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Abstract Many data on the Web are XML ment, an incremental validator is the one that ver-
documents. An XML document is an unranked laifies whether the updated document complies with
belled tree. A schema for XML documents (forthe schema, by validating only the parts of the doc-
instance a DTD) is the specification of their interument involved in the updates.
nal structure: a schema is a tree grammar, and val- In this paper we associate the validation
idating a document w.r.t. a schema is done by process with correction proposals. During the ex-
running of a tree automaton. Given a documengcution of our validation method, if a constraint
valid w.r.t. a DTD, and a sequence of updates (inviolation is found, a correction routine is called in
sertions, deletions and replacements of subtreesyder to propose local solutions capable of allow-
we first recall how we incrementally check the vaing the validation process to continue. The correc-
lidity of the resulting document. Indeed, updatingion is based on the notion of a tree-to-language
a valid document requires re-checking the parts @&dit distance. It relies on a threshold-controlled
the document concerned by the updates. Next, tldepth-first recursive exploration of finite state au-
core of the paper is a method to correct subtrees ftomata associated to regular expressions that de-
which the re-validation fails: if the validator fails termine the validity of tree nodes. Some optimiza-
at nodep, a correction routine is called in ordertions come from the incremental aspect of the val-
to computecorrectionsof the subtree rooted @ idation step. The calculation of the tree edit dis-
within a giventhreshold Then re-validation con- tance is accompanied by the generation of the cor-
tinues. When the tree traversal is completed (i.eesponding update sequences.
all updates have been considered), the corrections
generated by each call to the routine are merged,1 Overview of our method
and different correction versions for the resulting ) o
document are proposed to the user. The correctignl-1 The incremental validation approach

routine usesree edit distance matrices The validator takes a tree automaton represent-
Keywords XML, DTD, updates, incremen- ing a DTD, an XML document and a sequence of
tal validation, tree-to-tree edit distance, tree-toupdates to be performed on the document. The
language correction. update sequence, resulting from a pre-processing
over a set of update operations, is ordered by po-
sition, according to the document reading order.
The sequence of updates is treated as one unique
] transaction. The incremental validation algorithm
1 Introduction checks whether the updates should be accepted or

not. It proceeds by treating the XML tree in the
The validation of an XML documem.r.t schema gocument order.

constraints consists in testing whether the doc-
ument verifies a set of structural specificationdExample 1 Consider the XML tree of Fig. 1, valid
Supposing that updates are applied to the docuxr.t. some schema constraints, where update positions
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Figure 1:XML tree and update operations.

are marked. We suppose the insertion &faally valid  until reaching the leaves of the subtree. The fol-
tree;. When an open tag concerning an update pdewing example illustrates our correction method.
sition is reached, the incremental validation procedure

takes the update operation into account (by deleting Cll—_rxample 2 Consider Fig. 1, and assume that the val-

inserting a subtree). Validation tests are performed On%ation test performed at nodifails. Let us suppose

on parent nerﬁof update pos!tlonp.z (|.e_. When the . that the schema constraint associated to nodes labeled
close tag op is reached). On Fig. 1, a validation test is

a is given by the regular expressidf), = (cd)* | m*,
performed at positiof), due to thedeleteat0.1, and at g y g P &, = ( ) | .
. . and the one associated to those labeled! iy given
positione due to thensertat 1.

by E; = d*. Letw = ¢ be the word composed by

As detailed in section 3, a tree automaton ha\/tpe concatenation of the children of position after

ing the same expression power as a DTD is used %e deI_etmq Clequyu 4 L(.E“)' _The first .p.OSS'ble
; . olrrectlon is obtained by reinsertingat position0.1
express schema constraints. Thus, the incrementa .
L . . . o . with cost 1. Assuming that: must respect the regu-
validation algorithm is a simplified version of the _ ;
. lar expressiont,,, = g, the second correction can be
one proposed in [2, 5]. : . i .
o ._built by relabeling node at positian0 by m with cost
Each validation step corresponds to checkin i . . .
. . . The third correction consists in deleting the subtree
whether a wordw is in a given languagé.(F), - : :
; rooted at positior).0. The total cost of this operation
where w results from the concatenation of the . .
states associated g¢s children andE is a regular is 2 since it corresponds to the removal of two nodes
. . . g (those at positions.0 and0.0.0). Within a threshold
expression defining the structure theg children .
. . errorth = 2, all three corrections can be proposed as
should respect. The complexity of the incremen-"_ " .
L . . possible solutions. ]
tal validation algorithm forn updates i) (m.n),
wheren is the maximum number of children of a
node (fan out) in the XML tree. To correct an invalid subtree at positign
whose root label is assumed tohé.e. to obtain

avalid subtree whose root is labeledipgpur algo-
rithm proposes changes that consist(if): chang-
If the validation test fails at nodg, a correction ing labels of some’s descendantsii) deleting
routine is called. The goal of this routine is tosubtrees of the subtree rootegatr (ii7) inserting
correct the invalid subtree rooted @t The cor- subtrees in the subtree rootedhatn other words,
rection routine assumes that label [ is a cor- given an invalid subtred},, we consideupdate
rect one and considers corrections over its desceoperationscapable of transforming, into a valid
dants. Indeed, to build a new and valid subtresubtreel;;. However, we want, to becloseto 7,.
with root /, the correction algorithm can proposeThis means that a cost is assigned to each update
changes op’s children. These modifications mayoperation and that the total cost of transformifg
assume changes ofs grandchildren and so forth, into 7)) is limited by a given threshold.

1.1.2 The correction approach
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Our algorithm produces different local solu-thatp respects some constraints depending on the
tions for each invalid subtree. At the end of the retype of the edit operation. In order to define edit
validation process, global solutions are proposeahd update operations, we use the following sets
to the user who can choose the best one for his upf positions:
date purposes. e The insert frontier of ¢: fri"s(t) = {ui ¢
dom(t) | uw € dom(t) Ni € NA[(i = 0) V ((i #

Organization of the paper: In Section 2, we in-
g9 Au.(i —1) € dom(t))]}. Foran empty tree,

troduce some definitions necessary in the rest
the paper. In Section 3 we recall the method wérms(t) = {e}.

use to incrementally validate a sequence of up-The sets DelPos,, ShiftRightPos,, and
dates. In Section 4 we explain how to correcthiftLeftPos,, defined according to a given po-
a given XML subtree (the one rooted at a nodsitionp # e. Letp = u.i, with p € dom(t),i € N
where the validation fails), and we present ouandu € N*. We consider that + 1 is the fan-out
correction routine. Section 5 overviews the inteef p's father.

gration of corrected trees as subtrees of the given DelPos, = |J}_{w | w € dom(t), w =
XML tree. Section 6 concludes the paper. u.k.a/ andu’ € N*}.

e ShiftRightPos, = Up_{w | w = u.(k +
2 Preliminaries 1)/, u.ka' € dom(t) andu’ € N*}.

o ShiftLeftPos, = Ui {w | w = u.(k —

A tree ¢ over an alphabek is a functiont¢ :
P 1)/, uka € dom(t) andu’ € N*}.

dom(t) — ¥ U {\}. Each element fromom/(t)
is a sequence of integers representing a node PPl Pos
p

sition of treet and each node of positionis 1a- e ghifted left or right, in case of a node deletion
beled with the symbot(p). The root is repre- o jrqertion ap, respectively.Shift Right Pos, is
sented by the empty sequenceand the emply yhe get of all target positions resulting from shift-
tree Is Fj‘?f'”ed as = {(¢,A)}. LetN" be the ing a part of a tree as a result of inserting a new
set of finite words over the set of natural nuM=. e alp. ShiftLeftPos, is the set of all target

bersN and A be a special label. The domainggitions resulting from shifting a part of a tree as
dom(t) = {p € N* | (p,) € t}is closed under  aqyit of deleting a node at
prefixes and satisfies the following property: for

j € Nandu € N*; if u.j € dom(t), then for all - Definition 1 - Edit Operations: Let ed be a tuple
0 <4 <j,ui€ dom(t). The setoleavesoftis (op,p,1) where: op € {add,remove, relabel};
defined byleaves(t) = {u € dom(t) | -3 € N p = w4 (i € Nandu € N*) is an edit position

corresponds to all positions that have to

such thatu.i € dom(t)}. (defined according to the edit operation) dnsl a
Given a treet we denote byt, the subtree label inX or null (/). Given a tree, an edit oper-
whose root is at positiop € dom(t), i.e. t, = ation is a function that transforms the tremto a

{(r,t(r)) | r = puandr € dom(t),u € N*}. new treet’ (t <% ¢') iff the following conditions
Note that a subtree is not a tree (its root is nadat hold:

thus we define attra%m resulting from subtres, 1. If ed = (relabel, p, 1) with p € (dom(t) \
as follows:dom(t,*°) = {s | p.s € dom(t) and thendom () — dom(t) and:

N*} and for eachs € dom(ti¢) we have {e}) thendom(t") = dom({) and:
fmi - P #(p) = L and for allu’ € (dom(t) \ {p})
p(s) =1p.s). we havet’(u') = t(u/).

A tree may be changed through one or more

update operations. In this paper, an update opera- 2. If ed = (add,p,l) with p € ((dom(t) U
tion is seen as a high level operation defined over  fr"s(t)) \ {¢}) then
simple edit operations. Given a treenedit oper- dom(t') = [dom(t) \ DelPos,] U
ationmay be applied to aedit positionp provided ShiftRightPos, U {p} and:

The prefix relation ilN*, denoted by< is defined by < v iff uw.w = v for somew € N*. A setdom(t) C N* is closed
under prefix ifu < v, v € dom(t) impliesu € dom(t).



o t/(w) = t(w), Yw € (dom(t) \ DelPos,). e The insertion of a tree at positionp in a

o t'(u.(k + 1)) = t(u.k.u') for each treet is performed by adding each node of

u.(k+1).u' € ShiftRightPos, whereu' € 7 (one by one). To minimize the number of

N* andi < k < n, with n + 1 being the shifts, we add nodes of from its root to its

fan-out ofp’s father. leaves, and from left to right.

/

«tp) =1 e The deletion of the subtree rooted at posi-
3.1f ed = (remove,p,/) with p € tion p in a treet is performed by removing

(leaves(t)\ {e}) thendom(t') = [dom(t)\ all its nodes one by one, from leaves to root

DelPosp| U ShiftLeftPos, and: and from right to left.

o t/(w) = t(w) for eachw € (dom(t) \ e The replacement of the subtree at position

DelPos),) p in a treet by a treer can also be defined

o t'(u.(k — 1)) = t(u.ku') for each in terms ofadd, remove, andrelabel, but

u.(k — 1)’ € ShiftLeftPos, wherev' € it requires to introduce correction notions.

N*and(i + 1) < k < n, withn + 1 being Thus, it shall be done in section 4.

the fan-out ofp’s father. o ) )
The definition below formalizes the link between

For edit operations on positilo?lf?r all Iy € ypdate operations and edit operations, for inser-
S U (A}, we define{(c, 1)} ""“4) ((¢,1,)}  tions and deletions.

Temove,e,

and{(e, l1)} el {(e;A)}. Moreover, we o inition 2 - Update Operationsin terms of edit

define{(e, \)} (add.el) {(e,1)}. All other edit op- operations: Let upd be a tuple(op, p, 7) where:

erations are undefined. O  op € {insert, delete}; p is an update position
(defined according top) andr is a tree. Given

Intuitively, Definition 1 states thatelabel a non empty tree¢, an update operation is a par-

changes the label associated with a given posmaral functlon that transforms into a new treet’

p; removeallows the removal of a leaf aratidal- (¢ = t'). Each update operation @ris defined

lows the insertion of a single node at a position iras a sequence (composition) of edit operations, as

dom(t) or in fri*s except at the root of a non- follows:

empty tree. 1. ¢ T ), with 7 # {(e, \)} andp in
dom(t) U fri"s(t), represents the sequence:
Example 3 Consider the XML tree of Fig. 1 PR (add.p.v1,7(v1)) ¢ (add,p.vz,7(v2))
. . 0 1
and the edit operatiored = (add,1,a). In (add,p.vn,7(vn)) ..
this case the set of positions to be changed is 2" — tn = t; where
DelPos; = {1,1.0,2,2.0,2.1,2.1.0,2.1.1,3,3.0}. v, ..., v, are the positions of reached in
The set of "new” positions isShiftRightPos; = its prefix order traversal and prefixed py
2,2.0,3,3.0,3.1,3.1.0,3.1.1,4,4.0}. The domain (insert,p,r)
c{iom(T’) of the resulting tree}T/ obtained af- If = {(e,A)} then ¢ -
ter applying edit operatiored = (add,1,a) is delete,p,r .
dom(:[;l’o)yz g{]e,0,0.0,8.1,0.0.0,0.1.0,1,(2,2.0,3,)3.0, 2.1 LTy andr = (e, )), with p €
3.1,3.1.0,3.1.1,4,4.0}. The new trel” is shown on dom(t) represents the sequence:
Flg Z(a) 0O to= 1 (remo@;.vl,/) £ (T‘C’IILOH.’L)Q,/)
ty.o. emreRen/) oy ¢ where
Update operations extend edit operations by p.v1 ... pvy are the positions of, reached
placement of subtrees. Indeed, we consider three
update operations(insert,p,7), (delete,p,T), As shown in Definition 2, each update oper-
and (replace, p, ), wherep is a position, and- ation can be translated into a sequence of sim-
is a tree that must be empty forlalete. ple edit operations. For any edit operatie of
Each update operation corresponds to a s®efinition 1, we definecost(ed) = 1 to be the
guence (composition) of edit operations. cost of performingd. Given an update operation
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Figure 2: (a) Tree obtained by applying the edit operatieh= (add, 1,a) over Fig. 1. (b) Tree obtained by
applying the update operationsert(1, ) over Fig. 1.

¢ e #', equivalent to the sequenee= t, <% 3 Incremental validation

t gy oy — ¢ the cost ofupd is

Cost(upd) = 1 (cost(eds)). We will show in In [12] incremental validation of one edit opera-

section 4 that the cost for a replacement.ob tion is considered. We are interested in multiple
b Py updatesj.e., we suppose an input file containing

t’, corresponds to the minimal distance betwggen .
P, . a sequence of update operations. Before actually
andt,. We generalize the concept of update op-

. . r(?placing a valid XML tree with the one resulting
eration cost to introduce the cost of a sequence 0 .
_ updSeq) rom the given update sequence, updates must be
update operations. Thus we noté —

t',t0  validated,.e, the validity of the parts of the orig-
indicatet = t, updy t updy to--- updy t, = t' and inal document directly affected by the updates is
we defineCost(updSeq) = 7', (cost(upd;)). checked [6, 3, 2, 5].
A sequence of updates is treated as one unique
transactionj.e., we assure validity just after con-
Example 4 Now, we consider the XML treel’ sjdering the whole sequence of updates - and not
of Fig. 1 and the update operatiofinsert,1,71)  a4fter each update of the sequence. In other words,

with 7={(¢,a), (0,¢),(1,d)}.  This update oper- . .
ation is franslated into the sequendedd, 1.e,a), as a valid document is transformed by a sequence

(add,1.0,c¢), (add, 1.1,d). The resulting tree is shown of Qperatigns, the docu.m.ent. can be temporarily in-
on Fig. 2(b). o valid, but in the end validity is restored.
Let UpdateT able be the relation that contains
updates to be performed on an XML tree. Each tu-
We can now define the notion of distances beple in U/ pdateTable contains the information con-
tween two trees and between a tree and a tree |3¢brning the upda‘[e posmqn the update Operation
guage. These notions are important for our corregy, and the subtree to beinserted In this paper
tion algorithm in order to find valid trees as closeye assume thdf pdateTable is the result of a pre-
as possible to the invalid one. processing of a sequence of updates required by a
user. In the resulting/ pdateT able the following
o ) properties hold:
Definition 3 - Tree distances: Let ¢ and ' be p1_ Ap ypdate on a positiop excludes updates

trees. LetS be a set of update sequences each gf, gescendants of. In other words, there are,
which is capable of transformingnto . The dis- ;, UpdateTable no two update positions andy’

tance between andt’ is defined bydist(t,t') = sych thap < p'.

ming s {Cost(S;)}. The distance betwegn P2 - If a position p appears more than once in
a tree¢ and a tree language s defined by: 17),44teTable then one of the operations involving
DIST(t, L) = min, o {dist(t,t)}. p can bereplaceor delete but all others arensert



P3 - Updates in arUpdateT able are ordered by 1. T'(p) = a.
position, according to the document order.
P4 - An update position in at/pdateT able al- 2. There exists a transition rule £ — ¢ in A.
ways refers to the original tree.
These properties impose some restrictions t0 3. There is awordy = ¢ . .. g, in L(E) such

our context: we assume th@tpdateT able is an thatqi,...,q, are the states associated to
update list resulting from a pre-processing over children ofp.

a set of updates. This pre-processing establishes
some priorities (as i?1) and enhances the XML
tree traversal in the document order. , . s
. one final state. A treq is valid if a successful
It is a well known fact that XML schemas can . . . L .
run exists on it. A tree itocally valid if (¢) is a

be represented by tree automata [7, 10]. In this : .
P ol [ | State that belongs td but that is not a final state.
paper, we consider a bottom-up unranked tree

a]'ﬂ_his notion is useful in an update context [6], since

tomaton. . .
inserted trees must be locally valid.

Definition 4 - Unranked tree automatort An Our incremental validation algorithm checks
unranked tree automaton over an alphabeis whether the updates should be accepted or not. It
atupled = (Q,%,Qr,A) where@ is a set of proceeds by treating the XML tree in document
states )y C Q is a set of final states anfl is a order. The following example illustrates our vali-
set of transition rules of the form £ — ¢ where dation method.
(i) a € 3; (ii) F is aregular expression overand

(i) ¢ € Q. Example 6 Consider again Example 1, with tree au-

Example 5 Consider again Example 1: The tree aufomatonA of Example 5. The original tree (Fig. 1.a) is

tomatonA representing the schema to be verified is th¥alid w.r.t. A, and subtree; being inserted isocally
following: A = (Q, %, Q, A) where, valid w.r.t. A. The incremental validation is performed

A run r is successfulf r(e) is associated to

e X =Q={a,b,cde,f gm,root}, as follows:

e Qf ={root} and e When the open tag<d> (at position0.1) is

o« A={ reached, the deletion operation is taken into ac-

count and the subtree rooted at this position is

root, (ab*) — root skipped.
@ ((C*d) m*) = a To verify whether this deletion can be accepted,
b, (ce”) — b we should consider the transition ruleinasso-
e, (g°f?) — ¢ ciated to the parent of the update position. This
d,(d*) —d test is performed when the close tagp> (posi-
e,(d*) — e tion 0) is found. Notice that to perform this test

we need to know the state assigned to position
0.0, but we do not need to go below this position
(those nodes, when they exist, are skipped).

m, (g) = m

9.()— g

LO—f
- e When the open tag:b> (position1) is reached,

} the insertion operation is taken into account and

the new, locally valid subtreg is inserted. This

implies that right-hand side siblings of position

1 must be shifted to the right.

The execution of a tree automatohover an
XML tree corresponds to the validation of the
XML documentw.r.t. to the schema constraints
represented byl. A runr of A over an XML tree We continue by reading nodes at (original) po-
T is a tree such thatti) dom(r) = dom(T) and sitions 1, 2 and 3._ _Not|ce that we can sk_|p all
(1) each positiom is associated to a stajg (only Egggtseb;cl)g\{; c?: E'ggft?]r;dsi’ ;cl)ri]rc]:;there IS ho
one state for a DTD). The assignmerip) = g,

is done by verifying whether the following con- ¢ The close tag</root> activates a validity test
straints, imposed tp’s children, are respected: that takes into account the root’s children. O



In [2] we present a complete version of our in-wise, as detailed in next sections, each time a vali-
cremental validation algorithm. During its execu-dation test fails at nodg, a correction routine can
tion, the path from the root to theurrent posi- be called in order to compute local corrections for
tion p defines a borderline between nodes alreadsubtreer),.
treated and those not already considered. For each
current positiorp, the validation algorithm builds ) ) )

a list, called SAQp) (State Attribution for the 4 Correcting an invalid tree

Children of p): when the open tag at positign _

is reachedSAQ(p) is initialized; then the traversal L€t £ be the tree language defined by the tree au-
continues i(e. subtrees of are visited while up- OmatonA. Let£; ¢ £ be the tree language de-
dates are considered) and each state assigned f§d Py transition rules id that contains all trees

p child is appended to the liSAGp). When the Whose rootis labeled with

closing tag at positiop is reachedSAQp) con-  Given an XML treeT’, we assume that the val-
tains the states associated to each one of its chiflation fails at positionp (i.e. 7,"* ¢ £;) and we
dren. propose a routine capable of correctifig Our

Our incremental validation algorithm correction routine assumes thahas the correct

processes the XML documeiata SAX [1]. While labell and considers changes pis descendants.
reading the XML document, the algorithm uses th& t@kes the languagé; and the treel e ¢ L;
information inUpdateTabldo decide which nodes &S input. Then our a'go”thm looks for new trees
should be treated. When arriving to an open taaﬁm € L such thatdzslt(T;Te‘f, T;7°¢) is mini-
representing a positiop concerned by an update,mal. Each new tre@,** can then be expressed
different actions are performed according to th@s @ new subtreg) of 7.

update operation:
Example 7 As seen in Example 2 our validation pro-

- delete The subtree rooted atis skipped. cedure fails at positiofi of the XML tree of Fig. 1 due

This subtree will not appear in the result ané0 the delet!on perfqrmed at positionl. At this point
h hould b idered in th lid our correction routine can be activated. To perform
thus should not be considered In the validag,ections this routine considers the tree languége

tion process. defined by the tree automaton whose transition rules

_ are those shown in Example 2 but wih; = {a}.
- replace: The subtree rooted atis changed cjearly, asTie = {(e,a), (0,c), (0.0,g)}, we have
to a new one. A state, indicates whether Ttree ¢ £ |

the locally valid subtreé, is allowed at this
position. The state, is appended to the list _ . . .
SAC(father(p)) to form the sequence that REMARK: .In the rest of this paper, in oroler to sim-
shall contain the states associated to ea ify notation, we use toldenote the treg,"** and
sibling of p. The (original) subtree rooted t to denote the tre@," e

atp is skipped.

. o L 4.1 Definition of correction
- insert: The validation process is similar to

the previous case for each insertionyat Our algorithm extends the ones proposed both

but the (original) subtree rooted atis not in [13] and in [11]: it uses an edit distance ma-

skipped since it will appear in the updatedrix H_DIST. Each element! _DI1ST1i, j] con-

document on the right of the inserted subtains the edit distance betwegartial treest (i)

trees. andt'(j). A (partial) treet(i) is composed by a
root and subtreefy, . . . t; (Fig. 3).

While performing validation tests, a new up- The matrix is calculated column per col-
dated XML tree is built (as a modified copy of theumn. Each new element is deduced from its
original one). If the incremental validation suc-three top-left-hand neighbor elements which have
ceeds, @ommitis performed and this updated ver-been calculated previouslyH(DIST[i — 1, j],
sion is established as the current version. OtheH _DIST[i,j — 1] and H_DIST[i — 1,j — 1]).
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Figure 3:(a) Two (partial) trees<i> andt' <j>. (b) Matrix H_DIST for treest andt’, and computation of
H_DISTi, j].

w' € L(Ey))

L7 L7

Figure 4:lllustration of the reasoning that guides the computatibadit distances between a treez £ and a
treet’ € L.

EachH _DIST]i, j] stores a cost and a set of up-via a threshold-controlled depth-first exploration
date sequences obtained from its neighbors amd the Finite State Automaton (FSA) correspond-
from the updates that are necessary to: delete they to L(E,(,)). Each time a transition is followed
subtree; (Fig. 3(b) edgeg) in the matrix), insert a new column is added to the distance matrix. If a
anew subtreeg- (Fig. 3(b) edgeX)), or replace the final state is reached and the current bottom-right
subtreet; by a new subtreeg. (Fig. 3(b) edge®)). hand element of the matrix does not exceed a given
threshold then the current woid is a valid cor-
The computation of eaclil _DISTTi, j] fol-  rection candidate. Otherwise we may either con-
lows a "horizontal-vertical” reasoning illustratedtinue to the next transition (if any element of the
on Fig. 4. Recall that is the tree to be cor- current column does not exceed the threshold) or

rected andt’ is a correction candidate we havepacktrack, delete the current column, and explore
to construct so that its root's children respect thg different path.

regular expressiort;). We consider the word

w ¢ L(Ey.)) composed by the concatenation of However, since in our approach each "charac-
the states associated to the childrent'sfroot. ter” in w is the root of a subtree, in order to ob-
On the "horizontal” plan, our correction algorithmtain w’, we also have to work in the "vertical” di-
follows the one of [11],.e. it tries to build new rection. Indeed, each’[;j] has to yield a subtree
wordsw' € L(Eyq)), as close as possible to  t; € Ly (;), with root labelt’; (¢) = w'[j] =t ().



Therefore, while on the "horizontal” plan of
Fig. 4 we deal with a matrix that associates a word
w to a regular language, on the "vertical” plan, we
deal with a treg;. In order to correct;, not only
do we have to build a matrix for its root’s sons, but
possibly also for the grandchildren, and so on, as
shown on Fig. 4. To conclude, as formalized in
the following definition, matrixd _DI1ST stores
the edit distance between the invalid trebat we
are trying to correct and its partial correction can-
didates, together with the set of update sequences
necessary to transforminto each of the candi-
dates.

Definition 5 - Edit Distance Matrix: Lett¢ be a
tree and letl (£ = L)) be a tree language
such that ¢ £. An edit distance matrix, denoted
H_DIST,  (or justd_DIST when no confusion

is possible), stores the edit distance betweenttree
and a partial tre¢/ € L.

The matrix H_DIST is a two dimensional ma-
trix with indices starting from-2. Each element
H_DISTYi, j| = (C,updSeqSet) whereC'is a
cost andupdSeqSeis a set of update sequences
having costC, as defined below.

1. Initializations

e Foreachrow: H_DIST[i,—2] = (o0, T) and
for each columny: H_DIST[-2,j] = (o0, T),
whereT is a theoretical infinite update sequence
of costeo.

e Elementd_DIST[-1,—1]is calculated as fol-

e updSeqSet =

—  Clelete =

dist(t;, {(e,\)})

H_DIST[i — 1,j1.C +

{Seq | Seq € Sreplace U
Sinsert USderete WhereCos{(Seq) = C'} where:

— Srepiace IS the Cartesian product ¢ the set
of update sequences transformitig — 1) into
t'(j — 1) and (i) the set of update sequences
transformingt; into t;-. Formally, Syepiace =
S!. x 8! where:
xS = H_DIST[i — 1,5 — 1].updSeqSet

« S = {Seq” | t ‘&4

Cost(Seq") = dist(t;,t})}

!
v and

— Sinsert 1S the Cartesian product df) the
set of update sequences transformiifg into
t'(j — 1) and(ii) the set of update sequences in-
sertingt),. Formally,Sinscrt = S’ x 8 where:

xS = H_DISTi,j — 1].updSeqSet
xS = {Seq” | {(e N} ‘T
Cost(Seq") = dist({(e, \)},1})}

!
t and

— Sgelete is the Cartesian product @i the set
of update sequences deletihgand (ii) the set
of update sequences transformitig — 1) into
t'(5). Formally,Sgeiere = S x S, where:

*x 8l = H_DIST[i — 1, j].updSeqSet
w8 = {Seq" |t D {(e,N) and
Cost(Seq") = dist(t;, {(e,\)})} O

Notice that the first column ofH _DIST
(H_DISTYi, —2]) stores very great costsd) and
the second oneH{_DIST(i, —1]) stores the cost

and update sequences needed to delete the sub-

lows :

0,40} if t(e) = t'(e)

(1, {[(relabel, e, t'(e))]})
andt(e) # t/(e)

(1,{[(add, e, t'(€))]}) if ¢(¢) =Xand
o) # '(6)

(1, {[(remove, ¢, /)]}) if t’(e) = A and
t(e) #t'(e)

: treesty,...t;.
if t(e) # A t'(€) # A contains very great costs and the second one
(H_DIST[-1,7]) contains the cost and update
sequences needed to insert the subttges ..
According to [13], the bottom right-hand position
of a matrix H_DIST contains the edit distance

In a similar way, the first row

betweent and a tree’ € L. In our approach it

2. Forallj > 0, and for all; > 0:

is accompanied with all minimal cost update se-

guences transforminginto ¢'.

° C = min(creplacm Cinsert7 Cdelete) Wlth

Example 8 As shown in Example 7 the validation

replace = H,DIST[Z - 17] - I]C +
dist(t;, t})

procedure fails at positiof and the correction routine
is called forZ¢ e with £, andth = 2. The finite-state

automatont'S A corresponding to the regular expres-

H_DIST[i,j — 1.C +

- Cinsert =

dist({(e,\)}, 1))

sion of label: is shown on Fig. 5. The routine performs
the following steps.



d

m

Figure 5:Finite state automatoflS A associated to regular expressibp = (cd)*|m*.

Step 1: The treet being considered for correction is H_DIST»[—1,—1] by assuming the deletion of the
{(e,a),(0,¢),(0.0,9)}. The matrix H_DIST; is ini- subtree{(0,g)} of t. This deletion is treated by call-
tialized as specified in Definition 5. The initial (anding recursively the correction routinéd. by starting
finite) state 1 inf’S A becomes the current state. Col-Step 3).

umn—2 imposes a matrix border, necessary in the contep 3: We go down in the vertical direction (Fig. 4)
putation. Notice that line-1 represents the root node and start the construction of a new matrix. The ttee
a whose children are represented by line>> 0 of being considered for correction {$e, g)}. The matrix

H_DIST; . H_DIST; is initialized as specified in Definition 5 and
Initial matrix H_DI1STy: ast has only one root node, we have
Matrix H_DIST5:
a
—2 ~1 A
=2 | (00, T) (00, T) -2 -1
a —1| (00, T) (0,{[I}) —2 [0, TV (o0, T)
¢ 0| (00, T) g —1] (0o, T) (1,{(remove,¢,/)})

As we assume that the root label @f"¢ does not
change (it stays ag), elementd _DIST;[-1,—1] =
(0,{[]}). To compute H_DIST;[0,—1] we con-
sider the three top-left-hand neighbors already calc
lated. In our case, neighboid_DIST;[0,—2] and
H_DIST;[—1,—2] are discarded since their cost ex-
ceeds the threshold. To computé_DIST [0, —1]

from H_DIST,[—1,—1], we should assume the dele- i . :
. I, roe . Return to Step 1: Coming back (from the recursive
tion of the subtree rooted at positionof 7;;"*¢. This . :

. . . . call) to H_DI1S1Ty, the result obtained in Step 2 corre-
deletion is treated by calling recursively the correction

routine {.e. by starting Step 2). Inputs are: the tree c)b_sponds to the deletion of the subtree rooted at position

tained from the subtree rooted at positiof T:"*¢ and 0.0 of the treet considered in Step 1. Thus, we have:

the tree languagé, containing only the empty tree The current state ih’'SAg is a final one and the bot-
Step 2: We go down in the vertical direction (Fig. 4) tom right-hand corner element éf_DIST; does not

and start the construction of a new matrix. The tree exceed the threshold 2. Thus, according to [11] and
being considered for correction {ge, ¢), (0 g')} The [13], this element contains a valid correction candidate.

matrix H_DI1ST, is initialized as specified in Defini- I |s_e_qU|vaIent to the de_letlon of_the _subtree rooted at
tion 5. position0.0 of Fig. 1. Notice that, in this case the word

Initial matrix H_DIST: w’ of Fig. 4 is the empty word which belongsid E,, ).
- = To find more solutions within the thresholl we

Return to Step 2: Coming back (from the recursive
call) to H_DIST, the result obtained in Step 3 corre-
sponds to the deletion of the node at positibof the
Yeet considered in Step 2. The deletion# root is
also considered. Thus, we have:

The bottom right-hand corner df _D1S57T; contains
the result to be sent back to Step 1.

A consider other wordsw’ € L(E,). We follow an
_9 1 outgoing transition inF’"SAg, for instance the tran-
—2 [ (o0, T) (o0, T) sition labeled withm, a_md we _add a new column_ in
¢ =1 (00, T) (1, {(remove,c, /)}) H_DIST,. The correction routine yields the following
g 0| (c0,T) matrix H_DI1ST where the proposed solution consists
in relabeling the node at positiah0 of Fig. 1 (from
Now H_DIST,[-1,—-1] = (1,{(remove,e,/)}) ctom). As its cost (1) stays within the threshold and
because it is calculated by considering the rethe current state (1) is final, we get another correction
moval of t(¢) = ¢ (Definition 5). Similarly to candidate.

Step 1, elemenfi_DIST5[0,—1] is computed from

10



Matrix H_DIST5:

A
—2 —1
—2 (OOvT) ( 0,
¢ —11|(c0,T) (1,{(7“emove e/}
g 0 | (00, T) (2,{(remove,0,/)(remove,e,/)})

Matrix H_DIST):

P
=2 | (00, T) (00, T)
a =11 (o0, T) (0,{[]})
¢ 0| (00, T) (2,{(remove,0.0.0,/)(remove,0.0,/)})
) ill .
—2 [ (00, T) (00, T (oo7
=1 (00, T) (0,{]}) (2,{(add,0.0,m)(add,0.0.0,9)})
¢ 0] (00, T) (2,{(remove,0.0.0,/)(remove,0.0,/)}) (1,{(relabel,0.0,m)})

Notice that the element/ _DIST[-1,0] is ob- tree CorrectionRoutindirst uses proceduratial-
tained by considering the edge(l) of Fig. 3(b)izeMatrix (Algorithm 1, line 1), which initializes
Indeed it corresponds to the computation neceghe first two columns ofd _DIST according to
Sa(;y toO (t)ransforomo OSUb"eeE{I(O @ }tH'”[t;’ISS;‘gtrge Definition 5. It recursively callorrectionRou-
{(0,a), (0.0,m), (0.0.0,9)}. Elemen 9.9 4ine to compute the cost and the update sequence

stores the minimum computation necessary to trans-
form subtree {(0,a), (0.0,¢),(0.0.0,¢)} into sub- Necessaryto delete each subtredhatis because

tree {(0,a),(0.0,m),(0.0.0,9)}.  The choice is deleting a subtree is equivalent to correcting.itt
done by considering the three cases explained ile empty tree.

this section: Following edge(1) of Fig. 3(b), ourC tionRouti tai . d
algorithm inserts subtred(0.0,m), (0.0.0,9)} af- orrectionRoutineontains a recursive procedure,

ter deleting subtree{(0.0,¢), (0.0.0,¢)} (as indi- calledCorrectSubtregAlgorithm 1, line 5), which
cated in H_DIST[0,—1]). In this case, the cost receives in its first call the initial state, of
is 4. Following edge(2) of Fig. 3(b), our algo- F'SAg, an empty wordw’, the initialized matrix
rithm replaces subtref(0.0, ¢), (0.0.0,g)} by subtree [ _DIST, and an empty lisECand. It returns its

{(0.0,m), (0.0.0,9)}. This is done by relabellingby  solutions inLCand (Algorithm 1, line 6).
m with cost1. Following edge(3) of Fig. 3(b), our al-

gorithm deletes subtreg(0.0, ¢), (0.0.0,¢)} after in- In CorrectSubtregsee Algorithm 2), the finite
serting subtre€((0.0,m), (0.0.0,¢)} (as indicated in state automato’SAg is explored in the depth-
H_DIST[-1,0]). In this case, the cost i O first order. Each time a transition is followed, on

the "horizontal plan”, the current word’ is ex-
tended (Algorithm 2, line 4) and a new column is
added toH _DIST (Algorithm 2, line 5). This
The algorithm whose goal is to compute valid canmeans that, on the "vertical plan?, is also ex-
didate trees within a given threshold is callédr- tended. That allows to checkif may still lead to
rectionRoutingsee Algorithm 1). It receives as in- a candidate remaining within the threshold. If it
put a treer;ree issued from an XML tre€ whose does, the path is followed via a recursive call (Al-
validation failed atfp. Before callingCorrectSub- gorithm 2, line 7), otherwise the path gets cut off.

4.2 Correction algorithms
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Algorithm 1 - The main method to correct an invalid subtree
Function CorrectionRoutine( p, a, th)
Input:
(i) t:t= T;Tee & Et(e)
(#4) p: position indom(T') such thafl}}"¢ =t
(#i7) a: string (oot label of a new subtree which will replace the subttee
(#v) th: integer corresponding to the error threshold
Output:
(i) LCand: set of tuplegC, updSeqSet) with updSegSehe set of update sequences having €ost
Local variables:
(i) H_DIST: edit distance matrix between two trees
(i1) FSAg: deterministic FSAFSAE=(Q, %, 0, so, F'))
(#i7) w, w’: words of states

H_DIST := InitializeM atrix(t, p, a, th)

w i=c¢

FSAp := getFSA(a)

P 0 Ddp P

w = getSons(t,e)
/I w is the concatenation of sons labels of the node at position e in ¢

LCand := CorrectSubtree(t, w, w', th, H_DIST, FSAg, so, LCand)
6. return(LCand) O

o

In each case the transition is finally backed off (Althe minimal subtrees are considered we choose the
gorithm 2, lines 8 and 9) and a new transition outfirst solution set (Algorithm 3, line 4). Each min-
going from the same state is tried out. If we arrivemal solution must then be prefixed by the posi-
at a final state and the distance fréno ¢ does not tion where is should be inserted. Remember that
exceed the threshold, thehis a valid candidate in our model insertions take place left to the sym-
that is inserted to the listC'and of all candidates bols at the positions concerned. Thus if we cal-
found so far (Algorithm 2, lines 1 and 2). culate row—1 and row:, the corresponding inser-

FunctionCuted allows to compute the cut-off tions appear with positiortsandi+1, respectively
edit distance [11] betweehandt'. It checks if (Algorithm 3, lines 5 and 9).
all elements of the current column (Algorithm 2,  In case of deletion, the cost and update se-
line 6) in the matrix exceed the threshold. If theyquence are the ones needed to delete the subtree
do, there is no chance fotto be a partial correc- That is equivalent to converting this subtree into an
tion within the threshold. autonomous tree and correctingnir.t the empty

FunctionAddNewColumiis used to compute languagel, (Algorithm 3, line 10). Only one
all columns but the two first ones which are calcuminimal solution is possible (leaf by leaf deletion
lated by functiorinitializeMatrix. from right to left and bottom up, see Algorithm 3,

In AddNewColumn(see Algorithm 3), each line 11). This solution must be prefixed by the po-
matrix element is deduced from its three uppesitioni where the deletion is to take place (Algo-
left-hand neighbors as stated in Definition 5. rithm 3, line 12).

In case of insertion, the subtre‘]eis not known In case of replacement, the cost and update
in advance although its root's label is (see inpusequences are the ones needed to cotydcbn-
parameter). Thus its insertion cost and updateverted into an autonomous tree) with resped o
sequence is the one needed to create a mininabo by callingCorrectionRouting(Algorithm 3,
valid tree havinga in its root. That is equiva- line 13). Only the minimal solutions are consid-
lent to correcting an empty trerer.t £, by calling ered thus we take the first solution set and prefix it
CorrectionRoutingAlgorithm 3, line 3). As only by the position of the replacemenfAlgorithm 3,

12



Algorithm 2 - Recursive Correction of a Subtree
Procedure CorrectSubtreg(p, w, w’, th, H_ DIST, FSAg, s, LCand)
Input
(i) t:t= T;Tee & Lie)
(#4) p: position indom(T') such thafl ;"¢ =t
(#i7) w: invalid word (concatenation of states associatetstooot’s children)
(iv) th: integer corresponding to the error threshold
(v) FSAg: deterministic FSA foiy appearing irt(e), £ — qy(¢)
(vi) s: current state iFSAg
Input/Output
(7) w': partial valid word (concatenation of states associatedats children int’)
(i) H_DIST: edit distance matrix betweerandt’
(#i1) LCand: set of tuplegC, updSeqSet) with updSeqSehe set of update sequences having €ast

1. if sis afinal state iFFSAg andH_DIST[|w| — 1, |w'| — 1].C < th

/I New candidate found within the threshold
LCand := SortInsertion(LCand, H_DIST[|Jw| — 1, |w'| — 1])

. for eachtransitiond(s,a’) = s’ in FSAg do
w =w'.d
H_DIST := AddNewColumn(t, p, w, w', th, H_-DIST, a’)
if (Cuted( w,w', th, H_DIST) < th)

CorrectSubtre@, p, w, w’, th, H_DIST, FSAg, s', LCand)
H_DIST := DelLastCol(H_DIST)
w’ := Del LastSymbol(w’) O

© © N O O AW N

lines 14 and 15). Theorem 1 Let £ be a local tree language and
Once all three hypotheses have been analyzédZ £. The algorithm CorrectionRoutine is cor-

the full update sequences are constructed by comect and complete, i.e. it computes all the candi-

bining (by a Cartesian product) sequences fatatest’ € £ such thatdist(t,t') = DIST(t, L) if

smaller partial trees and those for the most reDIST(t, L) < th. a

cent subtrees (Algorithm 3, lines 16 through 18).

Finally, we calculate the minimum possible cosbrooF

(Algorithm 3, line 19), and we select all the canqp order to argue for the correctness we have to
didates having this cost (Algorithm 3, line 20).qnow that each solutiotf proposed is valid and
These two data (minimum cost and set of minima}iges not exceed the threshald i.e. ¢ € £ and
sequences) yield the current eleméft, j]. dist(t,t') < th.

Let's suppose that is of depth0 (it contains
Example 9 Consider the XML treel” of Fig.1 af- n)y one node). That means that the edit distance
ter the first update operation. During the correctiony,strix betweert andt’ contains only two columns
of t = T/ CorrectionRoutinereturns LCand = —92 and—1. Thus, candidat¢’ has been added
{(L [(insert, 0.1,d)]), (1, [(relabel, 0.0,m)]), g the list of solutions (in Algorithm 2 line 2) be-
(2, [(remove, 0.0.0, /), (remove, 0.0, /)])}. The first  ¢ore having entered the loop in lines 3 through 9.
element of LCand (with cost 1) is found by com- s is possible only if, in the finite-state automa-
puting matrix H_DIST{(x)},{(c.4)}, the second one 4y corresponding to the root ¢f the initial state
(with cost 1) by computind?_DISTrsrc ((em).0.0))+  is also a finite state. Thug, (with no children) is
and the third one (with cost 2) is found by computing5iq. Moreover, we have acceptédonly if the
H-DISTrgrse (e 0)}- 5 bottom right-hand element of the matrix does not

13



Algorithm 3 - Add a new column to an edit distance matrix
Function AddNewColumty(p, w, w’, th ,H_DIST, a)
Input:
(Z) t:t= T;Tee & Et(e)
(#4) p: position indom(T') such thafl}}"* =t
(#i7) w: invalid word (concatenation of states associatetstooot’s children)
(iv) w': partial valid word (concatenation of states associatedats children int’)
(v) th: integer corresponding to the error threshold
(vi) H_DIST: edit distance matrix betweerandt’
(vii) a € 3 label corresponding to the current column
Result: H_DIST

1. j := width(H_DIST)-2
2. H_DIST[-2,j] := (400, T)
3. LCand := CorrectionRoutine({(e, \)}, p, a, th)

4. (CInsmin, SSInsmin) := LCand]0]
I the first element of list [(costq, {Seqi, Seqs, ..., Seqi}), ..., (cost,,{Seq}, Seqy, ..., Seq}})]

5. 850 := SetAddPrefiz(SSInsm, 0) I/ we insert at first position "0’

6. H_DIST[-1,j] := (H_DIST[-1, j-1].C + CInsmin, {s'|s"=sxs’, sc H_DIST|[-1, j-1].5, s’ € SS0})
7. for each (=0 to |w]|-1) do

8 p’ = concat(p, 1)

/1 1%t case: by insertion
9. Cyr:= H_DISTYi, j-1].C+CInsyin;  SSins := SetAddPrefix(SSinsmin, i + 1)
/1 24 case: by deletion

10. LCand := CorrectionRoutine(getSubTree(t, i), p’, A, th)
11. (Cdel, SSdel) := (LCand[0].C, LCand|0].S)

12. SSdel := SetAddPrefix(SSdel, i); Cp:= H_DIST[i —1,j].C + Cdel
/1 374 case: by replacement

13. LCand := CorrectionRoutine(getSubT'ree(t, i), p', a, th)
14. (Crep, SSrep) := (LCand[0].C, LCand[0].S); Cr:= H_DISTIi-1, j-1].C+Crep

15. SSrep := SetAddPrefixz(SSrep, i)
/lcomparison between the 3 cases

16. s;={s|s=¢"xs" s € H.DISTJi, j-1.5, s € SSins}

17.  sp={s|s=s"xs,s" € SSdel,s € H.DIST]i-1,].5}

18. sp={s|s=s"xs",¢ € HDISTi-1, j-1.5, s" € SSrep}

19. H_DISTi, j].C := min{C}, Cp, Cr}

20. H_DISTIi, j|.S :={s| s € sy, x € {I, D, R} andC, = H_DISTYi, j].C}

21. return(H_DIST) O

exceedh (line 1). According to [13], this element added to the list of solutions also in Algorithm 2
representslist(t,t'). line 2. At this moment, we have reached a finite
Let’s suppose that is of depth 1 (consists of state of the local automaton, which means that the
aroot and a set of leaves). This candidate (or moteaves oft’ respect the regular grammar attributed
precisely, the set of updates needed to obtain it) 16 the root oft’. Thust' is a valid tree. Moreovelf
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remains within the threshold, similarly to the casessarily finds the "word” consisting of these roots.

above (depth 0). Thus,t’ itself must have been found.
Let's now suppose that any solution of depth O
ewith 1 < e < dis correct. We will prove that It is worth noting thatCorrectionRoutinecal-

each solutiont’ of depthd is correct. In order fot’  culates not only all the set of candidatésc £
to be valid, two conditions are sufficient : (i) eachsuch thatdist(t,t’) is minimal within a given
subtree of the root of is valid, (i) the sons of the threshold i(e. dist(t,t') = DIST(t,L) <
root of t’ respect the regular expression associated/ ST (¢, £) < th) but also some non-minimal
to the root. The first condition is true as supposedandidates that respect the threshold. The pro-
above (they are of depths < d). The second cedure is however not completer.t the set con-
condition is true because we addto the list of taining all the candidates respecting the threshold.
solutions only if we have reached a final state ofhis is due to two facts.
the automaton attributed to the root ©¥f(Algo- Firstly, while admitting an insertion we allow
rithm 2 line 2). Moreover, the second condition ofonly minimal subtrees having the current symbol
Algorithm 2 line 1 ensures thatist(t,t’) < th. as a root (see Algorithm 3, line 4). In order to
By induction, all solutions generated by our algogetall, possibly non minimal, solutions within the
rithm are correct. threshold we would have to take the whole list
We need now to prove that each candidate min=C'and (Algorithm 3, line 3) into account, and not
imal within the thresholdh is found by our algo- only its first element.

rithm, i.e. if DIST(¢t,L£) < th anddist(t,t') = Secondly, while admitting a replacement we
DIST(t,L£) then ¢ is found. Let's suppose also retain only the minimal solution at the head
that there exists a tre€ such thatdist(¢,t') = of the list (Algorithm 3, line 14). For a complete
DIST(t,L£) < th, andt’ is notfound by our al- set of candidates the whole list would have to be
gorithm. preserved instead.

Let’s suppose that’' is of depth 0 (contains
only one node). Ift’ is valid than the label of o
its root is the finite state of theee automaton © Building corrected XML tree

associated to the languadg). The initial call from local corrected subtrees
to Correction Routine necessarily takes label
equal to this finite state (because we cortest.t. We have presented in previous section algorithms
L,). Thus,t'(e) = a. Moreover, ift’ is valid capable of computing a corrected tree from a given
then the empty string is recognized by the regunvalid tree. In order to integrate correction into
lar expression of’(¢). That means that the ini- the incremental validation procedure, given an in-
tial state of the corresponding finite-state automaalid updated XML tre€l’, CorrectionRoutinds
ton is also its finite state. Thus, while executingalled for each positiop where the incremental
CorrectSubtree must have necessarily generatedalidation process fails. Then, each failure posi-
" in Algorithm 2 lines 1 and 2. tion p corresponds to a tuple, LC'and): these tu-
Let's now suppose that each correct solutioples are stored in a structure calledStock, man-
of depthe with 1 < e < d is found. We will aged by the validation process. Before describ-
prove that each solutiod of depthd is found. ing how solStock is managed and finally used
If ¢ is valid then its root corresponds to the fi-to present corrections to the user, we notice that
nite state of thdree automatorassociated to the this structure also induces some optimizations: in-
languagel,. Similarly to the case above, a calldeed, it avoids re-correcting the same subtrees in
to CorrectionRoutine with ¢'(¢) = a must have functionAddNewColumnTo this end, we replace
been performed. While exploring the finite-statdines 13 to 15 of Algorithm 3 by the lines described
automaton associated t(e¢), each subtree of in Fig. 6.
t’ has been found (according to the supposition When correcting a subtree, Algorithm
above). Since the roots of these subtrees respettd N ewColumn (modified version) avoids cor-
the regular expression of(¢), our algorithm nec- rection over both the subtrees that had already
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/1 37 case: by replacement

1. If (w[i] = a) //if we maintain the same label

2 If Exists@’, solStock) llthe subtree has been corrected beforehand

3 Cr:=H[i—1,j — 1].C + getCost(p’, solStock);  SSrep:= getSetSeq(p’, solStock)
4. SSrep := SetAddPrefixz(SSrep, i)

5 else// the subtree is locally valid

6 Cr:=H[i—1,7—-1.C, SSrep:=10

7. elsell if we change the label

8. LCand := CorrectionRoutine(get SubT'ree(t, ), p’, a, th, solStock)

9. (Crep, SSrep) := (LCand[0].C, LCand[0].S); Cr:= H_DISTi-1, j-1].C+Crep

10. SSrep := SetAddPrefixz(SSrep, i)

Figure 6: The lines which modify lines 13 to 15 of AlgorithAdd N ewColumn

been corrected and those that are valid (lines 2f#st candidate in.C'and. Each global solution in-
and 5-6 respectively). volves the correction of the invalid subtregs(for

We saw that each call t6orrectionRoutinet ~€achp appearing in the non redundastl Stock)
a failure positiorp returns its solutions il.Cand. by the application of the corresponding update se-
As said before, the incremental validation proguence to obtain candida#. It is interesting to
cedure (augmented with correction) uses relatioigmark that the user can choose to compute one
solStock to store solutions: during the valida-unique solution orn ones, depending on whether
tion process, each failure positigncorresponds he is interested in any correction with a minimal
to a tuple(p, LC'and) in solStock. At the end of distance fromi” or in examining several possible
the validation-correction process, as some redugorrections.

_danC'es mgy eX'St_ IBOZStOCk’_ before pro_ce_ed- Example 10 Consider Example 9. Recall that error
ing to the integration of solutions, we eliminatehresholdsh, — 2. After the first correction at posi-
from solStock the set of tupleq (p, LCand) € tion 0 (subtreery in Fig. 7), SolStock containsS =
solStock | Fp',p < p A (p/,LCand) € (0,LCand,), whereLCand, represents the list of can-
solStock}. This is because corrections at posididates found in Example 9. The second error is found
t|0ns p/ < P take Correctlons @ |nto account. when the 'Va|idati0n test is performed.at POSitian
Indeed, during the correction at, if a candidate MOre Precisely, the wordy = aabbb which is com-

; ) . posed by the concatenation of states associated to chil-
tree forT), relies on corrections offi, (which be-

. dren ofe, is not iN L(E,..:) WhereE,.,,; = ab* (see
longs to7}) then the listLC'and computed forp Fig. 7). During the correction of = T (updated

is integrated intd.Cand’ (for p'). tree), CorrectionRoutineeturnsnull, since all candi-
Once we have iBolStock all the "non redun- dates have an edit distance that exceeds the threshold

dant” local solutions remaining within the threshZh = 2.

old, we combine them into global ones. If the sunWe consider nowh = 3. As the validation routine fails

of the costs of local solutions does not exceed tHg, Position0 (Fig. 1), CorrectionRoutineof treet =

T (i it
. .15 "¢ returnsLCand (i.e. at position0, SolStock
threshold, then the corresponding global SOIUtIO@ontainSS’ — (0, LCand,)). In this case,LCand,

may be presented to the user. For instance, O8gyes the same solutions appearingifiand, (ob-
minimum cost solution (if any) can be computedained withtx = 2) plus some extra solutions with
by putting together for each tuple kalStock the cost3.
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Figure 7:XML tree from Fig. 1 after updates.

The validation routine also fails at positierof Fig.1. 6 Conclusion
In order to propose corrected solutiorGorrection-

Routineconsiders the updated versionBf shown in We h d . . iated
Fig. 7. Since the correction of subtréein Fig. 7 needs e have presented a correction routine associate

at least two operations, only the cheapest correctio@ an incremental validation process. This routine
of Ty can be kept (those with cos). More precisely, introduces a tree-to-grammar correction approach:
the CorrectionRoutineof treet = TI"¢ returns the given a local tree languaggand an invalid tree,
relation LC'and, below (We recall that the positions find valid treest’ whose distance fromis within
indicated in this relation are those of the updated treg given thresholdh. This is done by computing

version |IIustrated.|n Fig. 7). Flg.. 8 illustrates the COltree edit distance betweerand’ < £. This al-
rected trees obtained by applying each one of these

corrections. gorithm extends our previous work in [8] which
LCandy = { considers an incremental string-to-grammar cor-
S, = (3,[(delete0.0.0,/),felete0.0,/), delete, )]), rection method (based on [11, 16, 17]) . The tree-
S = (3,[(insert0.14),(relabel 1), (relabel1.1¢)]), to-grammar correction is based on the tree-to-tree
S3 = (3,[(insert0.1(),(relabel1p),(deletel.1,/)]), correction problems examined in [13, 14, 15] for

Sy = (3,[(relabel0.0yn),(relabel 1 b),(relabel1.1¢)]),  two given trees and¢’. Their edit operations dif-
S5 = (3,[(relabel0.0/n),(relabel1),(deletel. 1NN} fer from ours. However, the main difference of our

approach is that we generate sevetah a given
As (¢, LCand,) is obtained at, we can eliminate tree language close tot.
(0, LCand}), because is the prefix of0. Then, in

SolStock we find only(e, LCands) 0 A correction algorithm for XML invalid trees

w.r.t schema constraint is also presented in [4].
The correction is done from scratch and only one
solution is presented (the authors argue that the

The global solutions can be presented to thdistance between the original tree and the cor-
user in different forms. If we consider that thefected one is minimal). Our approach differs from
correction method applies to relatively small XMLthis one in the following aspectgi) Our correc-
documents visualized in an editor, we can displa9'°” routine finds different solutions within a given
entire candidate trees. Consider Example 10, wiareshold. In particular, all minimal solutions are
can generate fronSolStock the tree candidates Computed.(ii) The user can choose the best solu-
shown in Fig. 8. However, proposing a new corfion for his purposes(iii) Our correction routine
rected update sequence instead seems to be a peintegrated in an incremental validation process
ter way of showing the user which operations h&nd can use validation information to fulfill its
is allowed to do. Notice that the correct updaté@sk. (iv) We are capable of pointing at the se-
sequence needed to transform the original valigu€nces of edit operations needed to transform an
XML tree T0 into the valid updated treE’ is sim-  invalid tree into a corrected one.
ply computed by _DISTrq 1. We have obtained good experimental results
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Figure 8:Correction candidates of XML tree of figure 7 with error thveksl th = 3.

for the incremental validation routine [5]. Othersiderations, our proposition should be integrated in
experimental results show a good performance @ain XML update framework, using for instance Up-
our string-to-grammar correction algorithm, dedateX [9]: to this aim, more primitive operations
spite its high theoretical complexity [8]. The im-should be considered. If we consider for example
plementation oCorrectionRoutindin progress) is that inserting one node between a father and some
based on [8, 13]. of its children (.e. inserting one new level) is an
Our CorrectionRoutineis designed to fit the elementary operation, it means, at string level, to
incremental validation process. We are currentlgeal with the string edit operation that can replace
studying a more general procedure capable @f sequence of letters with only one letter (the in-
computingall solutions within a given threshold. serted node, which becomes the father of the node
Such kind of procedure might be applied in othesequence). This is a problem for which there is no
application domains using trees. Complexity oefficient solution yet.
our method should be evaluated.t this general
procedure, considering the advantages of aVOid"]Qeferences
correction of valid subtrees.
We continue studying the problem of how to [1] Official website for SAX. Available at
help the user to choose the best correction: we plan  http://www.saxproject.org.
to perform tests with intensive updates on hugep] M. A, Abrdo, B. Bouchou, A. Cheriat,
documents in order to determine which procedure M. Halfeld-Ferrari, D. Laurent, and M. A.
may be more suitable. Among other usability con-  Musicante. Incremental Constraint Validation
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