icant savings on computing time when compared
to brute-force validation of an updated document
from scratch.

This paper introduces a correct and complete set
of update operations that can be integrated in an
XML manipulation language. Indeed, any doc-
ument generated by a composition of our update
operations is valid, and, every valid document can
be generated by a composition of our update op-
erations (from the empty document). To accept an
update, the validity of the result is checked first
(without any change on the original document).
Validation tests are performed incrementailg,,
only the validity of the part of the document di-
rectly affected by the update is checked. Changes
to the original document are effectively performed
onlywhen the update is accepted.

Introduction

We view an XML document as a structufecomposed
of an unranked labeled tredi.e., a tree whose nodes have
no fixed -or ranked- arity) and functiortgpe and value
The functiontype indicates the type of a nodelément
attribute or datg). The functionvalue gives the value as-
sociated with a leaf (a data node). Figure 1 shows part of
the labeled tree representing the document used in our ex-
amples. Each node has a position and a label (for instance,
position0 is associated with lab&l'ust). From this figure
we see that an XML element has both its sub-elements and
attributes as children in the tree. Elements and attributes
associated with arbitrary text have a child labealeta At-
tribute labels are depicted with a preceding @.

€
Shop

0 1
Cust Invoice

_—— \ e
00 01 02 was 10 1 12 13
@idCust @idInvoices Name @InvoiceNb Date /BII/To }em

| \

\
\ 100 110 120 131

130
000 010 020 data data @custNb Price Description
data data data (00123) (12/30/02)
(99) (00123) (Arthur) 1200 1300 1310 1311
data data @itName @Type
(99) (25.00) | |
13100 13110
data data

(bTools) (book)

Figure 1:Labeled tree representing an XML document.

XML documents should respect a schefavhich cor-

We present a method for incrementally validating updatesesponds to attribute and element restrictions. We see the
on an XML document. We assume a data-exchange envschemaD as a structure composed of a bottom-up tree
ronment where an XML document should respect schemautomaton and some “extra” information about attribute
constraints. When a valid XML document is updated, itvalues, both introduced in [5] where only validation from
has to be verified that the new document still conforms toscratch is considered. Validating schema constraints means
the imposed schema. Validation from scratch requires reado execute the tree automaton over the labeleditrgdis

ing the entire document after each update. An incrementatomputation results in another labeled tregalled a run-
method is undoubtedly very useful, in particular when wening tree) with the same positionsiabut labeled with the
consider that the evolution of XML as an exchange formatstatesof the tree automaton, as illustrated in Example 1.1
depends on its capability to support not only queries bubelow. Roughly, a stateis assigned to a positignin r if

also updates.

Proceedings of the 9th International Conference
on Data Base Programming Languages (DBPL),
Potsdam, Germany, September 6-8, 2003

the children ofp in ¢ verify the element and attribute con-
straints established by the tree automaton.

Example 1.1 Figure 2 shows a running tree resulting from
the execution of a given tree automaton over the treé

Figure 1. To illustrate the execution of this tree automatonp | et 5 be a transition rule oft that associates a position
suppose that it has the transition rule u, labeleda, with stateg, . An update at positiop (a child
Invoice, {{qinvoicens }> D}, @Date qBiliTo Qitem — QInvoice- of u) changes the sequence of states associateduwth
children by the automaton. Considering the new children
of u, we need to verify if they still respect the constraints
established by. If these constraints are respectéd;an
be applied and the labeg), is associated with, otherwise
the intended update is rejected since it violates constraints.
To efficiently verify if 6 applies to the new children af,
we only build a temporargequence of new state$ u’s
children. The following example illustrates this process.

This rule states that a positign labeledInwvoice in ¢, can
be associated with the stage,,occ in r if the following
attribute and element constraints are respected:

(i) positionp has a required attribute childvoice Nb (i.e.,
the first child ofp in r is associated with; ,,oicens) and

(#i) children ofp that are elements respect the regular ex
pressionDate BillTo Item™ (i.e., the second and the third
children ofp in r are associated witp ... andgg;;ro, re-

spectively; the other right children (if they exist) are aSSOExampIe 1.2 Let D be a schema containing an automaton

ciated Withgreerm). . . A with the following transition rules (among others):
The above constraints are respected by, for instance, po- ltem, {0,0}, gprice dDescripti —aqn
1) il rice escription em

sition 1 in r and thusl is associated Withy;,,,oice (Fig- 2\Pri 4
ure 2). The automaton executes bottom-up by considering §3gd2§f’ %g’ g{ %d”m : 35:”‘6

each position and the transition rule that qpplies to it_. ow, we assume the valid document of Figure 1 describ-
tree automaton accepts the document tree if and only if the o the customers and invoices of a shop. Each invoice
root of the corresponding running tree is labeled wiit & ,htains the price and the description of the items bought

nal state. by a customer. We consider the item depicted at position
13 and we assume the insertion of another price for this
€ item. This operation corresponds to the insertion of a la-
/Sh”\ beled treet; (having positions and0 associated with la-
O Yo bels Price anddata, respectively) at position31 of the
N\ R~ treet (Figure 1). The labeled tre¢ in Figure 3 represents
P e omoces o™ Gmacons Towe Gouro G the requested change over
| 1L0 11/0 % e The verification of the update consists ifi) considering
o o 0 Ygaa o 7ouswb foree %\esmpﬁon that the_ upda;e is performed (withoqt performin_g ityet)_and
1200 1900 4310 1311 (1) verifying if the stategr.,, can still be associated with
o da’a1 o e position 13 (131's father) by analyzing the unique transi-
gata 13;;,2 tion rule whose head ig¢¢, -

To this end, we are going to build the sequence of states
Figure 2: Running treer resulting from the execution of a tree associated with 3’s children. To better illustrate our ex-
automata ovet. ample, we consider the subtreetdfFigure 1) whose root
. . . .__is at positionl3 and its requested updated version (the cor-
__Given a valid XML document, an update is done taking respgnding subtree on F?gure 3). VSe assume the éottom-up
into account the following features: execution ofA4 overt;. We apply rule3 over the leave of
e Updates are seen as changes to be performed on the trgeto obtain the state,,.,. This leave shall be at position
representatioi” of an XML document. We do notconsider 131 if the update is accepted (see requested updated tree
here the translation between an XML document and its trepartly depicted by Figure 3). Then, we apply r@dl@ver
representation, this is done by well known tools such ashe root oft; to obtaingpyi... The root oft; is at position
SAX and DOM. 131 of the requested updated tree (Figure 3). Note that this

« Only updates that preserve the validity of the documentipdate does not concern the subtrees on the left of position
are accepted. If the update violates a constraint, then it i§31: nothing changes for the subtree rooted at positiih

rejected and the XML document remains unchanged. Moreover, the subtrees on the right have just been shifted
(see the subtree now rooted at positiéa of Figure 3). In

other words, the update does not affect posifidt (asso-

ciated withgp,;..) and position1 32 is the result of a shift

(a new position, but associated with an "old” state, one
Based on the above points, we introduce a set of upeomputed before the update). Thus, we only have to calcu-

date operations capable of inserting, deleting or modifyindate the state associated with positid1 in order to obtain

parts of tree representing an XML document. Before acthe complete new sequence of children states for position

cepting an update, we performcrementalvalidity tests 13.

which consist of verifying the validity of a small part of the Now, we consider rulel]. It can be applied to positiot3

document tree. If the desired update concerns position if all the following conditions hold{(:) ¢(13) = Item, (i¢)

we just check if the subtree rootedzeg father continues to for all childrenpos of 13 we haveype(t, pos) # attribute

respect the validity conditions. Let be the automaton in and (i) the concatenation of the labels associated with

e The acceptance of an update reliesimeremental vali-
dationtests,.e. only the validity of the part of the original
document directly affected by the update is checked.

13's children composes a word that corresponds to the regg structure built fron and 7, over which(i) the valid-
ular expressioprice qpescription- 1N OUr case this con- jty of 7" with respect taD can be easily determined (only
catenation ig/price ¢price dDescription (POSIIONSL30, 131 with few tests on values contained®), and(i:) the incre-
and132, respectively). This word does not match the reg-mental validity test performed while updating is also easily
ular expression price ¢pescription, SO condition(iii) does applied.

not hold. Rulel cannot be applied to positio3. The

update is rejected, since it violates validity. 2.1 XML document representation

Notice that accepting or rejecting an update depends on t
schema being considered. For instance, if we considerhgh
schemaD’ similar toD except for transition rulél) that is '
replaCEd by |tem{®, @}, q}rice dDescription — (Item
then the insertion of; at position131 in ¢ is accepted. In-
deed, the concatenatiqf,icc ¢price ¢Description Matches

ere are different ways to view an XML document as a
ee. Before introducing our choice of representation, we
recall the notion of unrankel-valued trees [21]. LeN*

be the set of all finite strings of positive integers with the
empty stringe as the identity. The following definition as-
sumes thatlom(t) € N* is a nonempty set closed under

the regular expressiafk,.ic. qpeseription- 9 prefixed, e, if u < v, v € dom(t) impliesu € dom(t).
Clearly, this setdom(t) represents the set of nodes of t,
e uniquely identified with a Dewey like prefix schema.
Shop
0/\ Definition 2.1 - Y-valued treet [21]: Given an alphabet
Cust Invoice - 3, anonempty:-valued tre€ is a mapping : dom(t) —

N

18 voicont Bare 270 13 Y wheredom(t) satisfies:j > 0,uj € dom(t),0 < i <
| % afz/' ° Pr— j = wi € dom(t). The setdom(t) is also called the set
190 L0 Bousnb e Bile beacription of positionsof t. We writet(p) = a, for p € dom(t), to
(00123) (12/30/1022‘c))é 130/0 13\10 1320/ \1321 indicate that th&-symbol associated withis a. For each
dats (BE60) S8, @iiName @Type positionp in dom(t), children(t, p) denotes the positions
1900 13210 pi in dom(t), andfather(t, p) denotes théatherof p. De-
(bTools) (book) fine anempty treg as the one havindom(t) = 0. O
Figure 3:Labeled treg’ representing the requested changes onDefinition 2.2 - XML tree 7: Let X = ¥, . U gy U
t: an insertion at positiom31. {data} be an alphabet wherE,,. is the set of element
. _ names and.,;; is the set of attribute names. An XML
The main contributions of the paper are: tree is a tuplel” = (1, type, value) where:

e The definition of a structure, called XMtossiey that o ¢ js a>-valued treei(e., ¢ : dom(t) —).

formallzes_ano_l summarizes all the features necessary to th.etype and value are functions defined as follows for a
update validation.

positionp € dom(t):

e A correct and complete set of update operations. In- { data if t(p) = data

deed any XML dossier generated by a composition of our type(t,p) = { element if t(p) € Seze

update operations is valid, and given a schefhaevery attribute if t(p) € Lase

XML dossier valid with respect t® can be generated by a value(t, p) = setval C D if type(t,p) = data

composition of these operations. The changes to an XML ’ undefined otherwise

dossier due to an update are precisely defined. Four updahereD is an infinite (recursively enumerable) domain.

operations are introduced, namehgsert, insertBefore, In Figure 1 we have, for instanceype(t,13) =

delete andreplace. element andvalue(t, 1300) = {25.00}.

e An incremental validation method that allows significant 10 define update operations we need the notiorimat

improvements over brute-force validation from scratch. ~ tier andinsert frontier The frontier corresponds to the set
of leaves while the insert frontier is the set of positions (not

This paper is organized as follows:In Section 2, XML in dom(t)) where the simple insertion of new subtrees is

dossiers are defined and we discuss each component of tHgssible.

StF“Ct“re- I.n Sectllon 3 we define the _set of update OP€pefinition 2.3 - Frontier and insert frontier of a finite

ations and in Section 4 we Sh.OW how mcremen.tal validay e 4. Given a treet and considering € N, the fron-

tion is performed. Finally, Section 5 concludes with relatedtier of ¢, denoted byfr(t) is defined byfr(1) = {u €

work and our perspectives for further research. dom(t) | -3 i such thatui € dom(t)} while theinsert

) frontier of ¢, denoted byfr*"*(t) is defined byfr***(t) =
2 XML Dossiers {ui ¢ dom(t) | u € dom(t) A[(i = 0)V ((i #
An XML dossier.X contains all the components necessary!) /\ u(i — 1) € dom(t)]}. For an empty tree, define
to the validation of updates. Itis a tupl®, 7, R) where: frine(t) = {e}. 0

D is a schema that defines attribute and element constraints, 11ne prefix relationin N*, denoted by< is defined by:u < v iff
7 is the tree representation of an XML document && ww = v for somew € N*.

2.2 Schema representation

2.3 XML documents respecting a schema

We assume that XML views are built from different data Given a schem& = (A4, &) and an XML tree7 =

sources according to a particular schema. In our approachi, type, value), we want to verify if7 respects the validity
a schemaD is specified by an extended non-deterministicconstraints imposed k. Consider first the execution of
bottom-up finite tree automaton (ENFTA) enhanced with.A overt. To assume a statgat positionp, the automaton

an attribute table.

Definition 2.4 - Extended non-deterministic bottom-up
finite tree automaton (ENFTA) [5]: An ENFTA over an
alphabet® is a tupleA = (Q,%,Qs, A) whereQ is a
set of states(); C (@ is a set of final states anfl is a
set of transition rules of the form, S, £ — ¢ where(i)
a € X; (ii) S is a set of two disjoint sets of statesg.,
S = {Scompulsorya Soptional} (Wlth S(:O'rerulSO’r‘y - Q and
Soptional C @); (i) E is a regular expression ovél and
(iv) g € Q. O

Definition 2.5 - SchemaD for XML documents: Let

Y = Yge U Xt U {data} be a schema alphabet. A
schemaD for XML documents is a tupleD = (A, £)
whereAd = (Q, X, Q, A) is an ENFTA oveix and E|att-
name, att-kind, ele] is an attribute table having one tuple
for each pair(att-name, ele) that associates an attribute
att-name € Y4 With an elementle € X,;.. We assume
that attribute kindsitt-kind in A& are those possible in a
DTD (i.e., CDATA, ID, IDREF and IDREFS). O

A performs the following tests:

1. If p hasattribute children then their states should match
those specified by the sets §) namelyScompuisory and
Soptional, COrresponding, respectively, to attributes that
mustappear in the tree and to those thatyappear.

2. If p haselementhildren then the concatenation of their

states must belong to the language generated by the regular

expressiont.

We call running treethe Q-valued tree resulting from
the execution of a tree automatghovert.

Definition 2.6 - Running tree r [5]: Let ¢t be aX-valued
tree andA = (Q, 3, Qf, A) an ENFTA. Arunning treer,
corresponding to an execution &f overt, is a tree such
that dom(r) = dom(t) defined as follows: for each po-
sition p whose children are at position$, ..., p(n — 1)
(with n > 0), r(p) = q if all the following conditions hold:

lLip)=aecX
2. There exists a transitiaon S, £ — ¢ in A

Definition 2.4 extends classical tree automata in order

to deal with trees with different kinds of nodes. In the
children of any positio € dom(t) can be classified into

two groups: those that are unordered, corresponding to th@\) the positiong0, .

3. There exists an integér< 7 < (n — 1) such that the
children ofp can be classified as follows:

..,p(i — 1) are members of a set

attributes of the node, and those that are ordered, Corr‘i)'osAtt(possibly empty) and

sponding to the sub-elements.

In a schemaD, element constraints are expressed by

regular expressions (paftii) of A’s transition rules). At-

(b) the positionspi, ..., p(n — 1) are members of a set
posEle(possibly empty) and

tribute constraints imply two levels of specification. In the (c) every children op is a member oposAttor of posEle

first level, for each element, the specification (pat} of

but no position is in both sets.

A'’s transition rules) indicates the attributes that are obliga-

tory (Scompulsory) and optional §optionar). In the second

level, for each attribute, the specification indicates its kind?o- - -

(attribute tableE). Thus, as discussed in [5], the validity of

4. The tree- is already defined far’s childreni.e., r(p0) =
2 r(p(n —1)) = gn-1-
5. The wordy; . . . ¢,_1, composed by the concatenation of

attribute requires some tests on attribute values. These tedts states associated with the positionpasEle belongs
verify the unigueness of identifier values (called ID values)to the language generated By

in the whole document, and the existence of ID values corg The sets of respect the following properties:
responding to reference values (called IDREF or IDREFS

values).
Example 2.1 We consider the schenfa = (A4, £) (con-

cerning customers and invoices in a shop) which has beeA running treer is successfuf r(¢) is a final state.

(a) Scompulsory Cc {q07 s infl} and

(b) {q0, - --

7%’—1} \ Scmnpulso’ry) c Soptimz,al-
O

used to build the running tree of Figure 2 from the tree of

Figure 1. The schema alphab®tcontains all the labels
appearing in Figure 1.

The ENFTAA = (Q,%,Qy,A) hasQ = {q. | a € ¥},
Qf = {gsnop} and twenty-one rules in: four of them are
presented in Examples 1.1 and 1.2.

The table/ has the following tuples{ (idCust, ID, Cust,
(idInvoices, IDREFS, Cust (invoiceNb, ID, Invoice,
(custNb, IDREF, BillTo, (itName, CDATA, Descriptioh
(Type, CDATA, Descriptioh }. O

From Definition 2.6, one can see thds accepted by
if and only if r is successfulThis is one of the conditions
an XML tree7 must respect to be valid relative to a schema
D.

Consider now the ID/IDREF constraints. During the run
of A overt, bags of ID and IDREF(S) values are filled,
according to the tablé in D. It is then straightforward to
verify the ID/IDREF constraints. Precisely, we say tfat
respectD if all the following conditions hold:

C1- The running tree- constructed according to Defini-
tion 2.6 fromD and7 is successful.

C2- The ID attributes irt are unique.

C3- The IDREF/IDREFS attributes refer to existing ID at-
tributes.

To facilitate the verification of conditions C1-C3, we de-
fine the structur& containing the running tree together
with ID and IDREF values.

Definition 2.7 - Run R: Given a schem&® = (A, E)
and an XML treeT = (¢, type, value), a runR is a tuple
R = (r,Vip, Viprer) Wherer is the running tree (Def-
inition 2.6) andV;p andV;prer, called id-storage, are
bagsfilled using A& during the run of4 on¢, according to
the steps below:

o If there exists a tuple inE that indicates that an at-
tribute at positiorp has kind ID, then insertalue(t, p0) in
Vip.

o If there exists a tuple inE that indicates that an at-
tribute at positiorp has kind IDREF or IDREFS, then insert
value(t,pO) in ViDREF- O

Condition C2 holds wheRl7 has no duplicate and con-
dition C3 is verified wherV;prpr Only contains values
that appear i p.

Example 2.2 We considerY, composed by the scherfia

of Example 2.1, the tre@ depicted in Figure 1 and the
run R = (r,Vip, Viprer). The structureR contains
the running tree- (Figure 2) and Vip = Viprer =
{99700123} As T’(E) = {Shop and Qf = {QShO[)}l the
running treer is successful. Notice that conditions C1-C3
are respected hy'.]

2.4 Validity of XML dossiers

Now XML dossiers and their validity are defined according

to the preceding sections.

Definition 2.8 - XML dossier and validity: An XML
dossier is a tripleY = (D,7,R) whereD is a schema
as specified in Definition 2.3 is an XML tree as intro-
duced in Definition 2.2 an® is a run obtained according
to Definition 2.7. Two XML dossiers are equal if their com-
ponents are equal. An empty dossier Hasu(t), dom(r),
Vip andVIDREF empty.

An XML dossierX is valid if it is empty or if its runR =
(r,Vip, Viprer) respects the following conditionsi) r

is successfu(Definition 2.6), (i3) Vip is asetand (iii)
values inV;prer existinV;p. O

We distinguish between two types of validity: thebal
validity of Definition 2.8 and théocal one, introduced be-
low. The id-storagé/;prer Of alocally valid dossier can

is very useful in an update context. For instance, when in-
serting a locally valid dossiet’; into a valid dossiery, it

is reasonable to suppose that the id-storfdger g1 con-
tains references to attributesWp that are not in/;p;.

Definition 2.9 - Local validity: Let X = (D,7,R) be
an XML dossier wherel' = (¢, type, value) andR =
(T, Vip, VIDREF)- LetA = (Q, >, Qf, A) be the ENFTA
in D. An XML dossierX is locally valid if its runR re-
spects the following conditiong(i) r(¢) = ¢ andq € @
and(ii) Vip is aset O

Example 2.3 The dossier of Example 2.2 is valid.

Now, we consider the dossigf; = (D, 71, R1) with the
same schem®@ as Example 2.1. Let thE-valued treet;

in 71 be a subtree similar to the one rooted at posifion
of Figure 1 {.e, having the same labels). The running tree
r1 in Ry corresponds to the subtree rooted at positiam
Figure 2. It has1(€) = qrnvoice, (With griu0ice € @ and

QInvoice & Qf), Vip1 = {00123} andViprer1 = {99}.
Clearly, X' is not valid. However, it is locally valid. O

In the following, we introduce the notion sfib-dossier
and one important property concerning them.

Definition 2.10 - Sub-dossier Let X = (D,7,R) be
an XML dossier wherel' = (¢, type,value) and R =
(r,Vip, Viprer). Let p be a position indom(t).
The XML dossierX, = (D,7,,R,), where T,
(tp, type, value) andR, = (rp, Vinp, Vibrerp), 1S the
sub-dossier oft’ at positionp if the following conditions
hold:

1. dom(t,) = {u | pu € dom(t)}

2. t,(u) = t(pu) for eachpu € dom(t)

3. Similarly tot,, the new functiongype andvalue (as-
sociated with7,) are mappings ovetlomn(t,) and,
therefore, are defined following the same principle as
the definition oft,,.

4. The runR, is obtained according to Definition 2.7,
fromD and7 . O

Proposition 2.1 If X = (D, 7,R) is a valid XML dossier
then for every positiop € dom(t), its associated sub-
dossierX, = (D,7,,R,) is locally valid. ml

In Example 2.3, the dossigyr; is the sub-dossier ot
at positionl.

3 Updating Valid XML Documents

We define four update operations over XML dossiers show-
ing all changes (on structure and values) that should be
performed on their components. Our update processing
transforms a valid XML dossier into a (sometimes new)

refer to ID attributes not present in this dossier. This notionvalid XML dossier. Updates that do not preserve valid-

2|n table & of Example 2.1, the only ID attributes considered are
at positions00 and 10. From Figure 1,value(t,000) = {99} and
value(t,100) = {00123}

ity are rejected. Given a valid dossiét and a position
p, it is possible to update it by performing one of the
following operations:insert(X,,p, X) (inserts a dossier

X, in X atp € frins(t)), insertBefore(X,,p, X) (in-
sertsX, in X atp € dom(t)), delete(p, X) (deletes
from X the sub-dossier associated goe dom(t)) and

replace(Xp, p, X) (replaces inX the sub-dossier associ- e t'(u(k + 1)u') =

(b) Insertion beforep: dom(t') = [dom(t) \ DelPos] U
ShiftRightPos U {pv | v € dom(t,)} and

o t/(w) = t(w), Yw € dom(t) and w & DelPos

t(uku') for eachu(k + 1)u' €

ated withp by X',,). Figure 4 illustrates these operations by ShiftRightPos where k € [i..n]

showing the changes occurring irtavalued tree.

€ € € € €

a a a a
/N /AN |/ i\\ /N TN
0 110 1 210 123 0 1 210 1 2
b c| b c ij b rilc f b rT f)l(n‘1 f
20 10 30 10 20 |00 10 20
e p e p ely p e

(i) (ii) (i) (iv) (v)

Figure 4:(i) Initial X-valued treet having labels: (positione),
b (position 0) andc (position 1). (ii) Insertion atp = 2. (i)
Insertion beforep = 1. (iv) Deletion atp = 2. (v) Replace at
p=0.

o t'(pv) = t,(v) foreachv € dom(t,)

(c) Deletion dom(t') = [dom(t)\ DelPos|U ShiftLeftPos
and

o t/(w) = t(w) for eachw € dom(t) andw ¢ DelPos
o '(u(k — ') = t(uku) for eachu(k — v’ €
ShiftLeftPos wherek € [(i + 1)..n]
(d) Replace dom(t') = [dom(t) \ {v | v € dom(t) Av =
pu' U {pv | v € dom(t,)} and

{ t'(w) =t(w) VYw € dom(t)andw # pu'

t'(pv) =t,(v) Yo € dom(ty)

2. TheX-valued treer’ and the new functionsype and
value are defined following the same principletagprop-

Next we formally define our set of update operations.erty 1 above).

Notice that we only consider insertion and deletion of non

empty locally valid dossiers.

Definition 3.1 - Update: Let X = (D,7,R) be a valid
dossier. The result of applying an update operatiof’cat
positionyp is a valid dossie/” defined by:

(D, 7",R") if (D, T',R')isavalid
X = dossier different fromv'.
X otherwise
where 7' = (', type,value) and R’ =

(', Vip,Viprer) tespect the three properties stated

below, which are based on the following assumptions:

e The update position is = wi, with i € N andu € N*.
It is defined according to the update operatidi) p €
frins(t), for Insertion

(79) p € dom(t) andp # e, for Insertion beforey and
(#i1) p € dom(t), for DeletionandReplace

o n = |children(father(t,p))| — 1 forp # e.

e DelPos = 22?{1{1 | w € dom(t) andw = uku'} if
p # €, otherwiseDelPos = dom(t).

o ShiftRightPos = | J;="{w | w = u(k+1)u’ anduku’ €
dom(t)}.

o ShiftLeftPos = UZiZ'_H{U} |w = u(k—1)u anduku’ €
dom(t)} if p # €, otherwiseShiftLeftPos = ().

e X, = (D,7,,R,) is a non empty locally valid XML
dossier with7,, = (t,,, type, value) andR, = (rp, Vipp,
ViDREFP)-

Properties

1. ¢’ is aX-valued tree ovedom(t') whose definition de-
pends on the type of update :

(@) Insertion dom(t') = dom(t) U {pv | v € dom(t,)}
and
{ t'(w) :_t(w)

t'(pv) =1,

Yw € dom(t)
) Yov € domf(ty)

3. The id-storagd’/, andV/, i are defined according
to the type of update:

(a) InsertionandInsertion beforep:

o V/,is the_ setip U Vipp.

° VI/DREF_' is the bagV[Dl_{EF U VIDREFp such that
every value iV}, o €Xists inV/,.

(b) Deletion Let X', be the sub-dossier ¢f at positionp.
o V/pisthe set/;p \ Vip,.
° VIIDREF is the bagV[DREF \ VIDREFp such that ev-
ery value inVy, g €Xists inVy .

(c) Replace atp: Let oldp = p and let Xy, =
(D7 Toldp7 7?'oldp>a with 7?/oldp = (Toldpv VIDoldpa
VibrEFoldp), be the sub-dossier ot, at positionoldp,
to be replaced by the new dossi®, = (D, 7,,R,).

° VI/D is the SGT(V]D \ VID()ldp) U V[Dp.

e Viprer 18 the bag (Viprer \ VibrEFOdp) U
Viprerp SUch that every value vy, exists in
Vip- O

The following theorem states that when the resulting
dossier is different from the original one, the update op-
eration hagffectivelybeen performed.

Theorem 3.1 Let X = (D,7,R) be a valid dossier and
let X, = (D,T,,R,) be alocally valid dossier. Let’ =
(D,7',R') be a dossiedifferentfrom X and letp be a
position.

o If X' =insert(X,,p, X) andp € fri"s thenX’ is valid
and X, is the sub-dossier ot” at p.

o If X' = insertBefore(X,,p,X) thenXx’ is valid and
X, is the sub-dossier ot” at p. Each sub-dossier ot at

p and its right siblings is a sub-dossier &', shifted one
position to the right.

o If X' = delete(p, X) thenX’ is valid andX,, is the sub-
dossier ofX at p, but it is not the sub-dossier df’ at p.

Each sub-dossier ot at a position that is a right sibling
of p is a sub-dossier at”, shifted one position to the left.

o If X' = replace(X,,p,X) thenX’ is valid and X, is
the sub-dossier ok’ at p and there existet’ 4, Which is
the sub-dossier ot at p. O

Proof (Sketch) : From Definition 3.1, it can be verified for each
update operation that the validity conditions (Definition 2.8) hold.

We finish this section by stating the correction and the
completeness of our update operators. In other words, we
show that after an update, a valid XML dossier remains
valid and that any valid dossier can be obtained from a se-
guence of our update operations.

Lemma3.1l LetX = (D,7,R) be a valid dossier. The
XML dossierX’ resulting from the update ot according
to Definition 3.1 is valid. O

Theorem 3.2 Let X and X’ be valid dossiers with respect
to a schemd. There exists a sequena®f update opera-
tions (of Definition 3.1) such that” is the result of apply-
inguoverX. O

Proof: The proof
replace(X’, e, X).

is straightforward sinceXx’

. Let® n = |children(r, father(r,p))| — 1 and com-
pute the other leaves according to the update opera-
tion:

Forinsert: rquq(i)=rp(e). In this casej is the right-
est child.

ForinsertBefore:

Tauz (1)=7p(€)

for k € [i..n] dOreuy(k + 1) = r(uk)
Fordelete:

fork € [i..(n — 1)] dOrgus (k) = r(u(k + 1))

Forreplace:

Taua (1)=7p(€)
fork € [(i + 1)..n] dO7gy, (k) = r(uk)

Root: Compute the root,.,. (¢) by applying the transition
rule associated with the lab&lfather(t, p)).

4

In this section we explain how to perforimcrementala-
lidity tests before accepting an update. From Definition 3.1,
we notice that an update ovéf = (D,7,R) at position

Incremental validation

p only results in changes s right siblings (including it-
self). Thus, only the subtree rootedfatther(p) has to be
checked to assure the validity of the updated document.
All update procedures have the dosskr= (D,7,R)
and the update positiorp as input. Procedures
insert, insertBefore and replace receive a dossier

r: E = INPUTS rp- 8{/’\qb
/l/)/,/ u (,'qa \\\\\\\
MOA-
qaq da; qdan
Taux: € raux: €
insert insertBefore
0& n i 0 i-1 iejt]e n+l
qap 4an 9b qa0 9aj-] 9 qa; qay
raux: € raux: €
delete replace
0& i-1 0 i-1 i i+1 n
qa0 qaj-] 9ajy] 9qa, | 990 4ai-] 9b 9dajy] 9ap

X,=(D,Tp,Rp), to be added tot. We consider thag’
is valid, p is a correct update position ard, is locally
valid (or valid, according to the type of update). These as-
sumptions can be easily verified at the beginning of update
procedures.

To implement incremental validity tests efficiently, we

Figure 5:Aukxiliary treesr,.... for each type of update.

Once R,.. is built, the validity tests are performed

by checking(¢) if r(father(t,p)) equalsr .. (¢) and(i:)

simulatethe update using a small auxiliary rd®,,,, =
(Pauzs I Doz, IDREFy,,). The id-storagel D,,, and

IDREF,,, arebags They are computed according to
the type of update, implementing the operations used

the Property 3 of Definition 3.1. ThE-valued treer,,,

is always an 1-depth tree. As shown below, and illustrate

by Figure 5, is built with the siblings op in r, and by
re-computing the state gfs father.

Construction of 744,:
Leaves: Let p = wui be the update position, with € N*
andi € N:
1. Copy the left siblings of positiop:
Forj € [0..i — 1] dOo7gus(j) = r(uj)

iri1f the update was accepted.

if 1D,y andIDREF,,, respect the validity conditions
stated in Definition 2.8. Notice that,....(¢) represents the
state that should be associated with positfaher(t, p)

In fact, when we test if
r(father(t,p)) equalsr,..(¢), we are taking into account
he good properties of our tree automaténSinceA is a
ranslation of an unambiguous DTD [9], each labet

is associated with aniquestateq,. Thus, both running
treesr (before an update) and (after an accepted update)
should associate the same state with posifiether(t, p).

To verify if an update respects this property, we perform
the test omr,,,, (instead of building the whole').

3We recall thatdom,(t) dom(r) and that functionschildren
and father return positions indom(r) (or dom(t)). Thus,
|children(r, father(r,p))| gives the number of children @fs father.

Now we make some remarks concerning complexity.constraints. This automaton has the same expression power
Given a dossiet¥ = (D,7,R), the construction ofR ~ as a DTD and gives rise to an efficient validation method.
from D and 7 is linear in the number of nodes appear- It has already been implemented as a validator from scratch
ing in theX-valued treeg (in 7). To visit a subtree of in using both SAX and DOM. The key proposition to perform
order to fill bags containing ID values is linear in the num-incremental validation efficiently is to build a temporary
ber of nodes of the subtree. The constructiofi Bf,,,, and sequence of states which represents the requested change
IDREF,,,, from the original bagd;p, Viprer, €tc.,, (together with bags of ID/IDREF(S) values) and to perform
is linear in the number of ID/IDREF(S) values present intests upon this small auxiliary structure.

these original bags. Consideringas the maximum num- Updates and incremental validation are very useful for
ber of values i D, and DREF,,, checking the con- many application such as XML databases and XML edi-
ditions (ii) and (iii) of Definition 2.8 takes, in the worst tors. To our knowledge no information is provided on the
case, timeD(m?). The construction ofR,... takes linear incremental validation of updates for the available products
time in the number of’s siblings. Applying the transition on XML [17, 1].
rule overR.,, also takes linear time in the numberoé A set of primitive XML update operations (different
siblings {.e., positions indom(rauz)). ~ from ours) is proposed in [20]. Contrary to us, the au-
Therefore, in comparison with a naive method that firstynors are not interested in the problem of validation. Their
applies the update and then checks validity from scratch, i§oa| is to define an XML update language and to translate
is easy to see that our approaqh is far better. SuppOSIng.thabdate operations into updates on the associated relational
the input of the update operations respect the assumptionftabase. The same problem is addressed in [7] where, in
of Definition 3.1, we just need to construct some small aux-rder to specify when XML views are updatable, the au-
iliary structures and to apply a transition rasce In gen- thors use the nested relational algebra as the formalism for
eral the gain is very important: imagine for example thatgefining them. As XML views must respect the schema in-
we delete, insert or replace a "phone number” of an elemengyced by the view specification, in [7] only updates that do
"person” in a large document. The incremental validity testnot violate it are considered. However, contrary to us, the
will check only the element "person” concerned by the Up-goga| of the authors is not to build an update environment

date, and not the whole resulting docuntéiot counting that assures the validity of XML views. In this sense, our
that, in the naive method, if the resulting document is notyork is complementary to theirs.

valid then all update process must be rolled back. Our choice of update operations is based on existing

propositions for extending XQuery with updates. For

5 Conclusions instance,[13] enumerates studies of XML update opera-

. - tions and conduct experimental study to compare their in-
Tree automata are used in XML research in different way§yemental checking method against re-validating the whole
(see [15, 18] as surveys). For instance, several static tyRyocument after an update. Note that they use a quite differ-
ing techniques for XML transformers (including static type gnt approach to pre-validate updates, based on constraint
checking [4, 14] and type inference [11, 16]) have beenchack queries, which seems to add unnecessary computa-
modeled with tree automata or tree transducers. In [14}ion overhead. As in [13, 17], we also have implemented a
the authors consider the type checking problem eXpresser@nameoperation, which gives a new name to a node (el-

by k-pebble transducers, showing that it is decidable. Ingment or attribute), not presented here because it is just a
[4], they consider trees with labels from an infinite alpha'simplified version of aeplace
bet in order to represent both elements and their values,

. NN ; ' Updates on trees appear in papers, such as [19], dealing
zg?eWIr']r?néhp?rtolglg;rlfoﬁigéyfrfecc:Eetf;rg?okr);;czirgr?ss SP gﬁﬂcl'_dwith the notion of distance between two trees. Their update

trees (given a tree, its schema and a transformation, che erations are general while ours reflect desired changes on
9 N e ' L documents. The notion of distance between two trees
whether the resulting tree conforms to a specified schema ; .
IS also explored in [12], where the goal is to detect changes

is complementary to the one we address in this paper, as Tod not to propose updates that allow such changes.

focus on the task of extracting (sometimes with restructur- . T
In [17] the authors propose an incremental validation of

ing) information from a given document. b i !
6<ML documents. They first describe a way to incremen-

In this paper we have applied unranked tree automata tt v cheek th db b-el ¢ stat
the incremental validation of update®©ur validity test is ally check the sequence composed by sub-element states.
They maintain a kind of B-tree as auxiliary information

static, as we perform it before applying the update. For this . X)
purpose, we use the extended tree automaton introducesgrucwre' This idea is extended to incremental DTD val-

in [5] whose aim is to deal with both element and attribute'dation in the case obne element renammgFmgI!y, for
specialized DTDs they propose to use as auxiliary struc-

4As another example, consider that an element "person” is added in &Ur€ & _binary tree enCOdi_ng of th_e document. This structure
long list of "person” elements (originally valid): the incremental validity is of sizeO(n), wheren is the size of the document, and

test will check only the local validity of this new element and will accept their incremental validation is in tiﬁ@(log2n).
the update if this element is locally valid. This is possible because adding . . L
an element in a list is obviously correct when this list of sub-elements is Although the aim of the work presented in [17] is simi-

specified in the schema (and it is, since the original list is valid). lar to ours, the two proposals differ in many aspects. Con-

trary to [17], we deal not only with element constraints butReferences

also with attribute constraints. In [17], only elementary up-
dates affectingnenode at a time are considered. Our up-
date method allows sophisticated update operations (deal-

ing with trees) without loosing the capacity of effectively [2]

performing elementary ones.

In terms of complexity, in our approach, considering

only the insertion or deletion of a leaf (at positiph in

the XML tree ¢ being theX-valued tree), we improve
the complexity bounds. Our auxiliary structure has size [4]
|dom(rqu.)| @and our validation time is linear in the num-
ber of elements idom(r...;). In [17] the same operation
takes timeO(log? n) wheren is the size of the entire doc-
ument,i.e, n equals/dom(t)|. However, contrary to them,

we do not consider specialized DTDs.

We are currently considering the following lines of re-

search:

(i) The construction of a framework for manipulating XML
documents. This framework is intended to be a formal lab-
oratory to test query and update languages for XML [2, 3].
We are currently implementing our update operations using
the ASF+SDF [8] meta-environment. Next, we shall con- [7]
sider the development of an XML update language as an
extension of some existing query language such as XQuery.
To this end, we shall define a method to determine the up-

date positiorp by the evaluation of some predicatesq,

XPath). In doing this, we intend also to investigate how [8]

the intermediate validation necessary to determirean

optimize the complete validation for the data modification

operation.

(74) The generalization of our method to treat other kinds [9]
of updates such as those that change the schema since they
can help a lot the administration of a data exchange envi-

ronment.

(#i7) The generalization of the update process to consider
"global” updates,i.e, a sequence (or a set) of updates
treated as one unique transaction, instead of just a sing
primitive update operation. In this case, we are interested in
assuring validity just after considering the whole sequence
of updates - and not after each update of the sequence, ifiL2]
dependently. In other words, as a valid document is trans-
formed using a sequence of primitive operations, the doc-
ument can be temporarily invalid but in the end validity is

restored.

(iv) The extension of our method to deal with specialized
DTDs, as well as to treat integrity constraints. Our goal

is to incrementally validate updates over XML documents, 14]
taking into account both schema and key constraints (as
defined in [10]). To this end, we aim at merging the method
presented here with the proposal in [6]. This first extension

is our way to start the investigation of how our validation [15]
process can work when XML Schema (instead of DTD) is

considered.

[1] XML editor products.

Available at
http://www.perferctxml.com/soft.asp?cat=6.

XML query working group. Available at

http://www.w3.0rg/XML/Query.

XUpdate - XML:DB Working draft. Available at
http://www.xmldb.org/xupdate/xupdate-wd.html.

N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.
XML with data values: Typechecking revisited. In
ACM Symposium on Principles of Database System
2001.

B. Bouchou, D. Duarte, M. Halfeld Ferrari Alves, and

D. Laurent. Extending tree automata to model XML

validation under element and attribute constraints. In
ICEIS, 2003.

B. Bouchou, M. Halfeld Ferrari Alves, and M. A. Mu-
sicante. Tree automata to verify key constraints. In
Web and Databases (WebDEgan Diego, CA, USA,
June 2003.

V. P. Braganholo, S. B. Davidson, and C. A. Heuser.
On the updatability of XML views over relational
databases. IWeb and Databases (WebDB3an
Diego, CA, USA, June 2003.

M. G. J. van den Brand, J. Heering, P. Klint, and P. A.
Olivier. Compiling rewrite systems: The ASF+SDF
compiler. ACM, Transactions on Programming Lan-
guages and Systen, 2002.

A. Briggeman-Klein and D. Wood. One-
unambiguous regular languages. Information
and Computation142(2):182—-206, 1998.

P. Buneman, S. Davidson, W. Fan, C. Hara, and W. C.
Tan. Keys for XML. INnWWW10, May 2-52001.

B. Chidlovskii. Using regular tree automata as XML
schemas. IiProc. IEEE Advances in Digital Libraries
ConferenceMay 2000.

G. Cobena, S. Abiteboul, and A. Marian. Detecting
changes in XML documents. IData Engineering
2002.

B. Kane, H. Su, and E. A. Rundensteiner. Consis-
tently updating XML documents using incremental
constraint check queries. IRroceedings of WIDM
02, 2002.

T. Milo, D. Suciu, and V. Vianu. Typechecking for
XML transformers. IPACM Symposium on Principles
of Database Systemages 11-22, 2000.

F. Neven. Automata, logic and XML. I€SL‘02 -
Annual Conference of the European Association for
Computer Science Logic (invited tall2002.

[16] Y. Papakonstantinou and V. Vianu. DTD inference for
views of XML data. INnACM Symposium on Princi-
ples of Database Systepages 3546, 2000.

[17] Y. Papakonstantinou and V. Vianu. Incremental vali-
dation of XML documents. IfProceedings of the In-
ternational Conference on Database Theory (ICPT)
2003.

[18] D. Suciu. On database theory and XMEIGMOD
Record 30(3), 2001.

[19] Kuo-Chung Tai. The tree-to-tree correction problem.
Journal of the Association for Computing Machinery
26(3), 1979.

[20] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. InACM SIGMOD ACM, 2001.

[21] W. Thomas. Automata of infinite objects. In J. Van
Leeuwen, editorHandbook of Theoretical Computer
ScienceElsevier, 1990.

