
Incremental Constraint Validation of XML Documents
under Multiple Updates

Béatrice Bouchou1 Ahmed Cheriat1 Mírian Halfeld Ferrari Alves1

Dominique Laurent2 Martin A. Musicante3

1 Université François-Rabelais de Tours-LI/Campus de Blois, France
{bouchou, cheriat, mirian}@univ-tours.fr

2 Université de Cergy-Pontoise - Departement Informatique, France
dominique.laurent@dept-info.u-cergy.fr

3 Universidade Federal do Paraná - Departamento de Informática, Brazil
mam@inf.ufpr.br

Abstract. This paper addresses the problem of incremental validation of XML
documents, wrt schema under multiple updates. A given sequence of updates is
composed of insertions, deletions and replacements of any subtree in an XML
unranked tree. DTD, XDS and specialized DTD schemas are represented by tree
automata.
In a complete XML tree traversal (à la SAX), where a sequence of updates is
treated, only the cost of validation tests is relevant. Our approach is incremental
since only some nodes, defined from update positions, trigger validation tests.
In this context, let m be the number of updates over an XML tree whose size
is |T |. Our incremental schema validation, for DTD and XDS, is done in time
O(m. logc |T |.c) where c is the maximal fan out of T . Experimental results show
that our algorithms behave efficiently in practice.

1 Introduction

We consider a data-exchange environment where an XML document should respect
schema constraints. Schema constraints establish the structural form of XML docu-
ments. We address the problem of incremental validation of updates performed on a
valid XML document (i.e., one that respects a given set of constraints).

An XML document is an unranked labeled tree T . The labeled tree representing
part of the XML document used in our examples is shown in Fig.1. In this figure, a tree
node is identified by a position and it is associated to a label. Labels are XML element
or attribute names. Notice that the data values found in an XML document appear on
the tree leaves.

In our approach, update operations correspond to the insertion, the deletion and the
replacement of subtrees of T . Only updates that do not violate constraints are accepted.
Thus, before applying updates on a valid tree, one have to test whether these updates
do not violate the validity of the tree. The goal of an incremental validation method
is to perform these tests without testing the entire tree, but just the part of it which is
concerned by the update.

2 BCHLM2004

Operations capable of updating and incrementally validating an XML tree can be
proposed for two different situations:
• Single updates: One uses an update language to perform one update at a time, i.e.,
an incremental validation is performed for each single update operation. In this case,
document validity is assured wrt each update operation.
•Multiple updates: A sequence of update operation is treated as one unique transaction.
Document validity is assured just after considering the whole sequence of updates - and
not after each update of the sequence, independently. A single update is a special case
of a multiple update.

The main contribution of this paper is the introduction of an incremental schema
validation method which deals with multiple updates. This paper extends our previous
work [8, 7] by dealing with unranked trees, usually much shorter than the binary ones,
the complexity of our incremental schema validation method happens to be similar to
the one proposed in [6, 14]. However, contrary to [6, 14], our update operations can be
applied at any node of the XML tree and auxiliary structures are not necessary when
using DTDs and XSD.

In the following, we roughly explain how the incremental validation tests are per-
formed in our approach.

root
ε

Fig. 1. Tree representation of an XML document.

Overview of our method - Let UpdateTable be a sequence of updates to be per-
formed on an XML tree T . To visit T we proceed in a depth-first visit of the XML doc-
ument, triggering tests and actions according to the required updates (in UpdateTable).
To simplify our explanation, schema constraint routine can be summarized as follows.

Incremental Constraint Validation of XML Documents under Multiple Updates 3

– When an update node is reached, the required update is taken into account (consid-
ered as done). Nodes which are descendant of update nodes are skipped i.e., they
are not treated.

– For each node p which is an ascendant of an update position a validation step
is activated when reaching the close tag corresponding to p. A validation step at
position p verifies whether p’s children (in the updated tree version) respect schema
constraints. For instance, if a sequence requires updates on positions 0.1.2 and 0.3
of Fig. 1 then a validation step is activated on nodes 0.1, 0 and ε.

– All other nodes (those that are not on the path between the root and an update
position) are skipped, i.e., no action is triggered on them.

In this paper, XML trees are treated à la SAX [2]. This choice implies a complete
XML tree traversal but it avoids the use of an auxiliary structure for incrementally
verifying some kinds of schema constraints. It is also possible to consider our approach
in a DOM context. In this case, space requirements are bigger, but time complexity can
be smaller. It is worth remarking that the use of SAX allows the treatment of much
bigger XML documents [13].

Roughly, our algorithm visits all nodes in an XML tree. However a more detailed
analysis shows that only some nodes trigger validation actions while others are just
“skipped” (i.e., no action is activated when reaching them). The cost of skipping nodes
is not relevant when compared to the cost of validation actions. Thus, in Sections 5 we
consider the complexity of our method only wrt the total number of validation actions
that should be performed.

This paper is organized as follows. Section 2 introduces some concepts necessary
in the paper. In Section 3 we consider the validation wrt schema constraints. We present
In Section 4 algorithms that incrementally verify the validity of an XML document wrt
multiple updates and we show some experimental results. Our framework takes into
account XML attributes as well as elements. Section 7 concludes the paper.

2 Background

An XML document is an unranked labeled tree where: (i) the XML outermost element is
the tree root and (ii) every XML element has its sub-elements and attributes as children.
Elements and attributes associated with arbitrary text have a data child. Fig. 1 shows an
XML tree.

To define our trees formally, let U be the set of all finite strings of positive integers
(which usually we separate by dots) with the empty string ε as the identity. The prefix
relation in U, denoted by � is defined by: u � v iff u.w = v for some w ∈ U.

Now, if Σ is an alphabet then a Σ-valued tree T (or just a tree) is a mapping T :
dom(T) → Σ, where dom(T) is a tree domain. A finite subset dom(T) ⊆ U is a (finite)
tree domain if: (1) u � v , v ∈ dom(T) implies u ∈ dom(T) and (2) j ≥ 0, u. j ∈
dom(T), 0 ≤ i ≤ j⇒ u.i ∈ dom(T).

Each tree domain may be regarded as an unlabeled tree, i.e., a set of tree positions.
We write T (p) = a for p ∈ dom(T) to indicate that the symbol a is the label in Σ
associated with the node at position p. For XML trees, Σ is composed by element and

4 BCHLM2004

attribute labels together with the label data. We consider the existence of a function
value that returns the value associated with a given data node.

Let T be an XML tree, valid wrt some integrity and schema constraints, and consider
updates on it. We assume three update operations (insert, delete and replace) whose
goal is to perform changes on XML trees. Fig. 2 illustrates the individual effect of each
update operation over T .

insertion at p = 1

εε

ε
εε

ε

ε

(i)

insertion at p = 2

(ii)

deletion at p = 2

(iii)

replace at p = 1

(iv)

ε

Fig. 2. Update operations over a tree T . (i) Insertion at a frontier position. (ii) Insertion at a
position of dom(T). Right siblings are shifted right. (iii) Deletion. Right siblings are shifted left.
(iv) Replace.

In this paper we are interested in multiple updates, i.e., we suppose an input file
containing a sequence of update operations that we want to apply over an XML tree.
The effective application of this sequence of updates depends on its capability of pre-
serving document validity. In other words, a valid XML tree is updated (according to
a given update sequence) only if its updated version remains valid. The acceptance of
updates relies on incremental validation, i.e., only the validity of the part of the original
document directly affected by the updates is checked.

A sequence of updates is treated as one unique transaction, i.e., we assure validity
just after considering the whole sequence of updates - and not after each update of the
sequence, independently. In other words, as a valid document is transformed by using
a sequence of primitive operations, the document can be temporarily invalid but in the
end validity is restored. This extends our previous work in [5, 8, 9].

Let U pdateTable be the relation that contains updates to be performed on an XML
tree. Each tuple in U pdateTable contains the information concerning the update posi-
tion p and the update operation op. In this paper we assume that U pdateTable is the
result of a pre-processing over a sequence of updates required by a user. In the resulting

Incremental Constraint Validation of XML Documents under Multiple Updates 5

U pdateTable the following properties hold:
P1 - An update on a position p excludes updates on descendants of p. In other words,
there are not in U pdateTable two update positions p and p′ such that p � p′.
P2 - If a position p appears more than once in U pdateTable then the operation op in-
volving p is an insertion.
P3 - Updates in an U pdateTable are ordered by position, according to the document
order.
P4 - An update position in an U pdateTable always refers to the original tree. Con-
sider for instance the tree of Fig. 1. In an U pdateTable an insertion operation refers to
position 0.3 even if a deletion at position 0.1 precedes it.

3 Schema Verification

It is a well known fact that XML schemas can be represented by tree automata. A
tree automaton can be built from a schema specified using schema languages such as
DTD, XDS, specialized DTD or RELAX NG [1]. In our approach, we use a bottom-
up unranked tree automaton capable of dealing with both (unordered) attributes and
(ordered) elements in XML trees [8].

Definition 1. - Non-deterministic bottom-up finite tree automaton: A tree automa-
ton over Σ is a tuple A = (Q, Σ,Q f , ∆) where Q is a set of states, Q f ⊆ Q is a set of
final states and ∆ is a set of transition rules of the form a, S , E → q where (i) a ∈ Σ; (ii)
S is a pair of disjoint sets of states, i.e., S = (S compulsory, S optional) (with S compulsory ⊆ Q
and S optional ⊆ Q); (iii) E is a regular expression over Q and (iv) q ∈ Q. �

The tree automaton A obtained from a schema specification D may have differ-
ent characteristics according to the schema language used for D. These characteristics,
discussed below, match the taxonomy of regular tree grammars introduced in [13].

Let A = (Q, Σ,Q f , ∆) be a tree automaton. Two different states q1 and q2 in Q are
competing if ∆ contains different transition rules (a, S 1, E1 → q1 and a, S 2, E2 → q2)
which share the same label a. Notice that we assume that no two transition rules have
the same state in the right-hand side and the same label in the left-hand side, since two
rules of this kind can be written as a single one. A regular expression E in a transition
rule restrains competition of two competing states q1 and q2 if for any sequence of
states αU , αV , and αW , either αUq1αV or αUq2αW fails to match E.

Based on the concepts of competing states and competition-restrictive regular ex-
pressions, regular tree languages are classified as follows:
C1− Regular tree languages (RTL): A regular tree language is a language accepted by
any tree automaton specified by Definition 1. The automaton obtained from a special-
ized DTD recognizes languages in this class.
C2− Local tree languages (LTL): A local tree language is a regular tree language ac-
cepted by a tree automaton that does not have competing states. This means that, in this
case, each label is associated to only one transition rule. The automaton obtained from
a DTD recognizes languages in this class.
C3− Single-type tree languages (STTL): A single-type tree language is a regular tree
language accepted by a tree automaton having the following characteristics: (i) For each

6 BCHLM2004

transition rule, the states in its regular expression do not compete with each other and
(ii) the set Q f is a singleton. The combination of these two characteristics implies that
although it is possible to have competing states, the result of a successful4 execution of
such an automaton can consider just a single type (state) for each node of the tree. The
automaton obtained from a schema written in XDS recognizes languages in this class.
C4− Restrained-competition tree languages (RCTL): A restrained-competition tree lan-
guage is a regular tree language accepted by a tree automaton having the following
characteristics: (i) For each transition rule, its regular expression restraints competition
of states and (ii) the set Q f is a singleton. No schema language proposed for XML is
classified as a RCTL.

Notice that, as shown in [13], the expressiveness of the above classes of languages
can be expressed by the hierarchy LTL ⊂ STTL ⊂ RCTL ⊂ RTL (where L1 ⊂ L2 means
that L2 is strictly more expressive than L1).

The execution of a tree automatonA over an XML tree corresponds to the validation
of the XML document wrt to the schema constraints represented by A. In its general
form, a run r of A over an XML tree T is a tree such that: (i) dom(r) = dom(T) and
(ii) each position p is assigned a set of states Qp. The assignment r(p) = Qp is done
by verifying whether the attribute and element constraints imposed to p’s children are
respected. The set Qp is composed by all the states q such that:

1. There exist a transition rule a, (S compulsory, S optional), E → q inA.
2. T (p) = a.
3. S compulsory ⊆ Qatt and Qatt\S compulsory ⊆ S optional where Qatt is the set containing the

states associated to each attribute child of p.
4. There is a word w = q1, . . . , qn in L(E) such that q1 ∈ Q1, . . . , qn ∈ Qn, where
Q1 . . .Qn are the set of states associated to each element child of p.

A run r is successful if r(ε) is a set containing at least one final state. A tree T is
valid if a successful run exists on it. A tree is locally valid if the set r(ε) contains only
states that belong to A but that are not final states. This notion is very useful in an
update context [8].

Restricted forms of schema languages permit simplified versions of run. For in-
stance, in a run of a tree automaton for (simple) DTD, the sets Qp are always singleton.
This situation considerably simplifies the implementation of item (4) above [8]. More-
over, implementations can be enhanced by considering the fact that XML documents
should be read sequentially to be validated. While reading an XML document, we can
store information useful to avoid the possible ambiguity of state assignment, expressed
by the transition rules. For instance, in the implementation of the run of a tree automa-
ton for XDS, each tree node can always be associated to one single state. This state
is obtained by intersecting a set of “expected” states (computed during the sequential
reading of the document so far) and the set of states obtained by the bottom-up applica-
tion of the rules of the automaton (Proposition 1).

4 See below the definition of the run of a tree automaton over a tree.

Incremental Constraint Validation of XML Documents under Multiple Updates 7

4 Incremental Schema Verification

Given a tree T and a set of updates over T , the incremental validation problem consists
in checking whether the updated tree complies with the schema, by validating only the
part of the tree involved by the updates. We propose a method to perform the incre-
mental validation of an XML tree T by triggering a local validation method only on
positions that are a prefix of an update position p (including both the root position ε and
p itself).
Remark: When considering the most general classes of schema languages, during an
incremental validation, we need to know which states were assigned by a previous val-
idation to each node of the tree being updated. A data structure containing the result
of the run over the original document should be kept. However, schema verification
for languages in STTL (i.e., XSD) and LTL (i.e., DTD), does not impose the need for
auxiliary, permanent data structures [13]. �

<root> </root>

<a> <a>

<c> </c> <d> </d>

<d> </d>

<c> </c> <e> </e> <c> </c>

<d> </d>
</d><d>

delete(0.1)

replace(3, t2)

insert(1, t1)

0
21

0.0
2.0 2.1

2.1.1

0.1

0.1.0

3.0

ε

2.1.0

3

Fig. 3. XML tree and update operations.

The following example illustrates our method in an intuitive way.

Example 1. Consider the XML tree of Fig. 3, where update positions are marked. Bold
arcs represent the necessary tree transversal for our method, to check the validity of the
updates we want to perform.

Let us suppose that there is a tree automaton A, representing the schema to be
verified. We also suppose that the original tree (Fig. 3) is valid w.r.t. A, and that the
subtrees being inserted are locally valid w.r.t.A. It is interesting to remark that:

– When the open tag <d> (at position 0.1) is reached, the deletion operation is taken
into account and the subtree rooted at this position is skipped.
To verify whether this deletion can be accepted, we should consider the transition
rules in A associated to the parent of the update position. This test is performed

8 BCHLM2004

when the close tag (position 0) is found. Notice that to perform this test we
need to know the state assigned to position 0.0, but we do not need to go below this
position (those nodes, when they exist, are skipped).

– When the second open tag <a> (position 1) is reached, the insertion operation is
taken into account and the new, locally valid sub-tree t1 (rooted at this position) is
inserted. This implies that if all the updates are accepted, right-hand side siblings
of position 1 are shifted to the right.
We proceed by reading nodes at (original) positions 1 and 2. Notice that we can
skip all nodes below position 2, since there is no update position below this point.

– The replace operation at position 3 combines the effects of a deletion and an inser-
tion.

– The close tag </root> activates a validity test that takes into account the root’s
children. This test follows the definition of the run of the tree automaton. �

The implementation of this approach is done by Algorithm 1. This algorithm takes
a tree automaton representing the schema, an XML document and a set of updates to
be performed on the document. The algorithm checks whether the updates should be
accepted or not. It proceeds by treating the XML tree in document order. During the
execution, the path from the root to the current position p defines a borderline between
nodes already treated and those not already considered.

Our algorithm keeps two structures in order to perform the validation. The first one
stores the states allowed at the current position by the tree automaton. The second one
contains, for each position p′ on the borderline path, the states really assigned to the
left-hand side children of p′. In the following, we formally define these structures.

Definition 2. - Permissible states for children of a position p: Let PSC(p) be induc-
tively defined on positions p as follows:

PSC(ε) = {q | there exists a, S , E → qa ∈ ∆ such that t(ε) = a,

q is a state appearing in E and qa ∈ Q f }

PSC(pi) = {q | there exists a, S , E → qa ∈ ∆ such that t(pi) = a,

q is a state appearing in E and qa ∈ PSC(p)} �

Roughly speaking, for each position pi (labeled a, child of node p), the set PSC(pi)
contains the states that can be associated to pi’s children. To this end, we find those
states appearing in the regular expression E, for each rule associated to the label a.
Notice however that we consider only transition rules that can be applied at the current
node, according to the label of pi’s father (i.e., only those rules having a head that
belongs to the set of states PSC(p)). For instance, suppose two rules a, S 1, E1 → qa1 and
a, S 2, E2 → qa2. Consider now that an element struct1 has a child that should conform
to rule a, S 1, E1 → qa1 while an element struct2 has a child that should conform to rule
a, S 2, E2 → qa2. When computing the state associated to an element labeled a that is
a child of struct1, state qa2 is not considered. This is possible because PSC(p) for the
element being treated contains just qa1.

The following definition shows how each position p is associated to a list composed
by the set of states assigned by the tree automaton to p’s children. This list is built
taking into account the updates to be performed on the XML document.

Incremental Constraint Validation of XML Documents under Multiple Updates 9

Definition 3. - State attribution for the children of a position p: Given a position p,
the list SAC(p) is composed by the set of states (associated by the schema verification)
to the children of position p as follows:

SAC(p) = [Qatt,Q1, . . . ,Qn]
where for 1 ≤ i ≤ n:

Qi =



{ } If pi is a delete position
Φ ∩ PSC(p) If pi is an insert or a replace position
{q | q ∈ PSC(p), t(pi) = a, there is a rule a, S , E → q}

If pi has no descendant update positions
{q | there is a rule a, (S compulsory, S optional), E → q, such that

t(pi) = a, for Qatt of SAC(pi) we have S compulsory ⊆ Qatt

and Qatt \ S compulsory ⊆ S optional and
L(E) ∩ L(SAC(pi)) , ∅}

If pi is an ascendant of an update position

Moreover, the set Qatt contains the states associated to p’s children that are attributes.
The set Φ contains the states associated to the root of the sub-tree being inserted at
position p, i.e., the result of a successful local validation. �

The construction of each set Qi in the list SAC(p) depends on the situation of p
with respect to the update positions. When pi is an update position the set Qi takes
into account the type of the update. If pi is an ancestor of an update position then it
represents a position where a validity test may be necessary. In this case, Qi is the set
of states associated to pi when the validation at this position succeeds. If there is no
update over a descendant of pi, then Qi contains all possible states for pi.

Now we present Algorithm 1 that is responsible for the construction of both PSC(p)
and SAC(p), for each position p.

Algorithm 1 - Incremental Validation of Multiple Updates
Input:
(i) doc: An XML document
(ii)A = (Q, Σ,Q f , ∆): A tree automaton
(iii) U pdateTable: A relation that contains updates to be performed on doc.
Each tuple in U pdateTable has the form 〈pos, op,Tpos, Φ〉 where pos is an update
position (considering the tree representation of doc), op is an update operation, Tpos is
the subtree to be inserted at pos (when op is an insertion or a replace operation) and Φ
is the set of states associated to the root of Tpos by the execution ofA over Tpos (i.e., the
result of the local validation). All inserted sub-trees are considered to be locally valid.
Output: If the XML document remains valid after all operations in U pdateTable the
algorithm returns the boolean value true, otherwise f alse.

(1) for each event v in the document
(2) skip:= false;
(3) switch v do
(4) case start of element a at position p:
(5) if a ,“<root>”{

10 BCHLM2004

(6) if ∃ u = (p, delete,Tp, Φ) ∈ U pdateTable then skip:= true;
(7) if ∃ u = (p, replace,Tp, Φ) ∈ U pdateTable then {
(8) Compute Qp (Definition 3);
(9) if (Qp = ∅) then report “invalid” and halt;
(10) SAC(f ather(p)) = SAC(f ather(p))@Qp;

//Append Qp to SAC(f ather(p))
(11) skip:= true;
(12) }
(13) for each u = (p, insert,Tp, Φ) ∈ U pdateTable do {
(14) Compute Qp (Definition 3);
(15) if (Qp = ∅) then report “invalid” and halt;
(16) SAC(f ather(p)) = SAC(f ather(p))@Qp;
(17) }
(18) if @u′ = (p′, op′,T ′, Φ′) ∈ U pdateTable such that p ≺ p′ {

//If there is no update over a descendant of p
(19) Compute Qp (Definition 3);
(20) SAC(f ather(p)) = SAC(f ather(p))@Qp;
(21) skip:= true;
(22) }
(23) }
(24) if a =“<root>” or ¬skip then {

//If p is an ascendant of an update position
(25) Compute PSC(p) (Definition 2);
(26) SAC(p) = SAC(p)@Qatt;

//Starting the construction of the list SAC(p)
(27) }
(28) if skip then skipS ubTree(doc, a, p);
(29) case end of element a at position p:
(30) if ∃ u = (p.i, insert,Tp.i, Φ) ∈ U pdateTable

and p.i is a frontier position then {
(31) Compute Qp.i (Definition 3);
(32) if (Qp.i = ∅) then report “invalid” and halt;
(33) SAC(p) = SAC(p)@Qp.i;
(34) }
(35) Compute Qp (Definition 3);
(36) if (Qp = ∅) then report “invalid” and halt;
(37) if a ,“</root>” then SAC(f ather(p)) = SAC(f ather(p))@Qp;
(38) report “valid” �

Algorithm 1 processes the XML document à la SAX [2]. While reading the XML
document, the algorithm uses the information in UpdateTable to decide which nodes
should be treated. When arriving to an open tag representing a position p concerned by
an update, different actions are performed according to the update operation:

– delete: The subtree rooted at p is skipped. This subtree will not appear in the result
and thus should not be considered in the validation process (line 6).

– replace: The subtree rooted at p is changed to a new one (indicated by Tp in the
UpdateTable). The set of states Qp indicates whether the locally valid subtree Tp is
allowed at this position. The set Qp is appended to the list SAC(f ather(p)) to form
the list that should contain the states associated to each sibling of p. The (original)
sub-tree rooted at p is skipped (lines 7-12).

Incremental Constraint Validation of XML Documents under Multiple Updates 11

– insert: The validation process is similar to the previous case for each insertion at
p (lines 13-17), but the (original) sub-tree rooted at p is not skipped since it will
appear in the updated document on the right of the inserted sub-trees.

When we are in a position p (labeled a) where there is no update over a descendant
(lines 18-22) we can skip the sub-tree rooted at p. The list SAC(f ather(p)) is appended
with the set {q | there is a rule a, S , E → q in ∆ such that q ∈ PSC(f ather(p)) and T (p) =
a}. In other words, in SAC(f ather(p)), the set Qp contains the permissible states for
the child at position p. We use skipSubTree (line 28) to “skip nodes” until reaching
a position important for the incremental validation process. Notice that when such a
position is reached, skipSubTree changes the value of the variable skip accordingly.

When reaching an open tag representing a position p that is an ascendant of an
update position, the structures PSC(p) and SAC(p) should be initialized (lines 24-27)
. The set PSC(p) contains the states that can be associated to the children of the ele-
ment at position p (labeled a). To this end, we find the states appearing in the regular
expression E of rules associated to label a. Only rules that can apply to the current ele-
ment are considered, i.e., only those having a head that belongs to PSC(f ather(p)) (see
Definition 2).

When reaching a close tag representing a position p we verify firstly if there is
an insert operation on the frontier position (i.e., on a position pi < dom(T) such that
p ∈ dom(T)). In this case, the insertion is performed (lines 30-34) .

Next (lines 35-37), we should test whether the p’s children respect the schema. In
fact, reaching a (not skipped) close tag (representing position p), means that updates
were performed over p’s descendants.

Schema constraints for the current node p (labeled a) are verified by taking into
account the list SAC(p) (i.e., [Qatt,Q1, . . . ,Qn]) which, at this point, is completely built.
Recall that the set Qatt contains the states associated to the attributes of p while the sets
Q1, . . . ,Qn contain the states associated to each element child of p (in the document
order). In fact, at this point of the algorithm, our goal is to find the setQp to be appended
to SAC(f ather(p)). This computation corresponds to the last case of Definition 3.

More precisely, we consider the language L(SAC(p)) which is defined by the regular
expression (q0

1 | q
1
1 | . . . | q

k1
1) . . . (q0

n | q
1
n | . . . | q

km
n) where each ki = |Qi| and each q j

i ∈

Qi (with 1 ≤ i ≤ n). The resulting set of states Qp is composed by all states q for which
we can find transition rules in ∆ of the form a, (S compulsory, S optional), E → q, that respect
all the following properties: (1) q is a state in PSC(f ather(p)); (2) S compulsory ⊆ Qatt;
(3) Qatt \ S compulsory ⊆ S optional and (4) L(E) ∩ L(SAC(p)) , ∅.

Notice that Algorithm 1 considers all the updates over the children of a node p
before performing the validity test on p.

Our algorithm is general, however, as shown in the following proposition, for the
case of single-type tree languages, SAC(p) (for each position p) is a list of singleton
sets. In this case, the operation L(E)∩ L(SAC(p)) , ∅ is reduced to the verification of a
word to belong to a regular language.

Proposition 1. Given a schema defining languages in STTL, for each position p in
Algorithm 1, we have that the set of states assigned to element children that are not
delete positions is always a singleton set, that is: if SAC(p) = [Qatt,Q1, . . . ,Qn] then
| Qi |= 1 for all 1 ≤ i ≤ n. �

12 BCHLM2004

: By cases, on the definition of each Qi:
If pi is an insert or a replace position. In this case, we have Qi = Φ∩PSC(p). If we suppose that
{q1, q2} ⊆ Qi, then (i) Both states q1 and q2 are in competition (since they belong to Φ) and (ii)
they belong to the same regular expression in a transition rule (since they belong to PSC(p)). The
conjunction of the two conditions above contradicts the definition of a single-typed language, to
which the schema belongs.
If pi has no descendant update positions. In this case the set Qi = {q | q ∈ PSC(p),T (pi) =
a, there is a rule a, S , E → q}.
If we suppose that {q1, q2} ⊆ Qi, then, by the definition of Qi, the states q1 and q2 compete to
each other (since there is only one label associated to the position pi of the tree), leading to a
contradiction.
If pi is an ascendant of an update position. In this case the set Qi is also defined as being
composed by states which are in the right-hand side of a rule for a given label a. The existence of
more than one state in this set contradicts the definition of a single-typed language, to which the
schema belongs. �

Proposition 1 allows us to define a simplification on Algorithm 1, to use single states
instead of sets of states, in such a way that, for these classes of tree languages, we can
represent SAC(p) = [Qatt,Q1, . . . ,Qn] as a set of states Qatt and a word of states.

Notice that while performing validation tests, a new updated XML tree is being
built (as a modified copy of the original one). If the incremental validation succeeds,
a commit is performed and this updated version is established as our current version.
Otherwise, the commit is not performed and the original XML document stays as our
current version. The next section considers the implementation of our method, compar-
ing it to a validation from scratch.

5 Complexity and Experimental Results

As said in Section 1, the complexity of our method is presented taking into account that
the cost of “skipping” nodes is not relevant when compared to the cost of validation
actions. In this context, notice that in Algorithm 1 (lines (35)-(37)), for each node p ∈
dom(T) which is an ascendant of an update position, a validation step is executed.

Let E be the regular expression defining the structure of p’s children. When a DTD
or XSD schema is used, each validation step corresponds to checking whether a word
w is in L(E), where w results from the concatenation of the states associated to p’s
children. Thus, for DTD or XSD schema each validation step is O(|w|).

When a specialized DTD schema is used, each validation step corresponds to check-
ing if there is a word w = qi, . . . , qn in L(E) such that qi ∈ Qi, . . . , qn ∈ Qn (see the run
definition on Section 3). In other words, we should test if L(Eaux) ∩ L(E) , ∅, where
Eaux is the regular expression representing all the words we can build from the con-
catenation of the states associated to p’s children, i.e., Eaux = (q0

1 | q1
1 | . . . | qk1

1) . . .
(q0

n | q1
n | . . . | qkn

n). This test is done by the intersection of the two automata MEaux

and ME . The solution of this problem runs in time O(n2) where n is the size of the
automata [11, 12].

Incremental Constraint Validation of XML Documents under Multiple Updates 13

Thus, if we assume that n is the maximum number of children of a node (fan out)
in an XML tree T , then a validation step runs in time O(n) (for DTD or XML schema)
or in time O(n2) (for specialized DTD).

Let m be the number of updates to be performed on a tree t of size |T |. Given an
update position p, a validation step should be performed for each node on the path
between p and the root. If all m updates are on the leaves, the number of validation
steps equals the depth of the tree (O(logn |T |)). However, in practice, updates can happen
in any level l ≤ (logn |T |). Thus, we can conclude that when dealing with DTD or
XSD schema Algorithm 1 runs in time O(m.n. logn |T |). However for specialized DTD
schema it runs in time O(m.n2. logn |T |). Notice that in some cases, we can introduce
optimizations that avoid going up to the root to finish validation. For instance (see [8]),
when dealing with a DTD, we just need to verify whether the state associated to the
father of an update position changes. This is easily done by using transition rules. Thus,
for multiple updates with DTD, we just need to perform verifications until reaching the
father of the update position which is the nearest to the root.

Table 51 - Experimental results.

Attributes Attributes + Elements Xerces (ms) our Application (ms)
675 2 300 828 1 127 (50 updates)
6.4K 722K 1 047 1 219 (50 updates)
12K 47K 1 266 1 500 (50 updates)

50.5K 180K 2 125 2 406 (50 updates)
156K 540K 4 890 3 657 (50 updates)
473K 1.6M 11 922 5 843 (50 updates)
1.5M 5.1M 35 969 13 297 (10 updates)

17 891 ms (50 updates)
2.3M 10.2M 71 031 23 578 ms (10 updates)

35 500 ms (50 updates)
6M 20.5M 142 266 45 344 ms (10 updates)

59 890 ms (50 updates)
18M 61.1M 422 859 ms 136 735 ms (10 updates)

149 453 ms (50 updates)

The worst-case time complexity analysis presented above uses the maximum fan
out of children for nodes as well as the depth of the tree for a balanced XML tree. This
consideration leads us to a theoretical (worst case) time complexity that is not repre-
sentative of the practical situations in which the algorithm will be used. Experimental
results (Table 51) show that our algorithm behaves very efficiently in practice.

Table 51 compares our incremental validation method (Algorithm 1) to a validation
from scratch approach which requires reading the entire document after each update.
We use Xerces [?] to perform validation from scratch. In the current implementation of
Algorithm 1, the structures PSC() and SAC() are implemented as stacks.

In order to compare these approaches we use ten XML documents of different sizes
(from 2 500 to 61 000 000 nodes). These documents are part of a STTL and describe
different car suppliers. They are valid wrt an XDS whose principal schema constraints
are expressed by the following transition rules.

14 BCHLM2004

supplier, (∅, ∅), q+shopq∗garage → qsupplier

shop, (∅, ∅), q∗newVeh → qshop

garage, (∅, ∅), q+oldVeh → qgarage

vehicle, ({id}, {type}), qnameqcvqcat?→ qnewVeh

vehicle, ({id}, ∅), qnameqcvqkm? → qoldVeh

Table 51 shows the results obtained when comparing our incremental validation
method and the validation from scratch of Xerces. Table 51 provides the size of each
XML document by indicating, for each of them, the number of attributes and elements.
Given an XML document, we consider a sequence of 10 or 50 updates over it. The
algorithm was implemented in Java, and experiments were performed on a 3.0 GHz
Pentium system with 512MB of memory and a 30GB, 4200rpm hard drive.

Table 51 and Fig. 4 show that our incremental validation method is very efficient for
large documents. Indeed, it takes almost a third of the time needed for Xerces to validate
(50 or 10) updates on a document having 61 000 000 nodes. Similarly, it takes about
half of the time needed for Xerces to validate documents having 10 000 000 nodes.

Fig. 4. Xerces (validation from scratch) × Our incremental validation method.

6 Related Work

The importance of algorithms for the efficient validation of XML documents grows to-
gether with the use of schema languages. Algorithms for the incremental validation are
very useful when dealing with very large XML documents, since they can substantially
reduce the amount of time of the verification process. Several XML document editors
such as XML Mind [3] and XMLSpy [4] include features for the validation of docu-
ments (wrt one or more schema languages). However, the documentation of most of
these tools include little or no information on their validation algorithms.

Incremental Constraint Validation of XML Documents under Multiple Updates 15

In [13] validation algorithms are presented but incremental validation is not consid-
ered. One of the most referenced work dealing with incremental validation of XML doc-
uments wrt schema constraint is [6, 14]. In those papers incremental validation methods
wrt DTD, XSD and specialized DTDs are presented. Their approach is based on the use
of bottom-up, binary tree automata; i.e., schema descriptions are translated to binary
tree automata and XML documents are seen as binary trees. They propose two main
incremental algorithms to validate a number m of updates on the leaves of a given tree
T . The first algorithm, for DTD and XSD, has time complexity O(m.log|T |), and uses
an auxiliary structure of size O(|T |). The second algorithm, for specialized DTDs, has
time complexity O(m.log2|T |) and also uses an auxiliary structure of size O(|T |).

Our approach deals with multiple updates and incremental validation over an un-
ranked tree. As we have already said, our algorithm visits all the nodes of an XML tree
but only some nodes trigger the validation actions that represent the relevant cost of the
approach. Thus, we can say that our time complexity is similar to the one found in [6,
14]. Due to our use of unranked trees instead of the binary trees of [6, 14], each vali-
dation step on our method can be more expensive, but our XML tree is usually much
shorter.

Our work differs from that in [14] in four main aspects:

1. Our update operations can be applied at any node of the tree, and not just on the
leaves. This feature permits us to change large areas of the XML tree on one single
operation.

2. In [14], testing whether a word belongs to a language is done in an incremental way
by storing an auxiliary structure. This optimization can be easily integrated in our
algorithm, but it seems to be interesting only in case of very large fan-out.

3. When dealing with DTD and XSD we do not use auxiliary structures to store the
result of a previous validation process.

7 Conclusions

In this paper we present a method to incrementally verify schema constraints dealing
with multiple updates in XML documents. The update operations correspond to the
insertion, deletion and replacement of any subtree of an XML document. Only after
analyzing all update operations in a given update sequence, the validity of the XML
document is determined.

The incremental verification of schema constraints is performed by using a bottom-
up tree automaton to re-validate the parts affected by the sequence of updates. We have
analyzed the different characteristics of tree automata according to the schema lan-
guage, showing that these characteristics match the taxonomy of regular tree grammars
introduced in [13].

The algorithms presented here have been implemented in Java, and the experimental
results show that the incremental schema verification with multiple updates for large
XML documents takes almost a third of the time needed for the validation from scratch.

Our time complexity and our experimental results show the efficiency of our ap-
proach. Our approach is as efficient as those proposed by [10, 14] and it has some ad-

16 BCHLM2004

vantages such as space requirements, multiple updates on any tree node and flexibility
of integrating schema and constraint validation.

References

1. Apache xml editor. Available at http://www.apache.org/xerces-j/.
2. Official website for SAX. Available at http://www.saxproject.org.
3. Xmlmind. Available at http://www.xmlmind.com/xmleditor/.
4. Xmlspy. Available at http://www.xmlspy.com/products_doc.html.
5. M. A. Abrao, B. Bouchou, M. Halfeld-Ferrari, D. Laurent, and M. A. Musicante. Incremen-

tal constraing checking for XML documents. In Proceedings of the Second International
XML Database Symposium, number 3186 in Lecture Notes in Computer Science (LNCS).
Springer-Verlag, 2004.

6. Andrey Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation of xml docu-
ments. ACM Trans. Database Syst, 29(4):710–751, 2004.

7. B. Bouchou, A. Cheriat, M. Halfeld Ferrari Alves, D. Laurent, and M. Musicante. Tree
automata in the validation of xml under different schemas languages. Technical Report 281,
Université François-Rabelais de Tours, LI/ Campus de Blois, 2005.

8. B. Bouchou and M. Halfeld Ferrari Alves. Updates and incremental validation of XML
documents. In Springer, editor, The 9th International Workshop on Database Programming
Languages (DBPL), number 2921 in LNCS, 2003.

9. B. Bouchou, M. Halfeld Ferrari Alves, and M. A. Musicante. Tree automata to verify key
constraints. In Web and Databases (WebDB), San Diego, CA, USA, June 2003.

10. Y. Chen, S. Davidson, and Y. Zheng. Validating constraints in XML. Technical Report MS-
CIS-02-03, Department of Computer and Information Science, University of Pennsylvania,
2002.

11. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory Languages
and Computation. Addison-Wesley Publishing Company, second edition, 2001.

12. George Karakostas, Richard J. Lipton, and Anastasios Viglas. On the complexity of in-
tersecting finite state automata. In IEEE Conference on Computational Complexity, pages
229–234, 2000.

13. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema language using formal lan-
guage theory. In Extreme Markup Language, Montreal, Canada, 2001.

14. Y. Papakonstantinou and V. Vianu. Incremental validation of XML documents. In Proceed-
ings of the International Conference on Database Theory (ICDT), 2003.

