
Integrating Correction into Incremental Validation

Béatrice Bouchou Ahmed Cheriat Mı́rian Halfeld Ferrari Agata Savary

Universit́e Francois-Rabelais de Tours, 3 place Jean Jaurès, 41000 Blois, France
{beatrice.bouchou, ahmed.cheriat, mirian.halfeld, agata.savary}@univ-tours.fr

Abstract Many data on the Web are XML
documents. An XML document is an unranked la-
belled tree. A schema for XML documents (for
instance a DTD) is the specification of their inter-
nal structure: a schema is a tree grammar, and val-
idating a document w.r.t. a schema is done by a
running of a tree automaton. Given a document,
valid w.r.t. a DTD, and a sequence of updates (in-
sertions, deletions and replacements of subtrees),
we first recall how we incrementally check the va-
lidity of the resulting document. Indeed, updating
a valid document requires re-checking the parts of
the document concerned by the updates. Next, the
core of the paper is a method to correct subtrees for
which the re-validation fails: if the validator fails
at nodep, a correction routine is called in order
to computecorrectionsof the subtree rooted atp,
within a giventhreshold. Then re-validation con-
tinues. When the tree traversal is completed (i.e.
all updates have been considered), the corrections
generated by each call to the routine are merged,
and different correction versions for the resulting
document are proposed to the user. The correction
routine usestree edit distance matrices.

Keywords XML, DTD, updates, incremen-
tal validation, tree-to-tree edit distance, tree-to-
language correction.

1 Introduction

The validation of an XML documentw.r.t schema
constraints consists in testing whether the doc-
ument verifies a set of structural specifications.
Supposing that updates are applied to the docu-

ment, an incremental validator is the one that ver-
ifies whether the updated document complies with
the schema, by validating only the parts of the doc-
ument involved in the updates.

In this paper we associate the validation
process with correction proposals. During the ex-
ecution of our validation method, if a constraint
violation is found, a correction routine is called in
order to propose local solutions capable of allow-
ing the validation process to continue. The correc-
tion is based on the notion of a tree-to-language
edit distance. It relies on a threshold-controlled
depth-first recursive exploration of finite state au-
tomata associated to regular expressions that de-
termine the validity of tree nodes. Some optimiza-
tions come from the incremental aspect of the val-
idation step. The calculation of the tree edit dis-
tance is accompanied by the generation of the cor-
responding update sequences.

1.1 Overview of our method

1.1.1 The incremental validation approach

The validator takes a tree automaton represent-
ing a DTD, an XML document and a sequence of
updates to be performed on the document. The
update sequence, resulting from a pre-processing
over a set of update operations, is ordered by po-
sition, according to the document reading order.
The sequence of updates is treated as one unique
transaction. The incremental validation algorithm
checks whether the updates should be accepted or
not. It proceeds by treating the XML tree in the
document order.

Example 1 Consider the XML tree of Fig. 1, valid
w.r.t. some schema constraints, where update positions

1

c

delete

ǫ

g d

c d

a b

root

b

ce

dd

</c><c> </d>

<g> </g>
<d> </d>

<a>

c </c> <c> </c>

3

3.02.12.0

2.1.12.1.0

210

0.0 0.1

0.1.00.0.0

</e>

</d><d>
</d>

<root> </root>

<d>

insert

<c>
<c>

<d>

<e></c>

1.0

b

Figure 1:XML tree and update operations.

are marked. We suppose the insertion of alocally valid
treeτ1. When an open tag concerning an update po-
sition is reached, the incremental validation procedure
takes the update operation into account (by deleting or
inserting a subtree). Validation tests are performed only
on parent nodesp of update positionsp.i (i.e. when the
close tag ofp is reached). On Fig. 1, a validation test is
performed at position0, due to thedeleteat0.1, and at
positionǫ due to theinsertat1. 2

As detailed in section 3, a tree automaton hav-
ing the same expression power as a DTD is used to
express schema constraints. Thus, the incremental
validation algorithm is a simplified version of the
one proposed in [2, 5].

Each validation step corresponds to checking
whether a wordw is in a given languageL(E),
where w results from the concatenation of the
states associated top’s children andE is a regular
expression defining the structure thatp’s children
should respect. The complexity of the incremen-
tal validation algorithm form updates isO(m.n),
wheren is the maximum number of children of a
node (fan out) in the XML tree.

1.1.2 The correction approach

If the validation test fails at nodep, a correction
routine is called. The goal of this routine is to
correct the invalid subtree rooted atp. The cor-
rection routine assumes thatp’s label l is a cor-
rect one and considers corrections over its descen-
dants. Indeed, to build a new and valid subtree
with root l, the correction algorithm can propose
changes onp’s children. These modifications may
assume changes onp’s grandchildren and so forth,

until reaching the leaves of the subtree. The fol-
lowing example illustrates our correction method.

Example 2 Consider Fig. 1, and assume that the val-
idation test performed at node0 fails. Let us suppose
that the schema constraint associated to nodes labeled
a is given by the regular expressionEa = (cd)∗ | m∗,
and the one associated to those labeled byd is given
by Ed = d∗. Let w = c be the word composed by
the concatenation of the children of position0, after
the deletion. Clearlyw 6∈ L(Ea). The first possible
correction is obtained by reinsertingd at position0.1

with cost 1. Assuming thatm must respect the regu-
lar expressionEm = g, the second correction can be
built by relabeling node at position0.0 by m with cost
1. The third correction consists in deleting the subtree
rooted at position0.0. The total cost of this operation
is 2 since it corresponds to the removal of two nodes
(those at positions0.0 and0.0.0). Within a threshold
error th = 2, all three corrections can be proposed as
possible solutions. 2

To correct an invalid subtree at positionp
whose root label is assumed to bel, (i.e. to obtain
a valid subtree whose root is labeled byl) our algo-
rithm proposes changes that consist in:(i) chang-
ing labels of somep’s descendants;(ii) deleting
subtrees of the subtree rooted atp or (iii) inserting
subtrees in the subtree rooted atp. In other words,
given an invalid subtreeTp, we considerupdate
operationscapable of transformingTp into a valid
subtreeT ′

p. However, we wantT ′

p to beclosetoTp.
This means that a cost is assigned to each update
operation and that the total cost of transformingTp

into T ′

p is limited by a given threshold.

2

Our algorithm produces different local solu-
tions for each invalid subtree. At the end of the re-
validation process, global solutions are proposed
to the user who can choose the best one for his up-
date purposes.

Organization of the paper: In Section 2, we in-
troduce some definitions necessary in the rest of
the paper. In Section 3 we recall the method we
use to incrementally validate a sequence of up-
dates. In Section 4 we explain how to correct
a given XML subtree (the one rooted at a node
where the validation fails), and we present our
correction routine. Section 5 overviews the inte-
gration of corrected trees as subtrees of the given
XML tree. Section 6 concludes the paper.

2 Preliminaries

A tree t over an alphabetΣ is a function t :
dom(t) → Σ ∪ {λ}. Each element fromdom(t)
is a sequence of integers representing a node po-
sition of treet and each node of positionp is la-
beled with the symbolt(p). The root is repre-
sented by the empty sequenceǫ and the empty
tree is defined ast = {(ǫ, λ)}. Let N

∗ be the
set of finite words over the set of natural num-
bers N and λ be a special label. The domain
dom(t) = {p ∈ N

∗ | (p, l) ∈ t} is closed under
prefixes1 and satisfies the following property: for
j ∈ N andu ∈ N

∗; if u.j ∈ dom(t), then for all
0 ≤ i ≤ j, u.i ∈ dom(t). The set ofleavesof t is
defined byleaves(t) = {u ∈ dom(t) | ¬∃i ∈ N

such thatu.i ∈ dom(t)}.
Given a treet we denote bytp the subtree

whose root is at positionp ∈ dom(t), i.e. tp =
{(r, t(r)) | r = p.u andr ∈ dom(t), u ∈ N

∗}.
Note that a subtree is not a tree (its root is not atǫ),
thus we define a treettree

p resulting from subtreetp
as follows:dom(ttree

p) = {s | p.s ∈ dom(t) and
s ∈ N

∗} and for eachs ∈ dom(ttree
p) we have

ttree
p (s) = t(p.s).

A tree may be changed through one or more
update operations. In this paper, an update opera-
tion is seen as a high level operation defined over
simple edit operations. Given a treet, anedit oper-
ationmay be applied to anedit positionp provided

thatp respects some constraints depending on the
type of the edit operation. In order to define edit
and update operations, we use the following sets
of positions:

• The insert frontier of t: frins(t) = {u.i /∈
dom(t) | u ∈ dom(t) ∧i ∈ N ∧[(i = 0) ∨ ((i 6=
0) ∧ u.(i − 1) ∈ dom(t))]}. For an empty treet,
frins(t) = {ǫ}.

• The sets DelPosp , ShiftRightPosp , and
ShiftLeftPosp , defined according to a given po-
sitionp 6= ǫ. Let p = u.i, with p ∈ dom(t), i ∈ N

andu ∈ N
∗. We consider thatn + 1 is the fan-out

of p’s father.

• DelPosp =
⋃n

k=i{w | w ∈ dom(t), w =
u.k.u′ andu′ ∈ N

∗}.

• ShiftRightPosp =
⋃n

k=i{w | w = u.(k +
1).u′, u.k.u′ ∈ dom(t) andu′ ∈ N

∗}.

• ShiftLeftPosp =
⋃n

k=i+1{w | w = u.(k −
1).u′, u.k.u′ ∈ dom(t) andu′ ∈ N

∗}.

DelPosp corresponds to all positions that have to
be shifted left or right, in case of a node deletion
or insertion atp, respectively.ShiftRightPosp is
the set of all target positions resulting from shift-
ing a part of a tree as a result of inserting a new
node atp. ShiftLeftPosp is the set of all target
positions resulting from shifting a part of a tree as
a result of deleting a node atp.

Definition 1 - Edit Operations: Let ed be a tuple
(op, p, l) where: op ∈ {add, remove, relabel};
p = u.i (i ∈ N andu ∈ N

∗) is an edit position
(defined according to the edit operation) andl is a
label inΣ or null (/). Given a treet, an edit oper-
ation is a function that transforms the treet into a
new treet′ (t

ed
−→ t′) iff the following conditions

hold:

1. If ed = (relabel, p, l) with p ∈ (dom(t) \
{ǫ}) thendom(t′) = dom(t) and:
t′(p) = l and for allu′ ∈ (dom(t′) \ {p})
we havet′(u′) = t(u′).

2. If ed = (add, p, l) with p ∈ ((dom(t) ∪
frins(t)) \ {ǫ}) then
dom(t′) = [dom(t) \ DelPosp] ∪
ShiftRightPosp ∪ {p} and:

1The prefix relation inN∗, denoted by� is defined by:u � v iff u.w = v for somew ∈ N
∗. A setdom(t) ⊆ N

∗ is closed
under prefix ifu � v, v ∈ dom(t) impliesu ∈ dom(t).

3

• t′(w) = t(w), ∀w ∈ (dom(t) \DelPosp).
• t′(u.(k + 1).u′) = t(u.k.u′) for each
u.(k+1).u′ ∈ ShiftRightPosp where u′ ∈
N
∗ and i ≤ k ≤ n, with n + 1 being the

fan-out ofp’s father.
• t′(p) = l.

3. If ed = (remove, p, /) with p ∈
(leaves(t)\{ǫ}) thendom(t′) = [dom(t)\
DelPosp] ∪ ShiftLeftPosp and:

• t′(w) = t(w) for eachw ∈ (dom(t) \
DelPosp)
• t′(u.(k − 1).u′) = t(u.k.u′) for each
u.(k − 1).u′ ∈ ShiftLeftPosp whereu′ ∈
N
∗ and(i + 1) ≤ k ≤ n, with n + 1 being

the fan-out ofp’s father.

For edit operations on positionǫ, for all l1 ∈

Σ ∪ {λ}, we define{(ǫ, l1)}
(relabel,ǫ,l2)

−→ {(ǫ, l2)}

and{(ǫ, l1)}
(remove,ǫ,/)

−→ {(ǫ, λ)}. Moreover, we

define{(ǫ, λ)}
(add,ǫ,l)
−→ {(ǫ, l)}. All other edit op-

erations are undefined. 2

Intuitively, Definition 1 states thatrelabel
changes the label associated with a given position
p; removeallows the removal of a leaf andaddal-
lows the insertion of a single node at a position in
dom(t) or in frins, except at the root of a non-
empty tree.

Example 3 Consider the XML tree of Fig. 1
and the edit operationed = (add, 1, a). In
this case the set of positions to be changed is
DelPos1 = {1, 1.0, 2, 2.0, 2.1, 2.1.0, 2.1.1, 3, 3.0}.
The set of ”new” positions isShiftRightPos1 =
{2, 2.0, 3, 3.0, 3.1, 3.1.0, 3.1.1, 4, 4.0}. The domain
dom(T ′) of the resulting treeT ′ obtained af-
ter applying edit operationed = (add, 1, a) is
dom(T ′) = {ǫ, 0, 0.0, 0.1, 0.0.0, 0.1.0, 1, 2, 2.0, 3, 3.0,
3.1, 3.1.0, 3.1.1, 4, 4.0}. The new treeT ′ is shown on
Fig. 2(a). 2

Update operations extend edit operations by
allowing the insertion, the deletion, and the re-
placement of subtrees. Indeed, we consider three
update operations:(insert, p, τ), (delete, p, τ),
and (replace, p, τ), wherep is a position, andτ
is a tree that must be empty for adelete.

Each update operation corresponds to a se-
quence (composition) of edit operations.

• The insertion of a treeτ at positionp in a
treet is performed by adding each node of
τ (one by one). To minimize the number of
shifts, we add nodes ofτ from its root to its
leaves, and from left to right.

• The deletion of the subtree rooted at posi-
tion p in a treet is performed by removing
all its nodes one by one, from leaves to root
and from right to left.

• The replacement of the subtree at position
p in a treet by a treeτ can also be defined
in terms ofadd, remove, andrelabel, but
it requires to introduce correction notions.
Thus, it shall be done in section 4.

The definition below formalizes the link between
update operations and edit operations, for inser-
tions and deletions.

Definition 2 - Update Operations in terms of edit
operations: Let upd be a tuple(op, p, τ) where:
op ∈ {insert, delete}; p is an update position
(defined according toop) andτ is a tree. Given
a non empty treet, an update operation is a par-
tial function that transformst into a new treet′

(t
upd
−→ t′). Each update operation ont is defined

as a sequence (composition) of edit operations, as
follows:

1. (t
(insert,p,τ)

−→ t′), with τ 6= {(ǫ, λ)} andp in
dom(t)∪ frins(t), represents the sequence:

t = t0
(add,p.v1,τ(v1))

−→ t1
(add,p.v2,τ(v2))

−→

t2 · · ·
(add,p.vn,τ(vn))

−→ tn = t′; where
v1, . . . , vn are the positions ofτ reached in
its prefix order traversal and prefixed byp.

If τ = {(ǫ, λ)} then (t
(insert,p,τ)

−→ t).

2. t
(delete,p,τ)

−→ t′, and τ = (ǫ, λ), with p ∈
dom(t) represents the sequence:

t = t0
(remove,p.v1,/)

−→ t1
(remove,p.v2,/)

−→

t2 · · ·
(remove,p.vn,/)

−→ tn = t′; where
p.v1 . . . p.vn are the positions oftp reached
in its inverted postfix (right-to-left). 2

As shown in Definition 2, each update oper-
ation can be translated into a sequence of sim-
ple edit operations. For any edit operationed of
Definition 1, we definecost(ed) = 1 to be the
cost of performinged. Given an update operation

4

2.0

1

aa

e
3.1

d

b

(a)

g d

root

b b

4.0
c

3.0

c

d
0.0.0 0.1.0

0.10.0

dc

0 2 3 4

3.1.0 3.1.1

ǫ

c
2.0

1

aa

e
3.1

d

b

(b)

g d

root

b b

4.0
c

3.0

c

d
0.0.0 0.1.0

0.10.0

dc

0

c d

2 3 4

3.1.0 3.1.1

ǫ

c
1.0 1.1

Figure 2: (a) Tree obtained by applying the edit operationed = (add, 1, a) over Fig. 1. (b) Tree obtained by
applying the update operationinsert(1, τ1) over Fig. 1.

t
(upd)
−→ t′, equivalent to the sequencet = t0

ed1−→

t1
ed2−→ t2 · · ·

edn−→ tn = t′ the cost ofupd is
Cost(upd) = Σn

i=1(cost(edi)). We will show in
section 4 that the cost for a replacement oftp by
t′p corresponds to the minimal distance betweentp
and t′p. We generalize the concept of update op-
eration cost to introduce the cost of a sequence of

update operations. Thus we notet
(updSeq)
−→ t′, to

indicatet = t0
upd1

−→ t1
upd2

−→ t2 · · ·
updn

−→ tn = t′ and
we defineCost(updSeq) = Σn

i=1(cost(updi)).

Example 4 Now, we consider the XML treeT
of Fig. 1 and the update operation(insert, 1, τ1)
with τ1={(ǫ, a), (0, c), (1, d)}. This update oper-
ation is translated into the sequence(add, 1.ǫ, a),
(add, 1.0, c), (add, 1.1, d). The resulting tree is shown
on Fig. 2(b). 2

We can now define the notion of distances be-
tween two trees and between a tree and a tree lan-
guage. These notions are important for our correc-
tion algorithm in order to find valid trees as close
as possible to the invalid one.

Definition 3 - Tree distances: Let t and t′ be
trees. LetS be a set of update sequences each of
which is capable of transformingt into t′. The dis-
tance betweent andt′ is defined bydist(t, t′) =
minSi∈S {Cost(Si)}. The distance between
a tree t and a tree languageL is defined by:
DIST (t,L) = mint′∈L {dist(t, t′)}. 2

3 Incremental validation

In [12] incremental validation of one edit opera-
tion is considered. We are interested in multiple
updates,i.e., we suppose an input file containing
a sequence of update operations. Before actually
replacing a valid XML tree with the one resulting
from the given update sequence, updates must be
validated,i.e., the validity of the parts of the orig-
inal document directly affected by the updates is
checked [6, 3, 2, 5].

A sequence of updates is treated as one unique
transaction,i.e., we assure validity just after con-
sidering the whole sequence of updates - and not
after each update of the sequence. In other words,
as a valid document is transformed by a sequence
of operations, the document can be temporarily in-
valid, but in the end validity is restored.

Let UpdateTable be the relation that contains
updates to be performed on an XML tree. Each tu-
ple inUpdateTable contains the information con-
cerning the update positionp, the update operation
op and the subtreeτ to be inserted. In this paper
we assume thatUpdateTable is the result of a pre-
processing of a sequence of updates required by a
user. In the resultingUpdateTable the following
properties hold:
P1 - An update on a positionp excludes updates
on descendants ofp. In other words, there are,
in UpdateTable no two update positionsp andp′

such thatp � p′.
P2 - If a position p appears more than once in
UpdateTable then one of the operations involving
p can bereplaceor delete, but all others areinsert.

5

P3 - Updates in anUpdateTable are ordered by
position, according to the document order.
P4 - An update position in anUpdateTable al-
ways refers to the original tree.

These properties impose some restrictions to
our context: we assume thatUpdateTable is an
update list resulting from a pre-processing over
a set of updates. This pre-processing establishes
some priorities (as inP1) and enhances the XML
tree traversal in the document order.

It is a well known fact that XML schemas can
be represented by tree automata [7, 10]. In this
paper, we consider a bottom-up unranked tree au-
tomaton.

Definition 4 - Unranked tree automaton: An
unranked tree automaton over an alphabetΣ is
a tupleA = (Q,Σ, Qf , ∆) whereQ is a set of
states,Qf ⊆ Q is a set of final states and∆ is a
set of transition rules of the forma, E → q where
(i) a ∈ Σ; (ii) E is a regular expression overQ and
(iii) q ∈ Q. 2

Example 5 Consider again Example 1: The tree au-
tomatonA representing the schema to be verified is the
following: A = (Q,Σ, Qf ,∆) where,

• Σ = Q = {a, b, c, d, e, f, g,m, root},

• Qf = {root} and

• ∆ = {

root, (ab∗) → root

a, ((cd)∗|m∗) → a

b, (ce∗) → b

c, (g∗f?) → c

d, (d∗) → d

e, (d∗) → e

m, (g) → m

g, () → g

f, () → f

} 2

The execution of a tree automatonA over an
XML tree corresponds to the validation of the
XML documentw.r.t. to the schema constraints
represented byA. A run r of A over an XML tree
T is a tree such that:(i) dom(r) = dom(T) and
(ii) each positionp is associated to a stateqp (only
one state for a DTD). The assignmentr(p) = qp

is done by verifying whether the following con-
straints, imposed top’s children, are respected:

1. T (p) = a.

2. There exists a transition rulea, E → q in A.

3. There is a wordw = q1 . . . qn in L(E) such
that q1, . . . , qn are the states associated to
children ofp.

A run r is successfulif r(ǫ) is associated to
one final state. A treeT is valid if a successful
run exists on it. A tree islocally valid if r(ǫ) is a
state that belongs toA but that is not a final state.
This notion is useful in an update context [6], since
inserted trees must be locally valid.

Our incremental validation algorithm checks
whether the updates should be accepted or not. It
proceeds by treating the XML tree in document
order. The following example illustrates our vali-
dation method.

Example 6 Consider again Example 1, with tree au-
tomatonA of Example 5. The original tree (Fig. 1.a) is
valid w.r.t. A, and subtreeτ1 being inserted islocally
valid w.r.t.A. The incremental validation is performed
as follows:

• When the open tag<d> (at position0.1) is
reached, the deletion operation is taken into ac-
count and the subtree rooted at this position is
skipped.

To verify whether this deletion can be accepted,
we should consider the transition rule inA asso-
ciated to the parent of the update position. This
test is performed when the close tag (posi-
tion 0) is found. Notice that to perform this test
we need to know the state assigned to position
0.0, but we do not need to go below this position
(those nodes, when they exist, are skipped).

• When the open tag (position1) is reached,
the insertion operation is taken into account and
the new, locally valid subtreeτ1 is inserted. This
implies that right-hand side siblings of position
1 must be shifted to the right.

We continue by reading nodes at (original) po-
sitions1, 2 and3. Notice that we can skip all
nodes below positions2 and3, since there is no
update position below these points.

• The close tag</root> activates a validity test
that takes into account the root’s children. 2

6

In [2] we present a complete version of our in-
cremental validation algorithm. During its execu-
tion, the path from the root to thecurrent posi-
tion p defines a borderline between nodes already
treated and those not already considered. For each
current positionp, the validation algorithm builds
a list, calledSAC(p) (State Attribution for the
Children of p): when the open tag at positionp
is reached,SAC(p) is initialized; then the traversal
continues (i.e. subtrees ofp are visited while up-
dates are considered) and each state assigned to a
p child is appended to the listSAC(p). When the
closing tag at positionp is reached,SAC(p) con-
tains the states associated to each one of its chil-
dren.

Our incremental validation algorithm
processes the XML documentà la SAX [1]. While
reading the XML document, the algorithm uses the
information inUpdateTableto decide which nodes
should be treated. When arriving to an open tag
representing a positionp concerned by an update,
different actions are performed according to the
update operation:

- delete: The subtree rooted atp is skipped.
This subtree will not appear in the result and
thus should not be considered in the valida-
tion process.

- replace: The subtree rooted atp is changed
to a new one. A stateqp indicates whether
the locally valid subtreeTp is allowed at this
position. The stateqp is appended to the list
SAC (father(p)) to form the sequence that
shall contain the states associated to each
sibling of p. The (original) subtree rooted
atp is skipped.

- insert: The validation process is similar to
the previous case for each insertion atp,
but the (original) subtree rooted atp is not
skipped since it will appear in the updated
document on the right of the inserted sub-
trees.

While performing validation tests, a new up-
dated XML tree is built (as a modified copy of the
original one). If the incremental validation suc-
ceeds, acommitis performed and this updated ver-
sion is established as the current version. Other-

wise, as detailed in next sections, each time a vali-
dation test fails at nodep, a correction routine can
be called in order to compute local corrections for
subtreeTp.

4 Correcting an invalid tree

Let L be the tree language defined by the tree au-
tomatonA. Let Ll ⊆ L be the tree language de-
fined by transition rules inA that contains all trees
whose root is labeled withl.

Given an XML treeT , we assume that the val-
idation fails at positionp (i.e. T tree

p 6∈ Ll) and we
propose a routine capable of correctingTp. Our
correction routine assumes thatp has the correct
label l and considers changes onp’s descendants.
It takes the languageLl and the treeT tree

p 6∈ Ll

as input. Then our algorithm looks for new trees
T tree′

p ∈ Ll such thatdist(T tree
p , T tree′

p) is mini-

mal. Each new treeT tree′
p can then be expressed

as a new subtreeT ′

p of T .

Example 7 As seen in Example 2 our validation pro-
cedure fails at position0 of the XML tree of Fig. 1 due
to the deletion performed at position0.1. At this point
our correction routine can be activated. To perform
corrections this routine considers the tree languageLa

defined by the tree automaton whose transition rules
are those shown in Example 2 but withQf = {a}.
Clearly, asT tree

0 = {(ǫ, a), (0, c), (0.0, g)}, we have
T tree

0 6∈ La. 2

REMARK: In the rest of this paper, in order to sim-
plify notation, we uset to denote the treeT tree

p and

t′ to denote the treeT tree′
p .

4.1 Definition of correction

Our algorithm extends the ones proposed both
in [13] and in [11]: it uses an edit distance ma-
trix H DIST . Each elementH DIST [i, j] con-
tains the edit distance betweenpartial treest〈i〉
and t′〈j〉. A (partial) treet〈i〉 is composed by a
root and subtreest0, . . . ti (Fig. 3).

The matrix is calculated column per col-
umn. Each new element is deduced from its
three top-left-hand neighbor elements which have
been calculated previously (H DIST [i − 1, j],
H DIST [i, j − 1] andH DIST [i − 1, j − 1]).

7

jj − 1

−2

−1

−2 −1

t′〈j〉

t〈i〉 i − 1 (Ci−1,j−1, UpdSeqSeti−1,j−1)

i (Ci,j−1, UpdSeqSeti,j−1)

(Ci−1,j, UpdSeqSeti−1,j)
(3)

(Ci,j, UpdSeqSeti,j)

(2)

n

(1)

0 n

(Ci,j, UpdSeqSeti,j)

0 mji

t′〈j〉t〈i〉

(a) (b)

ǫǫ

t t′

(Cn,m, UpdSeqSetn,m)

m

Figure 3: (a) Two (partial) treest<i> andt′<j>. (b) Matrix H DIST for treest andt′, and computation of
H DIST [i, j].

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

w

i

j

t(i)

t′(j)

w′ ∈ L(Et(ǫ))

t〈i〉
t′〈j〉

Figure 4: Illustration of the reasoning that guides the computation of edit distances between a treet 6∈ L and a
treet′ ∈ L .

EachH DIST [i, j] stores a cost and a set of up-
date sequences obtained from its neighbors and
from the updates that are necessary to: delete the
subtreeti (Fig. 3(b) edge (3) in the matrix), insert
a new subtreet′j (Fig. 3(b) edge (1)), or replace the
subtreeti by a new subtreet′j (Fig. 3(b) edge (2)).

The computation of eachH DIST [i, j] fol-
lows a ”horizontal-vertical” reasoning illustrated
on Fig. 4. Recall thatt is the tree to be cor-
rected andt′ is a correction candidate we have
to construct so that its root’s children respect the
regular expressionEt(ǫ). We consider the word
w 6∈ L(Et(ǫ)) composed by the concatenation of
the states associated to the children oft’s root.
On the ”horizontal” plan, our correction algorithm
follows the one of [11],i.e. it tries to build new
words w′ ∈ L(Et(ǫ)), as close as possible tow

via a threshold-controlled depth-first exploration
of the Finite State Automaton (FSA) correspond-
ing toL(Et(ǫ)). Each time a transition is followed
a new column is added to the distance matrix. If a
final state is reached and the current bottom-right
hand element of the matrix does not exceed a given
threshold then the current wordw′ is a valid cor-
rection candidate. Otherwise we may either con-
tinue to the next transition (if any element of the
current column does not exceed the threshold) or
backtrack, delete the current column, and explore
a different path.

However, since in our approach each ”charac-
ter” in w is the root of a subtree, in order to ob-
tain w′, we also have to work in the ”vertical” di-
rection. Indeed, eachw′[j] has to yield a subtree
t′j ∈ Lt′(j), with root labelt′j(ǫ) = w′[j] = t′(j).

8

Therefore, while on the ”horizontal” plan of
Fig. 4 we deal with a matrix that associates a word
w to a regular language, on the ”vertical” plan, we
deal with a treeti. In order to correctti, not only
do we have to build a matrix for its root’s sons, but
possibly also for the grandchildren, and so on, as
shown on Fig. 4. To conclude, as formalized in
the following definition, matrixH DIST stores
the edit distance between the invalid treet that we
are trying to correct and its partial correction can-
didates, together with the set of update sequences
necessary to transformt into each of the candi-
dates.

Definition 5 - Edit Distance Matrix: Let t be a
tree and letL (L = Lt(ǫ)) be a tree language
such thatt 6∈ L. An edit distance matrix, denoted
H DISTt,t′ (or justH DIST when no confusion
is possible), stores the edit distance between treet
and a partial treet′ ∈ L.
The matrixH DIST is a two dimensional ma-
trix with indices starting from−2. Each element
H DIST [i, j] = (C, updSeqSet) whereC is a
cost andupdSeqSetis a set of update sequences
having costC, as defined below.

1. Initializations

• For each rowi: H DIST [i,−2] = (∞,⊤) and
for each columnj: H DIST [−2, j] = (∞,⊤),
where⊤ is a theoretical infinite update sequence
of cost∞.

• ElementH DIST [−1,−1] is calculated as fol-
lows :

(0, {[]}) if t(ǫ) = t′(ǫ)
(1, {[(relabel, ǫ, t′(ǫ))]}) if t(ǫ) 6= λ, t′(ǫ) 6= λ

andt(ǫ) 6= t′(ǫ)
(1, {[(add, ǫ, t′(ǫ))]}) if t(ǫ) = λ and

t(ǫ) 6= t′(ǫ)
(1, {[(remove, ǫ, /)]}) if t′(ǫ) = λ and

t(ǫ) 6= t′(ǫ)

2. For allj ≥ 0, and for alli ≥ 0:

• C = min(Creplace, Cinsert, Cdelete) with

− Creplace := H DIST [i − 1, j − 1].C +
dist(ti, t

′
j)

− Cinsert := H DIST [i, j − 1].C +
dist({(ǫ, λ)}, t′j)

− Cdelete := H DIST [i − 1, j].C +
dist(ti, {(ǫ, λ)})

• updSeqSet = {Seq | Seq ∈ Sreplace ∪
Sinsert∪Sdelete whereCost(Seq) = C} where:

− Sreplace is the Cartesian product of(i) the set
of update sequences transformingt〈i − 1〉 into
t′〈j − 1〉 and (ii) the set of update sequences
transformingti into t′j . Formally, Sreplace =

S ′
r × S ′′

r where:

⋆ S ′
r = H DIST [i − 1, j − 1].updSeqSet

⋆ S ′′
r = {Seq′′ | ti

(Seq′′)
−→ t′j and

Cost(Seq′′) = dist(ti, t
′
j)}

− Sinsert is the Cartesian product of(i) the
set of update sequences transformingt〈i〉 into
t′〈j − 1〉 and(ii) the set of update sequences in-
sertingt′j . Formally,Sinsert = S ′

i × S ′′
i where:

⋆ S ′
i = H DIST [i, j − 1].updSeqSet

⋆ S ′′
i = {Seq′′ | {(ǫ, λ)}

(Seq′′)
−→ t′j and

Cost(Seq′′) = dist({(ǫ, λ)}, t′j)}

− Sdelete is the Cartesian product of(i) the set
of update sequences deletingti and (ii) the set
of update sequences transformingt〈i − 1〉 into
t′〈j〉. Formally,Sdelete = S ′′

d × S ′
d where:

⋆ S ′
d = H DIST [i − 1, j].updSeqSet

⋆ S ′′
d = {Seq′′ | ti

(Seq′′)
−→ {(ǫ, λ)} and

Cost(Seq′′) = dist(ti, {(ǫ, λ)})} 2

Notice that the first column ofH DIST
(H DIST [i,−2]) stores very great costs (∞) and
the second one (H DIST [i,−1]) stores the cost
and update sequences needed to delete the sub-
trees t0, . . . ti. In a similar way, the first row
contains very great costs and the second one
(H DIST [−1, j]) contains the cost and update
sequences needed to insert the subtreest′0, . . . t

′

j .
According to [13], the bottom right-hand position
of a matrix H DIST contains the edit distance
betweent and a treet′ ∈ L. In our approach it
is accompanied with all minimal cost update se-
quences transformingt into t′.

Example 8 As shown in Example 7 the validation
procedure fails at position0 and the correction routine
is called forT tree

0 with La andth = 2. The finite-state
automatonFSAE corresponding to the regular expres-
sion of labela is shown on Fig. 5. The routine performs
the following steps.

9

2

c

d

m

1

Figure 5:Finite state automatonFSAE associated to regular expressionEa = (cd)∗|m∗.

Step 1: The treet being considered for correction is
{(ǫ, a), (0, c), (0.0, g)}. The matrixH DIST1 is ini-
tialized as specified in Definition 5. The initial (and
finite) state 1 inFSAE becomes the current state. Col-
umn−2 imposes a matrix border, necessary in the com-
putation. Notice that line−1 represents the root node
a whose children are represented by linesi ≥ 0 of
H DIST1 .
Initial matrix H DIST1:

a
−2 −1

−2 (∞,⊤) (∞,⊤)
a −1 (∞,⊤) (0, {[]})
c 0 (∞,⊤)

As we assume that the root label ofT tree
0 does not

change (it stays asa), elementH DIST1[−1,−1] =
(0, {[]}). To computeH DIST1[0,−1] we con-
sider the three top-left-hand neighbors already calcu-
lated. In our case, neighborsH DIST1[0,−2] and
H DIST1[−1,−2] are discarded since their cost ex-
ceeds the threshold. To computeH DIST1[0,−1]
from H DIST1[−1,−1], we should assume the dele-
tion of the subtree rooted at position0 of T tree

0 . This
deletion is treated by calling recursively the correction
routine (i.e. by starting Step 2). Inputs are: the tree ob-
tained from the subtree rooted at position0 of T tree

0 and
the tree languageLλ containing only the empty tree.
Step 2: We go down in the vertical direction (Fig. 4)
and start the construction of a new matrix. The treet
being considered for correction is{(ǫ, c), (0, g)}. The
matrix H DIST2 is initialized as specified in Defini-
tion 5.
Initial matrix H DIST2:

λ
−2 −1

−2 (∞,⊤) (∞,⊤)
c −1 (∞,⊤) (1, {(remove, ǫ, /)})
g 0 (∞,⊤)

Now H DIST2[−1,−1] = (1, {(remove, ǫ, /)})
because it is calculated by considering the re-
moval of t(ǫ) = c (Definition 5). Similarly to
Step 1, elementH DIST2[0,−1] is computed from

H DIST2[−1,−1] by assuming the deletion of the
subtree{(0, g)} of t. This deletion is treated by call-
ing recursively the correction routine (i.e. by starting
Step 3).
Step 3: We go down in the vertical direction (Fig. 4)
and start the construction of a new matrix. The treet
being considered for correction is{(ǫ, g)}. The matrix
H DIST3 is initialized as specified in Definition 5 and
ast has only one root node, we have
Matrix H DIST3:

λ
−2 −1

−2 (∞,⊤) (∞,⊤)
g −1 (∞,⊤) (1, {(remove, ǫ, /)})

Return to Step 2: Coming back (from the recursive
call) to H DIST2 the result obtained in Step 3 corre-
sponds to the deletion of the node at position0 of the
treet considered in Step 2. The deletion oft’s root is
also considered. Thus, we have:
The bottom right-hand corner ofH DIST2 contains

the result to be sent back to Step 1.
Return to Step 1: Coming back (from the recursive
call) to H DIST1, the result obtained in Step 2 corre-
sponds to the deletion of the subtree rooted at position
0.0 of the treet considered in Step 1. Thus, we have:
The current state inFSAE is a final one and the bot-

tom right-hand corner element ofH DIST1 does not
exceed the threshold 2. Thus, according to [11] and
[13], this element contains a valid correction candidate.
It is equivalent to the deletion of the subtree rooted at
position0.0 of Fig. 1. Notice that, in this case the word
w′ of Fig. 4 is the empty word which belongs toL(Ea).
To find more solutions within the threshold2, we
consider other wordsw′ ∈ L(Ea). We follow an
outgoing transition inFSAE , for instance the tran-
sition labeled withm, and we add a new column in
H DIST1. The correction routine yields the following
matrixH DIST where the proposed solution consists
in relabeling the node at position0.0 of Fig. 1 (from
c to m). As its cost (1) stays within the threshold and
the current state (1) is final, we get another correction
candidate.

10

Matrix H DIST2:

λ
−2 −1

−2 (∞,⊤) (∞,⊤)
c −1 (∞,⊤) (1, {(remove, ǫ, /)})
g 0 (∞,⊤) (2, {(remove, 0, /)(remove, ǫ, /)})

Matrix H DIST1:

a
−2 −1

−2 (∞,⊤) (∞,⊤)
a −1 (∞,⊤) (0, {[]})
c 0 (∞,⊤) (2, {(remove, 0.0.0, /)(remove, 0.0, /)})

a m
−2 −1 0

−2 (∞,⊤) (∞,⊤ (∞,⊤)
a −1 (∞,⊤) (0, {[]}) (2, {(add, 0.0, m)(add, 0.0.0, g)})
c 0 (∞,⊤) (2, {(remove, 0.0.0, /)(remove, 0.0, /)}) (1, {(relabel, 0.0, m)})

Notice that the elementH DIST [−1, 0] is ob-
tained by considering the edge(1) of Fig. 3(b).
Indeed it corresponds to the computation neces-
sary to transform subtree{(0, a)} into subtree
{(0, a), (0.0,m), (0.0.0, g)}. ElementH DIST [0, 0]
stores the minimum computation necessary to trans-
form subtree{(0, a), (0.0, c), (0.0.0, g)} into sub-
tree {(0, a), (0.0,m), (0.0.0, g)}. The choice is
done by considering the three cases explained in
this section: Following edge(1) of Fig. 3(b), our
algorithm inserts subtree{(0.0,m), (0.0.0, g)} af-
ter deleting subtree{(0.0, c), (0.0.0, g)} (as indi-
cated in H DIST [0,−1]). In this case, the cost
is 4. Following edge(2) of Fig. 3(b), our algo-
rithm replaces subtree{(0.0, c), (0.0.0, g)} by subtree
{(0.0,m), (0.0.0, g)}. This is done by relabellingc by
m with cost1. Following edge(3) of Fig. 3(b), our al-
gorithm deletes subtree{(0.0, c), (0.0.0, g)} after in-
serting subtree{(0.0,m), (0.0.0, g)} (as indicated in
H DIST [−1, 0]). In this case, the cost is4. 2

4.2 Correction algorithms

The algorithm whose goal is to compute valid can-
didate trees within a given threshold is calledCor-
rectionRoutine(see Algorithm 1). It receives as in-
put a treeT tree

p issued from an XML treeT whose
validation failed atp. Before callingCorrectSub-

tree, CorrectionRoutinefirst uses procedureintial-
izeMatrix (Algorithm 1, line 1), which initializes
the first two columns ofH DIST according to
Definition 5. It recursively callsCorrectionRou-
tine to compute the cost and the update sequence
necessary to delete each subtreeti. That is because
deleting a subtree is equivalent to correcting itw.r.t
the empty tree.

CorrectionRoutinecontains a recursive procedure,
calledCorrectSubtree(Algorithm 1, line 5), which
receives in its first call the initial states0 of
FSAE , an empty wordw′, the initialized matrix
H DIST , and an empty listLCand. It returns its
solutions inLCand (Algorithm 1, line 6).

In CorrectSubtree(see Algorithm 2), the finite
state automatonFSAE is explored in the depth-
first order. Each time a transition is followed, on
the ”horizontal plan”, the current wordw′ is ex-
tended (Algorithm 2, line 4) and a new column is
added toH DIST (Algorithm 2, line 5). This
means that, on the ”vertical plan”,t′ is also ex-
tended. That allows to check ift′ may still lead to
a candidate remaining within the threshold. If it
does, the path is followed via a recursive call (Al-
gorithm 2, line 7), otherwise the path gets cut off.

11

Algorithm 1 - The main method to correct an invalid subtree
Function CorrectionRoutine(t, p, a, th)
Input:
(i) t: t = T tree

p 6∈ Lt(ǫ)

(ii) p: position indom(T) such thatT tree
p = t

(iii) a: string (root label of a new subtree which will replace the subtreet)
(iv) th: integer corresponding to the error threshold

Output:
(i) LCand: set of tuples(C, updSeqSet) with updSeqSetthe set of update sequences having costC

Local variables:
(i) H DIST : edit distance matrix between two trees
(ii) FSAE : deterministic FSA (FSAE=〈Q, Σ, δ, s0, F 〉)
(iii) w, w′: words of states

1. H DIST := InitializeMatrix(t, p, a, th)

2. w′ := ǫ

3. FSAE := getFSA(a)

4. w := getSons(t, ǫ)
// w is the concatenation of sons labels of the node at position ǫ in t

5. LCand := CorrectSubtree(t, w, w′, th, H DIST , FSAE , s0, LCand)

6. return(LCand) 2

In each case the transition is finally backed off (Al-
gorithm 2, lines 8 and 9) and a new transition out-
going from the same state is tried out. If we arrive
at a final state and the distance fromt′ to t does not
exceed the threshold, thent′ is a valid candidate
that is inserted to the listLCand of all candidates
found so far (Algorithm 2, lines 1 and 2).

FunctionCuted allows to compute the cut-off
edit distance [11] betweent and t′. It checks if
all elements of the current column (Algorithm 2,
line 6) in the matrix exceed the threshold. If they
do, there is no chance fort′ to be a partial correc-
tion within the threshold.

FunctionAddNewColumnis used to compute
all columns but the two first ones which are calcu-
lated by functionInitializeMatrix.

In AddNewColumn(see Algorithm 3), each
matrix element is deduced from its three upper
left-hand neighbors as stated in Definition 5.

In case of insertion, the subtreet′j is not known
in advance although its root’s label is (see input
parametera). Thus its insertion cost and update
sequence is the one needed to create a minimal
valid tree havinga in its root. That is equiva-
lent to correcting an empty treew.r.t La by calling
CorrectionRoutine(Algorithm 3, line 3). As only

the minimal subtrees are considered we choose the
first solution set (Algorithm 3, line 4). Each min-
imal solution must then be prefixed by the posi-
tion where is should be inserted. Remember that
in our model insertions take place left to the sym-
bols at the positions concerned. Thus if we cal-
culate row−1 and rowi, the corresponding inser-
tions appear with positions0 andi+1, respectively
(Algorithm 3, lines 5 and 9).

In case of deletion, the cost and update se-
quence are the ones needed to delete the subtreeti.
That is equivalent to converting this subtree into an
autonomous tree and correcting itw.r.t the empty
languageLλ (Algorithm 3, line 10). Only one
minimal solution is possible (leaf by leaf deletion
from right to left and bottom up, see Algorithm 3,
line 11). This solution must be prefixed by the po-
sition i where the deletion is to take place (Algo-
rithm 3, line 12).

In case of replacement, the cost and update
sequences are the ones needed to correctti (con-
verted into an autonomous tree) with respect toLa,
also by callingCorrectionRoutine(Algorithm 3,
line 13). Only the minimal solutions are consid-
ered thus we take the first solution set and prefix it
by the position of the replacementi (Algorithm 3,

12

Algorithm 2 - Recursive Correction of a Subtree
Procedure CorrectSubtree(t, p, w, w′, th, H DIST , FSAE , s, LCand)

Input
(i) t: t = T tree

p 6∈ Lt(ǫ)

(ii) p: position indom(T) such thatT tree
p = t

(iii) w: invalid word (concatenation of states associated tot’s root’s children)
(iv) th: integer corresponding to the error threshold
(v) FSAE : deterministic FSA forE appearing int(ǫ), E → qt(ǫ)

(vi) s: current state inFSAE

Input/Output
(i) w′: partial valid word (concatenation of states associated toroot’s children int′)
(ii) H DIST : edit distance matrix betweent andt′

(iii) LCand: set of tuples(C, updSeqSet) with updSeqSetthe set of update sequences having costC.

1. if s is a final state inFSAE andH DIST [|w| − 1, |w′| − 1].C ≤ th

// New candidate found within the threshold

2. LCand := SortInsertion(LCand, H DIST [|w| − 1, |w′| − 1])

3. for each transitionδ(s, a′) = s′ in FSAE do

4. w′ = w′.a′

5. H DIST := AddNewColumn(t, p, w, w′, th, H DIST , a′)

6. if (Cuted(w, w′, th, H DIST) ≤ th)

7. CorrectSubtree(t, p, w, w′, th, H DIST , FSAE , s′, LCand)

8. H DIST := DelLastCol(H DIST)

9. w′ := DelLastSymbol(w′) 2

lines 14 and 15).
Once all three hypotheses have been analyzed

the full update sequences are constructed by com-
bining (by a Cartesian product) sequences for
smaller partial trees and those for the most re-
cent subtrees (Algorithm 3, lines 16 through 18).
Finally, we calculate the minimum possible cost
(Algorithm 3, line 19), and we select all the can-
didates having this cost (Algorithm 3, line 20).
These two data (minimum cost and set of minimal
sequences) yield the current elementH[i, j].

Example 9 Consider the XML treeT of Fig.1 af-
ter the first update operation. During the correction
of t = T tree

0 CorrectionRoutinereturnsLCand =

{(1, [(insert, 0.1, d)]), (1, [(relabel, 0.0,m)]),

(2, [(remove, 0.0.0, /), (remove, 0.0, /)])}. The first
element ofLCand (with cost 1) is found by com-
puting matrixH DIST{(ǫ,λ)},{(ǫ,d)}, the second one
(with cost 1) by computingH DISTT tree

0.0
,{(ǫ,m),(0,g)},

and the third one (with cost 2) is found by computing
H DISTT tree

0.0
,{(ǫ,λ)}. 2

Theorem 1 Let L be a local tree language and
t 6∈ L. The algorithm CorrectionRoutine is cor-
rect and complete, i.e. it computes all the candi-
datest′ ∈ L such thatdist(t, t′) = DIST (t,L) if
DIST (t,L) ≤ th. 2

PROOF
In order to argue for the correctness we have to
show that each solutiont′ proposed is valid and
does not exceed the thresholdth, i.e. t′ ∈ L and
dist(t, t′) ≤ th.

Let’s suppose thatt′ is of depth0 (it contains
only one node). That means that the edit distance
matrix betweent andt′ contains only two columns
−2 and−1. Thus, candidatet′ has been added
to the list of solutions (in Algorithm 2 line 2) be-
fore having entered the loop in lines 3 through 9.
This is possible only if, in the finite-state automa-
ton corresponding to the root oft′, the initial state
is also a finite state. Thus,t′ (with no children) is
valid. Moreover, we have acceptedt′ only if the
bottom right-hand element of the matrix does not

13

Algorithm 3 - Add a new column to an edit distance matrix
Function AddNewColumn(t, p, w, w′, th ,H DIST , a)
Input:
(i) t: t = T tree

p 6∈ Lt(ǫ)

(ii) p: position indom(T) such thatT tree
p = t

(iii) w: invalid word (concatenation of states associated tot’s root’s children)
(iv) w′: partial valid word (concatenation of states associated toroot’s children int′)
(v) th: integer corresponding to the error threshold
(vi) H DIST : edit distance matrix betweent andt′

(vii) a ∈ Σ: label corresponding to the current column
Result: H DIST

1. j := width(H DIST)-2

2. H DIST [-2, j] := (+∞, ⊤)

3. LCand := CorrectionRoutine({(ǫ, λ)}, p, a, th)

4. (CInsmin, SSInsmin) := LCand[0]
// the first element of list [(cost1, {Seq1

1 , Seq1
2 , . . . , Seq1

k}), . . . , (costn, {Seqn
1 , Seqn

2 , . . . , Seqn
k })]

5. SS0 := SetAddPrefix(SSInsmin, 0) // we insert at first position ’0’

6. H DIST [-1, j] := (H DIST [-1, j-1].C + CInsmin, {s′|s′′=s×s′, s∈H DIST [-1, j-1].S, s′ ∈ SS0})

7. for each (i=0 to |w|-1) do

8. p′ := concat(p, i)

// 1st case: by insertion
9. CI := H DIST [i, j-1].C+CInsmin; SSins := SetAddPrefix(SSinsmin, i + 1)

// 2nd case: by deletion

10. LCand := CorrectionRoutine(getSubTree(t, i), p′, λ, th)

11. (Cdel, SSdel) := (LCand[0].C, LCand[0].S)

12. SSdel := SetAddPrefix(SSdel, i); CD := H DIST [i − 1, j].C + Cdel
// 3rd case: by replacement

13. LCand := CorrectionRoutine(getSubTree(t, i), p′, a, th)

14. (Crep, SSrep) := (LCand[0].C, LCand[0].S); CR := H DIST [i-1, j-1].C+Crep

15. SSrep := SetAddPrefix(SSrep, i)
//comparison between the 3 cases

16. sI = {s| s = s′ × s′′, s′ ∈ H DIST [i, j-1].S, s′′ ∈ SSins}

17. sD = {s| s = s′′ × s′, s′′ ∈ SSdel, s′ ∈ H DIST [i-1, j].S}

18. sR = {s| s = s′ × s′′, s′ ∈ H DIST [i-1, j-1].S, s′′ ∈ SSrep}

19. H DIST [i, j].C := min{CI , CD, CR}

20. H DIST [i, j].S := {s| s ∈ sx, x ∈ {I, D, R} andCx = H DIST [i, j].C}

21. return(H DIST) 2

exceedth (line 1). According to [13], this element
representsdist(t, t′).

Let’s suppose thatt′ is of depth 1 (consists of
a root and a set of leaves). This candidate (or more
precisely, the set of updates needed to obtain it) is

added to the list of solutions also in Algorithm 2
line 2. At this moment, we have reached a finite
state of the local automaton, which means that the
leaves oft′ respect the regular grammar attributed
to the root oft′. Thust′ is a valid tree. Moreovert′

14

remains within the threshold, similarly to the case
above (depth 0).

Let’s now suppose that any solution of depth
e with 1 ≤ e < d is correct. We will prove that
each solutiont′ of depthd is correct. In order fort′

to be valid, two conditions are sufficient : (i) each
subtree of the root oft′ is valid, (ii) the sons of the
root of t′ respect the regular expression associated
to the root. The first condition is true as supposed
above (they are of depthsei < d). The second
condition is true because we addt′ to the list of
solutions only if we have reached a final state of
the automaton attributed to the root oft′ (Algo-
rithm 2 line 2). Moreover, the second condition of
Algorithm 2 line 1 ensures thatdist(t, t′) ≤ th.
By induction, all solutions generated by our algo-
rithm are correct.

We need now to prove that each candidate min-
imal within the thresholdth is found by our algo-
rithm, i.e. if DIST (t,L) ≤ th anddist(t, t′) =
DIST (t,L) then t′ is found. Let’s suppose
that there exists a treet′ such thatdist(t, t′) =
DIST (t,L) ≤ th, andt′ is not found by our al-
gorithm.

Let’s suppose thatt′ is of depth 0 (contains
only one node). Ift′ is valid than the label of
its root is the finite state of thetree automaton
associated to the languageLt(ǫ). The initial call
to CorrectionRoutine necessarily takes labela
equal to this finite state (because we correctt w.r.t.
La). Thus, t′(ǫ) = a. Moreover, if t′ is valid
then the empty string is recognized by the regu-
lar expression oft′(ǫ). That means that the ini-
tial state of the corresponding finite-state automa-
ton is also its finite state. Thus, while executing
CorrectSubtree must have necessarily generated
t′ in Algorithm 2 lines 1 and 2.

Let’s now suppose that each correct solution
of depthe with 1 ≤ e < d is found. We will
prove that each solutiont′ of depthd is found.
If t′ is valid then its root corresponds to the fi-
nite state of thetree automatonassociated to the
languageLa. Similarly to the case above, a call
to CorrectionRoutine with t′(ǫ) = a must have
been performed. While exploring the finite-state
automaton associated tot′(ǫ), each subtree of
t′ has been found (according to the supposition
above). Since the roots of these subtrees respect
the regular expression oft′(ǫ), our algorithm nec-

essarily finds the ”word” consisting of these roots.
Thus,t′ itself must have been found.

2

It is worth noting thatCorrectionRoutinecal-
culates not only all the set of candidatest′ ∈ L
such thatdist(t, t′) is minimal within a given
threshold (i.e. dist(t, t′) = DIST (t,L) ≤
DIST (t,L) ≤ th) but also some non-minimal
candidates that respect the threshold. The pro-
cedure is however not completew.r.t the set con-
taining all the candidates respecting the threshold.
This is due to two facts.

Firstly, while admitting an insertion we allow
only minimal subtrees having the current symbol
as a root (see Algorithm 3, line 4). In order to
getall, possibly non minimal, solutions within the
threshold we would have to take the whole list
LCand (Algorithm 3, line 3) into account, and not
only its first element.

Secondly, while admitting a replacement we
also retain only the minimal solution at the head
of the list (Algorithm 3, line 14). For a complete
set of candidates the whole list would have to be
preserved instead.

5 Building corrected XML tree
from local corrected subtrees

We have presented in previous section algorithms
capable of computing a corrected tree from a given
invalid tree. In order to integrate correction into
the incremental validation procedure, given an in-
valid updated XML treeT , CorrectionRoutineis
called for each positionp where the incremental
validation process fails. Then, each failure posi-
tionp corresponds to a tuple(p, LCand): these tu-
ples are stored in a structure calledsolStock, man-
aged by the validation process. Before describ-
ing how solStock is managed and finally used
to present corrections to the user, we notice that
this structure also induces some optimizations: in-
deed, it avoids re-correcting the same subtrees in
functionAddNewColumn. To this end, we replace
lines 13 to 15 of Algorithm 3 by the lines described
in Fig. 6.

When correcting a subtreet, Algorithm
AddNewColumn (modified version) avoids cor-
rection over both the subtrees that had already

15

// 3rd case: by replacement

1. If (w[i] = a) //if we maintain the same label

2. If Exists(p′, solStock) //the subtree has been corrected beforehand

3. CR := H[i − 1, j − 1].C + getCost(p′, solStock); SSrep := getSetSeq(p′, solStock)

4. SSrep := SetAddPrefix(SSrep, i)

5. else// the subtree is locally valid

6. CR := H[i − 1, j − 1].C, SSrep := ∅

7. else// if we change the label

8. LCand := CorrectionRoutine(getSubTree(t, i), p′, a, th, solStock)

9. (Crep, SSrep) := (LCand[0].C, LCand[0].S); CR := H DIST [i-1, j-1].C+Crep

10. SSrep := SetAddPrefix(SSrep, i)

Figure 6: The lines which modify lines 13 to 15 of AlgorithmAddNewColumn

2

been corrected and those that are valid (lines 2-4
and 5-6 respectively).

We saw that each call toCorrectionRoutineat
a failure positionp returns its solutions inLCand.
As said before, the incremental validation pro-
cedure (augmented with correction) uses relation
solStock to store solutions: during the valida-
tion process, each failure positionp corresponds
to a tuple(p, LCand) in solStock. At the end of
the validation-correction process, as some redun-
dancies may exist insolStock, before proceed-
ing to the integration of solutions, we eliminate
from solStock the set of tuples{(p, LCand) ∈
solStock | ∃p′, p′ ≺ p ∧ (p′, LCand′) ∈
solStock}. This is because corrections at posi-
tions p′ ≺ p take corrections atp into account.
Indeed, during the correction atp′, if a candidate
tree forTp′ relies on corrections onTp (which be-
longs toTp′) then the listLCand computed forp
is integrated intoLCand′ (for p′).

Once we have insolStock all the ”non redun-
dant” local solutions remaining within the thresh-
old, we combine them into global ones. If the sum
of the costs of local solutions does not exceed the
threshold, then the corresponding global solution
may be presented to the user. For instance, one
minimum cost solution (if any) can be computed
by putting together for each tuple insolStock the

first candidate inLCand. Each global solution in-
volves the correction of the invalid subtreesTp (for
eachp appearing in the non redundantsolStock)
by the application of the corresponding update se-
quence to obtain candidateT ′

p. It is interesting to
remark that the user can choose to compute one
unique solution orn ones, depending on whether
he is interested in any correction with a minimal
distance fromT or in examining several possible
corrections.

Example 10 Consider Example 9. Recall that error
thresholdth = 2. After the first correction at posi-
tion 0 (subtreeτ0 in Fig. 7), SolStock containsS =
(0, LCand1), whereLCand1 represents the list of can-
didates found in Example 9. The second error is found
when the validation test is performed at positionǫ.
More precisely, the wordw = aabbb which is com-
posed by the concatenation of states associated to chil-
dren ofǫ, is not inL(Eroot) whereEroot = ab∗ (see
Fig. 7). During the correction oft = TTree

ǫ (updated
tree),CorrectionRoutinereturnsnull, since all candi-
dates have an edit distance that exceeds the threshold
th = 2.
We consider nowth = 3. As the validation routine fails
at position0 (Fig. 1), CorrectionRoutineof tree t =
TTree

0 returnsLCand′1 (i.e. at position0, SolStock
containsS′ = (0, LCand′1)). In this case,LCand′1
stores the same solutions appearing inLCand1 (ob-
tained with th = 2) plus some extra solutions with
cost3.

16

2.0 4.0

T1

1

T0

T

a a

d

b

c e

d d

c

b

root

ǫ

g

cc

1.0

0.0.0

0.0

0

3.1.0 3.1.1

3.0

3

3.1

4

1.1

b
2

c

Figure 7:XML tree from Fig. 1 after updates.

The validation routine also fails at positionǫ of Fig.1.
In order to propose corrected solutions,Correction-
Routineconsiders the updated version ofT , shown in
Fig. 7. Since the correction of subtreeT1 in Fig. 7 needs
at least two operations, only the cheapest corrections
of T0 can be kept (those with cost1). More precisely,
the CorrectionRoutineof tree t = TTree

ǫ returns the
relation LCand2 below (We recall that the positions
indicated in this relation are those of the updated tree
version illustrated in Fig. 7). Fig. 8 illustrates the cor-
rected trees obtained by applying each one of these
corrections.
LCand2 = {
S1 = (3,[(delete,0.0.0,/),(delete,0.0,/),(delete,0,/)]),
S2 = (3,[(insert,0.1,d),(relabel,1,b),(relabel,1.1,e)]),
S3 = (3,[(insert,0.1,d),(relabel,1,b),(delete,1.1,/)]),
S4 = (3,[(relabel,0.0,m),(relabel,1,b),(relabel,1.1,e)]),
S5 = (3,[(relabel,0.0,m),(relabel,1,b),(delete,1.1,/)])}

As (ǫ, LCand2) is obtained atǫ, we can eliminate
(0, LCand′1), becauseǫ is the prefix of0. Then, in
SolStock we find only(ǫ, LCand2). 2

The global solutions can be presented to the
user in different forms. If we consider that the
correction method applies to relatively small XML
documents visualized in an editor, we can display
entire candidate trees. Consider Example 10, we
can generate fromSolStock the tree candidates
shown in Fig. 8. However, proposing a new cor-
rected update sequence instead seems to be a bet-
ter way of showing the user which operations he
is allowed to do. Notice that the correct update
sequence needed to transform the original valid
XML tree T0 into the valid updated treeT ′ is sim-
ply computed byH DISTT0,T ′ .

6 Conclusion

We have presented a correction routine associated
to an incremental validation process. This routine
introduces a tree-to-grammar correction approach:
given a local tree languageL and an invalid treet,
find valid treest′ whose distance fromt is within
a given thresholdth. This is done by computing
tree edit distance betweent andt′ ∈ L. This al-
gorithm extends our previous work in [8] which
considers an incremental string-to-grammar cor-
rection method (based on [11, 16, 17]) . The tree-
to-grammar correction is based on the tree-to-tree
correction problems examined in [13, 14, 15] for
two given treest andt′. Their edit operations dif-
fer from ours. However, the main difference of our
approach is that we generate severalt′ in a given
tree languageL close tot.

A correction algorithm for XML invalid trees
w.r.t schema constraint is also presented in [4].
The correction is done from scratch and only one
solution is presented (the authors argue that the
distance between the original tree and the cor-
rected one is minimal). Our approach differs from
this one in the following aspects:(i) Our correc-
tion routine finds different solutions within a given
threshold. In particular, all minimal solutions are
computed.(ii) The user can choose the best solu-
tion for his purposes.(iii) Our correction routine
is integrated in an incremental validation process
and can use validation information to fulfill its
task. (iv) We are capable of pointing at the se-
quences of edit operations needed to transform an
invalid tree into a corrected one.

We have obtained good experimental results

17

a

d e

bb

d d

a b

a

e

b

d

a b

d

a

e

b
b

c

b

d d

e c

bb

b

d d

e

b

c

b b

d d

e

b

cc

b

d d

e c

bb

b

2.0

1

1.0 1.1

c

T
S2−−→ T2

T1

T
S4−−→ T4T

S3−−→ T3

T
S1−−→ T1

T
S5−−→ T5

3.1 4.0

3
4

c c

root

ǫ

3.1.0 3.1.1

T5 ǫ

m c

root

0.0 1.0

10

g
0.0.0

T4 ǫ

m c

root

0.0 1.0

10

1.1

g
0.0.0

T3 ǫ

g

c c

root

0.0 0.1 1.0

10

0.0.0

T2 ǫ

g

c c

root

0.0 0.1 1.0

10

1.1

0.0.0

3.0

4.0
3.1

4

c

3

3.1.13.1.0

c
2.0

3.0

3.1

4

c

3

3.1.13.1.0

3.0
4.0

c
2.0 3.1

4

c

3

3.1.13.1.0

3.0 4.0

2.0

4.0
3.1

4

c

3

3.1.0

3.0

3.1.1

c

2.0

2

2

22

2

Figure 8:Correction candidates of XML tree of figure 7 with error threshold th = 3.

for the incremental validation routine [5]. Other
experimental results show a good performance of
our string-to-grammar correction algorithm, de-
spite its high theoretical complexity [8]. The im-
plementation ofCorrectionRoutine(in progress) is
based on [8, 13].

Our CorrectionRoutineis designed to fit the
incremental validation process. We are currently
studying a more general procedure capable of
computingall solutions within a given threshold.
Such kind of procedure might be applied in other
application domains using trees. Complexity of
our method should be evaluatedw.r.t this general
procedure, considering the advantages of avoiding
correction of valid subtrees.

We continue studying the problem of how to
help the user to choose the best correction: we plan
to perform tests with intensive updates on huge
documents in order to determine which procedure
may be more suitable. Among other usability con-

siderations, our proposition should be integrated in
an XML update framework, using for instance Up-
dateX [9]: to this aim, more primitive operations
should be considered. If we consider for example
that inserting one node between a father and some
of its children (i.e. inserting one new level) is an
elementary operation, it means, at string level, to
deal with the string edit operation that can replace
a sequence of letters with only one letter (the in-
serted node, which becomes the father of the node
sequence). This is a problem for which there is no
efficient solution yet.

References

[1] Official website for SAX. Available at
http://www.saxproject.org.

[2] M. A. Abr ão, B. Bouchou, A. Cheriat,
M. Halfeld-Ferrari, D. Laurent, and M. A.
Musicante. Incremental Constraint Validation

18

of XML Documents Under Multiple Updates.
In Submitted to an international journal (under
review), 2005.

[3] M. A. Abr ão, B. Bouchou, M. Halfeld-Ferrari,
D. Laurent, and M. A. Musicante. Incremen-
tal Constraint Checking for XML Documents.
In Database and XML Technologies, Second In-
ternational XML Database Symposium, volume
3186 ofLNCS, pages 112–127. Springer-Verlag,
2004.

[4] U. Boobna and M. de Rougemont. Correctors for
XML Data. In Database and XML Technologies,
Second International XML Database Symposium,
volume 3186 ofLNCS, pages 97–111. Springer-
Verlag, 2004.

[5] B. Bouchou, A. Cheriat, M. Halfeld Ferrari Alves,
D. Laurent, and M. Musicante. Schema Con-
straint Validation in XML: an Incremental Ap-
proach under Multiple Updates. Technical Report
2101, LI, Universit́e de Tours, 2006.

[6] B. Bouchou and M. Halfeld Ferrari Alves. Up-
dates and incremental validation of XML docu-
ments. In Springer, editor,The 9th International
Workshop on Database Programming Languages
(DBPL), number 2921 in LNCS, 2003.

[7] A. Brüggeman-Klein and D. Wood. Regular tree
languages over non-ranked alphabets. unpub-
lished manuscript, 1998.

[8] A. Cheriat, A. Savary, B. Bouchou, and
M. Halfeld Ferrari. Incremental String Correc-
tion: Towards Correction of XML Documents. In
Prague Stringology Conference 2005, 2005.

[9] G. M. Gargi, J. Hammer, and J. Simeon. An
XQuery-based language for processing updates in
XML. In Programming Language Technologies
for XML (PLANX04), 2004.

[10] M. Murata, D. Lee, M. Mani, and K. Kawaguchi.
Taxonomy of XML Schema Language using For-
mal Language Theory. InACM, Transactions on
Internet Technology (TOIT), 2004.

[11] K. Oflazer. Error-tolerant Finite-state Recogni-
tion with Applications to Morphological Analysis
and Spelling Correction.Computational Linguis-
tics, 22(1):73–89, 1996.

[12] Y. Papakonstantinou and V. Vianu. Incremental
validation of XML documents. InProceedings of
the International Conference on Database Theory
(ICDT), 2003.

[13] S. M. Selkow. The Tree-to-Tree Editing Prob-
lem. Information Processing Letters, 6(6):184–
186, 1977.

[14] D. Shasha and J. Tsong-Li Wang. New Tech-
niques for Best-Match Retrieval.Transactions on
Information Systems, 8(2):140–158, 1990.

[15] Kuo-Chung Tai. The tree-to-tree correction prob-
lem. Journal of the Association for Computing
Machinery, 26(3), 1979.

[16] R. A. Wagner. Order-n Correction for Regu-
lar Languages. Communications of the ACM,
17(5):265–268, 1974.

[17] R. A. Wagner and M. J. Fischer. The String-to-
String Correction Problem.Journal of the ACM,
21(1):168–173, 1974.

19

